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Abstract The application of performance-based

design (PBD) requires the modeling of the dynamic

response of the system beyond the elastic limit. If

probabilistic PBD is considered, this implies the need

to propagate uncertainties through non-linear dynamic

systems. This paper investigates the possibility of

using advanced metamodeling techniques in order to

define a computationally tractable approach for prop-

agating uncertainty through a class of multi-degree-of-

freedom non-linear dynamic systems subject to mul-

tivariate stochastic wind excitation. To this end, a

scheme is introduced that is based on combining

model order reduction with a recently introduced

metamodeling approach that has been seen to be

particularly effective in describing the dynamic

response of uncertain non-linear systems of low

dimensions. A case study consisting in a 40-story

moment resisting frame subject to multivariate

stochastic wind excitation and an array of non-linear

viscous dampers is presented to illustrate the potential

of the scheme.

Keywords Metamodeling � Reduced order

modeling � Uncertain dynamic systems � Monte Carlo

simulation � Wind engineering � Multi-degree-of-

freedom systems

1 Introduction

In the design of building systems against natural

hazards, performance-based design (PBD) has grown

in popularity over the past years owing to the

advantages that an approach of this kind can offer in

terms of both the reliability and cost [1–4]. In order to

apply such an approach, particular attention must be

devoted to understanding and modeling the behavior

of the system over a full range of hazard levels, i.e.

from serviceability to possible collapse. From a

computational standpoint, it is the estimation of the

extreme responses that often becomes computation-

ally challenging, as non-linear dynamic systems

generally have to be considered [5]. This computa-

tional challenge becomes particularly noteworthy in

the case of modern probabilisitc PBD where uncer-

tainty must be propagated through the system for

estimating performance [2, 4, 6–10].

An approach for overcoming these difficulties,

which has recently gained significant interest, is that

offered by metamodeling. The basic idea in this

approach is to define a metamodel (also known as a

surrogate model) of the original system that is

computationally efficient to evaluate. This allows

any uncertainty to be easily propagated through the

system using methods such as Monte Carlo simula-

tion. In general, to calibrate the metamodel, a training

process must be carried out that entails running the

original computationally burdensome model in a

limited number of carefully chosen points. Recently,

W.-C. Chuang � S. M. J. Spence (&)

Department of Civil and Environmental Engineering,

University of Michigan, Ann Arbor, MI 48109, USA

e-mail: smjs@umich.edu

123

Meccanica (2019) 54:1327–1338

https://doi.org/10.1007/s11012-019-00958-9(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-019-00958-9&amp;domain=pdf
https://doi.org/10.1007/s11012-019-00958-9


researchers have been developing metamodeling

approaches for describing the stochastic response of

uncertain non-linear systems driven by stochastic

excitation [11, 12]. Of particular interest to this work is

a recently proposed numerical approach based on

combining polynomial chaos (PC) expansions and

non-linear autoregressive with exogenous input

(NARX) models [11, 12]. In this approach, NARX

models are used to capture the dynamic behavior of the

system, while polynomial chaos expansions (PCEs)

are adopted to treat the uncertainties in the system

properties. The resulting metamodel has been seen to

be effective in accurately reproducing the response of

several earthquake engineering applications involving

stochastic excitation [11, 12]. Current limitations of

the approach lie in difficulties associated with iden-

tifying appropriate NARXmodels in the case of multi-

degree-of-freedom systems [13], and in its single-

input single-output structure. This last is particular

limiting in the case of wind excited structures due to

the inherently multivariate nature of wind loads.

To overcome these limitations, in this work, the

possibility of combining this metamodeling approach

with a modal-based model reduction scheme will be

investigated with the aim of defining an efficient

framework for the propagation of uncertainty through

a class of non-linear and uncertain multi-degree-of-

freedom systems subject to multivariate stochastic

wind excitation.

2 Problem definition

The general class of non-linear systems of interest to

this work can be cast, for an N-degree-of-freedom

system, in the following form:

M €uðtÞ þ C _uðtÞ þ KuðtÞ þ f nlðt;u; _uÞ ¼ f ðt; �vÞ ð1Þ

where: _uðtÞ, €uðtÞ and uðtÞ are the N � 1 velocity,

acceleration and displacement response vectors;M, C

and K are the N � N mass, damping and linear

stiffness matrices of the system; f ðtÞ is a N � 1

external vector of multivariate stochastic wind exci-

tation; �v is the mean wind speed to which fðtÞ is

calibrated; and f nlðtÞ is a N � 1 vector of non-linear

restoring forces that depend on the system response. In

the following, it will be assumed that the matrices M,

C and K are constant in time, while the forcing

functions f ðtÞ are considered to be a general stochastic
representation of wind loads occurring during a wind

event of duration T.

