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Abstract

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue
engineering and regenerative medicine, and are understood to be mechanosensitive to external
mechanical environments. In recent years, increasing evidence points to nuclear envelope
proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular
form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and
Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which
cells can sense external mechanical environments through an intact nuclear envelope and LINC
proteins will be briefly described. Then, we will highlight the current body of literature on the
role of the LINC complex in regulating MSC function and fate decision, without and with
external mechanical loading conditions. Our review and suggested future perspective may
provide a new insight into the understanding of MSC mechanobiology and related functional

tissue engineering applications.
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1. Introduction

Cellular sensing and response to changes in extracellular environments, biochemical and
mechanophysical, are critical for cell growth and function. Mechanical forces both outside and
inside the cell can be transduced into molecular signaling activities to direct cellular function and
fate - a process known as mechanotransduction [1]. The mechanical forces at the plasma
membrane can be altered either via changes in cell-substrate adhesion due to modifications in
extracellular matrix (ECM) density, rigidity, and orientation, or through the formation or
dissociation of cell-cell junctions. The altered force at the plasma membrane can biochemically
or mechanophysically affect membrane-bound mechanosensitive proteins, such as integrin cell-
ECM adhesion and cadherin cell-cell junction proteins and linker proteins bound to them [2].
This, in turn, may induce the reorganization of cytoskeletons, such as actin filaments, anchored
at the cell-ECM and cell-cell adhesion junctions. Such procedures can trigger changes in related
downstream molecular signaling pathways. The cytoskeletons provide a pathway for mechanical
forces to be transferred from the plasma membrane to internal cellular structures, including the
nucleus [3]. The nuclear-cytoplasmic connections facilitated by nuclear envelope (NE) proteins
such as the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex provide spatial and
structural integrity for the nucleus, as well as allow for the transfer of mechanical force into the
nucleus resulting in mechanotransduction [4]. In this review, considering the recent interest in
the mechanotransduction community, we will address the importance of the LINC complex and
component proteins, nesprin and SUN, in regulating cellular function and fate in general. Then,
we will highlight recent advances in our understanding of how LINC is involved in the
mechanical regulation of mesenchymal stem cell (MSC) behavior, lineage commitment, and

differentiation.
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2. LINC Complex

The nuclear membrane is composed of an inner nuclear membrane (INM) and an outer nuclear
membrane (ONM), which are separated by a ~40 nm gap known as the perinuclear space (PNS)
[5]. The ONM is attached to the endoplasmic reticulum (ER), where the PNS forms a continuous
extension into the ER lumen. A key feature of the nuclear envelope is the lamina, a mesh of
proteins lining the inner surface of the INM. Importantly, the lamina is composed of lamin A/C
(or LMNA) proteins that are mechanically connected to varying cytoskeletons via the LINC
complex (Fig. 1) [6].

LINC is composed of two protein domains: SUN (Sad1p, UNC-84) domain which spans
the inner nuclear membrane, and the conserved C-terminal KASH (Klarsicht/ANC-1/Syne
Homology) domain which spans the outer nuclear membrane. The C-terminal KASH is
expressed in proteins known as nesprins (nuclear envelope spectrin-repeat proteins) [7-10],
which are similar in structure to type II integral membrane proteins featuring a single
transmembrane segment followed by a short luminal sequence [11]. The C-terminal KASH
domain of nesprin proteins extends into the perinuclear space and interacts with the SUN domain
of SUN proteins to form the LINC complex. KASH proteins have one or more complementary
SUN proteins, allowing for various LINC isoforms to exist [5]. Importantly, variable N-terminal
domains of nesprins support the binding with different cytoskeletal components. There have
been four mammalian nesprins (Syne 1-4) identified, which encode a wide range of alternatively-
spliced isoforms [5,12,13]. Nesprin-1 and nesprin-2 are the largest of the isoforms, each having a
size of ~976 kDa and ~764 kDa, respectively, and contain N-terminal calponin homology (CH)
domain that binds to F-actin [13]. On the other hand, nesprin-3 has an N-terminal motif that can

bind to plectin, the intermediate filament (IF) linker protein, and nesprin-4 can indirectly interact
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with microtubules [14]. In addition to these four nesprins, KASHS, a meiosis-specific KASH
domain, interacts with the dynein-dynactin complex and has a role in mediating telomere

localization [15].

