

[Click here to view linked References](#)

1
2
3
4
5
6
7
8
9
10
11
12
13

Submission to “*Journal of Biological Engineering*” as a Review Article

The role of LINC mechanotransduction in mesenchymal stem cell function and fate

Tasneem Bouzid¹, Eunju Kim¹, Brandon D. Riehl¹, Amir Monemian Esfahani¹, Jordan Rosenbohm¹, Ruiguo Yang^{1,2}, Bin Duan^{1,2,3}, Jung Yul Lim^{1,2,*}

¹ Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

² Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA

³ Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA

* Corresponding: W317.3 Nebraska Hall, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Fax: +1-402-472-1465; E-mail: jlim4@unl.edu (J.Y.L.)

63
64
65

1
2
3
4
5
Abstract
6

7 Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue
8 engineering and regenerative medicine, and are understood to be mechanosensitive to external
9 mechanical environments. In recent years, increasing evidence points to nuclear envelope
10 proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular
11 form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and
12 Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which
13 cells can sense external mechanical environments through an intact nuclear envelope and LINC
14 proteins will be briefly described. Then, we will highlight the current body of literature on the
15 role of the LINC complex in regulating MSC function and fate decision, without and with
16 external mechanical loading conditions. Our review and suggested future perspective may
17 provide a new insight into the understanding of MSC mechanobiology and related functional
18 tissue engineering applications.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38 **Keywords:** Mesenchymal stem cells; Linker of Nucleoskeleton and Cytoskeleton (LINC);
39
40 Nesprin; SUN; Mechanotransduction; Functional tissue engineering
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7 **1. Introduction**

8
9 Cellular sensing and response to changes in extracellular environments, biochemical and
10 mechanophysical, are critical for cell growth and function. Mechanical forces both outside and
11 inside the cell can be transduced into molecular signaling activities to direct cellular function and
12 fate - a process known as mechanotransduction [1]. The mechanical forces at the plasma
13 membrane can be altered either via changes in cell-substrate adhesion due to modifications in
14 extracellular matrix (ECM) density, rigidity, and orientation, or through the formation or
15 dissociation of cell-cell junctions. The altered force at the plasma membrane can biochemically
16 or mechanophysically affect membrane-bound mechanosensitive proteins, such as integrin cell-
17 ECM adhesion and cadherin cell-cell junction proteins and linker proteins bound to them [2].
18
19 This, in turn, may induce the reorganization of cytoskeletons, such as actin filaments, anchored
20 at the cell-ECM and cell-cell adhesion junctions. Such procedures can trigger changes in related
21 downstream molecular signaling pathways. The cytoskeletons provide a pathway for mechanical
22 forces to be transferred from the plasma membrane to internal cellular structures, including the
23 nucleus [3]. The nuclear-cytoplasmic connections facilitated by nuclear envelope (NE) proteins
24 such as the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex provide spatial and
25 structural integrity for the nucleus, as well as allow for the transfer of mechanical force into the
26 nucleus resulting in mechanotransduction [4]. In this review, considering the recent interest in
27 the mechanotransduction community, we will address the importance of the LINC complex and
28 component proteins, nesprin and SUN, in regulating cellular function and fate in general. Then,
29 we will highlight recent advances in our understanding of how LINC is involved in the
30 mechanical regulation of mesenchymal stem cell (MSC) behavior, lineage commitment, and
31 differentiation.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. LINC Complex

The nuclear membrane is composed of an inner nuclear membrane (INM) and an outer nuclear membrane (ONM), which are separated by a ~40 nm gap known as the perinuclear space (PNS) [5]. The ONM is attached to the endoplasmic reticulum (ER), where the PNS forms a continuous extension into the ER lumen. A key feature of the nuclear envelope is the lamina, a mesh of proteins lining the inner surface of the INM. Importantly, the lamina is composed of lamin A/C (or LMNA) proteins that are mechanically connected to varying cytoskeletons via the LINC complex (**Fig. 1**) [6].

LINC is composed of two protein domains: SUN (Sad1p, UNC-84) domain which spans the inner nuclear membrane, and the conserved C-terminal KASH (Klarsicht/ANC-1/Syne Homology) domain which spans the outer nuclear membrane. The C-terminal KASH is expressed in proteins known as nesprins (nuclear envelope spectrin-repeat proteins) [7-10], which are similar in structure to type II integral membrane proteins featuring a single transmembrane segment followed by a short luminal sequence [11]. The C-terminal KASH domain of nesprin proteins extends into the perinuclear space and interacts with the SUN domain of SUN proteins to form the LINC complex. KASH proteins have one or more complementary SUN proteins, allowing for various LINC isoforms to exist [5]. Importantly, variable N-terminal domains of nesprins support the binding with different cytoskeletal components. There have been four mammalian nesprins (Syne 1-4) identified, which encode a wide range of alternatively-spliced isoforms [5,12,13]. Nesprin-1 and nesprin-2 are the largest of the isoforms, each having a size of ~976 kDa and ~764 kDa, respectively, and contain N-terminal calponin homology (CH) domain that binds to F-actin [13]. On the other hand, nesprin-3 has an N-terminal motif that can bind to plectin, the intermediate filament (IF) linker protein, and nesprin-4 can indirectly interact

1
2
3
4 with microtubules [14]. In addition to these four nesprins, KASH5, a meiosis-specific KASH
5 domain, interacts with the dynein-dynactin complex and has a role in mediating telomere
6 localization [15].
7
8
9
10
11
12
13

14 **3. LINC and Cellular Function**

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The LINC complex and component nesprins and SUNs have recently been proposed to be implicated in various aspects of cellular organization and function. A primary function of LINC is in the control of the orientation of the nucleus. Arsenovic et al. [16] utilized a fluorescence resonance energy transfer (FRET)-based sensor to evidence that the LINC complex, specifically nesprin-2 giant (nesprin-2G), can sense myosin-dependent cellular tension to alter the nuclear shape. Beyond the nucleus shape, LINC and related nuclear envelope-actin linkage have a potential to affect the functions of centrosomes [17] and meiotic chromosomes [18] to regulate cell division and replication. Further, nucleus architecture and resultant skeletal dynamics governed by LINC may play a regulatory role in the repair of DNA damage [19-21]. For example, mouse embryonic fibroblasts, when doubly impaired in SUN1/2 genes, showed excessive DNA damage, increased genome instability, and compromised DNA repair [20]. In accordance, the UNC-84 domain of the SUN protein could contribute to promote the repair of interstrand crosslinks and inhibit nonhomologous end joining [21]. Enabled by the physical interconnection between LINC and nuclear chromatin, epigenetic control of cell differentiation can also occur through mediation of transcription factors [22,23].

Due to the coordination of nucleus morphology by the LINC complex, nucleus shape and movement during cell migration and polarization are also regulated by LINC [24-26]. It was shown that nesprin-1/2 and SUN1/2 complex could couple the nucleus and centrosome during

1
2
3
4 neuronal migration [24]. A study by Luxton et al. [25] utilized dominant negative constructs of
5 the LINC complex expressed in wound-edge NIH3T3 fibroblasts to examine the role of LINC in
6 nuclear movement during migration. In their study, using lysophosphatidic acid (LPA), a
7 motility stimulator, it was revealed that nuclear movement was significantly impaired in nesprin-
8 2G-depleted cells (**Fig. 2**). Moreover, nesprin-2G and SUN2 coupled with transmembrane actin-
9 associated nuclear (TAN) lines to assemble the nucleus to the actin cytoskeleton, thus enabling
10 nuclear migration during cell polarization and centrosome reorientation. The proposed role of the
11 TAN lines may parallel that of the focal adhesion complex considering both assemble in reaction
12 to actin bundling and both can transmit forces across membranes.
13
14

15 Considering its interactive role in bridging cytoskeletons with nuclear lamina, LINC has
16 been associated with a range of diseases [27]. Particularly, laminopathies or mutations in lamin
17 A/C genes result in a variety of tissue-specific disorders including, but not limited to, Emery-
18 Dreifuss muscular dystrophy (EDMD) and limb girdle muscular dystrophy 1B. A majority of
19 lamin A/C mutations can produce cardiac and skeletal muscle defects: in skeletal muscle, such
20 mutations disorganize the LINC complexes in synaptic nuclei, leading to the dislocation of
21 nuclei at the neuromuscular junction. Syne mutations have also been associated with non-
22 muscular diseases including cerebellar ataxia and autosomal recessive arthrogryposis. Moreover,
23 it was reported that mutations in nesprin-1, nesprin-2, and lamin A/C were found in a genome-
24 wide screening of 100 breast cancer patients [28]. Similarly, mutations in nesprin-1 were
25 observed in patients with breast, ovarian, or colorectal cancers [29], and a downregulation or
26 mutation in the nesprin gene could be linked to an increased risk of invasive ovarian cancer [30].
27
28 Observations suggest that improved understanding of the role LINC has in cell functions may
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 lead to the development of targeted therapies for various diseases, including a wide range of
5
6 laminopathies and cancers.
7
8
9
10
11

