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This paper proposes a framework for the bi-objective optimization of uncertain and dynamic wind-excited systems
whose susceptibility to system-level damage is modeled through probabilistic fragility-based loss measures. In
particular, the proposed framework is based on first reformulating the bi-objective stochastic optimization
problem into a suite of single-objective optimization problems through the e-constraint approach. Secondly, a new
optimization sub-problem is introduced for efficiently solving the single-objective problems, whose formulation is
based on combining the auxiliary variable vector approach with a new kriging-enhanced approximation scheme.
Because the sub-problem can be fully calibrated and subsequently solved from the results of a single performance
assessment carried out in a fixed point of the design space, efficiency and scalability to high-dimensional problems
is achieved. Through solving a sequence of sub-problems, solutions to the e-constraint problems are obtained
leading to the identification of the Pareto-optimal solutions of the original bi-objective optimization problem. To
illustrate the applicability, efficiency and scalability of the proposed framework, an example of application to a
large-scale structure is presented, where structural material volume and a system-level loss measure defined in

terms of expectation and standard deviation of the total repair cost are simultaneously minimized.

1. Introduction

The identification of structural designs that simultaneously minimize
the initial cost of the system together with anticipated losses from
damage due to extreme events defines a typical bi-objective optimization
problem. Due to the inherently conflicting nature of these two objectives,
strategies are needed that provide, as an output, a suite of Pareto-optimal
solutions, among which the decision-makers can then choose the
preferred option, i.e. design. In the context of performance-based wind
engineering, if the applicability to structures of practical interest is
sought, such optimization strategies have to be able to deal with high-
dimensional vectors of design variables and computationally intensive
stochastic (e.g. Monte Carlo) simulation-based performance assessment
models. Indeed, due to their generality, most modern performance-based
wind engineering frameworks are based on propagating uncertainty
through complex response, damage and loss models by means of sto-
chastic simulation (e.g. Barbato et al., 2013; Bernardini et al., 2012,
2015a; Chuang and Spence, 2017; Ierimonti et al., 2017, 2018; Cui and
Caracoglia, 2018; Bezabeh et al., 2018; Zheng et al., 2019; Ouyang and
Spence, 2019). An important consequence of this is that direct ap-
proaches for solving the bi-objective optimization problem through
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genetic algorithms (e.g. Liu et al., 2005; Fragiadakis et al., 2006; Bocchini
and Frangopol, 2012; Gencturk, 2013; Saadat et al., 2014; Garcia-Segura
etal., 2017; Xu et al., 2017) are not easily applicable due to their need to
evaluate system performance hundreds, if not thousands, of times before
convergence. To overcome this difficulty, methods have recently been
proposed based on building metamodels of the probabilistic performance
measures in the augmented space of the design and uncertain parameters
(Gidaris and Taflanidis, 2015; Gidaris et al., 2018). While this approach
is extremely robust in terms of the systems it can treat, e.g. general
nonlinear systems, it is not easily applicable to problems with
high-dimensional vectors of design variables due to how this significantly
increases the computational effort required to build the metamodels. This
issue also effects approaches based on building metamodels directly in
the space of the design variables (e.g. Bernardini et al., 2015b; Elshaer
and Bitsuamlak, 2018; Ding and Kareem, 2018; Munoz Paniagua and
Garcia, 2019). Alternatively, bi-objective optimization problems may be
reformulated (scalarized) to enable the use of single-objective optimi-
zation algorithms. One of the most popular scalarization strategies is the
e-constraint method (e.g. Carmichael, 1980; Fu and Frangopol, 1990;
Mavrotas, 2009; Zhang and Reimann, 2014), where a chosen objective is
optimized, using a single-objective method, while the other objective
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functions are used as constraints. Differently from other methods based
on combining the various objective functions into one single function
(such as the weighted sum method), this approach does not require an a
priori articulation of preference (Marler and Arora, 2004) from the
decision-makers and, by using different thresholds for the constraint,
yields a Pareto-optimal set of solutions. The effectiveness of the scalari-
zation method depends, however, on the capability of the embedded
single-objective optimization algorithm of handling the aforementioned
challenges, i.e. high-dimensional vectors of design variables coupled
with estimating performance through stochastic simulation. While
several simulation-based design optimization methods have been pro-
posed that can treat problems in high-dimensional uncertain spaces (e.g.
Zou and Mahadevan, 2006; Jensen et al., 2008; Taflanidis and Beck,
2009; Jensen et al., 2012; Jia and Taflanidis, 2013; Jia et al., 2015),
methods that can treat high-dimensional design spaces are very limited
(Valdebenito and Schuéller, 2010). A method that can simultaneously
handle high-dimensional design and uncertain spaces together with
system-level probabilistic constraints has been proposed in (Suksuwan
and Spence, 2018a, b). However, the performance functions of the
aforementioned method are strictly limited to structural responses,
notwithstanding the need to translate structural behavior into loss
measures that are meaningful to the decision-makers and the society.

