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Abstract The application of performance-based
design (PBD) requires the modeling of the dynamic
response of the system beyond the elastic limit. If
probabilistic PBD is considered, this implies the need
to propagate uncertainties through non-linear dynamic
systems. This paper investigates the possibility of
using advanced metamodeling techniques in order to
define a computationally tractable approach for prop-
agating uncertainty through a class of multi-degree-of-
freedom non-linear dynamic systems subject to mul-
tivariate stochastic wind excitation. To this end, a
scheme is introduced that is based on combining
model order reduction with a recently introduced
metamodeling approach that has been seen to be
particularly effective in describing the dynamic
response of uncertain non-linear systems of low
dimensions. A case study consisting in a 40-story
moment resisting frame subject to multivariate
stochastic wind excitation and an array of non-linear
viscous dampers is presented to illustrate the potential
of the scheme.
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1 Introduction

In the design of building systems against natural
hazards, performance-based design (PBD) has grown
in popularity over the past years owing to the
advantages that an approach of this kind can offer in
terms of both the reliability and cost [1-4]. In order to
apply such an approach, particular attention must be
devoted to understanding and modeling the behavior
of the system over a full range of hazard levels, i.e.
from serviceability to possible collapse. From a
computational standpoint, it is the estimation of the
extreme responses that often becomes computation-
ally challenging, as non-linear dynamic systems
generally have to be considered [5]. This computa-
tional challenge becomes particularly noteworthy in
the case of modern probabilisitc PBD where uncer-
tainty must be propagated through the system for
estimating performance [2, 4, 6—10].

An approach for overcoming these difficulties,
which has recently gained significant interest, is that
offered by metamodeling. The basic idea in this
approach is to define a metamodel (also known as a
surrogate model) of the original system that is
computationally efficient to evaluate. This allows
any uncertainty to be easily propagated through the
system using methods such as Monte Carlo simula-
tion. In general, to calibrate the metamodel, a training
process must be carried out that entails running the
original computationally burdensome model in a
limited number of carefully chosen points. Recently,
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researchers have been developing metamodeling
approaches for describing the stochastic response of
uncertain non-linear systems driven by stochastic
excitation [11, 12]. Of particular interest to this work is
a recently proposed numerical approach based on
combining polynomial chaos (PC) expansions and
non-linear autoregressive with exogenous input
(NARX) models [11, 12]. In this approach, NARX
models are used to capture the dynamic behavior of the
system, while polynomial chaos expansions (PCEs)
are adopted to treat the uncertainties in the system
properties. The resulting metamodel has been seen to
be effective in accurately reproducing the response of
several earthquake engineering applications involving
stochastic excitation [11, 12]. Current limitations of
the approach lie in difficulties associated with iden-
tifying appropriate NARX models in the case of multi-
degree-of-freedom systems [13], and in its single-
input single-output structure. This last is particular
limiting in the case of wind excited structures due to
the inherently multivariate nature of wind loads.

To overcome these limitations, in this work, the
possibility of combining this metamodeling approach
with a modal-based model reduction scheme will be
investigated with the aim of defining an efficient
framework for the propagation of uncertainty through
a class of non-linear and uncertain multi-degree-of-
freedom systems subject to multivariate stochastic
wind excitation.

2 Problem definition

The general class of non-linear systems of interest to
this work can be cast, for an N-degree-of-freedom
system, in the following form:

Mii(t) + Cu(t) + Ku(t) + fo(tu,u) = f(;v) (1)

where: u(t), 6(t) and u(r) are the N x 1 velocity,
acceleration and displacement response vectors; M, C
and K are the N X N mass, damping and linear
stiffness matrices of the system; f(z) is a N x 1
external vector of multivariate stochastic wind exci-
tation; v is the mean wind speed to which f(f) is
calibrated; and f,(7) is a N x 1 vector of non-linear
restoring forces that depend on the system response. In
the following, it will be assumed that the matrices M,
C and K are constant in time, while the forcing
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functions f () are considered to be a general stochastic
representation of wind loads occurring during a wind
event of duration 7.