12 **4. Sensing Mechanical Environments through LINC** 13

14 Targeted studies have been conducted to reveal the role of an intact nuclear envelope in
15 mediating the ability of cells to sense and respond to extracellular mechanical environments. It
16 was observed that under lower levels of fluid flow-induced shear stress, nesprin-2 and lamin A
17 expression in endothelial cells were suppressed (relative to normal shear stress counterparts),
18 leading to an increase in both cell proliferation and apoptosis [31]. Nesprin-3 was found to play a
19 vital role in fluid shear-induced polarization of the centrosome and directional migration of
20 human aortic endothelial cells [32]. For fibroblasts and myoblasts under fluid shear, the
21 perinuclear actin cap, a subset of actin filaments connected to the nuclear envelope through
22 nesprin-2G and nesprin-3, showed a dominant response to lower shear stresses, while
23 conventional actin filaments at the basal surface of the cells required at least 50 times more shear
24 stress to assemble [33].
25
26

27 An attempt to directly apply mechanical force to an isolated nucleus via nesprin-1 link
28 demonstrated an induced reinforcement of the connection between the LINC complex and lamin
29 A/C [34]. In this study with fibroblasts, the stretching of nesprin-1 triggered the Src-dependent
30 phosphorylation of emerin, thus changing the nature of its association with lamin and leading to
31 the stiffening of nucleus. In the cyclic mechanical stretching of myoblasts, disruption of the
32 LINC complex impaired the mechanical stimulation of terminal myogenic differentiation [35].
33 Chancellor et al. [36] tested the role of LINC in adhesion, migration, and orientation of human
34 vascular endothelial cells (HUVECs) under uniaxial strain and showed that cells were unable to
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 reorient in response to the strain in the presence of nesprin-1 silencing (**Fig. 3**). They also
5
6 observed that nesprin-1 deficient cells displayed a larger number of focal adhesions and higher
7
8 nuclear heights. Their proposed model suggested that the actomyosin tension on the nucleus is
9 exerted and balanced by connections via nesprin linkage: when this nesprin connection is
10 disrupted, the tension can be balanced with increased focal adhesions. Similarly, endothelial cells
11 with nesprin-1 knockdown displayed a decreased nuclear width and an increase in nucleus strain
12 when exposed to uniaxial stretch [37]. This suggested that silencing nesprin-1 could release the
13 nucleus from the tension of F-actin, thus allowing for deformation before stretching. Also,
14 fibroblastic cells manipulated with nesprin-1 siRNA showed decreased cell elongation under
15 cyclic stretch [38].
16
17

18 Some studies tested the role of LINC without dynamic external mechanical loading (such
19 as fluid shear or mechanical stretch) but on substrates with varying stiffness. It was demonstrated
20 that the LINC complex facilitates the regulation of genome-wide transcriptional changes in
21 fibroblasts in response to substrate rigidity, but at the same time, interfering with LINC did not
22 attenuate the nuclear shape sensitivity to substrate rigidity [39]. For human muscle precursor
23 cells, intact lamin and nesprin-1 were required to enable cells to adapt their intracellular tension
24 to the rigidity of the ECM [40].
25
26
27

28 **5. LINC Regulation of MSC Function and Fate**

29

30 MSCs have been of significant interest as they can serve as a promising cell source for tissue
31 engineering and regenerative medicine applications due to their multi-lineage potential. Now, we
32 will delve into the main focus of this review, a potential role of LINC in MSC behavior, lineage
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

1
2
3
4 commitment, and differentiation. The regulatory role of LINC will be discussed for cases in the
5 absence and presence of external mechanical loading.
6
7
8
9
10
11
12

5.1. LINC control of MSC behavior without mechanical loading

13 Several studies have looked into the role of LINC and its associated proteins in MSC function in
14 the absence of external mechanical inputs. As shown for other cell types, the LINC complex can
15 be involved in various aspects of MSC morphology and function. In a study by Yang et al. [41],
16 rat bone marrow-derived MSCs (BMSCs) were transfected with a lentiviral vector expressing
17 siRNA targeting nesprin-1. With transfection, MSCs exhibited a decrease in cell proliferation
18 and an increase in apoptosis (**Fig. 4a,b**). Moreover, nesprin-1 siRNA significantly altered nuclear
19 morphology, frequently resulting in cell fusion or fragmentation. In another study with rat
20 BMSCs [42], cells with SUN1-depleted nuclei displayed reduced nucleus stiffness and
21 substantial reduction in osteopontin-induced cell migration.
22
23

24 Increasing evidence proposes that the LINC complex may play an important role in MSC
25 fate decision and phenotypic commitment. As it was suggested that a correct positioning of
26 nuclei via nesprin-1 is required for myotube formation and resultant muscle function [43], it is
27 probable nesprin plays a role in MSC myogenic differentiation. Indeed, it was shown that
28 myoblast differentiation was substantially deteriorated in nesprin-1 deficient BMSCs [41] (**Fig.**
29 **4c**). In addition to myogenesis, nuclear envelope proteins have been shown to regulate MSC
30 adipocytic commitment. The Wnt/β-catenin signaling has been established to mediate MSC
31 adipogenesis: nuclear translocation of β-catenin allows for the downregulation of adipogenic
32 transcription factors leading to decreased adipocytic commitment [44]. The β-catenin entrance
33 into the nucleus is achieved through interacting with nuclear pore complexes (NPCs), and direct
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

coordination of β -catenin with the LINC complex can enhance the β -catenin membrane localization for nuclear import via NPCs [45]. Accordingly, the co-deletion of SUN1 and SUN2, and the subsequent untethering of nesprin-2 from the nuclear membrane in MSCs, significantly diminished β -catenin nuclear surface localization and β -catenin levels obtained from the soluble nuclear fraction [46] (**Fig. 5**).

5.2. LINC control of MSC behavior under mechanical loading

Understanding the mechanisms by which the mechanical microenvironments regulate MSC function and developmental fate is important for functional tissue regeneration. Recent research has explored how MSCs perceive and respond to mechanical loading environments, particularly focusing on the nucleus and nuclear proteins. In a study utilizing Rho-associated protein kinase (ROCK) inhibition to induce a loss of cytoskeletal tension in MSCs [47], ROCK inhibition decreased nuclear deformation under static stretch and abrogated nesprin-1 upregulation under dynamic stretch, suggesting the coordination of cytoskeletal tension and LINC action in MSC behavior.

Various studies have pointed to the role of mechanical loading in directing MSC fate, and recently the focus has been targeting the LINC complex as a key component such phenomena. For example, in a study by Uzer et al. [48] on the inhibition of MSC adipogenesis by low- and high-magnitude mechanical signals (LMS and HMS, respectively), an intact LINC complex was necessary for the LMS function, but not for the HMS action (**Fig. 6**). The decreases in adipogenic markers (adiponectin and AP-2) in MSCs by LMS were abolished in the presence of siRNA of SUN. Despite the relatively well-established correlation between MSC adipogenesis vs. osteogenesis in response to mechanical environments [44,49-51], LINC regulation of MSC

1
2
3
4 osteogenesis by mechanical loading has not been studied intensively. For myogenesis, while
5
6 LINC has been shown to mediate the mechanical myogenic direction for various myogenic cell
7 lines, there are limited studies on the LINC regulation of the mechanical induction of MSC
8 myogenesis. One study showed that treatment of MSCs with 5-azacytidine to induce in vitro
9 cardiomyogenesis resulted in an increase in nesprin-1 expression [52]. Moreover, nesprin-1
10 expression was higher in the infarcted rat myocardium implanted with MSCs than in the non-
11 implanted control group, suggesting the involvement of nesprin-1 in MSC differentiation into
12 myocardial phenotype. While these studies suggest a functional association between LINC and
13 MSC lineage commitment, the underlying mechanotransduction mechanisms remain to be fully
14 explored.
15
16

17 How MSCs translate mechanical signals into modifications at the genomic level is not yet
18 understood, either. For embryonic stem cells (ESCs), it is known that the chromatin structure
19 becomes gradually more condensed following differentiation [53]. Clusters of condensation can
20 be associated with regions of transcriptionally inactive genes, while decondensed euchromatin
21 regions allow for the access of their binding sites and activate lineage-specific gene expression
22 [54]. Interestingly, for MSCs, dynamic mechanical loading could induce rapid calcium-
23 dependent chromatin condensation in the absence of exogenous differentiation factors [55] (Fig.
24 7). In this study, a load-dependent persistence in chromatin condensation in MSCs required the
25 continued activity of histone methyltransferases and acetylases after the cessation of loading,
26 implying the mechanical memory effect of previous loading events. Considering the potential
27 physical interconnection between LINC and nuclear chromatin as described above [22,23],
28 further investigation into whether the LINC complex behaves as an intermediate in the observed
29 load-induced chromatin condensation and lineage specification is required.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

MSCs perceive the stiffness of ECM, cell micropatterning size, or resultant changes in cell shape via the activation and regulation of key nuclear transcription factors, principal of which is Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) [56]. YAP/TAZ nuclear localization in MSCs is known to be Rho GTPase-dependent, which regulates the formation of actin stress fibers in response to ECM stiffness and cell spreading. Interestingly, similar to the static substrate control of YAP/TAZ, dynamic tensile stretching of MSCs could induce the nuclear translocalization of YAP [57] (**Fig. 8**). Further, this activity in YAP under stretch loading may require strain transfer to the nucleus via nesprin-1G, as evidenced by the decrease in nuclear/cytoplasmic YAP content under stretch with nesprin-1G knockdown. On the other hand, the mechanisms by which YAP participates in crosstalk with nesprin in the cytoplasmic area under static condition (before loading) and how YAP and nesprin coordination will occur under dynamic loading can be investigated further.

