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1 | INTRODUCTION

Complex systems are constantly adapting through interactions
among components, with feedback loops that can generate system-

level behaviors that are not simply the sum of the parts (Levin, 1998).
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Abstract

The distribution of pattern across scales has predictive power in the analysis of com-
plex systems. Discontinuity approaches remain a fruitful avenue of research in the
quest for quantitative measures of resilience because discontinuity analysis provides
an objective means of identifying scales in complex systems and facilitates delinea-
tion of hierarchical patterns in processes, structure, and resources. However, current
discontinuity methods have been considered too subjective, too complicated and
opaque, or have become computationally obsolete; given the ubiquity of discontinui-
ties in ecological and other complex systems, a simple and transparent method for
detection is needed. In this study, we present a method to detect discontinuities in
census data based on resampling of a neutral model and provide the R code used to
run the analyses. This method has the potential for advancing basic and applied eco-

logical research.
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Accordingly, the dynamics of complex systems are difficult to pre-
dict using reductionist-based models. Despite the variability within
complex systems, there exist system-level properties that are more
stable than the individual components that comprise them. Coupled

nonlinear interactions can create positive feedback loops over
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relatively discrete spatial and temporal scales. These “self-reinforcing
assembly states” (Stallins, 2006) are variously described as: “attrac-
tors” (Baas, 2002; Harrison, Massey, & Richards, 2006; Thompson
et al., 2001), “stability domains” (Gunderson, 2000) or “domains of
scale” (Wiens, 1989) or “scales of opportunity” (Garmestani, Allen, &
Gunderson, 2009). Nevertheless, all of these terms refer to specific
spatial or temporal windows within which pattern and process are
tightly coupled relative to the other scales of the system. The result
is a limited set of frequencies in both space and time at which dom-
inant patterns and processes operate, reflected as the discontinu-
ous distribution of pattern when compared across scales of analysis
(Figure 1). Analyzing the dynamics of the cross-scale pattern over
space and time allows inference about changes in a system’s relative
resilience and other system properties (Allen & Holling, 2008).
Much of the discontinuity literature is based on the examination
of body mass distributions because the scale at which an organism
perceives the environment and procures resources is a function of
its size (Calder, 1984). The body mass of an animal is an integrated
measure of selective pressures affecting the evolution of a species
and is highly allometric with many life history traits (Peters 1983).
Organism body size affects speed and distance of travel (Harestad
& Bunnel, 1979), processing of food, thermoregulation, physical
structure, and the required quantity and aggregation of resources
(Peterson, Allen, & Holling, 1998). Resources and habitat structure
are not evenly distributed across the landscape; rather their avail-
ability varies among spatial and temporal scales (Wiens, 1989).
Heterogeneously distributed resources across scales generate mul-
timodal body size distributions, which is evidence of a discontinu-
ity. Species are clustered at scales where resources are available
and separated from neighboring body size aggregations by discon-
tinuities corresponding to scales where resources are limited or
highly variable in space and time (Nash, Allen, Angeler et al., 2014).
Researchers have argued that discontinuities are a signature of hi-

erarchical complex adaptive systems (Holling, 1992) and have been
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identified in ecological and other complex systems, including city
and firm size distributions and economic data (Garmestani, Allen, &
Bessey, 2005; Garmestani, Allen, Mittelstaedt, Stow, & Ward, 2006;
Sundstrom, Angeler, Garmestani, Garcia, & Allen, 2014).

Discontinuity research has direct application to ecosystem man-
agement (Angeler et al., 2016). Because discontinuity analyses ob-
jectively identify the scales at which pattern and process manifest,
it is possible to examine the relationship between these scales and
system features such as ecological resilience (Allen, Gunderson, &
Johnson, 2005; Angeler, Allen, & Johnson, 2012; Baho et al., 2015;
Stow, Allen, & Garmestani, 2007; Sundstrom, Allen, & Barichievy,
2012), invasion and extinction risk (Allen, 2006; Allen et al., 2005;
Angeler et al., 2012; Raffaelli, Hardiman, Smart, Yamanaka, & White,
2016), and as an early warning signal of a regime shift (Spanbauer
etal., 2016). For example, ecological resilience emerges in part
from the distribution of ecological functions as provided by species.
When a system has a high diversity of functions within each scale
and a high redundancy of function across scales, it is better able to
buffer disturbances (Peterson et al., 1998; Scheffer etal., 2015).
Similarly, species with body sizes that place them close to a discon-
tinuity are more likely to successfully invade a new ecosystem, or
alternatively, are more likely to be driven to extinction (Allen, 2006;
Allen et al., 2005; Angeler et al., 2012). Finally, identifying the prox-
imity of a system to a regime shift is a fundamental goal in systems
ecology, and it has been demonstrated that the number and location
of discontinuities in community body size distributions are highly
conservative through time, so significant shifts in the discontinuous
distributions serve as an early warning signal of an impending sys-
tem regime shift (Spanbauer et al., 2016).