To propagate uncertainty through Eq. (1) in the
presence of system uncertainties, e.g. uncertainties in
the damping and stiffness, as well as general stochastic
loads, simulation methods are generally required. This
is especially true if performance of a system is to be
characterized within modern performance-based wind
engineering frameworks, where performance is
assessed in terms of correlated sample sets of peak
responses occurring in [0, 77 [2, 4, 6-10]. This work is
focused on developing a metamodeling approach for
efficiently propagating uncertainty through the non-
linear system of Eq. (1) within a stochastic simulation
environment.

3 The proposed approach
3.1 Reduced order model

Because of the structure of Eq. (1), i.e. existence of a
time independent elastic stiffness K, a straightforward
approach to define a reduced order model for the non-
linear N x N system of Eq. (1) is to carry out modal
analysis on the left-hand side of the following system
[14-20]:

Mii(t) + Cu(t) + Ku(t) = f(5; V) = fu(;u,4) (2

According to this approach, the dynamic response of
the system can be estimated through the following set
of non-linear equations [14-17]:

Mm)')'m(t) + 2mem€m)}m(t) + merznym(t)
= @, f(1;7) —fu(t;u,1)]

= Qm(t? ‘7) + ¢,T,fn](t;u,d)7
m=1,.. N, <N

(3)

where: y,,, y,, and y,, are the generalized responses of
the system; M,,, @, {,, and @,, are respectively the
mth generalized mass, natural circular frequency,
damping ratio and mode shape associated with the
left-hand side of Eq. (2); while Q,,(¢) is the general-
ized forcing function. In general, the damping ratio,
{ > can be directly assigned, while M,, and w,, can be
estimated as:
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M, = ®IM®,,
4
w? = L TKD, @)
M,

where the mode shapes are estimated from solving a
standard eigenvalue/eigenvector problem in terms of
M and K. Once the generalized responses are known,
the responses in physical coordinates can be estimated
through the transformation:

u(t) = dy,yy (1)
u(t) = oy, yy (1) )
iu(t) = Dy, yy, (1)

where @y, is the modal matrix collecting the first
N, <N modes while yy , yy and yy are the
generalized response vectors collecting the responses
of the first N,, generalized coordinates.

The advantage of the non-linear system of Eq. (3) is
that, in general, only the first few modes are necessary
to accurately predict the response of the system, i.e.
N,, can be taken such that N,, < N. This has been
illustrated in a number of applications involving
structures subject to stochastic seismic excitations
and governed by non-linear equations of the type
shown in Eq. (2) [14-17]. In practice, through the
reduction of this section, the state of the non-linear
system is governed by the reduced set of variables,
{ow, (@), ¥, (1), ¥y, ()} as opposed to {u(r),u(r),

Notwithstanding the order reduction, as outlined in
[17], the system of Eq. (3) still requires to be solved
simultaneously through an appropriate step-by-step
integration scheme, such as the Newmark constant
acceleration method [17] or fast non-linear analysis
[21]. In cases where uncertainty is to be propagated
through the system using approaches such as Monte
Carlo simulation, this can fast become computation-
ally cumbersome. To overcome this, the possibility of
using appropriate metamodeling schemes for rapidly
propagating uncertainty through the reduced system of
Eq. (3) will be investigated.

3.1.1 Uncertainty modeling

The reduced system of Eq. (3) provides a convenient
setting for modeling uncertainties in the system param-
eters, e.g. damping and stiffness. Indeed, there are a
number of studies that have been carried out that