To propagate uncertainty through Eq. (1) in the

presence of system uncertainties, e.g. uncertainties in

the damping and stiffness, as well as general stochastic

loads, simulation methods are generally required. This

is especially true if performance of a system is to be

characterized within modern performance-based wind

engineering frameworks, where performance is

assessed in terms of correlated sample sets of peak

responses occurring in [0, T] [2, 4, 6–10]. This work is

focused on developing a metamodeling approach for

efficiently propagating uncertainty through the non-

linear system of Eq. (1) within a stochastic simulation

environment.

3 The proposed approach

3.1 Reduced order model

Because of the structure of Eq. (1), i.e. existence of a

time independent elastic stiffness K, a straightforward

approach to define a reduced order model for the non-

linear N � N system of Eq. (1) is to carry out modal

analysis on the left-hand side of the following system

[14–20]:

M €uðtÞ þ C _uðtÞ þ KuðtÞ ¼ f ðt; �vÞ � f nlðt; u; _uÞ ð2Þ

According to this approach, the dynamic response of

the system can be estimated through the following set

of non-linear equations [14–17]:

Mm€ymðtÞ þ 2Mmxmfm _ymðtÞ þMmx
2
mymðtÞ

¼ UT
m f ðt; �vÞ � f nlðt; u; _uÞ½ �

¼ Qmðt; �vÞ þ UT
mf nlðt; u; _uÞ;

m ¼ 1; . . .;Nm �N

ð3Þ

where: €ym, _ym and ym are the generalized responses of

the system; Mm, xm, fm and Um are respectively the

mth generalized mass, natural circular frequency,

damping ratio and mode shape associated with the

left-hand side of Eq. (2); while QmðtÞ is the general-

ized forcing function. In general, the damping ratio,

fm, can be directly assigned, while Mm and xm can be

estimated as:
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Mm ¼ UT
mMUm

x2
m ¼ 1

Mm

UT
mKUm

ð4Þ

where the mode shapes are estimated from solving a

standard eigenvalue/eigenvector problem in terms of

M and K. Once the generalized responses are known,

the responses in physical coordinates can be estimated

through the transformation:

uðtÞ ¼ UNm
yNm

ðtÞ
_uðtÞ ¼ UNm

_yNm
ðtÞ

€uðtÞ ¼ UNm
€yNm

ðtÞ
ð5Þ

where UNm
is the modal matrix collecting the first

Nm �N modes while yNm
, _yNm

and €yNm
are the

generalized response vectors collecting the responses

of the first Nm generalized coordinates.

The advantage of the non-linear system of Eq. (3) is

that, in general, only the first few modes are necessary

to accurately predict the response of the system, i.e.

Nm can be taken such that Nm � N. This has been

illustrated in a number of applications involving

structures subject to stochastic seismic excitations

and governed by non-linear equations of the type

shown in Eq. (2) [14–17]. In practice, through the

reduction of this section, the state of the non-linear

system is governed by the reduced set of variables,

fyNm
ðtÞ; _yNm

ðtÞ; €yNm
ðtÞg as opposed to fuðtÞ; _uðtÞ;

€uðtÞg.
Notwithstanding the order reduction, as outlined in

[17], the system of Eq. (3) still requires to be solved

simultaneously through an appropriate step-by-step

integration scheme, such as the Newmark constant

acceleration method [17] or fast non-linear analysis

[21]. In cases where uncertainty is to be propagated

through the system using approaches such as Monte

Carlo simulation, this can fast become computation-

ally cumbersome. To overcome this, the possibility of

using appropriate metamodeling schemes for rapidly

propagating uncertainty through the reduced system of

Eq. (3) will be investigated.

3.1.1 Uncertainty modeling

The reduced system of Eq. (3) provides a convenient

setting for modeling uncertainties in the system param-

eters, e.g. damping and stiffness. Indeed, there are a

number of studies that have been carried out that

characterize the uncertainty in the modal quantities, i.e.

xm and fm, of wind excited systems [2, 22–24].