36 **6. Future Perspective**

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Mechanosensitive proteins found at the NE have increasingly been shown to play a key part in modulating the biomechanical information transfer between the cell surface, cytoskeletal structures, and the nucleus. For MSCs, although it is well established that cells rely on mechanical cues to reorganize their internal physical structures and regulate various signaling pathways, there remains much to be explored and understood about the relationship between nuclear mechanics and stem cell behavior including fate decision. For example, what is the molecular mechanism enabling MSCs to perceive the external mechanical environment and propagate the force signal to the nucleus, and how do NE proteins such as LINC and the components, nesprin and SUN, further transmit the information to internal nuclear machinery?

1
2
3
4 Moreover, in what way do LINC proteins physically interact with chromatin and transcriptional
5 regulatory factors to mediate changes in gene expression and direct stem cell differentiation?
6
7
8
9

10 What role does LINC play in modulating MSC mechanical adaptivity and memory effect, and
11 how do these influence load-controlled MSC fate and long-term phenotype commitment?
12
13

14 Additionally, relative to external mechanical loading studies, there lacks research testing the
15 involvement of the LINC complex in MSC function and lineage commitment on substrates of
16 varying stiffness or geometries. Such information may allow for the development and
17 optimization of material-based devices for diagnostics, tissue engineering, and regenerative
18 medicine. While considerable progress has been made in the past decades in identifying the
19 mechanisms by which MSCs respond and adapt to external mechanical loading environments,
20 studies should take into more consideration the nucleus, particularly the LINC complex and
21 associated nesprin and SUN, as an integral component of the cellular mechanosensory circuit
22 that regulates MSC function, lineage commitment, and terminal differentiation.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 **Abbreviations**

39
40 BMSC: bone-marrow derived mesenchymal stem cell; CH: calponin homology; ECM:
41 extracellular matrix; EDMD: Emery-Dreifuss muscular dystrophy; ESC: embryonic stem cell;
42 FRET: fluorescence resonance energy transfer; HMS: high-magnitude mechanical signal;
43 HUVEC: human vascular endothelial cell; IF: intermediate filament; INM: inner nuclear
44 membrane; KASH: Klarsicht/ANC-1/Syne homology; LINC: linker of nucleoskeleton and
45 cytoskeleton; LMS: low-magnitude mechanical signal; LPA: lysophosphatidic acid; MSC:
46 mesenchymal stem cell; NE: nuclear envelope; nesprin: nuclear envelope spectrin-repeat protein;
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 Rho-associated protein kinase; TAN lines: transmembrane actin-associated nuclear lines; TAZ:
5
6 transcriptional coactivator with PDZ-binding motif; YAP: yes-associated protein.
7
8
9
10
11

12 **Acknowledgements**

13
14 The authors thank the funding support from NSF GRFP (1610400) given to T.B.; NIH/NIGMS
15
16 COBRE NCIBC ESI Grant (P20GM113126, PI: Takacs), NIH/NIGMS COBRE NCN Pilot
17
18 Grant (1P30 GM127200-01, PI: Bronich), and NSF grant (1826135) all given to R.Y.;
19
20 AHA Scientist Development Grant (17SDG33680170) given to B.D.; NSF CAREER (1351570),
21
22 NE DHHS Stem Cell Research Project (2018-07), NIH/NIGMS COBRE NPOD Seed Grant
23
24 (P20GM104320, PI: Zempleni), and NIH/NIGMS Great Plains IDeA-CTR Pilot Grant
25
26 (1U54GM115458-01, PI: Rizzo) all given to J.Y.L.
27
28
29
30
31
32

33 **Funding**

34 See above Acknowledgements
35
36
37
38
39
40

41 **Availability of data and materials**

42 Not applicable.
43
44
45
46
47

48 **Authors' contributions**

49 T.B., E.K., B.D.R., A.M.E., J.R., R.Y., B.D., and J.Y.L. conceived and designed the contents of
50
51 the review; T.B. wrote the manuscript; E.K. assisted in writing subsections; R.Y., B.D., and
52
53 J.Y.L. revised the manuscript; All authors read and approved the final manuscript.
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 **Ethics approval and consent to participate**
5
6
7 Not applicable.
8
9
10
11
12

13 **Consent for publication**
14
15
16
17
18

19 **Competing interests**
20
21 The authors declare that they have no competing interests.
22
23
24
25

26 **References**
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

- [1] Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. *Science*. 1993;260:1124-7.
- [2] Geiger B, Yamada KM. Molecular architecture and function of matrix adhesions. *Cold Spring Harb Perspect Biol*. 2011;3:a005033.
- [3] Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. *Proc Natl Acad Sci U.S.A.* 1997;94:849-54.
- [4] Stewart CL, Roux KJ, Burke B. Blurring the boundary: the nuclear envelope extends its reach. *Science*. 2007;318:1408-12.
- [5] Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. *Proc Natl Acad Sci U.S.A.* 2009;106:2194-9.
- [6] Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. *Nat Rev Mol Cell Biol*. 2009;10:75-82.
- [7] Uzer G, Fuchs RK, Rubin J, Thompson WR. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage. *Stem Cells*. 2016;34:1455-63.

1
2
3
4 [8] Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, Lammerding J. The
5 interaction between nesprins and sun proteins at the nuclear envelope is critical for force
6 transmission between the nucleus and cytoskeleton. *J Biol Chem.* 2011;286:26743-53.
7
8 [9] Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA,
9 Shanahan CM. Nesprins: a novel family of spectrin-repeat-containing proteins that localize
10 to the nuclear membrane in multiple tissues. *J Cell Sci.* 2001;114:4485-98.
11
12 [10] Starr DA, Han M. ANChors away: an actin based mechanism of nuclear positioning. *J Cell*
13 *Sci.* 2003;116:211-6.
14
15 [11] Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D. Coupling
16 of the nucleus and cytoplasm: role of the LINC complex. *J Cell Biol.* 2006;172:41-53.
17
18 [12] Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL,
19 Ellis JA, Shanahan CM. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin
20 at the nuclear envelope and forms a subcellular network in skeletal muscle. *J Cell Sci.*
21 2005;118:673-87.
22
23 [13] Mellad JA, Warren DT, Shanahan CM. Nesprins LINC the nucleus and cytoskeleton. *Curr*
24 *Opin Cell Biol.* 2011;23:47-54.
25
26 [14] Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I,
27 Raymond K, Sonnenberg A. Nesprin-3, a novel outer nuclear membrane protein, associates
28 with the cytoskeletal linker protein plectin. *J Cell Biol.* 2005;171:799-810.
29
30 [15] Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro KI, Han M, Watanabe Y. A conserved
31 KASH domain protein associates with telomeres, SUN1, and dynein during mammalian
32 meiosis. *J Cell Biol.* 2012;198:165-72.
33
34 [16] Arsenovic PT, Ramachandran I, Bathula K, Zhu R, Narang JD, Noll NA, Lemmon CA,
35 Gundersen GG, Conway DE. Nesprin-2G, a component of the nuclear LINC complex, is
36 subject to myosin-dependent tension. *Biophys J.* 2016;110:34-43.
37
38 [17] Chang W, Antoku S, Östlund C, Worman HJ, Gundersen GG. Linker of nucleoskeleton and
39 cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients
40 centrosomes in migrating myoblasts. *Nucleus.* 2015;6:77-88.
41
42 [18] Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S. Meiotic chromosomes move by
43 linkage to dynamic actin cables with transduction of force through the nuclear envelope.
44 *Cell.* 2008;133:1188-201.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[19] Warren DT, Tajsic T, Porter LJ, Minaisah RM, Cobb A, Jacob A, Rajgor D, Zhang QP, Shanahan CM. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. *Cell Death Diff.* 2015;22:1540-50.

[20] Lei K, Zhu X, Xu R, Shao C, Xu T, Zhuang Y, Han M. Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. *Curr Biol.* 2012;22:1609-15.

[21] Lawrence KS, Tapley EC, Cruz VE, Li Q, Aung K, Hart KC, Schwartz TU, Starr DA, Engebrecht J. LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. *J Cell Biol.* 2016;215:801-21.

[22] Rubin J, Sen B. Actin up in the nucleus: regulation of actin structures modulates mesenchymal stem cell differentiation. *Trans Am Clin Climatol Assoc.* 2017;128:180-92.

[23] Rashmi RN, Eckes B, Glöckner G, Groth M, Neumann S, Gloy J, Sellin L, Walz G, Schneider M, Karakesisoglu I, Eichinger L. The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. *Nucleus.* 2012;3:172-86.

[24] Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. *Neuron.* 2009;64:173-87.

[25] Luxton GG, Gomes ER, Folker ES, Vintinner E, Gundersen GG. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. *Science.* 2010;329:956-9.

[26] Wu J, Kent IA, Shekhar N, Chancellor TJ, Mendonca A, Dickinson RB, Lele TP. Actomyosin pulls to advance the nucleus in a migrating tissue cell. *Biophys J.* 2014;106:7-15.