characterize the uncertainty in the modal quantities, i.e.
o, and {,, of wind excited systems [2, 22-24].
Therefore, once the reduced system is defined, uncer-
tainty can be modeled directly at the level of the
natural frequencies and damping ratios of the reduced
system through assigning appropriate probability
distributions. In alternative, a direct approach can also
be taken, in which the uncertainties are modeled at the
level of K and M. In this case, the modal matrix, @y, ,
becomes uncertain and requires evaluation for each
realization of the uncertainties affecting K and M.
However, because this only requires the evaluation of
a standard eigenvalue/eigenvector problem, it does not
represent a significant computational challenge.
Together with these uncertainties, in general, uncer-
tainties characterizing the intensity of the stochastic
excitation, e.g. the wind speed v, as well as the
properties of the non-linear components generating
the restoring forces f,;, will require modeling. These
additional sources of system uncertainty can be
incorporated, without difficulty, in the reduced order
model directly at the level of the non-linear compo-
nents and stochastic wind load model. In the follow-
ing, all uncertainties associated with the elastic system
parameters, external excitation model and non-linear
components will be collected in the uncertain vector
X.

3.2 A metamodel-based solution scheme

Recently, a metamodeling approach has been pro-
posed for efficently simulating the response of
uncertain non-linear systems excited by stochastic
loads [11, 12]. The approach has been seen to be
particularly well suited to single-input single-output
low dimensional non-linear systems subject to
stochastic excitation, e.g. earthquake loads [12].
With this mind, it is interesting to observe that,
independently of whether the original stochastic
excitation is multivariate or not, each generalized
coordinate of the reduced system of Eq. (3) can be
treated as a single-input (Q,,) single-output (Y, ¥,
or y, depending on the variable of interest) system.
Within this context, consider representing the input/
output relationship of the mth generalized coordinate
through the following NARX model (where the
dependency on the mth coordinate is not explicitly
shown for clarity of presentation) [25]:
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y(t;) = G(z(t))) + €(t)
=G(Q(4), - -Qtj—ng), ¥(ti1), - Y(ti-n,)) + &
(6)

where: y(#;), Q(#;) and €(z) are the system output,
input and noise sequences at discrete time step ¢,
respectively; n, and np are the maximum lags for the
system input and output; G(-) is the underlying non-
linear approximator to be identified; z(#;) is the
regression vector collecting the system outputs and
inputs at time step #;; while ¢, is a normal random
variable with zero mean and standard deviation o.(#;)
(i.e. ¢, ~N(0, 6%(1;))) representing the residual error of
the NARX model. Equation (6) above can then be
expressed in a commonly used linear-in-the-parame-
ters form:

ng

W) =Y Vigilz(n) + e (7)
i=1

in which n, is the number of potential model terms
gi(z(z;)) that are functions of the regression vector,
z(1;), while ¥; are the corresponding parameters of the
NARX model. In general, the identification of the
NARX model consists in firstly selecting the correct
model structure (i.e. selecting the NARX terms
gi(z(r)) of the model), and secondly estimating the
model parameters, v;, from the system inputs and
outputs. To this end, several approaches have been
proposed for identifying the simplest model that can
appropriately represent the underlying dynamics of
non-linear systems [25-27].

Once calibrated, the NARX model of Eq. (7) is
capable of capturing the time evolution of the system
in the time interval [0, 77, i.e. given a realization of the
generalized force, Q(t;) with t; = 0, At,24¢, . .., Ny At
with N7 the total number of discrete time steps of
duration At in [0, T], Eq. (7) can be used to estimate
the output discrete time series y(#;). In particular,
models of this type can be constructed not only for the
displacement responses, but also for the velocities,
¥(2), and accelerations, j(z;). What the NARX models
cannot capture are the effects of uncertainties in the
system parameters, i.e. the uncertainties collected in X
and discussed in Sect. 3.1.1. A recently proposed
approach for capturing this type of system uncertainty,
and that will be followed here, is to consider the
parameters, ¥;, of the NARX model as deterministic
functions of the system uncertainties. In particular,
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this functional relationship can be estimated through a
truncated PCE:

%(X) = Zﬁi:l‘ﬂz(x) +e (8)
1=

where X is the vector collecting all the system
uncertainties, ¢; is the truncation error, ,(X) for [ =

1,...,ny are multivariate orthonormal polynomials
associated with X, while 9;, fori =1,...,n, and [ =
1---,ny are the associated deterministic polynomial

chaos coefficients.