1.1 | Methods available for discontinuity analysis

Numerous methods have been used to identify discontinuities

in datasets (Skillen & Maurer, 2008). In general, these methods

| Small

SCALE

Processes operating over different spatial and temporal scales

Reef Multireef

FIGURE 1 Processes occurring over different, discrete, spatial, and temporal scales and the resulting discontinuous distribution of
physical habitat structure on a coral reef. Adapted from Nash, Allen, Angeler et al. (2014)
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compare the difference between adjacent ranked observations, for
instance, the difference in body mass size between rank-ordered
species (Allen et al., 2005; Holling, 1992; Siemann & Brown, 1999;
Stow et al., 2007). Early discontinuity research utilized a body mass
difference index, in which differences between rank-ordered body
masses were compared, and a discontinuity was defined as a dif-
ference between two values that were greater than specified cri-
terion. Relative measures were needed because direct comparisons
between absolute values of ranked body masses are not meaningful.
For example, a five-gram difference between two shrew species is
more meaningful than a five-gram difference between deer species,
simply because of the size of the animals, thus, a scaling exponent
or log transformation was used. Another option was subjective
transformations (Holling, 1992) in which bird body masses were
transformed by 1.3 and mammals by 1.1, and a difference index was
calculated as HI = (M, ;=M _;)/M))", where M is the mean body
mass of the species index n in a fully censused community (Restrepo,
Renjifo, & Marples, 1997). Alternatively, Siemann and Brown (1999)
log-transformed the data, and the difference was calculated as
SB = log,((M,,1)/(M,)). Although informative, these difference
index methods suffer from inherent subjectivity.

Various resampling methods were developed to detect disconti-
nuities more objectively. The Discontinuity Index developed by Stow
et al. (2007) tested the vector norm of the observed data against
a population of hypothetical Discontinuity Index values. The hypo-
thetical population was created by resampling a hypothetical null
distribution of uniform distances with the same sample size as the
observed dataset. The result is a single value describing the proba-
bility that the Discontinuity Index of the dataset is higher than that
created randomly. Straightforward and robust, the Discontinuity
Index (Stow et al., 2007) is useful as a general metric describing the
dataset but does not identify where the discontinuities are located
along the rank-ordered axis.

The Gap Rarity Index (GRI) (Restrepo et al., 1997) utilized a neu-
tralnullmodel that was repeatedly sampled as: gap(n) = IoglO(M(ml))—
IoglO(M(n)), where M is the mean body mass of the species n in a
fully censused community. The resampling creates a hypothetical
distribution of gaps against which the gaps within the real data are
tested. The GRI has been the most widely used method to date in
discontinuity analysis of census data (Nash, Allen, Baricjievy et al.,
2014; Sundstrom et al., 2012; Wardwell 2008) and is preferred due
to its simplicity of inference. The GRI uses a neutral model, based
on a standard kernel density estimator, that is generated to approx-
imate a unimodal continuous distribution and is used to analyze for
evidence of multimodality (Silverman, 1981). Practically, this sets up
a null hypothesis against which the real data are compared to test for
departure from some form of central tendency, which is expected
from equilibrium systems (viz. Allen, Forys, & Holling, 1999; Forys
& Allen, 2002). Discontinuities are defined as areas between suc-
cessive, ranked body masses significantly exceeding that generated
by the continuous null distribution. This test for departure is carried
out using a resampling approach, which allows for robust compar-
ison, incorporates the effects of sample size, and accounts for the

associated uncertainty of whether a discontinuity is real or simply a
sampling artifact. However, the major limitation of the GRI algorithm
is that it uses arbitrary constants which are not a dataset-specific es-
timate, but rather a constant used in the original programming which
has unclear biological origins and so cannot be rigorously applied
across different types of complex systems.

Other statistical approaches are hierarchical cluster analysis
(HCA) and classification and regression trees (CART), including the
Bayesian version thereof (Chipman, George, & McCulloch, 1998).
These three methods use various algorithms to find the “best” clus-
tering based on minimizing a cost function. BCART is notably the
most reliable method, where the tree generating algorithm min-
imizes within-group entropy, which is consistent with the premise
of the discontinuity theory. BCART is relatively robust to variations
in tuning, provides repeatable results, and was used successfully
to show regime shifts in paleo-diatom community assemblages
(Spanbauer et al., 2016) and the resilience of plankton communities
at macroecological scale (Baho et al., 2015).