[27] Méjat A, Misteli T. LINC complexes in health and disease. *Nucleus.* 2010;1:40-52.

[28] Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerød A; Oslo Breast Cancer Consortium (OSBREAC), Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF,

1
2
3
4 Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van 't Veer L, Foekens J,
5 Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV,
6 Børresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR. The landscape
7 of cancer genes and mutational processes in breast cancer. *Nature*. 2012;486:400-4.
8
9 [29] Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ,
10 Ptak J, Silliman N, Szabo S. The consensus coding sequences of human breast and
11 colorectal cancers. *Science*. 2006;314:268-74.
12
13 [30] Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH, Pike
14 MC, Ness RB, Moysich K, Chenevix-Trench G, Beesley J. ESR1/SYNE1 polymorphism
15 and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium
16 study. *Cancer Epidemiol Biomarkers Prev*. 2010;19:245-50.
17
18 [31] Han Y, Wang L, Yao QP, Zhang P, Liu B, Wang GL, Shen BR, Cheng B, Wang Y, Jiang
19 ZL, Qi YX. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and
20 apoptosis of vascular endothelial cells in response to shear stress. *Biochim Biophys Acta*.
21 2015;1853:1165-73.
22
23 [32] Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr
24 DA, Barakat AI. Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal
25 architecture, and flow-induced polarization. *Mol Biol Cell*. 2011;22:4324-34.
26
27 [33] Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D, Longmore GD, Wirtz
28 D. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for
29 ultrafast mechanotransduction. *Sci Rep*. 2013;3:1087.
30
31 [34] Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R,
32 Burridge K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the
33 nucleus. *Nat Cell Biol*. 2014;16:376-81.
34
35 [35] Brosig M, Ferralli J, Gelman L, Chiquet M, Chiquet-Ehrismann R. Interfering with the
36 connection between the nucleus and the cytoskeleton affects nuclear rotation,
37 mechanotransduction and myogenesis. *Int J Biochem Cell Biol*. 2010;42:1717-28.
38
39 [36] Chancellor TJ, Lee J, Thodeti CK, Lele T. Actomyosin tension exerted on the nucleus
40 through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic
41 strain-induced reorientation. *Biophys J*. 2010;99:115-23.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[37] Anno T, Sakamoto N, Sato M. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. *Biochem Biophys Res Commun.* 2012;424:94-9.

[38] Sakamoto N, Ogawa M, Sadamoto K, Takeuchi M, Kataoka N. Mechanical role of nesprin-1-mediated nucleus-actin filament binding in cyclic stretch-induced fibroblast elongation. *Cell Mol Bioeng.* 2017;10:327-38.

[39] Alam SG, Zhang Q, Prasad N, Li Y, Chamala S, Kuchibhotla R, Birendra KC, Aggarwal V, Shrestha S, Jones AL, Levy SE. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. *Sci Rep.* 2016;6:38063.

[40] Schwartz C, Fischer M, Mamchaoui K, Bigot A, Lok T, Verdier C, Duperray A, Michel R, Holt I, Voit T, Quijano-Roy S. Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle cell precursors through FHOD1. *Sci Rep.* 2017;7:1253.

[41] Yang W, Zheng H, Wang Y, Lian F, Hu Z, Xue S. Nesprin-1 plays an important role in the proliferation and apoptosis of mesenchymal stem cells. *Int J Mol Med.* 2013;32:805-12.

[42] Liu L, Luo Q, Sun J, Song G. Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone marrow-derived mesenchymal stem cell migration. *Biochem Cell Biol.* 2019. doi: 10.1139/bcb-2018-0263. [Epub ahead of print]

[43] Espigat-Georger A, Dyachuk V, Chemin C, Emorine L, Merdes A. Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1. *J Cell Sci.* 2016;129:4227-37.

[44] Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β -catenin signal. *Endocrinology.* 2008;149:6065-75.

[45] Liu Q, Pante N, Misteli T, Elsagga M, Crisp M, Hodzic D, Burke B, Roux KJ. Functional association of Sun1 with nuclear pore complexes. *J Cell Biol.* 2007;178:785-98.

[46] Uzer G, Bas G, Sen B, Xie Z, Birks S, Olcum M, McGrath C, Styner M, Rubin J. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates β catenin nuclear access. *J Biomech.* 2018;74:32-40.

[47] Driscoll TP, Shurden ZE, Heo S, Mauck, RL. Cytoskeletal tension is required for dynamic tensile loading induced alterations in mesenchymal stem cell shape and nuclear connectivity. 2013 Orthopaedic Research Society Annual Meeting. Paper No: 0088.

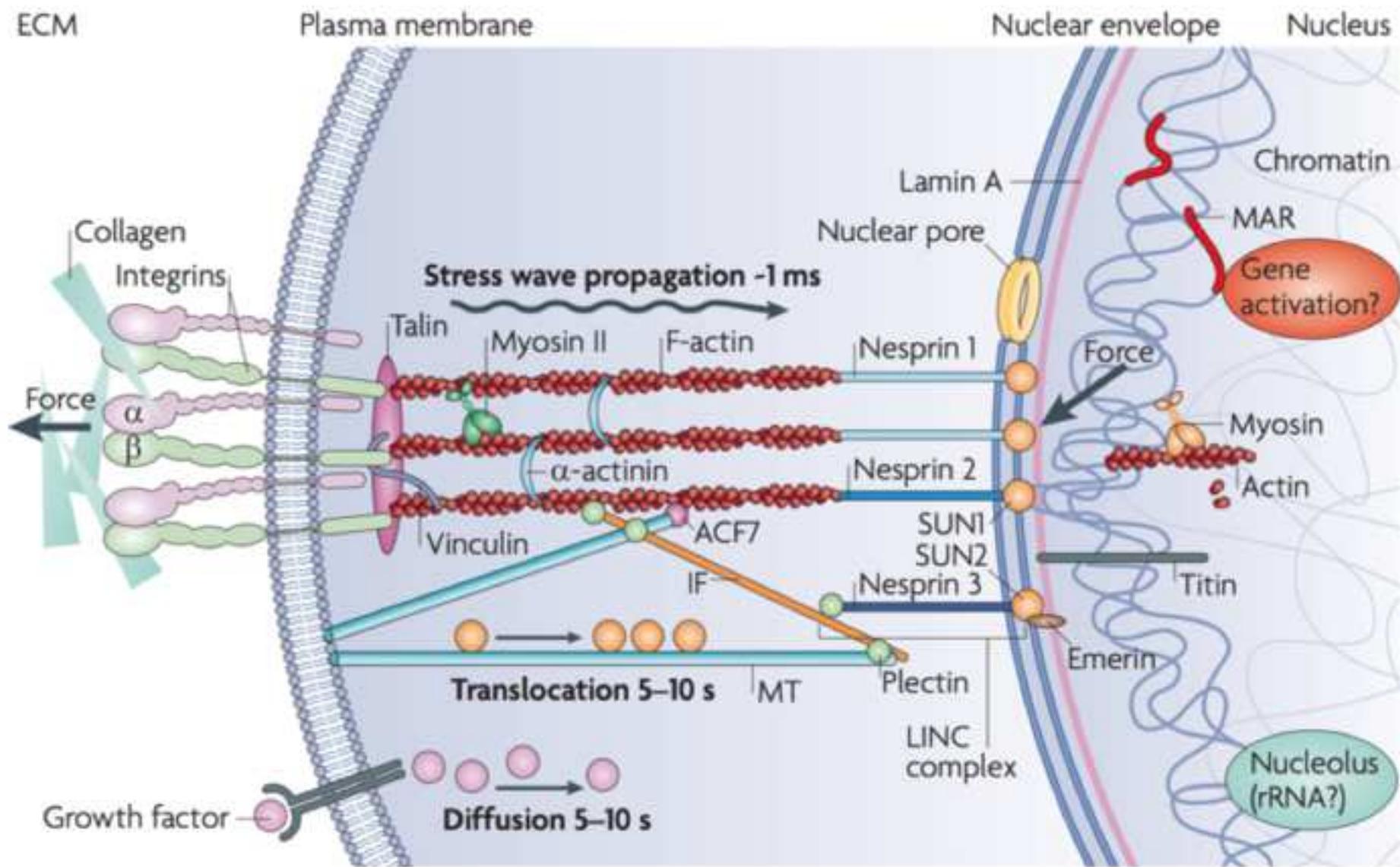
1
2
3
4 [48] Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT,
5 Judex S, Burridge K. Cell mechanosensitivity to extremely low-magnitude signals is
6 enabled by a LINCed nucleus. *Stem Cells*. 2015;33:2063-76.
7
8 [49] David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L,
9 Guignandon A. Mechanical loading down-regulates peroxisome proliferator-activated
10 receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of
11 adipogenesis. *Endocrinology* 2007;148:2553-62.
12
13 [50] Lee JS, Ha L, Park JH, Lim JY. Mechanical stretch suppresses BMP4 induction of stem cell
14 adipogenesis via upregulating ERK but not through downregulating Smad or p38. *Biochem*
15 *Biophys Res Commun*. 2012;418:278-83.
16
17 [51] Poudel I, Menter DE, Lim JY. Directing cell function and fate via micropatterning: Role of
18 cell patterning size, shape, and interconnectivity. *Biomed Eng Lett*. 2012;2:38-45.
19
20 [52] Yang W, Zheng H, Wang Y, Lian F, Hu Z, Xue S. Nesprin 1 has key roles in the process of
21 mesenchymal stem cell differentiation into cardiomyocyte like cells in vivo and in vitro.
22 *Mol Med Rep*. 2015;11:133-42.
23
24 [53] Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in
25 pluripotency and reprogramming. *Nat Rev Mol Cell Biol*. 2011;12:36-47.
26
27 [54] Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome
28 organization, and gene expression. *Genes Dev*. 2007;21:3027-43.
29
30 [55] Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL. Biophysical regulation
31 of chromatin architecture instills a mechanical memory in mesenchymal stem cells. *Sci Rep*.
32 2015;5:16895.
33
34 [56] Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le
35 Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in
36 mechanotransduction. *Nature*. 2011;474:179-83.
37
38 [57] Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL. Cytoskeletal to nuclear strain
39 transfer regulates YAP signaling in mesenchymal stem cells. *Biophys J*. 2015;108:2783-93.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