3. LINC and Cellular Function

The LINC complex and component nesprins and SUNs have recently been proposed to be
implicated in various aspects of cellular organization and function. A primary function of LINC
is in the control of the orientation of the nucleus. Arsenovic et al. [16] utilized a fluorescence
resonance energy transfer (FRET)-based sensor to evidence that the LINC complex, specifically
nesprin-2 giant (nesprin-2G), can sense myosin-dependent cellular tension to alter the nuclear
shape. Beyond the nucleus shape, LINC and related nuclear envelope-actin linkage have a
potential to affect the functions of centrosomes [17] and meiotic chromosomes [18] to regulate
cell division and replication. Further, nucleus architecture and resultant skeletal dynamics
governed by LINC may play a regulatory role in the repair of DNA damage [19-21]. For
example, mouse embryonic fibroblasts, when doubly impaired in SUN1/2 genes, showed
excessive DNA damage, increased genome instability, and compromised DNA repair [20]. In
accordance, the UNC-84 domain of the SUN protein could contribute to promote the repair of
interstrand crosslinks and inhibit nonhomologous end joining [21]. Enabled by the physical
interconnection between LINC and nuclear chromatin, epigenetic control of cell differentiation
can also occur through mediation of transcription factors [22,23].

Due to the coordination of nucleus morphology by the LINC complex, nucleus shape and
movement during cell migration and polarization are also regulated by LINC [24-26]. It was

shown that nesprin-1/2 and SUN1/2 complex could couple the nucleus and centrosome during
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neuronal migration [24]. A study by Luxton et al. [25] utilized dominant negative constructs of
the LINC complex expressed in wound-edge NIH3T3 fibroblasts to examine the role of LINC in
nuclear movement during migration. In their study, using lysophosphatidic acid (LPA), a
motility stimulator, it was revealed that nuclear movement was significantly impaired in nesprin-
2G-depleted cells (Fig. 2). Moreover, nesprin-2G and SUN2 coupled with transmembrane actin-
associated nuclear (TAN) lines to assemble the nucleus to the actin cytoskeleton, thus enabling
nuclear migration during cell polarization and centrosome reorientation. The proposed role of the
TAN lines may parallel that of the focal adhesion complex considering both assemble in reaction
to actin bundling and both can transmit forces across membranes.

Considering its interactive role in bridging cytoskeletons with nuclear lamina, LINC has
been associated with a range of diseases [27]. Particularly, laminopathies or mutations in lamin
A/C genes result in a variety of tissue-specific disorders including, but not limited to, Emery-
Dreifuss muscular dystrophy (EDMD) and limb girdle muscular dystrophy 1B. A majority of
lamin A/C mutations can produce cardiac and skeletal muscle defects: in skeletal muscle, such
mutations disorganize the LINC complexes in synaptic nuclei, leading to the dislocation of
nuclei at the neuromuscular junction. Syne mutations have also been associated with non-
muscular diseases including cerebellar ataxia and autosomal recessive arthrogryposis. Moreover,
it was reported that mutations in nesprin-1, nesprin-2, and lamin A/C were found in a genome-
wide screening of 100 breast cancer patients [28]. Similarly, mutations in nesprin-1 were
observed in patients with breast, ovarian, or colorectal cancers [29], and a downregulation or
mutation in the nesprin gene could be linked to an increased risk of invasive ovarian cancer [30].

Observations suggest that improved understanding of the role LINC has in cell functions may
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lead to the development of targeted therapies for various diseases, including a wide range of

laminopathies and cancers.

4. Sensing Mechanical Environments through LINC

Targeted studies have been conducted to reveal the role of an intact nuclear envelope in
mediating the ability of cells to sense and respond to extracellular mechanical environments. It
was observed that under lower levels of fluid flow-induced shear stress, nesprin-2 and lamin A
expression in endothelial cells were suppressed (relative to normal shear stress counterparts),
leading to an increase in both cell proliferation and apoptosis [31]. Nesprin-3 was found to play a
vital role in fluid shear-induced polarization of the centrosome and directional migration of
human aortic endothelial cells [32]. For fibroblasts and myoblasts under fluid shear, the
perinuclear actin cap, a subset of actin filaments connected to the nuclear envelope through
nesprin-2G and nesprin-3, showed a dominant response to lower shear stresses, while
conventional actin filaments at the basal surface of the cells required at least 50 times more shear
stress to assemble [33].