HCA, CART, and BCART are optimal for clustering and classifi-
cation of large multivariate datasets; however, these methods are
also difficult to interpret in the context of discontinuity analyses.
The algorithms essentially partition variance and are not testing any
hypothesis or null model. They are useful in partitioning data into
subpopulations of data with latent variables; however, we are uti-
lizing univariate data where the datum is a proxy for the scale of
pattern and process. Therefore, there is no ecologically meaningful
inference that can be made on the results of variance partitioning
methods, and so the “significance” of a cluster of body masses is
difficult to understand. Stow et al. (2007) have advocated finding
consensus using multiple methods. The determination of what con-
stitutes a significant cluster will always be a challenge and remains
a contentious issue when identifying the location of discontinuities.
Thus, there is a need for a contemporary, intuitive method to detect
discontinuities from census data. We present here an application
that compares the observed distribution with that generated from
a neutral null, formulated from a Gaussian distribution. We then uti-
lize a bootstrapping approach to test to compare the observed data
versus that generated from the neutral null to quantitatively assess
the likelihood that differences between body masses are generated
randomly, or are likely to represent a discontinuity. Although most
closely aligned to the GRI as an approach to discontinuity analysis,
the method presented here is novel in that it does not utilize any
fixed conversion or tuning parameters and therefore can be used
across multiple systems in which the user may want to test for dis-
continuities; it is intuitive to understand the outputs; and it will be
publicly available as an R script to allow straightforward application
across studies.

2 | METHODS

Our method, the discontinuity detector (DD), has two components:
the development of a neutral null distribution and a bootstrapping
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approach that compares rank-ordered differences in data to differ-
ences generated through resampling the neutral null. We then com-
pare the observed data to the bootstrapped samples and calculate
the percentile of the bootstrap distribution to infer the likelihood
that the gap is not through random chance.

2.1 | Datarequirements

The DD is designed for census data, as opposed to sample data.
We use body size as an example, but researchers working in other
types of complex systems have chosen proxies that represent
an integration of system-specific drivers, such as firm size or city
size (Sundstrom etal., 2014) and biomass (Angeler etal., 2012).
Abundance measures are not required, just presence data such as
the bird or mammal species assemblages found in boreal forests,
grasslands, and arid areas as found in Holling (1992). Although our
method may be appropriate for determinate growth species, further
research is required for indeterminate growth species such as fishes
(Nash, Allen, Barichievy et al., 2014).

2.2 | The neutral null

Kernel density estimates of log,, transformed data (m) are gener-
ated for bandwidth values (h) ranging from O to half of the range in
the dataset. We used half of the range as this avoids too many edge
effects being introduced by the smoothing function and makes the
computation more efficient; however, this can be changed if neces-
sary by the user. A lower bound of zero was used as body masses
can only be positive so it is not sensible to generate a model that
predicts negative body mass. We utilized a bandwidth increment of
0.001 (i.e., h(i+1) = h(j) +0.001 for j=1... n). The estimates are eas-
ily calculated in R using the base package and the density function
(Equation 1 and 2), with the bandwidth bounded to be greater than
0 (0 < h<e).

A _ 1 n m—m;
f(h,)(m)— n_h] 2(:’:1) K <_hj >, (1)
where K is the standard normal density function
)
Kix) =2 (2)

V2r

and h is the bandwidth at index j, against which the masses of vector
m, at index i are calculated. A kernel density estimator generates,
for a given bandwidth, a smoothed curve that integrates to 1, which
shows the “density” of data points at the particular value.

The output is a set of smoothed kernel density functions of vary-
ing bandwidths ranging from O to half of the data range. For each
of these kernel density estimates, the second derivative test is uti-
lized to determine whether the function is unimodal. The neutral null
model is selected as the kernel density estimate with the smallest
bandwidth that is unimodal.

We have used the Gaussian function as the smoothing function

as it speaks to the common ecological expectation that there is a
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limited range of scales of resource distribution, implying an optimum
scale at which an animal can exploit resources. For instance, in the
absence of reinforcing process rates, we would not expect multiple
scales or hierarchical pattern and process. Instead, an equilibrium of
pattern and process would be reached (Wu & Loucks, 1995) which
would manifest as processes being distributed over a continuous,
unimodal distribution within the bounds of realistic system scales.
There may be utility in having a uniform distribution as a neutral
null model, but the ecological implication of a uniform distribution
is that there is no optimum scale at which pattern is more or less
likely to occur. Currently, the ecological meaning behind using a uni-
form distribution as a null hypothesis is not evident, but the method
presented does allow for user-defined neutral nulls to be generated
and tested.