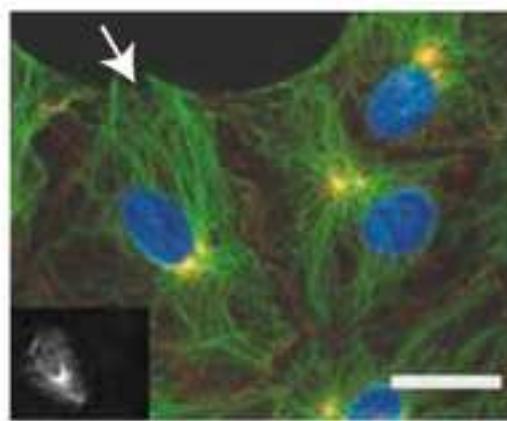
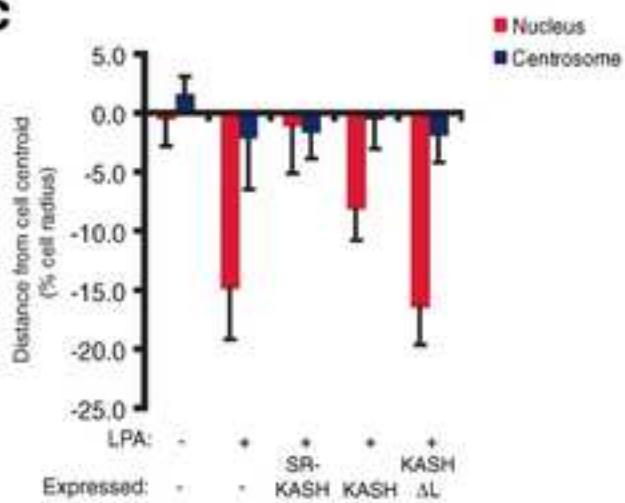
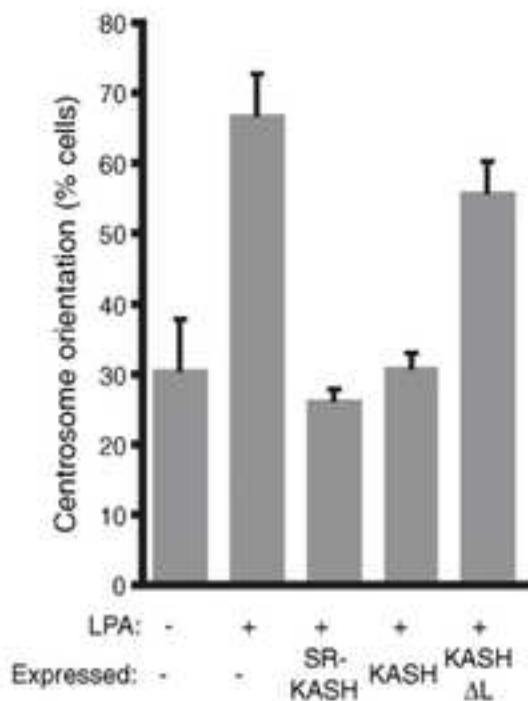
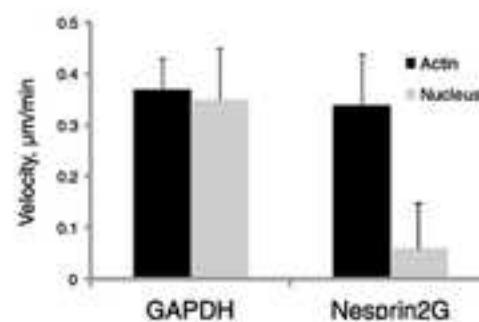
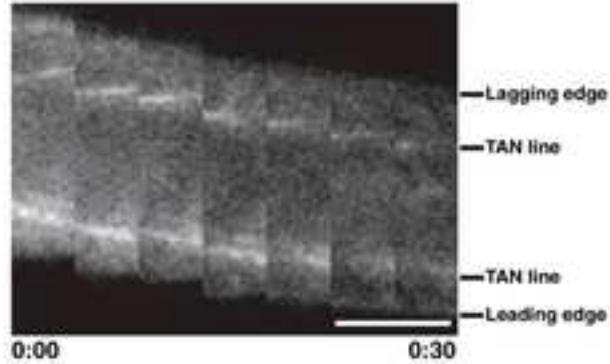
1
2
3
4 **Fig. 1. Schematic of LINC complex including nesprin and SUN and their connections to**
5 **cytoskeletons.** External forces are localized at integrins and channeled through cytoskeletal
6 filaments to the nucleus. Once at the nuclear surface, forces transmit through nesprins to SUN
7 proteins which are linked to lamin proteins that form the lumina and nuclear scaffold. Lamin
8 interacts with DNA machinery and related elements to alter gene expression. Reprinted with
9 permission from [6].
10
11
12
13
14

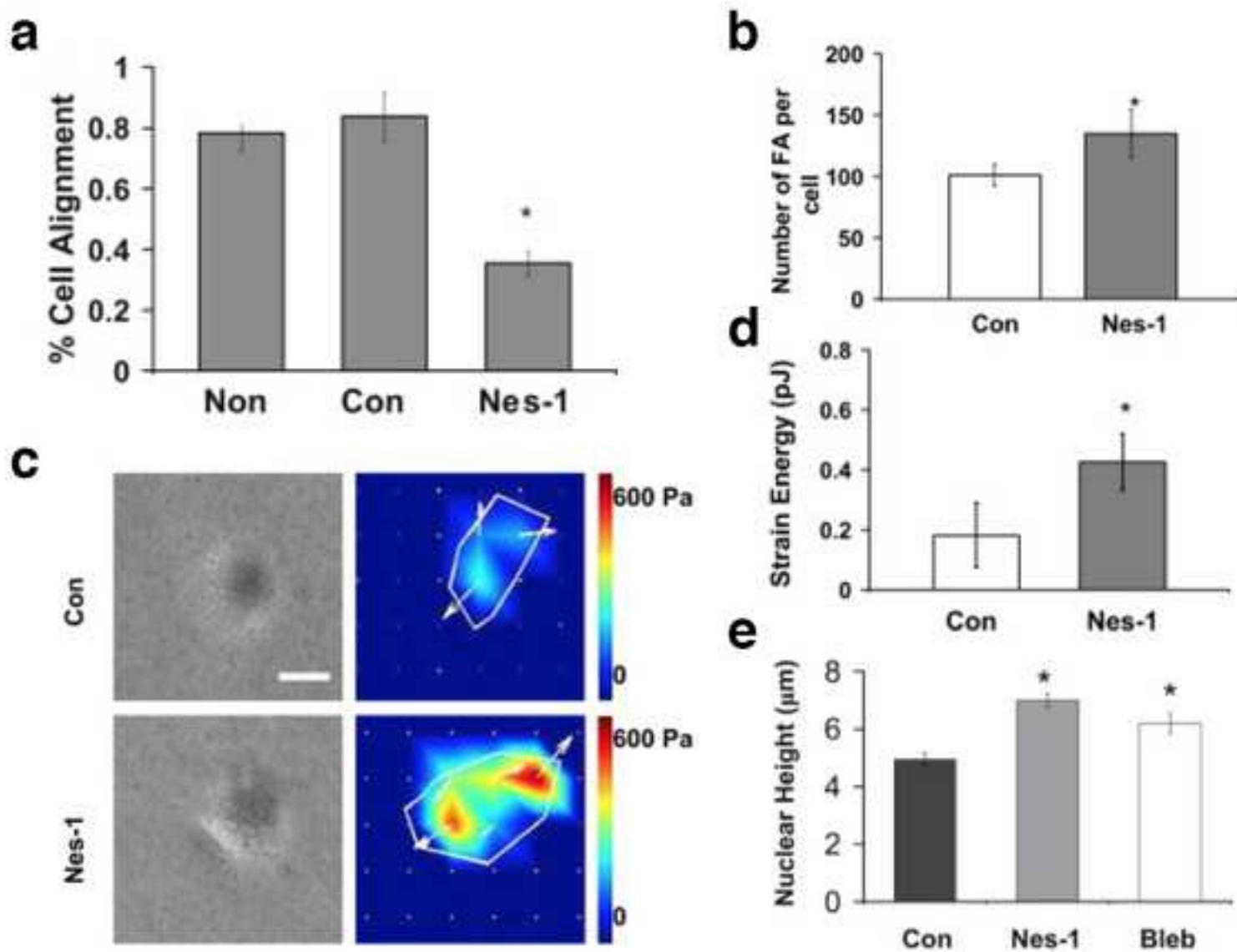
15
16
17 **Fig. 2. Cytokine-driven centrosome orientation requires nesprin-2G.** NIH3T3 fibroblasts
18 expressing dominant negative constructs (RFP-SR-KASH and RFP-KASH) targeting LINC were
19 stimulated with lysophosphatidic acid (LPA). (a) Epifluorescence image showing centrosome
20 orientation of RFP-KASH-expressing cells. DNA (blue); centrosomes (yellow); microtubules
21 (green); β -catenin for cell-cell adhesion (red). Scale bar = 15 μ m. (b) Centrosome orientation by
22 LPA treatment was impaired by dominant negative KASH. (c) Average centrosome and nucleus
23 positions perpendicular to the wound (positive values are towards the leading edge; negative
24 values are away). Nuclear movement by LPA was disabled by dominant negative KASH. (d)
25 Nucleus velocity was decreased for nesprin2G-depleted cells. (e) Fluorescence kymograph of
26 TAN lines in a nesprin2G-depleted nucleus during nuclear movement with time (hour:min).
27 Scale bar = 5 μ m. Adapted and reprinted with permission from [25].
28
29
30
31
32
33
34
35
36
37
38