This work is focused on the development of a novel bi-objective
optimization framework that can handle problems involving system-
level probabilistic loss measures that are assessed in terms of fragility
functions, high-dimensional spaces of design variables, and uncertain
dynamic systems driven by stochastic wind excitation. The basic idea
behind the framework is to first reformulate the bi-objective optimiza-
tion problem through the e-constraint approach. A new sequential
kriging-enhanced optimization model is then introduced for efficiently
solving each e-constraint problem. Because the kriging-enhanced
sequential approximation scheme at the core of the sub-problem is
defined in the space of the second order statistics of the demand pa-
rameters, scalability to high-dimensional spaces of design variables and
random variables is achieved. An example of application to a large-scale
wind-excited system is presented to demonstrate the effectiveness and
efficiency of the proposed framework.

2. Problem setting
2.1. The bi-objective design optimization problem

The problem of interest to this work is the optimization of structural
systems subject to stochastic wind excitation, where two competing ob-
jectives are considered: the minimization of the initial cost and the
minimization of the anticipated wind-induced losses. The problem is
therefore to identify the solutions that represent the best trade-offs be-
tween these two needs. As such, it can be posed in the form of the
following bi-objective design optimization problem:

Find  x={x,...,xy}"
to minimize [V(x),L(x)] 1)
subject to x, €X, n=1,...,.N

where x is a design variable vector containing the N deterministic pa-
rameters used to define the structural system (e.g. member sizes); V
represents a function associated with the initial cost of the structural
system (e.g. structural material volume); L is a function defining a
system-level loss measure for a windstorm of given intensity (e.g. the
expected value of the repair cost); and X, is the set of values that the nth
component of the design variable vector can assume. Since the two ob-
jectives in Eq. (1) are competing, the optimization will provide a set of
Pareto-optimal solutions, i.e. solutions for which neither objective can be
improved further without degrading the other objective.

For the problems of interest to this work, the initial cost function V'is
assumed deterministic and explicit in x, while the loss function L is
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defined as a probabilistic function of an appropriate set of decision var-
iables which are uncertain. In general, to be applicable to practical
problems of interest, methods for solving Eq. (1) will have to be capable
of handling both high-dimensional design variable vectors as well as
high-dimensional spaces of random variables necessary for modeling the
multivariate stochastic wind loads.

2.2. Performance of wind-excited systems

In this work, the loss function L is defined as a probabilistic measure
of a decision variable DV, which can represent, for example, the repair
cost necessary to restore the full functionality of the system under a
windstorm of prescribed intensity. In particular, if im indicates the in-
tensity measure of the wind event, the loss function is here expressed as:

L = E[DV|im] + a-SWd[DV|im] &)
where E[DV|im| and Std[DV|im] are the expected value and the standard
deviation of DV, conditional on im, respectively, while « is a parameter,
with @ > 0, which can be selected according to the desired robustness of
the design. In other words, a can be set to zero if the variability of the
decision variable is not important, while a larger a assigns more weight to
the variability, therefore resulting in a more robust design (Tootkaboni
et al., 2012).