2.3 | Resampling and calculating the percentile

The neutral null represents a null hypothesis of an “optimal” body
size for a given system. This neutral model is redrawn without re-
placement (we used 5,000 times), with the same sample size as the
observed data. For instance, if there are 60 species in the commu-
nity, a sample size of 60 is resampled without replacement 5,000
times. For each draw, the sampled data are rank-ordered and the dif-
ferences between each of the rank-ordered, simulated body masses
are calculated. By doing this multiple times, a distribution of gap
sizes is generated for each rank-ordered gap. Each of the observed
differences is compared to the resampled distribution of the same
rank, and the percentile (the value below which a given percentage
of observations in a group of observations fall) of the resampled gap
distribution is calculated. The gap percentile is then used as a meas-
ure of how likely the observed difference between census points
is to those which can be considered randomly sampled from the
neutral null distribution. Decisions regarding what percentile to ac-
cept as a gap are akin to alpha value assessment in any frequentist
method, and inference can be made accordingly.

2.4 | Comparison of existing methods

To illustrate whether the DD algorithm presented here is consist-
ent with the methods used in the discontinuity literature, we com-
pared the outputs of the DD algorithm to those from the GRI, CART,
BCART, and HCA for datasets previously published in discontinuity
studies. These datasets are body mass distributions for boreal forest
mammals (N = 36), boreal forest birds (N = 101), boreal prairie mam-
mals (N = 53), boreal prairie birds (N = 108) (raw data, including home
ranges, are available in Holling, 1992), as well as Kalahari mammals
and fynbos birds (Allen, 1997).

2.5 | Sensitivity analysis

The DD must be robust to common research challenges of realistic
census sizes (number of species in a community), and the method
must be verified for incomplete census data (sample data). We
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tested three hypotheses: The DD algorithm can reliably detect
gaps in data that encompasses (a) multiple scales, (b) under condi-
tions of reduced census success, and (c) under conditions of low
species richness.

To approximate realistic ecological scenarios, we simulated a
dataset similar in scale and composition to the Holling (1992) bo-
real bird body mass dataset from which a species pool of 102 birds
yielded ten discontinuities which separated 11 clusters of similarly
sized birds. Gaussian mixture models were used to generate data of
known multimodal distributions across scales of analysis. The mul-
timodal distributions represent the multiple and discrete scale do-
mains from which a sample is drawn. For these sensitivity analyses,
test data were drawn from a Gaussian mixture model with ten modes
with means and variances increasing evenly on a log scale. A hypo-
thetical census of 100 data points (simulating species average body
masses sampled from a multimodal distribution) was generated with
equivalent weights in the mixture.

One thousand test datasets with differing sample sizes and cen-
sus success (ability to detect all species in the community) were gen-
erated and tested for discontinuities using the DD. This generated a
population of discontinuities from which the effects of sample size
and census success could be tested. Because each experimental
dataset was an independent simulation, it was necessary to objec-
tively cluster discontinuity values together to measure the effect of
changing simulation parameters on the location of discontinuities. If
the algorithm reruns an analysis on the same dataset, yet the discon-
tinuities are identified in different places, the algorithm is not robust,

by running repeated analysis of the same dataset we explicitly tested

for this. To do this, the DD was run on all test datasets, and then,
independent estimations of discontinuities were clustered together
using the mClust package which uses a Bayes clustering algorithm
that selects clusters based on the BIC (Bayes information criteria ~
similar to an Akaike information criteria) value was used to deter-
mine the best-fit number of clusters. The distribution of disconti-
nuities per cluster was then compared under varying conditions of
census success and sample size to determine the sensitivity of DD to

real-world constraints in the census:

e The population of discontinuities was compared among samples
with equal sample size. Sample success was simulated by randomly
deleting a proportion of the sampled population. Comparisons
were made between proportions sampled from 0.75 to 1.

e The population of discontinuities was compared among samples
with unequal sample size. Sample success is assumed to be 1, with
sample sizes varying from 20 to 100 samples (increments of 10
values) in the proxy dataset.