Therefore, once the reduced system is defined, uncer-

tainty can be modeled directly at the level of the

natural frequencies and damping ratios of the reduced

system through assigning appropriate probability

distributions. In alternative, a direct approach can also

be taken, in which the uncertainties are modeled at the

level of K andM. In this case, the modal matrix,UNm
,

becomes uncertain and requires evaluation for each

realization of the uncertainties affecting K and M.

However, because this only requires the evaluation of

a standard eigenvalue/eigenvector problem, it does not

represent a significant computational challenge.

Together with these uncertainties, in general, uncer-

tainties characterizing the intensity of the stochastic

excitation, e.g. the wind speed �v, as well as the

properties of the non-linear components generating

the restoring forces f nl, will require modeling. These

additional sources of system uncertainty can be

incorporated, without difficulty, in the reduced order

model directly at the level of the non-linear compo-

nents and stochastic wind load model. In the follow-

ing, all uncertainties associated with the elastic system

parameters, external excitation model and non-linear

components will be collected in the uncertain vector

X.

3.2 A metamodel-based solution scheme

Recently, a metamodeling approach has been pro-

posed for efficently simulating the response of

uncertain non-linear systems excited by stochastic

loads [11, 12]. The approach has been seen to be

particularly well suited to single-input single-output

low dimensional non-linear systems subject to

stochastic excitation, e.g. earthquake loads [12].

With this mind, it is interesting to observe that,

independently of whether the original stochastic

excitation is multivariate or not, each generalized

coordinate of the reduced system of Eq. (3) can be

treated as a single-input (Qm) single-output (ym, _ym,
or €ym depending on the variable of interest) system.

Within this context, consider representing the input/

output relationship of the mth generalized coordinate

through the following NARX model (where the

dependency on the mth coordinate is not explicitly

shown for clarity of presentation) [25]:
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yðtjÞ ¼ GðzðtjÞÞ þ �ðtjÞ
¼ GðQðtjÞ; . . .Qðtj�nQÞ; yðtj�1Þ; . . .yðtj�nyÞÞ þ �t

ð6Þ

where: yðtjÞ, QðtjÞ and �ðtjÞ are the system output,

input and noise sequences at discrete time step tj,

respectively; ny and nQ are the maximum lags for the

system input and output; Gð�Þ is the underlying non-

linear approximator to be identified; zðtjÞ is the

regression vector collecting the system outputs and

inputs at time step tj; while �t is a normal random

variable with zero mean and standard deviation r�ðtjÞ
(i.e. �t �Nð0; r2� ðtjÞÞ) representing the residual error of
the NARX model. Equation (6) above can then be

expressed in a commonly used linear-in-the-parame-

ters form:

yðtjÞ ¼
Xng

i¼1

#i giðzðtjÞÞ þ �t ð7Þ

in which ng is the number of potential model terms

giðzðtjÞÞ that are functions of the regression vector,

zðtjÞ, while #i are the corresponding parameters of the

NARX model. In general, the identification of the

NARX model consists in firstly selecting the correct

model structure (i.e. selecting the NARX terms

giðzðtÞÞ of the model), and secondly estimating the

model parameters, #i, from the system inputs and

outputs. To this end, several approaches have been

proposed for identifying the simplest model that can

appropriately represent the underlying dynamics of

non-linear systems [25–27].

Once calibrated, the NARX model of Eq. (7) is

capable of capturing the time evolution of the system

in the time interval [0, T], i.e. given a realization of the

generalized force, QðtjÞ with tj ¼ 0;Dt; 2Dt; . . .;NTDt
with NT the total number of discrete time steps of

duration Dt in [0, T], Eq. (7) can be used to estimate

the output discrete time series yðtjÞ. In particular,

models of this type can be constructed not only for the

displacement responses, but also for the velocities,

_yðtjÞ, and accelerations, €yðtjÞ. What the NARX models

cannot capture are the effects of uncertainties in the

system parameters, i.e. the uncertainties collected in X

and discussed in Sect. 3.1.1. A recently proposed

approach for capturing this type of system uncertainty,

and that will be followed here, is to consider the

parameters, #i, of the NARX model as deterministic

functions of the system uncertainties. In particular,

this functional relationship can be estimated through a

truncated PCE:

#iðXÞ ¼
Xnw

l¼1

#i;lwlðXÞ þ �i ð8Þ

where X is the vector collecting all the system

uncertainties, �i is the truncation error, wlðXÞ for l ¼
1; . . .; nw are multivariate orthonormal polynomials

associated with X, while #i;l for i ¼ 1; . . .; ng and l ¼
1 � � � ; nw are the associated deterministic polynomial

chaos coefficients.