By combining the truncated PCE representation of
the coefficients with the NARX model of Eq. (7), the
following PC-NARX metamodel of the input/output
relationship of the generalized coordinates of the
reduced model of Sect. 3.1 is obtained:

ng ny

y(4, X) = Z Zﬁi.llﬁl(x) gi(z(1)) + (1, X)) (9)
i1 =1

with €(#;, X) designating the total error due to the
truncation of the PCE and the noise of the NARX
model. To calibrate Eq. (9), it is first necessary to
identify a full NARX model, i.e. an initial set of
NARX terms g;(z(#;)) and maximum output, n,, and
input, ng, lags from which the model structure can be
selected. In general, this can be achieved based on the
known mechanical properties of the structural system
to be approximated (e.g. type of non-linearity). From
the full NARX model, the model structure, i.e. most
important NARX terms, can be identified through the
scheme that will be outlined in the next section. The
parameters, ¥J;, of the identified model structure can
then be represented through the PCE of Eq. (8) where
the number of terms, ny, to consider in the expansion
can be automatically identified from the input/output
data generated for identifying the model structure and
the least angle regression (LARS) based scheme out-
lined in [12, 28].

3.2.1 Non-intrusive metamodel calibration

Given an appropriate full NARX model, a non-
intrusive approach for identifying the model structure
and associated parameters has been recently proposed
in [12]. In particular, this approach is based on
selecting the model structure through a LARS algo-
rithm, while estimating the corresponding parameters
through the optimization of the one-step-ahead
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prediction error (PE). This approach has been seen to
provide good accuracy in reproducing the response of
non-linear dynamic systems subject to short duration
stochastic excitation, e.g. seismic loads. However,
wind excitation has a much longer duration of
sustained loading which can easily lead to a serious
error accumulation problem, i.e. small prediction
errors accumulating to larger ones due to the model
output feedback. In extreme situations, the model can
become unstable (i.e. predictions that tend to infinity),
even if the model still possesses very good one-step
ahead prediction performance.

In this work, the approach suggested in [12] for
refining the selection of the parameters of the NARX
model will be investigated as a means to avoid the
error accumulation problem encountered in using the
PE-based LARS algorithm for calibrating the PC-
NARX model of Eq. (9). To this end, consider an
experimental design consisting in K realizations of the
generalized forces, Qy(t) for k =1,...K, and real-
izations of the system uncertainties, x; fork = 1, .. .K.
By following the PE-based LARS algorithm outlined
in [12], an appropriate model structure can be
identified. This process provides an initial estimate
of the NARX parameters for each of the K experiments
through a PE criterion. Based on these values, the
response to Ok(#;) can be simulated as:

el = S duale) gilée(sy) (10)
i=1

where ZAk(l‘j) = (Qk(l‘j), Ceey Qk(l‘j,ng), }Aix(lj,]), .. .7)35
(tj_ny))T, while ; are the calibrated parameters of
the NARX model for the kth experiment.

The difference between the simulated response,
¥, (1), and the actual response, yi(¢), in [0, T1], can now
be minimized in terms of the vector of NARX model
parameters, Uy = {1y s 19;%}7, through the fol-
lowing simulation error criterion:

Nr

D) = afgmin{z (y(tj;x/cﬁk) ﬁk(fj;xk71§k))2}
9 =
(11)

By solving this optimization problem, refined esti-
mates for the NARX parameters are obtained. In
particular, this optimization problem can be solved by
any appropriate non-linear optimization technique. In
this work, the Nelder—-Mead simplex algorithm [29] is

adopted. The execution time depends on how close the
initial guess is to the optimal value of the NARX
parameters and the number of NARX parameters, i.e.
design variables, and is therefore relatively insensitive
to the total duration of the excitation. In particular, the
parameters obtained through the PE-based LARS
algorithm outlined in [12] have been seen to provide a
good starting point for solving the optimization
problem of Eq. (11).