3 | RESULTS

R code for implementing the DD is provided in the Supporting in-
formation. The DD method presented in the paper successfully
identified known gaps from multimodal mixture models (Figure 2).
When comparing the DD results to previous methods (i.e., CART,
BCART, HCA, and GRI), we found consistency across many of
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FIGURE 3 A comparison of the discontinuity detector versus the other methods. The hollow circles represent the raw body mass data
(log 10 scale, on right-hand axis.) against the rank body size (x-axis). The gray squares represent where a discontinuity has been identified,
by each of the different methods. Each method is stacked on top of each other to show which rank the discontinuity has been detected
(y-axis—left-hand side). We compare hierarchical cluster analysis (HCA), Bayesian classification and regression trees (BCART), classification
and regression trees (CART), and Gap Rarity Index (GRI). The (0.9) represents the acceptance value used to accept the discontinuity, that is,
the observed data are >90% percentile of the bootstrap comparison. Here, we present the Boral forest mammal dataset of Holling (1992), in
Figure 4, we show the results, presented similarly, of the comparisons for other datasets

the methods. This is evident in both the Boreal foret mammals
dataset (Figure 3) and other sample datasets (Figure 4, data from
Holling, 1992). The similarity between the GRI and the DD is to
be expected, as they are fundamentally similar approaches. Both
GRI and DD are more conservative than the variance partition-
ing approaches of HCA, CART, and BCART, identifying fewer
discontinuities.

The method detects discontinuities accurately and precisely
under increased sample sizes and census success (Figure 5, top
right); however, under relatively lower sample sizes and low census
success (Figure 5 bottom left), there is less precision and accuracy in

the location of the discontinuities.

4 | DISCUSSION
The discontinuity detector provides an objective, repeatable method
to find discontinuities in census data. This method provides an easy
approach for determining scales in research studies which has great
utility for complex system-centered research such as predicting in-
vasion and extinction, evaluating ecosystem function across scales,
and assessing system resilience (Allen & Holling, 2008; Allen et al.,
1999, 2005; Sundstrom et al., 2012). The method may, therefore, be
useful for addressing management challenges that derive from envi-
ronmental change (Angeler et al., 2016).

The DD method presented here improves on the original GRI

method by removing a subjective transformation constant, which

makes inference simpler and the method more transparent. The use
of the neutral null allows for a hypothesis testing approach as opposed
to simply the clustering approach used in alternative methods, which
makes for stronger inference around the nature of the discontinuity.
We should also note that while it is unlikely that the method
will miss gaps that are in fact real, it is sensitive to detecting er-
roneous gaps. Accordingly, interpretation of the results of the DD
must be made considering type 2 errors. Overall, the DD algorithm
is more conservative than the variance partition methods (HCA,
CART, BCART), which is a result of comparing the observed data
to a unimodal neutral null (Figure 3). A major challenge in detect-
ing discontinuities in census data is that there exists no unambig-
uous null model or standard for comparison. Standard statistical
procedures arise from trying to make a population-level inference
from a (proportionally) small sample. In the investigation of dis-
continuities from census data, one is making inference on an ex-
tremely small population from a very large (proportional) sample;
hence, the concepts from traditional statistical investigations are
not fully transferable. We utilize a null hypothesis of a continuous
unimodal distribution to simulate a central tendency. The method
presented here does allow for varying null models to be used;
however, any null model that is used as a basis for comparison can
only ever be hypothetical, which opens methodological questions
surrounding the null model choice as opposed to the discontinu-
ities themselves. Therefore, the ecological meaning behind a uni-
form null or skewed null model, for example, would need to be

defined prior to the test.
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FIGURE 5 Sensitivity analysis of the discontinuity detector algorithm under conditions of varying sample size and sampling success. The
x-axis shows the range of sample sizes. Column 1: a, e, i, m, and g = 40 species, column 2: b-r = 60 species, column 3: c-s = 80 species, and
column 4: d-t = 100 species. The y-axis represents five of the discontinuities (number 1, 3, 5, 7, and 9, as generated and shown in Figure 2).
Within each subplot, the box and whisker represents the proportional success of the census, so for example, plot Q has 40 species, and
shows the consistency of the DD when 80%, 85%, 90%, 95%, and 100% of species are successfully sampled (i.e., how robust is the method

to missing species or data in the census)

How well the census represents what’s in the community and
how many species are in a community will affect the precision of the
DD in detecting the discontinuities. This is because the variance in
the location of the resampled distribution is a function of the number
of samples from which the resampling is drawn. If only ten samples
are taken from a distribution, the variability in the gaps between in-

dividual samples is higher than when there are around 100 samples.

Practically, this may limit the application of the DD for species-poor
systems (such as a desert) but, if the census largely accounts for the
species in the community, the method will be effective in detecting
discontinuities.

The DD method provides a quick, easy to use and, most impor-
tantly, transparent method to objectively detect discontinuities in cen-

sus data. Such a method will allow for increased discontinuity research
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in the various fields of ecology and other complex system science af-

fording the ability to build upon this burgeoning area of study.