By combining the truncated PCE representation of

the coefficients with the NARX model of Eq. (7), the

following PC-NARX metamodel of the input/output

relationship of the generalized coordinates of the

reduced model of Sect. 3.1 is obtained:

yðtj;XÞ ¼
Xng

i¼1

Xnw

l¼1

#i;lwlðXÞ giðzðtjÞÞ þ �ðtj;XÞ ð9Þ

with �ðtj;XÞ designating the total error due to the

truncation of the PCE and the noise of the NARX

model. To calibrate Eq. (9), it is first necessary to

identify a full NARX model, i.e. an initial set of

NARX terms giðzðtjÞÞ and maximum output, ny, and

input, nQ, lags from which the model structure can be

selected. In general, this can be achieved based on the

known mechanical properties of the structural system

to be approximated (e.g. type of non-linearity). From

the full NARX model, the model structure, i.e. most

important NARX terms, can be identified through the

scheme that will be outlined in the next section. The

parameters, #i, of the identified model structure can

then be represented through the PCE of Eq. (8) where

the number of terms, nw, to consider in the expansion

can be automatically identified from the input/output

data generated for identifying the model structure and

the least angle regression (LARS) based scheme out-

lined in [12, 28].

3.2.1 Non-intrusive metamodel calibration

Given an appropriate full NARX model, a non-

intrusive approach for identifying the model structure

and associated parameters has been recently proposed

in [12]. In particular, this approach is based on

selecting the model structure through a LARS algo-

rithm, while estimating the corresponding parameters

through the optimization of the one-step-ahead
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prediction error (PE). This approach has been seen to

provide good accuracy in reproducing the response of

non-linear dynamic systems subject to short duration

stochastic excitation, e.g. seismic loads. However,

wind excitation has a much longer duration of

sustained loading which can easily lead to a serious

error accumulation problem, i.e. small prediction

errors accumulating to larger ones due to the model

output feedback. In extreme situations, the model can

become unstable (i.e. predictions that tend to infinity),

even if the model still possesses very good one-step

ahead prediction performance.

In this work, the approach suggested in [12] for

refining the selection of the parameters of the NARX

model will be investigated as a means to avoid the

error accumulation problem encountered in using the

PE-based LARS algorithm for calibrating the PC-

NARX model of Eq. (9). To this end, consider an

experimental design consisting in K realizations of the

generalized forces, QkðtjÞ for k ¼ 1; . . .K, and real-

izations of the system uncertainties, xk for k ¼ 1; . . .K.
By following the PE-based LARS algorithm outlined

in [12], an appropriate model structure can be

identified. This process provides an initial estimate

of the NARX parameters for each of theK experiments

through a PE criterion. Based on these values, the

response to QkðtjÞ can be simulated as:

ŷkðtj; xkÞ ¼
Xng

i¼1

#kiðxkÞ giðẑkðtjÞÞ ð10Þ

where ẑkðtjÞ ¼ ðQkðtjÞ; . . .;Qkðtj�nQÞ; ŷsðtj�1Þ; . . .; ŷs
ðtj�nyÞÞ

T
, while #ki are the calibrated parameters of

the NARX model for the kth experiment.

The difference between the simulated response,

ŷkðtÞ, and the actual response, ykðtÞ, in [0, T], can now
be minimized in terms of the vector of NARX model

parameters, #̂k ¼ f#k1; . . .; #kngg
T
, through the fol-

lowing simulation error criterion:

#̂kðxkÞ¼ argmin
#̂k

XNT

j¼1

yðtj;xk;#̂kÞ� ŷkðtj;xk;#̂kÞ
� �2

( )

ð11Þ

By solving this optimization problem, refined esti-

mates for the NARX parameters are obtained. In

particular, this optimization problem can be solved by

any appropriate non-linear optimization technique. In

this work, the Nelder–Mead simplex algorithm [29] is

adopted. The execution time depends on how close the

initial guess is to the optimal value of the NARX

parameters and the number of NARX parameters, i.e.

design variables, and is therefore relatively insensitive

to the total duration of the excitation. In particular, the

parameters obtained through the PE-based LARS

algorithm outlined in [12] have been seen to provide a

good starting point for solving the optimization

problem of Eq. (11).