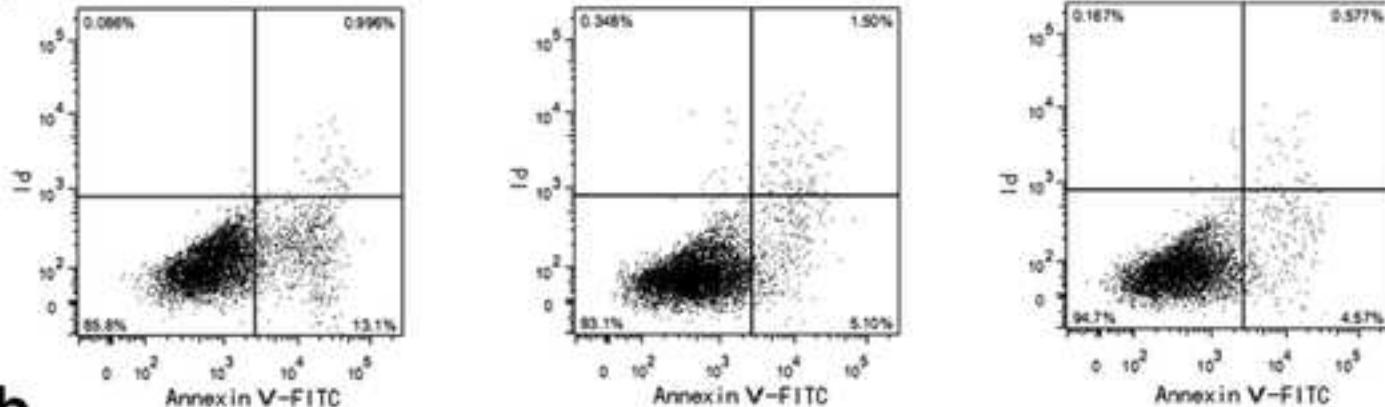
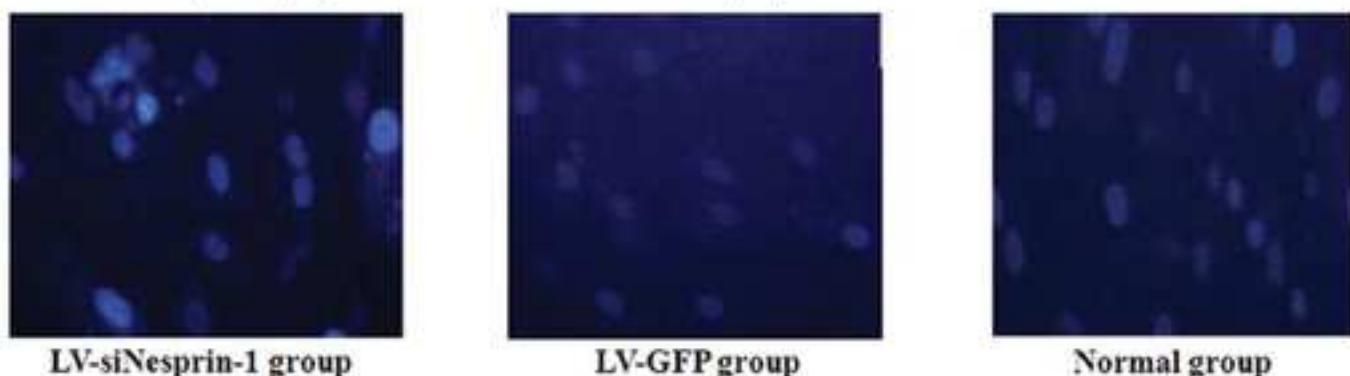
39 **Fig. 3. Nesprin-1 deficient vascular endothelial cells are unable to align in response to cyclic**
40 **strain.** (a) HUVECs seeded on silicon membranes were exposed to 10% cyclic uniaxial strain at
41 a frequency of 0.5 Hz. Cell reorientation quantified as a percentage of cells that reoriented $90^\circ \pm$
42 30° relative to the strain direction was decreased for nesprin-1 deficient cells (Nes-1) ($p < 0.01$).
43 (b) The number of focal adhesions (FAs) increased in Nes-1 ($p < 0.05$). (c) Phase contrast images
44 and traction stress maps. Scale bar = 200 μ m. (d) Strain energy and (e) nuclear height were
45 increased in Nes-1 ($p < 0.05$). A similar increase was observed with nonmuscle myosin II
46 inhibitor (blebbistatin, Bleb) treatment. Adapted and reprinted with permission from [36].
47
48
49
50
51
52
53
54

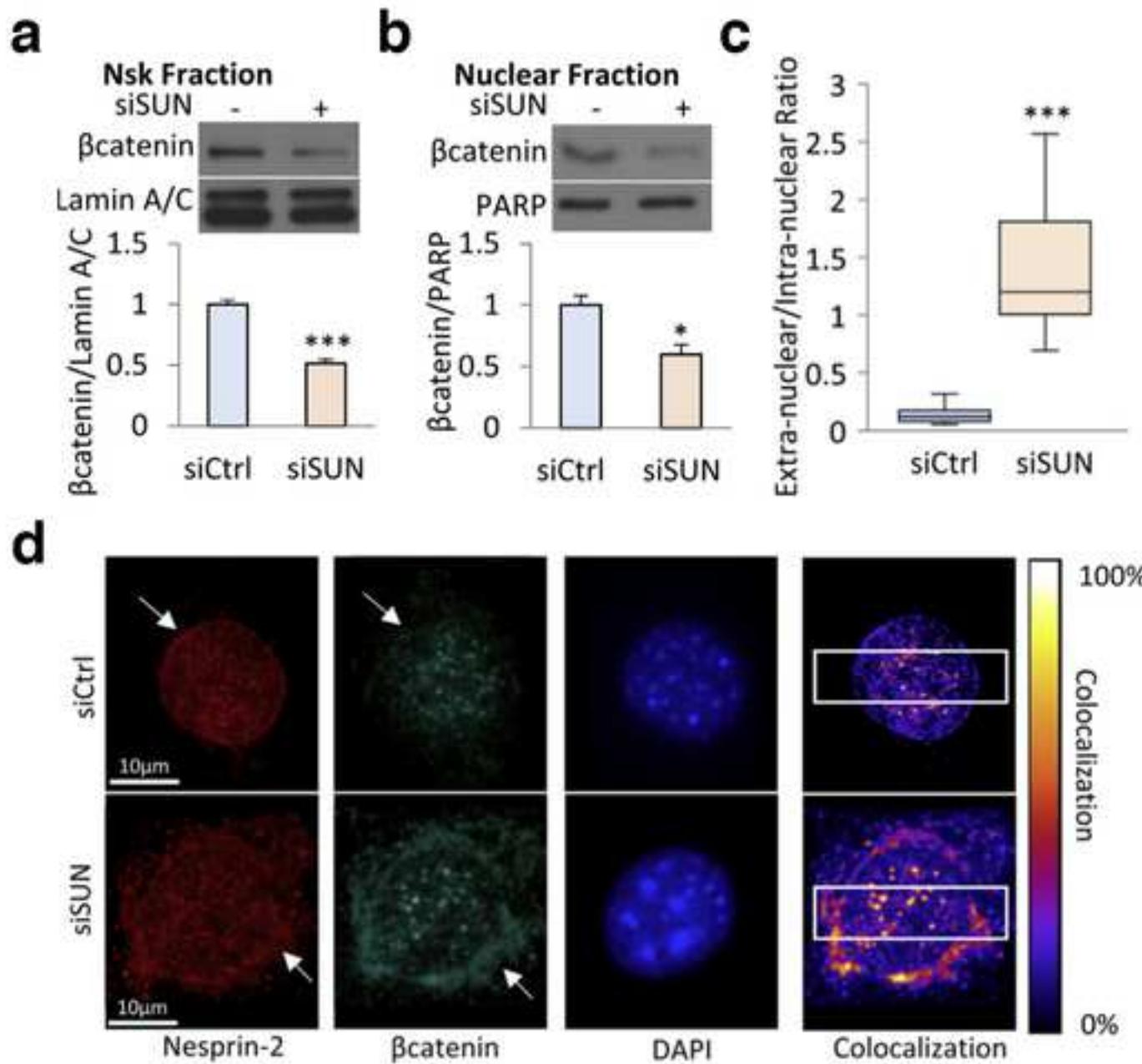
55 **Fig. 4. Nesprin-1 plays a regulatory role in the proliferation, apoptosis, and myogenesis of**
56 **MSCs.** (a) MSCs were transfected with either LV-siNesprin-1 or LV-GFP and cell apoptosis was
57 analyzed using flow cytometry. Apoptosis was the greatest in the LV-siNesprin-1 MSCs. (b)