ACKNOWLEDGMENTS

This research arose from a workshop series, “Understanding and
managing for resilience in the face of global change,” which was
funded by the USGS John Powell Center for Synthesis and Analysis,
and the USGS National Climate Change and Wildlife Center. We
thank the Powell Center for supporting collaborative and interdis-
ciplinary research efforts. GLERL contribution number 1880. The
Nebraska Cooperative Fish and Wildlife Research Unit is jointly
supported by a cooperative agreement between the United States
Geological Survey, the Nebraska Game and Parks Commission, the
University of Nebraska Lincoln, the United States Fish and Wildlife
Service, and the Wildlife Management Institute. The views ex-
pressed in this article are those of the authors and do not necessarily
represent the views or policies of the U.S. Environmental Protection
Agency. Any use of trade names is for descriptive purposes only and

does not imply endorsement by the U.S. Government.

CONFLICT OF INTEREST

None declared.

AUTHORS’ CONTRIBUTION

CB was the primary author. CB and KN tested the application. DA,
TE, AG, KN, CS, SS, and CA provided development discussion, cri-
tique of the method, and contributed significantly to the writing of
the manuscript. CA provided the source code for original Neutral
Null and obtained permission from the author and helped to develop
the theory behind the method.

DATA ACCESSIBILITY

All data used are freely available from Holling (1992): Https://esa-
journals.onlinelibrary.wiley.com/doi/abs/10.2307/2937313. Source

code supplied as Supporting information in this manuscript.

ORCID

Chris Barichievy http://orcid.org/0000-0003-4088-953X

Kirsty L. Nash http://orcid.org/0000-0003-0976-3197

REFERENCES

Allen, C. R. (1997). Scale, Pattern and Process in Biological Invasions.
Dissertation submitted in partial submission for Doctorate of
Philosophy. Gainesville, FL: University of Florida

Allen, C.R.(2006). Predictors of introduction success in the South Florida
avifauna. Biological Invasions, 8, 491-500. https://doi.org/10.1007/
s10530-005-6409-x

Allen, C.R., Forys, E. A., & Holling, C. (1999). Body mass patterns predict
invasions and extinctions in transforming landscapes. Ecosystems, 2,
114-121. https://doi.org/10.1007/s100219900063

Allen, C. R., Gunderson, L., & Johnson, A. (2005). The use of disconti-
nuities and functional groups to assess relative resilience in com-
plex systems. Ecosystems, 8, 958-966. https://doi.org/10.1007/
s10021-005-0147-x

Allen, C. R., & Holling, C. S. (Eds.). (2008). Discontinuities in ecosystems
and other complex systems. New York, NY: University of Columbia
Press. 272 pp. https://doi.org/10.7312/alle14444

Angeler, D. G., Allen, C. R., Barichievy, C., Eason, T., Garmestani, A. S.,
Graham, N. A., ... Nash, K. L. (2016). Management applications of dis-
continuity theory. Journal of Applied Ecology, 53, 688-698. https://
doi.org/10.1111/1365-2664.12494

Angeler, D. G., Allen, C. R., & Johnson, R. K. (2012). Insight on inva-
sions and resilience derived from spatiotemporal discontinuities of
biomass at local and regional scales. Ecology and Society, 17(2), 32.
http://www.ecologyandsociety.org/vol17/iss2/art32/

Baas, A. C. (2002). Chaos, fractals and self-organization in coastal
geomorphology: Simulating dune landscapes in vegetated envi-
ronments. Geomorphology, 48, 309-328. https://doi.org/10.1016/
S0169-555X(02)00187-3

Baho, D., Tavsanoglu, U., Sorf, M., Stefanidis, K. Drakare, S.,
Scharfenberger, U., ... Angeler, D. (2015). Macroecological patterns
of resilience revealed through a multinational, synchronized ex-
periment. Sustainability, 7(2), 1142-1160. https://doi.org/10.3390/
su7021142

Calder, W.(1984).Size, function, and life history, Harvard[19] International
Commission on Radiological Protection: University Press, London,
1984. Report of the Task Group on Reference Man, Pergamon.

Chipman, H. A., George, E. |., & McCulloch, R. E. (1998). Bayesian CART
model search. Journal of American Statistical Association, 93, 935-
948. https://doi.org/10.1080/01621459.1998.10473750

Forys, E. A., & Allen, C. R. (2002). Functional group change within and
across scales following invasions and extinctions in the Everglades
ecosystem. Ecosystems, 5, 339-347. https://doi.org/10.1007/
s10021-001-0078-0

Garmestani, A. S., Allen, C. R, & Bessey, K. M. (2005). Time-series analy-
sis of clusters in city size distributions. Urban Studies, 42, 1507-1515.
https://doi.org/10.1080/00420980500185314

Garmestani, A. S., Allen, C. R., & Gunderson, L. (2009). Panarchy:
Discontinuities reveal similarities in the dynamic system structure of
ecological and social systems. Ecology and Society, 14(1), 15. http://
www.ecologyandsociety.org/vol14/iss1/art15/

Garmestani, A. S., Allen, C. R., Mittelstaedt, J. D., Stow, C. A., & Ward,
W. A. (2006). Firm size diversity, functional richness, and resilience.
Environment and Development Economics, 11, 533-551. https://doi.
org/10.1017/51355770X06003081

Gunderson, L. H. (2000). Ecological resilience-in theory and application.
Annual Review of Ecology, Evolution, and Systematics, 42, 5-439.