After identifying the refined NARX parameters,

they can be expanded onto an appropriate PC basis,

with corresponding deterministic coefficients, through

the K realizations of input/output generated during the

identification of the model structure and the LARS-

based procedure outlined in [12, 28], therefore leading

to a fully calibrated PC-NARX model. In particular, it

should be observed that the calibration process

outlined here is non-intrusive, as it only requires the

input and output of the reduced coordinate.

3.3 Overall procedure

The overall procedure for defining the metamodel of

order Nm for the system outlined in Eq. (2) subject to

multivariate stochastic wind loads of duration T can be

summarized as follows:

1. Generate a set of K realizations of the uncertain

vector X, with associated realizations of the

multivariate forcing functions f ðtjÞ of time step

Dt and total duration T, through a space filling

sampling procedure such as Latin hypercube

sampling.

2. Identify the elastic modal properties of the non-

linear system of Eq. (2) by carrying out an

eigenvalue/eigenvector analysis in terms of M

and K for each realization of X.

3. Use the mode shape vectors UNm
of order Nm to

generate K realizations of the generalized stochas-

tic forcing functions QNm
ðtjÞ ¼ UT

Nm
f ðtjÞ.

4. Solve the reduced order system of Eq. (3) through

a direct integration approach for each realization

of X and QNm
ðtjÞ, therefore generating K realiza-

tions of the reduced states fyNm
ðtjÞ; _yNm

ðtjÞ;
€yNm

ðtjÞg.
5. From the K discrete input/output sets of the Nm

reduced coordinates, calibrate PC-NARX meta-

models using the procedures outlined in Sect. 3.2.
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Once the metamodels of order Nm are calibrated,

stochastic responses in physical coordinates can be

generated by simply generating samples of X and fðtÞ,
estimating the corresponding samples yNm

ðtÞ in the

reduced space, and using the transformation of Eq. (5)

to estimate stochastic responses in physical coordi-

nates. In particular, if the responses of interest are

velocities and/or accelerations, PC-NARXmodels can

be calibrated to these outputs.

4 Case study

In this section, a multi-degree-of-freedom building

structure equipped with an array of non-linear

response mitigation devices, and excited by multi-

variate stochastic wind forces, is presented to illustrate

the proposed metamodeling approach.

4.1 General description of the structure

The following results and discussion will refer to the

40-story steel frame shown in Fig. 1. The geometry of

the frame is described by four 6.1 m bays and by inter-

story heights, hj, of 6.1 m at ground level and 3.8 m

for all other floors. The overall height of the structure,

H, is 154.7 m, while the influence width W of the

frame is considered to be 12.2 m. In particular, the

columns were considered as square box sections while

the beams were assigned standard American Institute

for Steel Construction (AISC) wide flange sections.

Table 1 reports the specific section sizes used in

designing the structure. The mass was considered

lumped at each floor with expected value calculated as

the sum of the element mass and carried mass. In

particular, the carried mass at each floor was taken as

M ¼ q0L=g, where g is the gravitational acceleration,

q0 ¼ 11:96hj kN/m is a uniformly distributed dead

load, while hj and L are the height and length of each

floor. In this example, uncertainties were considered

directly at the level of the stiffness, K, and mass, M,

matrices. In particular, uncertainty in K was modeled

by taking the Young’s modulus of the material as a

lognormal random variable with mean 210 GPa and

standard deviation 15 GPa. To model the uncertainty

in the mass,M was multiplied by a lognormal random

variable with mean of 1 kg and standard deviation of

0.05 kg. To model uncertainty in the damping, the

damping ratios were taken as dependent lognormal

random variables with mean 0.015 and standard

deviation 0.005.

As illustrated in Fig.1, response mitigation devices

are diagonally mounted between each floor. In partic-

ular, these take the form of fluid viscous dampers [30]

leading to the following non-linear restoring forces:

154.7 m

24.4 m

Fig. 1 Schematic of the 40-story steel frame considered in the

case study
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f nlðt; _uÞ ¼

c1sgnðvr1Þjvr1ð _u1ðtÞÞj
a

..