An attempt to directly apply mechanical force to an isolated nucleus via nesprin-1 link
demonstrated an induced reinforcement of the connection between the LINC complex and lamin
A/C [34]. In this study with fibroblasts, the stretching of nesprin-1 triggered the Src-dependent
phosphorylation of emerin, thus changing the nature of its association with lamin and leading to
the stiffening of nucleus. In the cyclic mechanical stretching of myoblasts, disruption of the
LINC complex impaired the mechanical stimulation of terminal myogenic differentiation [35].
Chancellor et al. [36] tested the role of LINC in adhesion, migration, and orientation of human

vascular endothelial cells (HUVECs) under uniaxial strain and showed that cells were unable to
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reorient in response to the strain in the presence of nesprin-1 silencing (Fig. 3). They also
observed that nesprin-1 deficient cells displayed a larger number of focal adhesions and higher
nuclear heights. Their proposed model suggested that the actomyosin tension on the nucleus is
exerted and balanced by connections via nesprin linkage: when this nesprin connection is
disrupted, the tension can be balanced with increased focal adhesions. Similarly, endothelial cells
with nesprin-1 knockdown displayed a decreased nuclear width and an increase in nucleus strain
when exposed to uniaxial stretch [37]. This suggested that silencing nesprin-1 could release the
nucleus from the tension of F-actin, thus allowing for deformation before stretching. Also,
fibroblastic cells manipulated with nesprin-1 siRNA showed decreased cell elongation under
cyclic stretch [38].

Some studies tested the role of LINC without dynamic external mechanical loading (such
as fluid shear or mechanical stretch) but on substrates with varying stiffness. It was demonstrated
that the LINC complex facilitates the regulation of genome-wide transcriptional changes in
fibroblasts in response to substrate rigidity, but at the same time, interfering with LINC did not
attenuate the nuclear shape sensitivity to substrate rigidity [39]. For human muscle precursor
cells, intact lamin and nesprin-1 were required to enable cells to adapt their intracellular tension

to the rigidity of the ECM [40].

5. LINC Regulation of MSC Function and Fate
MSCs have been of significant interest as they can serve as a promising cell source for tissue
engineering and regenerative medicine applications due to their multi-lineage potential. Now, we

will delve into the main focus of this review, a potential role of LINC in MSC behavior, lineage
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commitment, and differentiation. The regulatory role of LINC will be discussed for cases in the

absence and presence of external mechanical loading.

5.1. LINC control of MSC behavior without mechanical loading

Several studies have looked into the role of LINC and its associated proteins in MSC function in
the absence of external mechanical inputs. As shown for other cell types, the LINC complex can
be involved in various aspects of MSC morphology and function. In a study by Yang et al. [41],
rat bone marrow-derived MSCs (BMSCs) were transfected with a lentiviral vector expressing
siRNA targeting nesprin-1. With transfection, MSCs exhibited a decrease in cell proliferation
and an increase in apoptosis (Fig. 4a,b). Moreover, nesprin-1 siRNA significantly altered nuclear
morphology, frequently resulting in cell fusion or fragmentation. In another study with rat
BMSCs [42], cells with SUN1-depleted nuclei displayed reduced nucleus stiffness and
substantial reduction in osteopontin-induced cell migration.

Increasing evidence proposes that the LINC complex may play an important role in MSC
fate decision and phenotypic commitment. As it was suggested that a correct positioning of
nuclei via nesprin-1 is required for myotube formation and resultant muscle function [43], it is
probable nesprin plays a role in MSC myogenic differentiation. Indeed, it was shown that
myoblast differentiation was substantially deteriorated in nesprin-1 deficient BMSCs [41] (Fig.
4¢). In addition to myogenesis, nuclear envelope proteins have been shown to regulate MSC
adipocytic commitment. The Wnt/B-catenin signaling has been established to mediate MSC
adipogenesis: nuclear translocation of B-catenin allows for the downregulation of adipogenic
transcription factors leading to decreased adipocytic commitment [44]. The B-catenin entrance

into the nucleus is achieved through interacting with nuclear pore complexes (NPCs), and direct
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coordination of B-catenin with the LINC complex can enhance the f-catenin membrane
localization for nuclear import via NPCs [45]. Accordingly, the co-deletion of SUN1 and SUN2,
and the subsequent untethering of nesprin-2 from the nuclear membrane in MSCs, significantly
diminished B-catenin nuclear surface localization and -catenin levels obtained from the soluble

nuclear fraction [46] (Fig. 5).