The conditional mean and standard deviation of the decision variable
may be determined by solving the following integrals:

E[DV|im] = [[[dv- p(dv|dm) - p(dm|edp) - p(edp|im) - ddv - ddm - dedp 3)
Sw[DV|im] = [ [ (dv — E[DV |im] )* - p(dvldm) - p(dm|edp) - p(edplim)
-ddv-ddm - dedp]""? &

where E[|-] and Std[| -] are the operators of conditional expectation and
conditional standard deviation respectively; DM is the damage measure
indicating the damage state of the structural/nonstructural components
in the system (e.g. window cracking); EDP is the engineering demand
parameter associated with the occurrence of damage (e.g. inter-story
drift ratios); and p(-|-) indicates the conditional probability density
functions. In Egs. (3) and (4) as well as in the rest of the paper, upper-case
letters will be used to indicate random variables and lower-case letters to
indicate their realizations.

As will be discussed later, for the problems of interest to this work,
analytical solutions to Egs. (3) and (4) are not feasible. As a consequence,
for their solution it is generally necessary to resort to stochastic simula-
tion methods, which are generally computationally demanding, espe-
cially when finite element analyses of large-scale dynamic system are
involved. The repeated evaluation of the probabilistic measure of Eq. (2),
and therefore of these integrals, for different candidate designs when
solving the optimization problem of Eq. (1) further exasperates the
computational challenge of the problem at hand. To overcome this dif-
ficulty, an efficient bi-objective optimization method is here proposed
that is based on formulating single-objective design optimization prob-
lems that can be solved efficiently through a sequential kriging-enhanced
optimization approach, as will be outlined in Sec. 4. In the next section,
the performance assessment framework adopted to determine the
quantities appearing in Egs. (3) and (4) for a given design x and intensity
im will be presented.

3. Performance assessment

The quantities appearing in Egs. (3) and (4) can be estimated through
four separate tasks: structural and hazard analysis for the estimation of
the structural response parameters of interest (EDPs) given an intensity
im, damage and loss analysis for the assessment of the consequent system-
level decision variables DV. The models that are used to carry out these
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tasks are discussed in the following.

3.1. Structural and hazard analysis

3.1.1. Structural response model

In this work, the engineering demand parameters, EDPs — i.e. the
structural response parameters of interest — are defined as the non-
directional absolute maximum, over a windstorm of duration T, of the
structural response process r(t):

edp(r.) = max {max (670,01 ®)

pel0,2a] | 1€[0,7]

where vy is the site-specific mean wind speed at the height of the
building, # denotes the wind direction, and Us is a vector containing
random variables used to describe the uncertainty in the structural
system.

For a linear system subject to aerodynamic wind loads, the response
process, r(t), may be efficiently estimated through the following load-
effect model (Suksuwan and Spence, 2018a):

r(t; %y, B, us) = s1[r(t; vy, B) + re(t; Vu, f, us) |

= 51 [[78(8;V, ) + T KDy qg,, (15 V4, 5, 0s) | ©
where S; is a random variable modeling the epistemic uncertainty in
using the load-effect model and is an element of Us; rg(t) and rg(t) are the
background and resonant components of r(t); I'; is a vector of influence
functions, each giving the value of r due to a unit load acting at a certain
degree of freedom of the system; f(t) is the vector of the external aero-
dynamic loads acting on the system; K is the stiffness matrix of the sys-
tem; Dy = [¢y,...,¢Py) is the mass normalized mode shape matrix
considering M modes; and qg,, (t) = {gz, (t), ..., qr, (t)}" is a vector con-
taining the first M resonant modal displacement response processes,
which may be estimated through modal analysis.