Harestad, A. S., & Bunnel, F. (1979). Home range and body weight-a re-
evaluation. Ecology, 60, 389-402. https://doi.org/10.2307/1937667

Harrison, S., Massey, D., & Richards, K. (2006). Complexity and emer-
gence (another conversation). Area, 38, 465-471. https://doi.
org/10.1111/j.1475-4762.2006.00711.x

Holling, C. S. (1992). Cross-scale morphology, geometry, and dynam-
ics of ecosystems. Ecological Monographs, 62, 447-502. https://doi.
org/10.2307/2937313

Levin, S. A. (1998). Ecosystems and the biosphere as complex adap-
tive systems. Ecosystems, 1, 431-436. https://doi.org/10.1007/
5100219900037

Nash, K. L., Allen, C. R., Angeler, D. G., Barichievy, C., Eason, T,
Garmestani, A. S., ... Nelson, R. J. (2014). Discontinuities, cross-scale
patterns, and the organization of ecosystems. Ecology, 95, 654-667.
https://doi.org/10.1890/13-1315.1


Https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/2937313
Https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/2937313
http://orcid.org/0000-0003-4088-953X
http://orcid.org/0000-0003-4088-953X
http://orcid.org/0000-0003-0976-3197
http://orcid.org/0000-0003-0976-3197
https://doi.org/10.1007/s10530-005-6409-x
https://doi.org/10.1007/s10530-005-6409-x
https://doi.org/10.1007/s100219900063
https://doi.org/10.1007/s10021-005-0147-x
https://doi.org/10.1007/s10021-005-0147-x
https://doi.org/10.7312/alle14444
https://doi.org/10.1111/1365-2664.12494
https://doi.org/10.1111/1365-2664.12494
http://www.ecologyandsociety.org/vol17/iss2/art32/
https://doi.org/10.1016/S0169-555X(02)00187-3
https://doi.org/10.1016/S0169-555X(02)00187-3
https://doi.org/10.3390/su7021142
https://doi.org/10.3390/su7021142
https://doi.org/10.1080/01621459.1998.10473750
https://doi.org/10.1007/s10021-001-0078-0
https://doi.org/10.1007/s10021-001-0078-0
https://doi.org/10.1080/00420980500185314
http://www.ecologyandsociety.org/vol14/iss1/art15/
http://www.ecologyandsociety.org/vol14/iss1/art15/
https://doi.org/10.1017/S1355770X06003081
https://doi.org/10.1017/S1355770X06003081
https://doi.org/10.2307/1937667
https://doi.org/10.1111/j.1475-4762.2006.00711.x
https://doi.org/10.1111/j.1475-4762.2006.00711.x
https://doi.org/10.2307/2937313
https://doi.org/10.2307/2937313
https://doi.org/10.1007/s100219900037
https://doi.org/10.1007/s100219900037
https://doi.org/10.1890/13-1315.1

BARICHIEVY ET AL.

Nash, K. L., Allen, C. R., Barichievy, C., Nystrém, M., Sundstrom, S., &
Graham, N. A. (2014). Habitat structure and body size distributions:
Cross-ecosystem comparison for taxa with determinate and inde-
terminate growth. Oikos, 123, 971-983. https://doi.org/10.1111/
0ik.01314

Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience,
biodiversity, and scale. Ecosystems, 1, 6-18. https://doi.org/10.1007/
100219900002

Peters, R. H., & Wassenberg, K. (1983). The effect of body size on animal
abundance. Oecologia, 60(1), 89-96.

Raffaelli, D., Hardiman, A., Smart, J., Yamanaka, T., & White, P. C. (2016).
The textural discontinuity hypothesis: An exploration at a regional
level. Shortened version: Exploring Holling’s TDH. Oikos, 125, 797-
803. https://doi.org/10.1111/0ik.02699

Restrepo, C., Renjifo, L., & Marples, P. (1997). Frugivorous birds in frag-
mented neotropical montane forests: landscape pattern and body
mass distribution. Trop. For. Remn. Ecol. Manag. Conserv. Fragm.
Communities, 171-189.