5.2. LINC control of MSC behavior under mechanical loading

Understanding the mechanisms by which the mechanical microenvironments regulate MSC
function and developmental fate is important for functional tissue regeneration. Recent research
has explored how MSCs perceive and respond to mechanical loading environments, particularly
focusing on the nucleus and nuclear proteins. In a study utilizing Rho-associated protein kinase
(ROCK) inhibition to induce a loss of cytoskeletal tension in MSCs [47], ROCK inhibition
decreased nuclear deformation under static stretch and abrogated nesprin-1 upregulation under
dynamic stretch, suggesting the coordination of cytoskeletal tension and LINC action in MSC
behavior.

Various studies have pointed to the role of mechanical loading in directing MSC fate, and
recently the focus has been targeting the LINC complex as a key component such phenomena.
For example, in a study by Uzer et al. [48] on the inhibition of MSC adipogenesis by low- and
high-magnitude mechanical signals (LMS and HMS, respectively), an intact LINC complex was
necessary for the LMS function, but not for the HMS action (Fig. 6). The decreases in
adipogenic markers (adiponectin and AP-2) in MSCs by LMS were abolished in the presence of
siRNA of SUN. Despite the relatively well-established correlation between MSC adipogenesis

vs. osteogenesis in response to mechanical environments [44,49-51], LINC regulation of MSC

10
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osteogenesis by mechanical loading has not been studied intensively. For myogenesis, while
LINC has been shown to mediate the mechanical myogenic direction for various myogenic cell
lines, there are limited studies on the LINC regulation of the mechanical induction of MSC
myogenesis. One study showed that treatment of MSCs with 5-azacytidine to induce in vitro
cardiomyogenesis resulted in an increase in nesprin-1 expression [52]. Moreover, nesprin-1
expression was higher in the infarcted rat myocardium implanted with MSCs than in the non-
implanted control group, suggesting the involvement of nesprin-1 in MSC differentiation into
myocardial phenotype. While these studies suggest a functional association between LINC and
MSC lineage commitment, the underlying mechanotransduction mechanisms remain to be fully
explored.

How MSCs translate mechanical signals into modifications at the genomic level is not yet
understood, either. For embryonic stem cells (ESCs), it is known that the chromatin structure
becomes gradually more condensed following differentiation [53]. Clusters of condensation can
be associated with regions of transcriptionally inactive genes, while decondensed euchromatin
regions allow for the access of their binding sites and activate lineage-specific gene expression
[54]. Interestingly, for MSCs, dynamic mechanical loading could induce rapid calcium-
dependent chromatin condensation in the absence of exogenous differentiation factors [55] (Fig.
7). In this study, a load-dependent persistence in chromatin condensation in MSCs required the
continued activity of histone methyltransferases and acetylases after the cessation of loading,
implying the mechanical memory effect of previous loading events. Considering the potential
physical interconnection between LINC and nuclear chromatin as described above [22,23],
further investigation into whether the LINC complex behaves as an intermediate in the observed

load-induced chromatin condensation and lineage specification is required.

11
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MSC:s perceive the stiffness of ECM, cell micropatterning size, or resultant changes in
cell shape via the activation and regulation of key nuclear transcription factors, principal of
which is Yes-associated protein (Y AP)/transcriptional coactivator with PDZ-binding motif
(TAZ) [56]. YAP/TAZ nuclear localization in MSCs is known to be Rho GTPase-dependent,
which regulates the formation of actin stress fibers in response to ECM stiffness and cell
spreading. Interestingly, similar to the static substrate control of YAP/TAZ, dynamic tensile
stretching of MSCs could induce the nuclear translocalization of YAP [57] (Fig. 8). Further, this
activity in YAP under stretch loading may require strain transfer to the nucleus via nesprin-1G,
as evidenced by the decrease in nuclear/cytoplasmic YAP content under stretch with nesprin-1G
knockdown. On the other hand, the mechanisms by which YAP participates in crosstalk with
nesprin in the cytoplasmic area under static condition (before loading) and how YAP and nesprin

coordination will occur under dynamic loading can be investigated further.