As can be seen from Eq. (6), in this approach, M modes are considered

in calculating the resonant component, while the background component
is directly estimated, and is therefore not affected by modal truncation.
The ith resonant modal response may be calculated as the difference
between the total and the background modal displacement responses as
follows:
qr,(t:Vu, By us) = qi(t; Vu, B, us) — gp,(t;Vu, f, us) )
where g;(t) is the total modal response process while gg, (t) is the back-
ground modal response process. To estimate, g;(t), the following equa-
tion of motion can be solved:
4,(1) + 253, Ci52,0i,(1) + (52,0, 4,(0) = BT (19, B) ®
where the over-dot indicates a derivative with respect to time; w; and ¢;
are the modal circular frequency and damping ratio of the ith mode; Sy,
and S3, are random variables modeling uncertainty in ; and ; respec-
tively, and are elements of Us. The background component, gg, (t), can be
estimated as:

1
(so,@;)

The aerodynamic wind loads f(t) appearing in Egs. (6), (8) and (9) are
obtained through the stochastic wind load model presented in the
following section.

qB,(t;vﬁvﬁvuS): ¢Z-f(l‘;VH,/f) (9)

3.1.2. Stochastic wind load model

The intensity measure, IM, of the wind event is here taken as the
mean wind speed with mean recurrence interval (MRI) of y years, v,
extracted from the wind speed records at a suitable meteorological sta-
tion. The purpose of this model is to relate this intensity measure v, —
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which is associated with an averaging time 7, the height above ground at
which measurements are taken Hy,, and the terrain roughness length zy;
— to the mean wind speed Vg, averaged over a time period T, at the
location of interest and at the height of the building H. To relate v, and
vy, a transformation of the following type can be used:
Vi :Z[TvHvz(nVy(T, Hyers 201), UE} (10)
where 2 is the roughness length at the site of interest while Uy is the
vector containing random variables modeling uncertainties in the
roughness lengths, averaging time conversion, modeling errors, sampling
and observational errors in wind speed collection, and uncertainties in
estimating vy. The specific transformation scheme adopted in this work
can be found in Appendix C.

In order to generate realizations of the stochastic wind loads f(t) for a
given vy and a wind direction /3, a simulation model based on the spectral
proper orthogonal decomposition (POD) of wind tunnel pressure datasets
(Ruan et al., 2006; Kim et al., 2018) is adopted in this work. This allows
complex aerodynamic phenomena, such as vortex shedding, to be taken
into account in the response estimation. Following this model, the
aerodynamic wind loads f(t) are modeled as the superposition of Ny in-
dependent vector-valued subprocesses (Chen and Kareem, 2005; Li and
Kareem, 1993; Peng et al., 2017):

Ny
£(#:9u, ) :ij(t;vHvﬁ) an
=1
where the vector-valued subprocesses f;(t) are given by:
Nj—1
£7.8) = Y {|¥(@:8)]\/28 (@370, )80 - cos(@r + 8(wr: )
=1
+05) 12)

where Aw is the frequency increment; w; = [Aw with Nyquist frequency
given by NjAw; 9; is a vector of complex angles whose kth component is
given by 9 () = tan~! (Im(Wy(w;))/Re(Wi(@r))); 6y is an independent
random variable characterizing the stochastic nature of the wind, uni-
formly distributed in [0, 27]; while A;j(@;) and Wj(a;) are the eigenvalues
and eigenvectors of f;(t). In particular, Aj(@;) and W;(w;) can be related to
the eigenvalues and eigenvectors of the scaled wind tunnel loads through
the relationship:

Aj(w;;vy) = [(%)2}

¥(w) =" (@)

2

Vs \ » (ws) / ~
2w )AL
(Z)a@)

(13)

14

where V5 is the mean wind speed at the top of the rigid model in the wind
tunnel test; @ = (Vys/Vy)wy; while A;Ws)((b) and ‘I’J(WS) (@) are the eigen-
values and eigenvectors of the scaled wind tunnel loads, which are ob-
tained from solving the following eigenvalue problem:

[Sf“\ (6) Vies s ﬂ) - A(M) (d)v Vivss ﬁ)l] \II(WSJ (d)v ﬁ) =0 (1 5)
where Sy, is the cross power spectral density matrix of the wind load
process estimated directly from the wind tunnel data collected at V.
Importantly, once A}ws) (@) and ‘I‘;WS) (@) are obtained through solving Eq.
(15), they can be rapidly scaled to other wind speeds of interest through
Egs. (13) and (14). This is fundamental for the efficiency of the model, as
it allows Eq. (15) to be solved only once at the wind tunnel speed V,,;.
For convenience, all the random variables used in generating the
stochastic wind loads f(t) are collected in the vector Uy = {UE,UZ}T,
where Uy is the vector of the random variables ); necessary for modeling
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the subprocesses of Eq. (12).