After identifying the refined NARX parameters,
they can be expanded onto an appropriate PC basis,
with corresponding deterministic coefficients, through
the K realizations of input/output generated during the
identification of the model structure and the LARS-
based procedure outlined in [12, 28], therefore leading
to a fully calibrated PC-NARX model. In particular, it
should be observed that the calibration process
outlined here is non-intrusive, as it only requires the
input and output of the reduced coordinate.

3.3 Opverall procedure

The overall procedure for defining the metamodel of
order N, for the system outlined in Eq. (2) subject to
multivariate stochastic wind loads of duration 7 can be
summarized as follows:

1. Generate a set of K realizations of the uncertain
vector X, with associated realizations of the
multivariate forcing functions f(#;) of time step
At and total duration 7, through a space filling
sampling procedure such as Latin hypercube
sampling.

2. Identify the elastic modal properties of the non-
linear system of Eq. (2) by carrying out an
eigenvalue/eigenvector analysis in terms of M
and K for each realization of X.

3. Use the mode shape vectors @y, of order N,, to
generate K realizations of the generalized stochas-
tic forcing functions Qy, (1) = @, f(1;).

4. Solve the reduced order system of Eq. (3) through
a direct integration approach for each realization
of X and Qy (1), therefore generating K realiza-
tions of the reduced states {yy (t),¥y (),
yw, (1)}

5. From the K discrete input/output sets of the N,
reduced coordinates, calibrate PC-NARX meta-
models using the procedures outlined in Sect. 3.2.
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Once the metamodels of order N, are calibrated,
stochastic responses in physical coordinates can be
generated by simply generating samples of X and f(z),
estimating the corresponding samples yy (¢) in the
reduced space, and using the transformation of Eq. (5)
to estimate stochastic responses in physical coordi-
nates. In particular, if the responses of interest are
velocities and/or accelerations, PC-NARX models can
be calibrated to these outputs.

4 Case study

In this section, a multi-degree-of-freedom building
structure equipped with an array of non-linear
response mitigation devices, and excited by multi-
variate stochastic wind forces, is presented to illustrate
the proposed metamodeling approach.

4.1 General description of the structure

The following results and discussion will refer to the
40-story steel frame shown in Fig. 1. The geometry of
the frame is described by four 6.1 m bays and by inter-
story heights, £;, of 6.1 m at ground level and 3.8 m
for all other floors. The overall height of the structure,
H, is 154.7 m, while the influence width W of the
frame is considered to be 12.2 m. In particular, the
columns were considered as square box sections while
the beams were assigned standard American Institute
for Steel Construction (AISC) wide flange sections.
Table 1 reports the specific section sizes used in
designing the structure. The mass was considered
lumped at each floor with expected value calculated as
the sum of the element mass and carried mass. In
particular, the carried mass at each floor was taken as
M = qoL/g, where g is the gravitational acceleration,
go = 11.96h; KN/m is a uniformly distributed dead
load, while 4; and L are the height and length of each
floor. In this example, uncertainties were considered
directly at the level of the stiffness, K, and mass, M,
matrices. In particular, uncertainty in K was modeled
by taking the Young’s modulus of the material as a
lognormal random variable with mean 210 GPa and
standard deviation 15 GPa. To model the uncertainty
in the mass, M was multiplied by a lognormal random
variable with mean of 1 kg and standard deviation of
0.05 kg. To model uncertainty in the damping, the
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154.7m

D

Fig. 1 Schematic of the 40-story steel frame considered in the
case study

damping ratios were taken as dependent lognormal
random variables with mean 0.015 and standard
deviation 0.005.