6. Future Perspective

Mechanosensitive proteins found at the NE have increasingly been shown to play a key part in
modulating the biomechanical information transfer between the cell surface, cytoskeletal
structures, and the nucleus. For MSCs, although it is well established that cells rely on
mechanical cues to reorganize their internal physical structures and regulate various signaling
pathways, there remains much to be explored and understood about the relationship between
nuclear mechanics and stem cell behavior including fate decision. For example, what is the
molecular mechanism enabling MSCs to perceive the external mechanical environment and
propagate the force signal to the nucleus, and how do NE proteins such as LINC and the

components, nesprin and SUN, further transmit the information to internal nuclear machinery?

12
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Moreover, in what way do LINC proteins physically interact with chromatin and transcriptional
regulatory factors to mediate changes in gene expression and direct stem cell differentiation?
What role does LINC play in modulating MSC mechanical adaptivity and memory effect, and
how do these influence load-controlled MSC fate and long-term phenotype commitment?
Additionally, relative to external mechanical loading studies, there lacks research testing the
involvement of the LINC complex in MSC function and lineage commitment on substrates of
varying stiffness or geometries. Such information may allow for the development and
optimization of material-based devices for diagnostics, tissue engineering, and regenerative
medicine. While considerable progress has been made in the past decades in identifying the
mechanisms by which MSCs respond and adapt to external mechanical loading environments,
studies should take into more consideration the nucleus, particularly the LINC complex and
associated nesprin and SUN, as an integral component of the cellular mechanosensory circuit

that regulates MSC function, lineage commitment, and terminal differentiation.
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HUVEC: human vascular endothelial cell; IF: intermediate filament; INM: inner nuclear
membrane; KASH: Klarsicht/ANC-1/Syne homology; LINC: linker of nucleoskeleton and
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Fig. 1. Schematic of LINC complex including nesprin and SUN and their connections to
cytoskeletons. External forces are localized at integrins and channeled through cytoskeletal
filaments to the nucleus. Once at the nuclear surface, forces transmit through nesprins to SUN
proteins which are linked to lamin proteins that form the lumina and nuclear scaffold. Lamin
interacts with DNA machinery and related elements to alter gene expression. Reprinted with

permission from [6].

Fig. 2. Cytokine-driven centrosome orientation requires nesprin-2G. NIH3T3 fibroblasts
expressing dominant negative constructs (RFP-SR-KASH and RFP-KASH) targeting LINC were
stimulated with lysophosphatidic acid (LPA). (a) Epifluorescence image showing centrosome
orientation of RFP-KASH-expressing cells. DNA (blue); centrosomes (yellow); microtubules
(green); B-catenin for cell-cell adhesion (red). Scale bar = 15 pm. (b) Centrosome orientation by
LPA treatment was impaired by dominant negative KASH. (c) Average centrosome and nucleus
positions perpendicular to the wound (positive values are towards the leading edge; negative
values are away). Nuclear movement by LPA was disabled by dominant negative KASH. (d)
Nucleus velocity was decreased for nesprin2G-depleted cells. () Fluorescence kymograph of
TAN lines in a nesprin2G-depleted nucleus during nuclear movement with time (hour:min).

Scale bar = 5 um. Adapted and reprinted with permission from [25].