.

c1sgnðvr10Þjvr10ð _u10ðtÞ; _u9ðtÞÞj
a

c2sgnðvr11Þjvr11ð _u11ðtÞ; _u10ðtÞÞj
a

..

.

c2sgnðvr20Þjvr20ð _u20ðtÞ; _u19ðtÞÞj
a

c3sgnðvr21Þjvr21ð _u21ðtÞ; _u20ðtÞÞj
a

..

.

c3sgnðvr30Þjvr30ð _u30ðtÞ; _u29ðtÞÞj
a

c4sgnðvr31Þjvr31ð _u31ðtÞ; _u30ðtÞÞj
a

..

.

c4sgnðvr40Þjvr40ð _u40ðtÞ; _u39ðtÞÞj
a

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð12Þ

where vrj is the relative velocity between the ends of

the damper at floor j, c1, c2, c3 and c4 are uncertain

damping coefficients with uniform distribution in

[0, 100] N-s/m, while a ¼ 0:38 is the damping expo-

nent. In total, for this problem, the uncertain vector X

has eight components (the mean wind speed of the

next section is also taken as uncertain).

4.2 Stochastic wind force model

The multivariate stochastic wind loads, f ðtÞ, acting at

each floor of the frame of Fig. 1 are modeled in this

work through a quasi-steady model based on a spectral

representation of the multivariate wind speed field

acting over the height of the frame. The overall

intensity of the stochastic wind loads is defined in

terms of the mean hourly wind speed �v to occur at a

meteorological station of height Hmet and roughness

length z01. This is related to the mean hourly wind

speed over the height of the building, z, through the

following transformation [23]:

�vzðz0Þ ¼ 0:8065
z0

z01

� �0:0706 ln½ z
z0
�

ln½Hmet

z01
�
�vðHmet; z01Þ ð13Þ

where z0 is the roughness length at the site of

interest. In particular, in this work, the wind speed �v

of Eq. (13) was taken as a Type II distribution with

mean 30 m/s and standard deviation 3.5 m/s. A

roughness length of z01 ¼ 0:05 m and a meteorolog-

ical height of Hmet ¼ 10 m were considered for �v. The

roughness length at the site of the structure, z0, was

taken to be 0.02 m.

From Eq. (13), the jth component of f ðtÞ (i.e. wind
loads acting at height zj), can be estimated through the

following quasi-steady assumption:

fjðtÞ ¼ gjð�vzj þ vzjðtÞÞ
2 ’ gjð�v2zj þ 2�vzjvzjðtÞÞ;

j ¼ 1; 2. . .;Nf

ð14Þ

where: Nf ¼ 40 is the total number of floors; gj is a

coefficient given by gj ¼ 0:5q �CjAj with q ¼ 1:25 kg/

m3 the air density, �Cj ¼ 1:3 the floor-wise quasi-

steady pressure coefficient, and Aj ¼ hjW the influ-

ence area of the jth component of fðtÞ; while vzjðtÞ is
the zero-mean fluctuating component of the multi-

variate stochastic wind field at height zj. To simulate

vzjðtÞ, the following spectral representation model can

be used [31]:

Table 1 Section sizes of

the steel frame

t = wall thickness

Level range Wide-flange beams Box columns

Interior (cm) Exterior (cm)

1–10 W36 � 282 56 � 56 51 � 51

t ¼ 7:6 t ¼ 6:4

11–20 W36 � 194 51 � 51 51 � 51

t ¼ 5:0 t ¼ 5:0

21–30 W33 � 169 46 � 46 46 � 46

t ¼ 2:5 t ¼ 2:5

31–40 W27 � 84 46 � 46 46 � 46

t ¼ 1:9 t ¼ 1:9

123

Meccanica (2019) 54:1327–1338 1333



vzjðtÞ ¼ 2
XNf

m¼1

XN

l¼1

jHjmðxmlÞj �
ffiffiffiffiffiffiffi
Dx

p
cos½xmlðtÞ

� hjmðxmlÞ þ /ml�; j ¼ 1; 2; . . .;Nf

ð15Þ

where N is the total number of components in the

expansion, HjmðxmlÞ is an element of the decomposed

target cross-spectral density matrix of the fluctuating

wind speeds (here taken as outlined in Appendix 1),

hjmðxmlÞ is the corresponding complex angle, /ml are

sequences of independent random phase angles dis-

tributed uniformly in the interval ½0; 2p�, Dx is the

sampling frequency, while xml is given by:

xml ¼ ðl� 1ÞDxþ m

Nf

Dx; l ¼ 1; 2; . . .;N ð16Þ

The period of the simulated wind loads is given by:

T̂ ¼ 2pNf

Dx
¼ 2pNfN

xup
ð17Þ

where xup is the cut-off frequency. The larger the

N under a specified upper cutoff frequency xup, the

longer the period of the simulated stochastic process.