As illustrated in Fig.1, response mitigation devices
are diagonally mounted between each floor. In partic-
ular, these take the form of fluid viscous dampers [30]
leading to the following non-linear restoring forces:
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Table 1 Section sizes of

Level range
the steel frame

Wide-flange beams

Box columns

Interior (cm) Exterior (cm)

1-10 W36 x 282 56 x 56 51 x 51
t=17.6 =64
11-20 W36 x 194 51 x 51 51 x 51
t=5.0 =50
21-30 W33 x 169 46 x 46 46 x 46
t=25 t=25
3140 W27 x 84 46 x 46 46 x 46
t=19 t=1.9

t = wall thickness

crsgn(vy, ) vy, (a1 (2))*

1880 (Ve ) [Vr (t10(1), 109 (1)) |
CZSgn(vVH )|vrll (ﬂ]] (t)’ L.tl()(l))|“

CZSgn(vrzo)|vrzo (ﬂzo(l), ”.t19(t)) |GC
€388 (v, )|V, (ti21 (1), tioo (1)) |*

fnl(t;u) =

C3Sgn(vf30)|vr30 ("i30(t)7 L.tzg(t)) |GC

caSgN(Vyy, )|V, (131 (1), 1030 (1)) |

o

48N (Vryg )|V (ta0 (), 139 (1)) |*
(12)

where v,, is the relative velocity between the ends of
the damper at floor j, ¢y, ¢z, ¢3 and ¢4 are uncertain
damping coefficients with uniform distribution in
[0, 100] N-s/m, while o = 0.38 is the damping expo-
nent. In total, for this problem, the uncertain vector X
has eight components (the mean wind speed of the
next section is also taken as uncertain).

4.2 Stochastic wind force model

The multivariate stochastic wind loads, f (), acting at
each floor of the frame of Fig. 1 are modeled in this
work through a quasi-steady model based on a spectral
representation of the multivariate wind speed field
acting over the height of the frame. The overall
intensity of the stochastic wind loads is defined in
terms of the mean hourly wind speed v to occur at a

meteorological station of height H,,., and roughness
length zo;. This is related to the mean hourly wind
speed over the height of the building, z, through the
following transformation [23]:

0.0706 ln[i]

_ 20 z
. = 0.8065( — .

V; (ZO) (Zm ) In [l'i:let}

V(Hmetyzol) (13)

where zo is the roughness length at the site of
interest. In particular, in this work, the wind speed v
of Eq. (13) was taken as a Type II distribution with
mean 30 m/s and standard deviation 3.5 m/s. A
roughness length of zy; = 0.05 m and a meteorolog-
ical height of H,,,, = 10 m were considered for v. The
roughness length at the site of the structure, zp, was
taken to be 0.02 m.

From Eq. (13), the jth component of f(7) (i.e. wind
loads acting at height z;), can be estimated through the
following quasi-steady assumption:

£(1) = ny(7 + v (1)) 2 (72 + 20,5, (1),

14
j=1,2..,N (14)

where: Ny = 40 is the total number of floors; nj is a
coefficient given by 1; = 0.5pC;A; with p = 1.25 kg/
m?® the air density, C; = 1.3 the floor-wise quasi-
steady pressure coefficient, and A; = ;W the influ-
ence area of the jth component of f(z); while v, (z) is
the zero-mean fluctuating component of the multi-
variate stochastic wind field at height z;. To simulate
v;,(t), the following spectral representation model can
be used [31]:
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v, (1) =2 Z Z |Hjm (om)| X vV Awcos[@m(t)

(15)
where N is the total number of components in the
expansion, Hj,,(w,,) is an element of the decomposed
target cross-spectral density matrix of the fluctuating
wind speeds (here taken as outlined in Appendix 1),
0jm(wy) is the corresponding complex angle, ¢, are
sequences of independent random phase angles dis-
tributed uniformly in the interval [0,27], dw is the
sampling frequency, while w,,; is given by:

m
meZ(l—l)Aw+ﬁAwa I=1,2,...N  (16)

f

The period of the simulated wind loads is given by:

27INf - 27'CNfN
Ao Wyp

(17)

where w,, is the cut-off frequency. The larger the
N under a specified upper cutoff frequency w,,, the
longer the period of the simulated stochastic process.
In particular, in the following, a storm duration of
T =900 s with sampling frequency of 100 Hz will
be considered. In this case, each realization of f(¢)
entails the generation of a total of 81,920 indepen-
dent and uniformly distributed random numbers in
[0, 27].