Fig. 3. Nesprin-1 deficient vascular endothelial cells are unable to align in response to cyclic
strain. (a) HUVECs seeded on silicon membranes were exposed to 10% cyclic uniaxial strain at
a frequency of 0.5 Hz. Cell reorientation quantified as a percentage of cells that reoriented 90°+
30° relative to the strain direction was decreased for nesprin-1 deficient cells (Nes-1) (p <0.01).
(b) The number of focal adhesions (FAs) increased in Nes-1 (p < 0.05). (c) Phase contrast images
and traction stress maps. Scale bar = 200 pum. (d) Strain energy and (e) nuclear height were
increased in Nes-1 (p < 0.05). A similar increase was observed with nonmuscle myosin 11

inhibitor (blebbistatin, Bleb) treatment. Adapted and reprinted with permission from [36].
Fig. 4. Nesprin-1 plays a regulatory role in the proliferation, apoptosis, and myogenesis of

MSC:s. (a) MSCs were transfected with either LV-siNesprin-1 or LV-GFP and cell apoptosis was
analyzed using flow cytometry. Apoptosis was the greatest in the LV-siNesprin-1 MSCs. (b)
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Nuclear morphology was observed 72 h after transfection (DAPI). The LIV-siNesprin-1 group
exhibited nuclear fusion and fragmentation. (c) Differentiation of the LIV-siNesprin-1 group was
significantly slower than the LV-GFP and Normal groups; majority of the cells remained in the

GO0/G1 phase of the cell cycle. Adapted and reprinted with permission from [41].

Fig. 5. Co-deletion of SUN1 and SUN2 in MSCs disrupts f-catenin association with the
nucleoskeleton. SUN1 and SUN2 were depleted via siRNA (siSUN) (a,b) siSUN decreased [3-
catenin-nucleoskeleton (Nsk) association and nuclear B-catenin level, as relative to the control
(siCtrl). (c,d) In siSUN-treated cells, nesprin-2 and B-catenin were primarily located outside the
nucleus; however, they were inside the nucleus in control siCtrl cells (white arrows). *: p <0.05,

*#%: p <0.001. Adapted and reprinted with permission from [46].

Fig. 6. LINC connection to actin cytoskeleton is necessary for low-magnitude signal-
induced suppression of MSC adipogenesis. (a) Schematic of the LINC complex. (b,c)
Decoupling LINC via silencing SUN with siRNA (siSUN) or overexpressing dominant negative
KASH (DNKASH) in MSCs disrupted low-magnitude signal (LMS)-induced focal adhesion
kinase (FAK) activation. (d,e) In siSUN treated cells, the LMS inhibition of adipogenesis is
impaired, as assessed by adipogenic markers, adiponectin (APN) and AP-2. *: p <0.05; ¥: p <
0.01; f: p<0.001. Adapted and reprinted with permission from [48].

Fig. 7. Dynamic tensile loading induces chromatin condensation in MSCs via the activation
of histone modifying enzymes. (a) MSCs were seeded onto aligned nanofibrous scaffolds and
exposed to dynamic tensile loading (3% strain at 1 Hz). DAPI-stained nuclei (top) and chromatin
condensation parameter (CCP) image processing (bottom) for control and under ROCK inhibitor
Y27. (b) Chromatin condensation (assessed by CCP) was increased by dynamic tensile loading
(DL): green and blue lines. This was abrogated under GSK343, an inhibitor of histone
methyltransferase EZH2. The control is treated with control media (CM). *: p <0.05 vs. CM at 0
sec, +: p <0.05 vs. DL 3h in CM. (c¢) DL induction of increase in CCP was impaired by ROCK
inhibitor Y27. *: p <0.05 vs. CM control, +: p <0.05 vs. Y27, a: p <0.05 vs. 150 s. Adapted and

reprinted with permission from [55].
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Fig. 8. YAP nuclear translocation in response to dynamic tensile loading in MSCs requires
strain transfer to the nucleus via nesprin-1G. MSCs were seeded on aligned nanofibers and
exposed to dynamic tensile loading (3% strain at 1 Hz). (a) Nesprin-1 giant knockdown (N1G)
compared to cells treated with non-targeting miRNA (miRneg). (b) The nuclear deformation
index quantified for the N1G group compared to the control at varying strains applied. (¢c) YAP-
and DAPI-stained nuclei with or without 30 min of dynamic tensile loading (DL). Scale bar = 25
um. (d) The ratio of nuclear to cytoplasmic YAP content was increased by DL (control miRneg),
which effect was suppressed by nesprin-1 knockdown (N1G). #: p <0.05, *: p <0.05, ***: p <
0.001, ****: p <0.0001. Reprinted with permission from [57].
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