In particular, in the following, a storm duration of

T ¼ 900 s with sampling frequency of 100 Hz will

be considered. In this case, each realization of fðtÞ
entails the generation of a total of 81,920 indepen-

dent and uniformly distributed random numbers in

½0; 2p�.

4.3 Results

4.3.1 Calibration

The first three natural circular frequencies of the frame

were in the range ofx1 	 1:5 rad/s,x2 	 4 rad/s, and

x3 	 7 rad/s. Due to howwind does not, for all intents

and purposes, have energy above 2p rad/s, the first

three generalized coordinates were considered suffi-

cient in defining the dimension of the reduced model,

i.e. Nm ¼ 3. In defining the metamodel of the

displacement responses of the reduced system, i.e.

ymðtÞ for m ¼ 1; 2; 3, a full NARX model was chosen

as the following polynomial function:

giðtjÞ ¼ yl11 ðtj�nyÞQl2
1 ðtj�nQÞ ð18Þ

with l1 þ l2 � 3, 0� l1 � 3, 0� l2 � 1, ny ¼ 1; 2 and

nQ ¼ 0; 1; 2, therefore leading to 10 candidate terms

including the constant term. To identify the most

appropriate NARX model, an experimental design

consisting in K ¼ 200 simulations were carried out

with input random variables, i.e. X, generated by Latin

hypercube sampling. From the LARS procedure of

[12], four terms were selected, namely the constant

term, QmðtjÞ, ymðtj�1Þ and ymðtj�2Þ. After implement-

ing the output error procedure of Sect. 3.2.1, the mean

relative error (as defined in [12]) over all 200

simulations was �� ¼ 0:017. In representing the NARX

coefficients through PCEs, adaptive expansions were

considered with maximum interaction rank of 2 and

truncation parameter of 1. Figure 2a shows, for one of

200 calibration points, the comparison between the

reconstructed and reference displacement response

(estimated through the fast non-linear analysis

scheme reported in [21]) of the structure at the top

floor. As can be seen, the metamodel captures the

response evolution remarkably well. In particular,

Fig. 2b shows the evolution of the error induced by the

NARX model, while Fig. 2c reports the evolution of

the overall error induced by the NARX and PC

approximations. As can be seen, the overall error is not

0

0.2

0.4

0.6

0.8
Reference NARX model PC-NARX model

-0.05

0

0.05
NARX

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900
-0.05

0

0.05
PC-NARX

(b)

(a)

(c)

Fig. 2 Comparison for a point of the calibration set between the

reconstructed and reference top floor displacement response:

a evolution of the response in [0, T]; b error evolution due to

NARX approximation; c overall error evolution due to NARX

and PC approximations
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only small, but also stable with time, i.e. no error

accumulation is seen, notwithstanding the long pre-

diction horizon. This illustrates the effectiveness of the

simulation error refinement scheme of Sect. 3.2.1.

4.3.2 Simulation results

To investigate the simulation performance of the

metamodel, a validation set consisting in 200 ran-

domly generated samples of X, with associated

samples of f ðtÞ, were generated. Reference solutions

were estimated for each sample using once again the

fast non-linear analysis scheme. The calibrated meta-

model was then run for each sample and the predictive

capability of the metamodel was investigated. Fig-

ure 3 shows a typical result with respect to the

simulation of the coordinates of the reduced model.

As can been seen, very good correspondence between

the reference solutions and the reduced coordinates of

the metamodel is achieved. Figure 4a reports the

comparison between the reference solution and the

metamodel in physical coordinates, and in particular

the top floor displacement response. As can be seen,

very good correspondence is achieved. Figure 4b

shows the evolution of the difference between the

reference and simulated responses, from which the

stability of the prediction can be seen. Similar results

were seen for all simulations in the validation set.

Figure 5 illustrates the typical non-linear response

seen in the dampers over the duration of the event.