4.3 Results
4.3.1 Calibration

The first three natural circular frequencies of the frame
were in the range of w; ~ 1.5 rad/s, w, ~ 4 rad/s, and
w3 = 7 rad/s. Due to how wind does not, for all intents
and purposes, have energy above 27 rad/s, the first
three generalized coordinates were considered suffi-
cient in defining the dimension of the reduced model,
ie. N, =3. In defining the metamodel of the
displacement responses of the reduced system, i.e.
ym () for m = 1,2,3, a full NARX model was chosen
as the following polynomial function:

8i(1)) = 31 (1-0,) Q7 (1) (18)
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with [} +15<3,0<,<3,0<,L<1,n,=1,2 and
ng =0, 1,2, therefore leading to 10 candidate terms
including the constant term. To identify the most
appropriate NARX model, an experimental design
consisting in K = 200 simulations were carried out
with input random variables, i.e. X, generated by Latin
hypercube sampling. From the LARS procedure of
[12], four terms were selected, namely the constant
term, Qu (%), ym(tj—1) and y,,(#j—2). After implement-
ing the output error procedure of Sect. 3.2.1, the mean
relative error (as defined in [12]) over all 200
simulations was € = 0.017. In representing the NARX
coefficients through PCEs, adaptive expansions were
considered with maximum interaction rank of 2 and
truncation parameter of 1. Figure 2a shows, for one of
200 calibration points, the comparison between the
reconstructed and reference displacement response
(estimated through the fast non-linear analysis
scheme reported in [21]) of the structure at the top
floor. As can be seen, the metamodel captures the
response evolution remarkably well. In particular,
Fig. 2b shows the evolution of the error induced by the
NARX model, while Fig. 2c reports the evolution of
the overall error induced by the NARX and PC
approximations. As can be seen, the overall error is not

(a) 0.8 w w

Reference

NARX model PC-NARX model‘

by {n " \(u / -
FUAT
I

Error (m) g

—_
(2)

) 0 100 200 300 400 500 600 700 800 900

Error (m)

0 100 200 300 400 500 600 700 800 900

t(s)

Fig.2 Comparison for a point of the calibration set between the
reconstructed and reference top floor displacement response:
a evolution of the response in [0, T]; b error evolution due to
NARX approximation; ¢ overall error evolution due to NARX
and PC approximations
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only small, but also stable with time, i.e. no error
accumulation is seen, notwithstanding the long pre-
diction horizon. This illustrates the effectiveness of the
simulation error refinement scheme of Sect. 3.2.1.

4.3.2 Simulation results

To investigate the simulation performance of the
metamodel, a validation set consisting in 200 ran-
domly generated samples of X, with associated
samples of f(t), were generated. Reference solutions
were estimated for each sample using once again the
fast non-linear analysis scheme. The calibrated meta-
model was then run for each sample and the predictive
capability of the metamodel was investigated. Fig-
ure 3 shows a typical result with respect to the
simulation of the coordinates of the reduced model.
As can been seen, very good correspondence between
the reference solutions and the reduced coordinates of
the metamodel is achieved. Figure 4a reports the
comparison between the reference solution and the
metamodel in physical coordinates, and in particular
the top floor displacement response. As can be seen,
very good correspondence is achieved. Figure 4b
shows the evolution of the difference between the
reference and simulated responses, from which the

() 02
=
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0.06 [ :
=
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=
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0 | | | | |
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—~ 001
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t (s)

Reference — — *Metamodel‘

Fig. 3 Comparison between the simulated and reference
displacement responses of the reduced system for a represen-
tative sample: a first generalized coordinate; b second gener-
alized coordinate; c third generalized coordinate

stability of the prediction can be seen. Similar results
were seen for all simulations in the validation set.
Figure 5 illustrates the typical non-linear response
seen in the dampers over the duration of the event.