3.2. Damage and loss analysis

3.2.1. Damage model

Damage to a structural or nonstructural component occurs when the
demand on the component, expressed as the value assumed by a specific
engineering demand parameter EDP, exceeds the component's capacity.
In this work, all components that are susceptible to the same EDP are
grouped into a performance group (PG). Following this approach, the
total number of PGs will be indicated in the following as N,. Given a
demand value edp, the probability of a damage state (DS) occurring for
each component of a PG may be determined through the corresponding
fragility function, defined as:

Frps(edp) = P(DS|edp) (16)

In the following, the discrete variable D; is used to indicate the
damage state of the jth component of the kth PG. In particular, given that
N; damage states, i.e. [DS;,...,DSy,|, are defined for the jth component of
the kth PG, Dy; = i if the damage state is DS;, while D;; = 0 if no damage
occurs. In general, three possible logical relationships between damage
states may be assumed (Federal Emergency Management Agency
(FEMA), 2012a): 1) sequential (i.e. damage states occur in sequential
order); 2) mutually exclusive (i.e. occurrence of one damage state pre-
cludes another); and 3) simultaneous (i.e. two damage states can, but not
necessarily, occur at the same time). Since the vast majority of damage
states follow a sequential logic, it is assumed in this work. Therefore, with
DS; 1 more severe than DS;, each component must enter DS; before
entering DS;.;. Under these circumstances, the probability that the
component is in the ith damage state, given the demand parameter as-
sumes the value edp, can be obtained from the fragility functions as:

P(Dy = iledp) = P(DS|edp) — P(DS;,|edp) = Frps, (edp) — Frps,,, (edp)
a7

fori =0,1,...,N, with Frps, (edp) = 1 and Frps,_,, (edp) = 0. It should be
noted that while Eq. (17) is a widely used expression, it is only exact
when the fragility functions are lognormal distributions with the same
dispersion.

In practice, if up; is a realization of a random variable uniformly
distributed between 0 and 1, defined for the jth component of the kth PG,
then the damage state of that component can be identified as follows:

dij=1i if Frps, (edp) < upy < Frps,(edp) (18)

In this work, the damage states of the components are assumed as
uncorrelated. Therefore, the random variables Upy are taken as inde-
pendent and identically distributed. Before closing this section, it should
be noted, however, that this assumption, as well as the assumption on the
damage logic as sequential, is not a requirement for the optimization
approach that will be presented in this work. Having said this, consid-
eration of dependency between the damage states would significantly
complicate the damage and loss models, especially if higher order mo-
ments were considered.

3.2.2. Loss model
Once the damage state of the jth component of the kth PG is known,
the corresponding decision variable, dvyj, can be estimated as:

dviy = Fpy (uy|dyy) 19

where uy; is a random number uniformly distributed between 0 and 1

while Fpy, is the distribution function of DVj; with Fg‘l,kj(uij|dkj =0) =
0, i.e. the decision variable is zero in absence of any damage. The dis-
tributions Fpy,; are termed consequence functions in the following.

The system-level decision variable can then be estimated as:
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Ng

NE
g E Wiidvi
=1 =1

(20)

NQ’
dv = Zdvk =
=1

where DV is the decision variable associated with the kth PG, N¥ is the
total number of components in the kth PG, while 0 < wy; <1 are co-
efficients that take into account the economies of scale or, if DVy is a
repair time, the simultaneous or sequential nature of the repair actions.
Typically, if DVy is a repair cost, all the wy; can be assumed equal to one.