To illustrate the predictive capability of the meta-

model over all samples, Fig. 6 reports the comparison

between the 200 reference and simulated maximum

absolute responses at the top floor of the structure. As

can be seen, there is strong correspondence between

the reference and simulated responses with a correla-

tion coefficient of 0.97. The strong correspondence

between the responses allows for the direct estimation

of quantities such as the exceedance probabilities

associated with the peak absolute response of the

system in [0, T], as illustrated in Fig. 7.
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(a)
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Fig. 3 Comparison between the simulated and reference

displacement responses of the reduced system for a represen-

tative sample: a first generalized coordinate; b second gener-

alized coordinate; c third generalized coordinate
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Fig. 4 Comparison between the simulated and reference

displacement responses at the top floor of the structure:

a evolution of the response in [0, T]; b overall error evolution
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Fig. 5 Typical hysteretic response of the top floor damper
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4.3.3 Discussion

The capability of the proposed metamodeling

approach to accurately propagate uncertainty through

the class of multi-degree-of-freedom non-linear sys-

tems outlined in Sect. 2 was illustrated in this section

through the example structure of Fig. 1. If it is

observed that, once calibrated, the generation of the

response time histories through the metamodel was

around two orders of magnitude faster than the fast

non-linear scheme used to estimate the reference

solutions, the potential of the approach becomes clear.

This is especially true if it is kept in mind that the fast

non-linear scheme outlined in [21] is an approach

specialized for rapid resolution of the class of non-

linear systems investigated in this work. By observing

how the reduction scheme of Sect. 3.1 can be applied

to systems involving a wide variety of non-linear

component behaviors, e.g. [14–17], and how the PC-

NARX metamodeling approach has been seen to

accurately reproduce the behavior of single-degree-of-

freedom systems (i.e. generalized coordinates of this

work) involving similar types of non-linearities [12],

the applicability of the proposed combined approach

for rapid uncertainty propagation through a wide

variety of large-scale non-linear dynamic systems

subject to stochastic excitation would seem possible.

5 Conclusions

The feasibility of combining metamodeling tech-

niques with model order reduction schemes as a

means to define metamodeling approaches for the

rapid propagation of uncertainty through multi-de-

gree-of-freedom non-linear and stochastic wind

excited dynamic systems was investigated in this

work. To this end, a scheme was outlined based on

combining a recently introduced metamodeling

approach for non-linear stochastic systems with a

modal-based order reduction framework. Because of

the strong capability of the metamodeling approach of

replicating the time evolution of a wide class of single-

degree-of-freedom dynamic systems, coupled with the

applicability of the reduction scheme to an equally

wide class of non-linear multi-degree-of-freedom

systems, the approach has the potential to be applied

to a number of problems of practical interest. In

particular, the possibility to calibrate the metamodel

for the resolution of the reduced system in a non-

intrusive mode (i.e. using only input/output) ensures

the applicability to systems for which only the classic

elastic modal properties are known. To demonstrate

the applicability of the approach, uncertainty was

propagated through a 40-story moment resisting frame

equipped with an array of non-linear viscous dampers

and subject to stochastic multivariate wind loads. The

proposed approach was seen not only to be capable of

accurately reproducing the dynamic response of the

system, but also to be nearly two orders of magnitude

faster than existing specialized direct integration

approaches.
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Appendix 1: Target wind spectrum

The target power spectral density (PSD) function of

the fluctuating wind velocity, vzjðtÞ, can be taken as

[32]:

Svzj ðxÞ ¼ v2

50zj

p�vzj

1

1þ 50
xzj
2p�vzj

� �h i5=3 ð19Þ

where v
 is the shear velocity given by:

v
 ¼ �v10b
ka

ln 10
z0

� � ð20Þ

where �v10 is the mean wind velocity at

10 m, b = 0.65, while ka ¼ 0:4 is the Von Kármán’s

constant. The cross power spectral density can then be

defined as:

Svzj vzk ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Svzj ðxÞSvzk ðxÞ

q
cjkðxÞ; j 6¼ k ð21Þ

where cjk is the coherence function between vvzj ðtÞ and
vvzj ðtÞ that can be modeled as [33]:

cjkðDz;xÞ ¼ exp � x
2p

CzDz
1
2
ðvzj þ vzkÞ

" #
ð22Þ

where Dz ¼ jzj � zkj is the height difference, while Cz

is a constant that can be set equal to 10 for design

purposes [33].
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