To illustrate the predictive capability of the meta-
model over all samples, Fig. 6 reports the comparison
between the 200 reference and simulated maximum
absolute responses at the top floor of the structure. As
can be seen, there is strong correspondence between
the reference and simulated responses with a correla-
tion coefficient of 0.97. The strong correspondence
between the responses allows for the direct estimation
of quantities such as the exceedance probabilities
associated with the peak absolute response of the
system in [0, 7], as illustrated in Fig. 7.
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Fig. 4 Comparison between the simulated and reference
displacement responses at the top floor of the structure:
a evolution of the response in [0, 77]; b overall error evolution
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Fig. 5 Typical hysteretic response of the top floor damper
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Fig. 6 Comparison between the reference and simulated peak
absolute responses in [0, 77 at the top floor of the structure
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Fig.7 Comparison between the exceedance probabilities of the
top floor response estimated from the reference and simulated
data

4.3.3 Discussion

The capability of the proposed metamodeling
approach to accurately propagate uncertainty through
the class of multi-degree-of-freedom non-linear sys-
tems outlined in Sect. 2 was illustrated in this section
through the example structure of Fig. 1. If it is
observed that, once calibrated, the generation of the
response time histories through the metamodel was
around two orders of magnitude faster than the fast
non-linear scheme used to estimate the reference
solutions, the potential of the approach becomes clear.
This is especially true if it is kept in mind that the fast
non-linear scheme outlined in [21] is an approach
specialized for rapid resolution of the class of non-
linear systems investigated in this work. By observing
how the reduction scheme of Sect. 3.1 can be applied
to systems involving a wide variety of non-linear

@ Springer

component behaviors, e.g. [14-17], and how the PC-
NARX metamodeling approach has been seen to
accurately reproduce the behavior of single-degree-of-
freedom systems (i.e. generalized coordinates of this
work) involving similar types of non-linearities [12],
the applicability of the proposed combined approach
for rapid uncertainty propagation through a wide
variety of large-scale non-linear dynamic systems
subject to stochastic excitation would seem possible.

5 Conclusions

The feasibility of combining metamodeling tech-
niques with model order reduction schemes as a
means to define metamodeling approaches for the
rapid propagation of uncertainty through multi-de-
gree-of-freedom non-linear and stochastic wind
excited dynamic systems was investigated in this
work. To this end, a scheme was outlined based on
combining a recently introduced metamodeling
approach for non-linear stochastic systems with a
modal-based order reduction framework. Because of
the strong capability of the metamodeling approach of
replicating the time evolution of a wide class of single-
degree-of-freedom dynamic systems, coupled with the
applicability of the reduction scheme to an equally
wide class of non-linear multi-degree-of-freedom
systems, the approach has the potential to be applied
to a number of problems of practical interest. In
particular, the possibility to calibrate the metamodel
for the resolution of the reduced system in a non-
intrusive mode (i.e. using only input/output) ensures
the applicability to systems for which only the classic
elastic modal properties are known. To demonstrate
the applicability of the approach, uncertainty was
propagated through a 40-story moment resisting frame
equipped with an array of non-linear viscous dampers
and subject to stochastic multivariate wind loads. The
proposed approach was seen not only to be capable of
accurately reproducing the dynamic response of the
system, but also to be nearly two orders of magnitude
faster than existing specialized direct integration
approaches.
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Appendix 1: Target wind spectrum

The target power spectral density (PSD) function of
the fluctuating wind velocity, v (f), can be taken as
[32]:

50z; 1
Sv.. (CL)) = V2 Tj 5
g * , /3 19
a1 50(52 )| )
N
where v, is the shear velocity given by:
ka
(20)

Ve = Vloﬁln (m)

Z0

where vjp is the mean wind velocity at
10 m, 5 = 0.65, while k, = 0.4 is the Von Karman’s
constant. The cross power spectral density can then be
defined as:

Sv:j v, (@) = /Sy (@)Sy, (@) (),

] j#k @)

where ;. is the coherence function between Vi, (t) and
i, (¢) that can be modeled as [33]:

w C,4z

—_— 22
271%(vzj +vy) (22)

Vi(4z, ) = exp | —

where Az = |z; — z| is the height difference, while C,
is a constant that can be set equal to 10 for design
purposes [33].
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