3.3. System-level loss statistics

In order to estimate the second order statistics, E[DV] and Std[DV], of
the system-level decision variable, DV, it is first convenient to take
advantage of the linear structure of Eq. (20) and relate E[DV] and Std[DV|
to the second order statistics of the decision variables associated with
each PG as follows:

Ne
E[DV] = Zﬂnvk (21)
=1

Ny

E E PimOpV, ODV,,
k=1 m=1

Ng

Std[DV] = (22)

where ypy, is the expected value of the decision variable associated with
the kth PG (i.e. the expected value of the decision variable due to damage
to the components of the kth PG); py, is the correlation coefficient be-
tween DV and DV,,; while opy, and opy,, are the standard deviations of
DV and DV, respectively. Equations (21) and (22) illustrate how the
estimation of E[DV] and Std[DV] require the estimation of yipy, , opy,, and
Prm- Approaches to this end will be discussed below.

3.3.1. Analytical approach

The second order statistics ypy,, opy, and py, can be estimated
analytically through writing them in terms of the laws of total expecta-
tion and variance as:

Hpy, = E [ﬂDVk\EDPk] (23)

Opv, = \/E {aéVA\EDPA] + Var [ﬂDVk\EDPk] (24)
Cov I:ﬂDVA |EDP, > ”D‘/,"\EDP,,,]

Piomn = (25)

Opy,Opy,,

where ppy, gpp, and D%Vk\EDPk are the conditional expected value and
variance of DVj given EDPy, respectively; while ypy, gpp, is the condi-
tional expected value of DV,, given EDP,,. Because for the loss model of
Sec. 3.2 the conditional statistics yipy, gpp, and af,vk‘EDPk can be estimated
through analytical functions, see (Baker and Cornell, 2008), Egs.
(23)-(25) can be solved exactly. Unfortunately, the aforementioned
functions are nonlinear. This implies that the exact solution to Egs.
(23)-(25) requires the numerical resolution of the following expressions:

Hpy, = / g::]L(edpk)'fEDPk (edpy)dedpy (26)
© 2
oo =/ [ {gﬁ%(edpk) + (8 (edpe) — oy, ) } Seon, (edp)dedp; (27)
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_ ]jooo ]j"m gyL(edpk) gj:/L(edpm) 'fEDPk JEDPy, (Edpkv edpnz)dedpkdedpm - ﬂDVkMDV,,,

Journal of Wind Engineering & Industrial Aerodynamics 190 (2019) 40-52

pkm
Opv,Opv,,

where gi" and g} are the nonlinear functions describing ppy,ppp, and
”%vi |Epp, Il terms of edp;; frpp, is the marginal probability density function
(pdf) of EDPy; while fpp, rpp, is the joint probability density function
(jpdf) between EDPy and EDPy,.

Two fundamental difficulties arise in solving Egs. (26)-(28). Firstly, as
the number of demands parameters, EDPy, increases, the numerical effort
involved in solving Egs. (26)-(28) quickly increases. Secondly, the mar-
ginal and joint pdfs, fzpp, and fepp, rpp,,, of the random vector EDP are not
known a priori for the problems of interest to this work. Therefore,
implementation of the analytical scheme of this section would require
additional analysis (e.g. stochastic simulation) for the identification of
the marginal and pair-wise joint pdfs of EDP.

3.3.2. Monte Carlo simulation

In alternative to the analytical approach, samples of the group-level
decision variables, DV, can be directly simulated according to the
damage and loss analysis scheme of Sec. 3.2. In particular, if all random
variables introduced in the preceding sections are gathered in a vector
U = {UL,U%, U UT}', where Up and U, are vectors collecting all
random variables Up; and Uy, respectively, the expected value and the
standard deviation of a variable Q (e.g. the decision variable DVj, or the
demand parameter EDPy), given a value of the intensity measure V), may
be estimated as:

Ny
E[Q]y,] ~ L > q(u?,5,) (29)
S =1
_ 1 N, oo _ 2
suofn] ~ |72 (a(u9.7) ~ E[ofs]) (30)

where Nj is the total number of samples used in the simulation, and u® is
the ith realization of vector U. Also, the correlation coefficient between
any two variables Q; and Qi can be found from the samples as:

Rho[Q;, Oi[v,] ~

1 - ;
(a5
(Std[Q/}Vy] .Std [kav] > N, — 1;(‘]/ (u 7V.v)
~E[Qn]) (@ (u”,5) —E[edn])
In general, for the problems of interest to this work (i.e. problems
with high-dimensional vectors of dependent demands with unknown

marginal and pair-wise joint pdfs), this approach is considerably more
efficient than the analytical approach outlined in Sec. 3.3.1.

BD

4. Proposed solution strategy

This section proposes a novel framework for solving the bi-objective
design optimization problem of Eq. (1) with performance objectives
defined in terms of the probabilistic loss measures posed in Eq. (2)
calculated according to the models of Sec. 3. The framework is based on
using the e-constraint approach to reformulate the bi-objective problem
as a series of single-objective problems that can then be efficiently solved
through the sequential kriging-enhanced optimization strategy that will
be developed in this work.

4.1. The e-constraint formulation

By following the e-constraint approach, the bi-objective optimization
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(28)

problem of Eq. (1) is reformulated by transforming the loss objective into
a constraint. Under these conditions, the optimization problem takes the
form:

Find x={x, ..,

to minimize V(x) (32)
subject to L(x) = E[DV(x)] 4+ aStd[DV(x)| < L,

x, €X, n=1,....N

where Lo represents a predefined loss threshold while the constraint
L(x) < Ly is the e-constraint. In Eq. (32) and in the following, condi-
tioning on the intensity measure is dropped for simplicity of notation. It
should be noted that the proposed framework is equally applicable for
problems formulated as a minimization of L subject to a constraint on V.
Through solving a series of e-constraint optimization problems (which
are now single-objective) for different values of Lo, i.e. for Ly = L}),Lg, e
Lg", a set of Pareto optimal solutions (x!, ..., x") for the bi-objective
optimization problem of Eq. (1) is determined.

4.2. The decoupling strategy: overview

To efficiently solve each of the e-constraint problems of Eq. (32), for
each value of Ly, it is here proposed to formulate and solve a sequence of
sub-problems for which an approximation of the loss constraint is utilized
in lieu of the actual constraint. This will be accomplished in two steps.
First, an approximation scheme is developed to describe the relationship
between the statistics of DV appearing in the constraint (E[DV] and
Std[DV]) and the statistics of the demand parameters of the various PGs
(#gpp, and ogpp, ). Then, the Auxiliary Variable Vector (AVV) strategy will
be used to find a relationship between pppp, and ogpp, and the design
variables x. Since both the approximation scheme and the AVVs can be
defined, as explained in the following, based on the results of a single
simulation carried out in a fixed design point, only one simulation is
needed for the formulation and solution of each sub-problem, hence the
efficiency and scalability of the proposed approach. In order to treat the
inherent approximations of the approach, a sequence of sub-problems are
solved, each formulated in the solution of the previous problem, until the
solutions of two successive sub-problems coincide. Because each sub-
problem is exact in the point of formulation, this process ensures solu-
tions to the original problem are found.

4.3. The approximation scheme

4.3.1. The basis of the scheme

In order to treat high-dimensional problems, the variation in the
demand parameters generated by a change in the design variables x is
modeled through the AVV approach and therefore in terms of variations
in the second order statistics, ygpp, and ogpp,, of the demands. As dis-
cussed in Sec. 3.3.1, because the relationship between the decision var-
iables and the demand parameters is nonlinear, any variation in yigpp_and
ogpp, cannot be directly mapped to the changes in the second order sta-
tistics of the decision variables. To overcome this, a scheme is here
introduced for approximately modeling how the demand samples ob-
tained from a Monte Carlo simulation carried out in X change as ygpp, and
ogpp, vary due to a change in the design vector. This enables E[DV] and
Std[DVi] of each PG to be approximately estimated through the stochastic
simulation model of Sec. 3.3.2.