Scheffer, M., Carpenter, S. R., Dakos, V., & van Nes, E. H. (2015). Generic
indicators of ecological resilience: Inferring the chance of a critical
transition. Annual Review of Ecology, Evolution, and Systematics, 46,
145-167.

Siemann, E., & Brown, J. H. (1999). Gaps in mammalian body size dis-
tributions reexamined. Ecology, 80, 2788-2792. https://doi.
org/10.1890/0012-9658(1999)080[2788:GIMBSD]2.0.CO;2

Silverman, B. W. (1981). Using kernel density estimates to investi-
gate multimodality. Journal of the Royal Statistical Society. Series B,
Statistical Methodology, 43(1), 97-99.

Skillen, J. J., & Maurer, B. A. (2008). The ecological significance of discon-
tinuities in body-mass distributions. In C. R. Allen & C. Holling (Eds.),
Discontinuities in ecosystems and other complex systems (pp. 193-218).
New York, NY: Columbia University Press.

Spanbauer, T. L., Allen, C. R., Angeler, D. G., Eason, T., Fritz, S. C.,
Garmestani, A. S., ... Sundstrom, S. M. (2016). Body size distributions
signal a regime shift in a lake ecosystem. Presented at the Proc. R.
Soc. B, The Royal Society, 20160249.

Stallins, J. A. (2006). Geomorphology and ecology: Unifying themes for
complex systems in biogeomorphology. Geomorphology, 77,207-216.
https://doi.org/10.1016/j.geomorph.2006.01.005

Fcology and Evolution o 9623
= WILEY- %%

Stow, C., Allen, C. R., & Garmestani, A. S. (2007). Evaluating discontinu-
ities in complex systems: Toward quantitative measures of resilience.
Ecology and Society, 12(1), 26. http://www.ecologyandsociety.org/
vol12/iss1/art26/

Sundstrom, S. M., Allen, C. R., & Barichievy, C. (2012). Species, functional
groups, and thresholds in ecological resilience. Conservation Biology,
26, 305-314. https://doi.org/10.1111/j.1523-1739.2011.01822.x

Sundstrom, S. M., Angeler, D. G., Garmestani, A. S., Garcia, J. H., & Allen,
C. R. (2014). Transdisciplinary application of cross-scale resilience.
Sustainability, 6, 6925-6948. https://doi.org/10.3390/s5u6106925

Thompson, J.N.,Reichman, O.,Morin, P.J., Polis, G. A., Power, M. E., Sterner,
R. W,, ... Hooper, D. U. (2001). Frontiers of Ecology As ecological re-
search enters a new era of collaboration, integration, and technological
sophistication, four frontiers seem paramount for understanding how
biological and physical processes interact over multiple spatial and
temporal scales to shape the earth’s biodiversity. BioScience, 51, 15-24.
https://doi.org/10.1641/0006-3568(2001)051[0015:FOE]2.0.CO;2

Wardwell, D. A., Allen, C. R., Peterson, G. D., & Tyre, A. J. (2008). A test of
the cross-scale resilience model: Functional richness in Mediterranean-
climate ecosystems. Ecological Complexity, 5(2), 165-182.

Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385-
397. https://doi.org/10.2307/2389612

Wau, J., & Loucks, O. L. (1995). From balance of nature to hierarchical
patch dynamics: A paradigm shift in ecology. The Quarterly Review of
Biology, 70, 439-466. https://doi.org/10.1086/419172

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Barichievy C, Angeler DG, Eason T,
et al. A method to detect discontinuities in census data. Ecol
Evol. 2018;8:9614-9623. https://doi.org/10.1002/ece3.4297



https://doi.org/10.1111/oik.01314
https://doi.org/10.1111/oik.01314
https://doi.org/10.1007/s100219900002
https://doi.org/10.1007/s100219900002
https://doi.org/10.1111/oik.02699
https://doi.org/10.1890/0012-9658(1999)080[2788:GIMBSD]2.0.CO;2
https://doi.org/10.1890/0012-9658(1999)080[2788:GIMBSD]2.0.CO;2
https://doi.org/10.1016/j.geomorph.2006.01.005
http://www.ecologyandsociety.org/vol12/iss1/art26/
http://www.ecologyandsociety.org/vol12/iss1/art26/
https://doi.org/10.1111/j.1523-1739.2011.01822.x
https://doi.org/10.3390/su6106925
https://doi.org/10.1641/0006-3568(2001)051[0015:FOE]2.0.CO;2
https://doi.org/10.2307/2389612
https://doi.org/10.1086/419172
https://doi.org/10.1002/ece3.4297