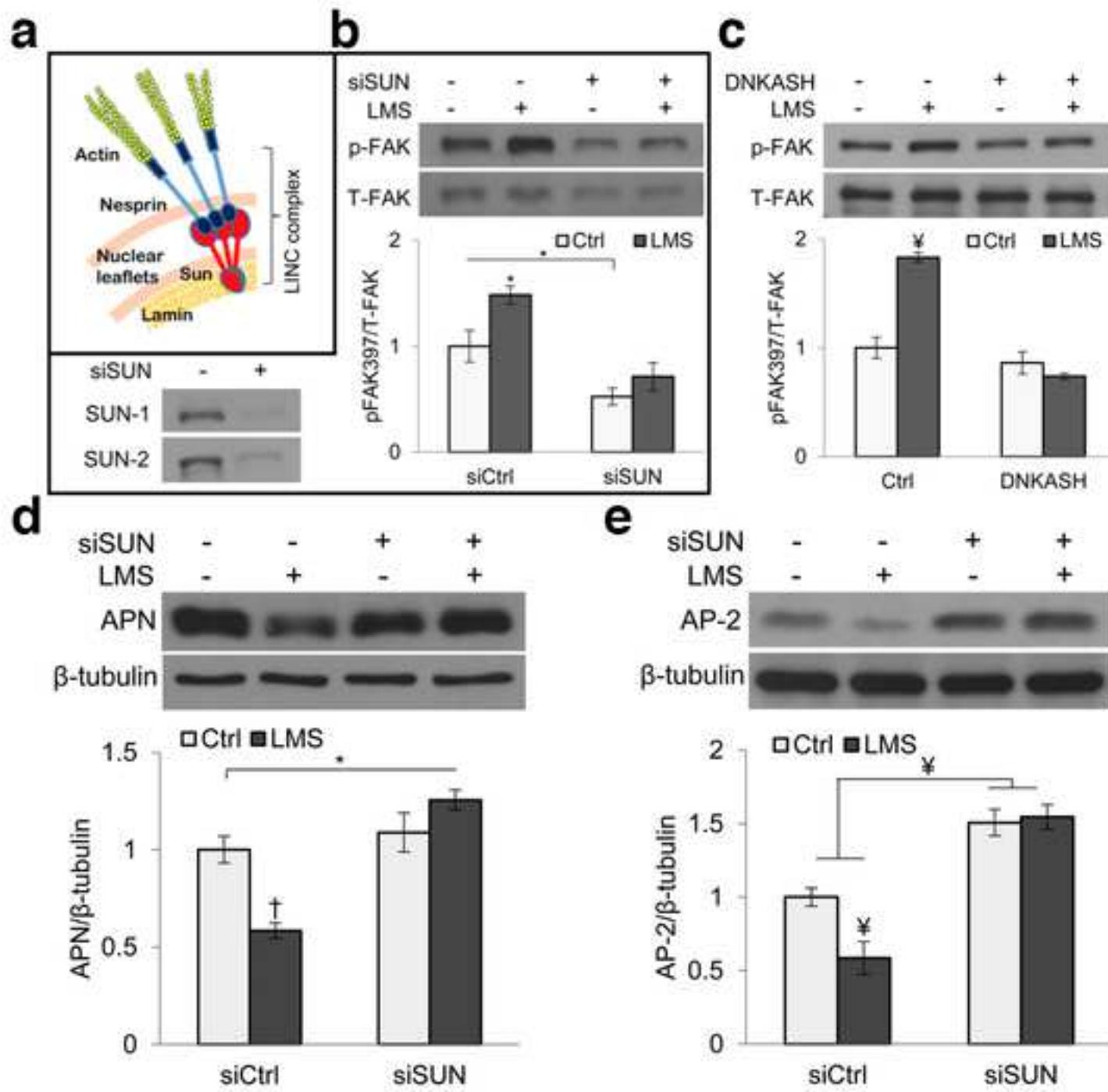

1
2
3
4 Nuclear morphology was observed 72 h after transfection (DAPI). The LIV-siNesprin-1 group
5 exhibited nuclear fusion and fragmentation. (c) Differentiation of the LIV-siNesprin-1 group was
6 significantly slower than the LV-GFP and Normal groups; majority of the cells remained in the
7 G0/G1 phase of the cell cycle. Adapted and reprinted with permission from [41].
8
9
10
11
12
13

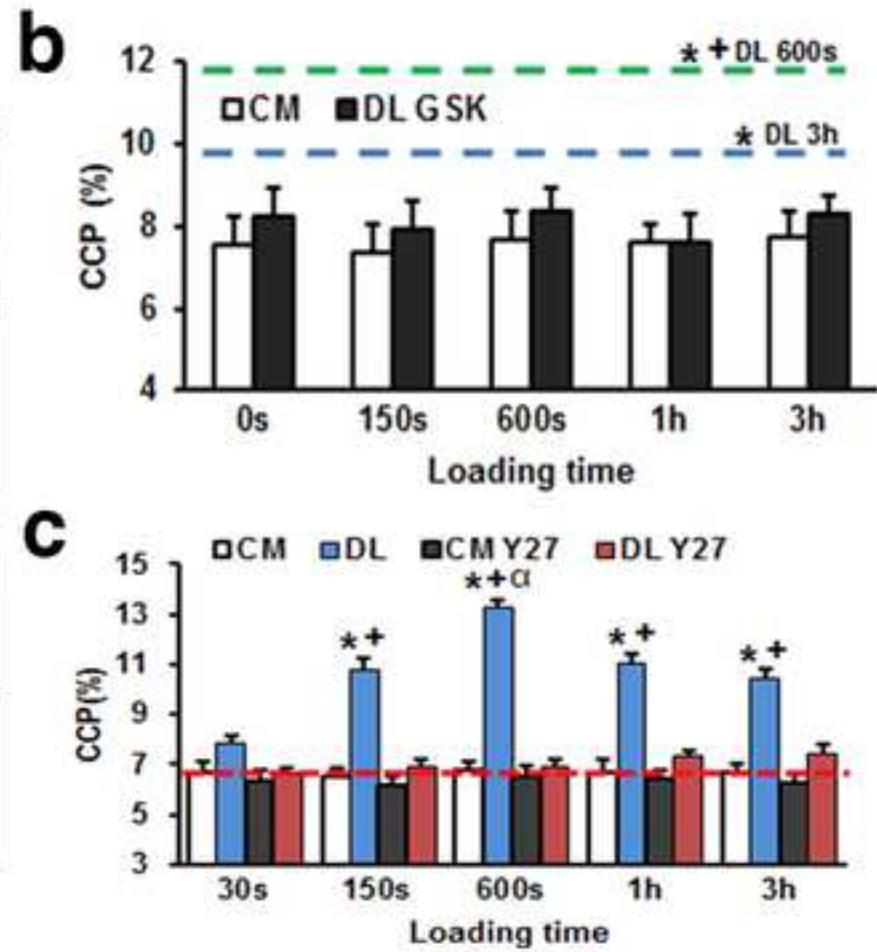
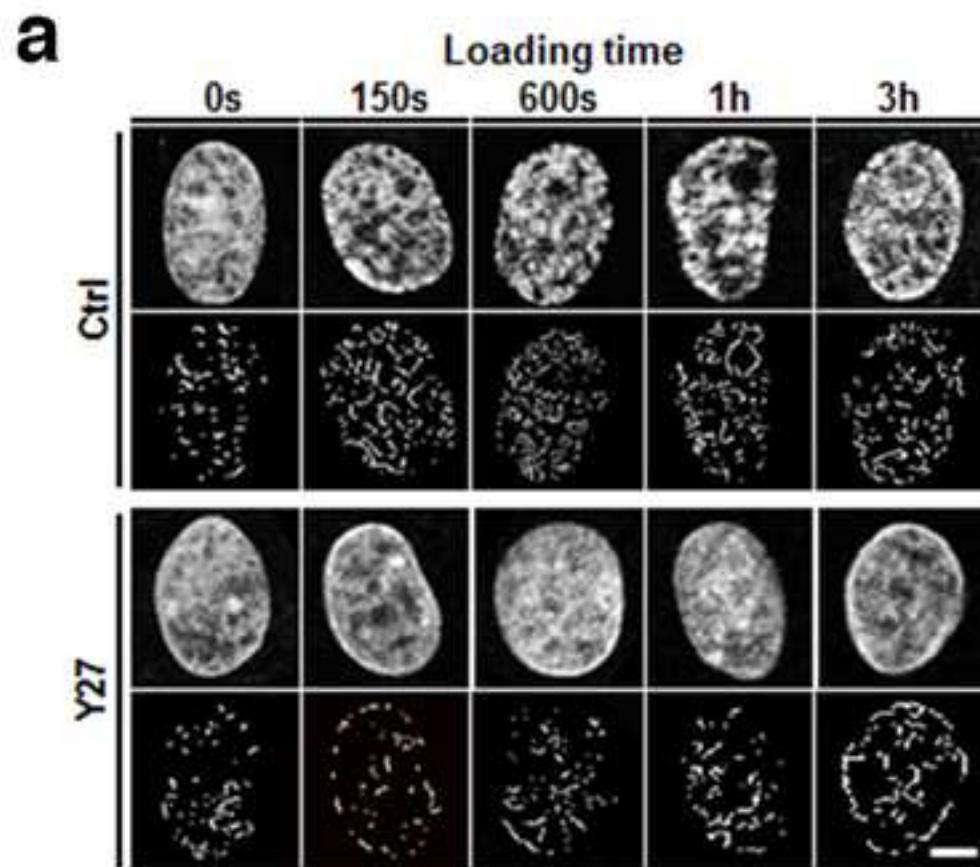





14 **Fig. 5. Co-deletion of SUN1 and SUN2 in MSCs disrupts β -catenin association with the**
15 **nucleoskeleton.** SUN1 and SUN2 were depleted via siRNA (siSUN) (a,b) siSUN decreased β -
16 catenin-nucleoskeleton (Nsk) association and nuclear β -catenin level, as relative to the control
17 (siCtrl). (c,d) In siSUN-treated cells, nesprin-2 and β -catenin were primarily located outside the
18 nucleus; however, they were inside the nucleus in control siCtrl cells (white arrows). *: p < 0.05,
19 ***: p < 0.001. Adapted and reprinted with permission from [46].
20
21
22
23
24
25

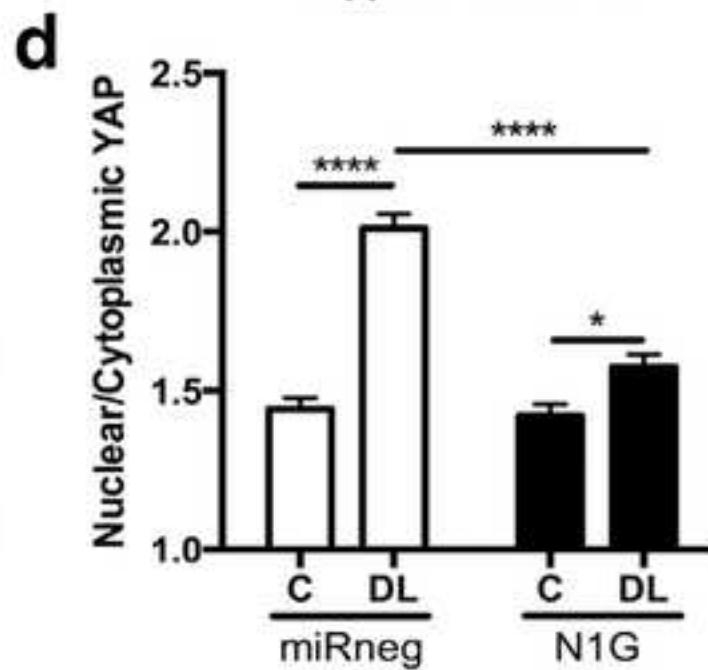
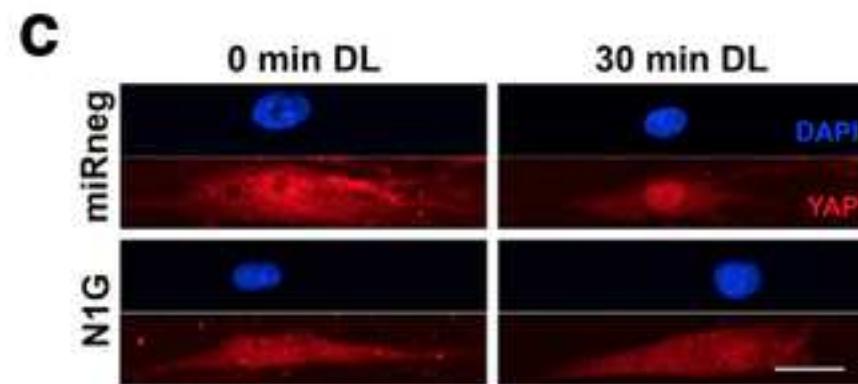
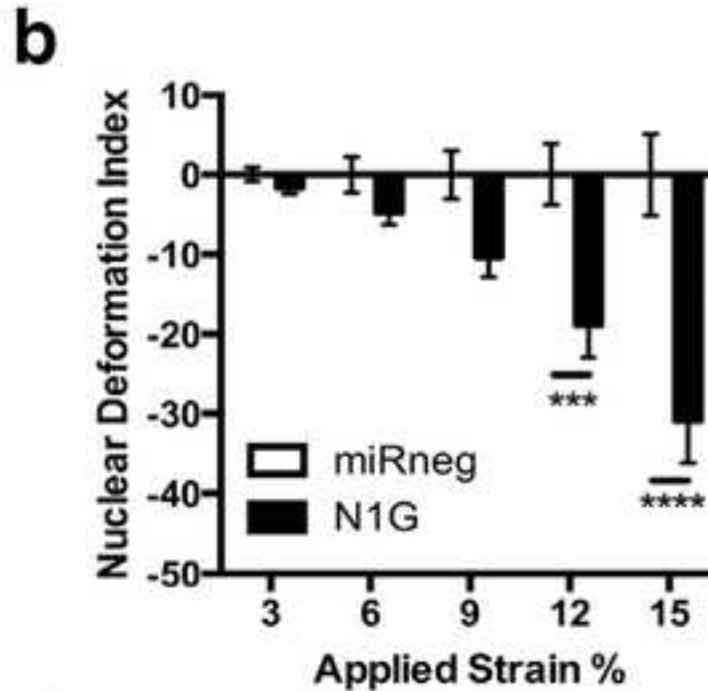

26 **Fig. 6. LINC connection to actin cytoskeleton is necessary for low-magnitude signal-**
27 **induced suppression of MSC adipogenesis.** (a) Schematic of the LINC complex. (b,c)
28 Decoupling LINC via silencing SUN with siRNA (siSUN) or overexpressing dominant negative
29 KASH (DNKASH) in MSCs disrupted low-magnitude signal (LMS)-induced focal adhesion
30 kinase (FAK) activation. (d,e) In siSUN treated cells, the LMS inhibition of adipogenesis is
31 impaired, as assessed by adipogenic markers, adiponectin (APN) and AP-2. *: p < 0.05; ¥: p <
32 0.01; †: p < 0.001. Adapted and reprinted with permission from [48].
33
34
35
36
37
38
39
40



41 **Fig. 7. Dynamic tensile loading induces chromatin condensation in MSCs via the activation**
42 **of histone modifying enzymes.** (a) MSCs were seeded onto aligned nanofibrous scaffolds and
43 exposed to dynamic tensile loading (3% strain at 1 Hz). DAPI-stained nuclei (top) and chromatin
44 condensation parameter (CCP) image processing (bottom) for control and under ROCK inhibitor
45 Y27. (b) Chromatin condensation (assessed by CCP) was increased by dynamic tensile loading
46 (DL): green and blue lines. This was abrogated under GSK343, an inhibitor of histone
47 methyltransferase EZH2. The control is treated with control media (CM). *: p < 0.05 vs. CM at 0
48 sec, +: p < 0.05 vs. DL 3h in CM. (c) DL induction of increase in CCP was impaired by ROCK
49 inhibitor Y27. *: p < 0.05 vs. CM control, +: p < 0.05 vs. Y27, a: p < 0.05 vs. 150 s. Adapted and
50 reprinted with permission from [55].
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


1
2
3
4 **Fig. 8. YAP nuclear translocation in response to dynamic tensile loading in MSCs requires**
5 **strain transfer to the nucleus via nesprin-1G.** MSCs were seeded on aligned nanofibers and
6 exposed to dynamic tensile loading (3% strain at 1 Hz). (a) Nesprin-1 giant knockdown (N1G)
7 compared to cells treated with non-targeting miRNA (miRneg). (b) The nuclear deformation
8 index quantified for the N1G group compared to the control at varying strains applied. (c) YAP-
9 and DAPI-stained nuclei with or without 30 min of dynamic tensile loading (DL). Scale bar = 25
10 μ m. (d) The ratio of nuclear to cytoplasmic YAP content was increased by DL (control miRneg),
11 which effect was suppressed by nesprin-1 knockdown (N1G). #: p < 0.05, *: p < 0.05, **: p <
12 0.001, ****: p < 0.0001. Reprinted with permission from [57].
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65





a**c****b****d****e**


a**b****c**