With this in mind, consider a set of samples {edp}, ..., edpkN‘}, evalu-
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ated in X, with associated mean and standard deviation of iz, (X) and
oepp, (X). As the design point changes from X to x, a set of adjusted

samples {@;, 7@2] 1, whose mean and standard deviation have been
updated to ugpp, (x) and oppp (x), can be conveniently generated by
transforming the samples obtained in x as follows:

_ Oop (X)

= — i=1,...
UEDPk(X)

edp, (x) (edpL (%) — Hppp, (%)) + Hpp, (X) (33)

The validity of the transformation of Eq. (33) can be traced back to

how, for the problems of interest to this work, the reduced variate g =

(edp;'( — yEDpk> / oppp, can be considered independent of the design vari-

ables x (e.g. Suksuwan and Spence, 2018b). Because the transformation
of Eq. (33) is invariant with respect to this reduced variate, i.e. g, = gl,
Eq. (33) provides an accurate means to generate a sample set of demands
that is consistent with changes in iz, and ozpp, generated by a change in
x and modeled through the AVV approach. From the adjusted set of

demand samples {Ep;, ey @f‘}, the corresponding second order PG
statistics ypy, , 0py, and py, can be estimated through the Monte Carlo
scheme of Sec. 3.3.2, from which E[DV] and Std[DV] of the system-level
constraint of Eq. (32) can then be evaluated through Egs. (21)-(22).

While the transformation of Eq. (33) enables the use of the AVV
approach, and therefore eliminates the need to propagate uncertainty
through the large-scale and dynamic finite element models character-
izing the structural system, the evaluation of the E[DV] and Std[DV] still
requires the implementation of the Monte Carlo scheme of Sec. 3.3.2 for
each change in the design variable vector x. Because in general optimi-
zation algorithms require hundreds, if not thousands, of calls to the
objective/constraint functions during the optimization process, this can
lead to significant computational slowdowns during the optimization
process.

4.3.2. The metamodels

To enhance the computational efficiency of the approximation
scheme, it is here proposed to fully decouple the approximation from the
Monte Carlo scheme of Sec. 3.3.2 through the use of kriging metamodels.
This will provide a deterministic mapping between the second order
statistics of group-level decision variables (upy, and opy,) and the second
order statistics of demand parameters (ugpp, and ogpp,). Because kriging
metamodels are extremely cheap to evaluate, this approach can signifi-
cantly speed up the internal iterations of the optimization algorithm (e.g.
by two orders of magnitude for the optimality criteria algorithm of the
case study of Sec. 5) as compared to the direct implementation of the
approximation scheme.

From Egs. (21) and (22), it can be seen that in order to develop a
deterministic mapping between E[DV] and Std[DV] and the second order
statistics of the demands, metamodels that relate iy, and opy, to pgpp,
and ogpp,, as well as py, tO Ugpp,, GEpP,> Hppp, and ogpp,, are required.
However, if it is assumed that py,, is only weakly dependent on the design
variables x, then only the first set of metamodels are needed. The general
validity of assuming p,,,, only weakly dependent on x can be understood
by recognizing how the design variables are independent of the statistical
properties of the basic random variables. Therefore, a change in design
variables cannot significantly alter the statistical dependency between
the decision variables of the PGs. Given their versatility, ordinary kriging
metamodels (Sack et al., 1989; Forrester Keaneet al., 2008) are adopted
in this work for developing the deterministic mapping. Before
continuing, it should be observed that the metamodels developed in this
section are approximate as they are built in terms of the approximation
scheme of Sec. 4.3.1. However, construction of exact metamodels is not
possible as it would require the knowledge of the marginal distributions
of the demand vector EDP which, as discussed in Sec. 3.3.1, are not
known a priori.

Sampling plan and calibration points. In order to calibrate the kriging
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metamodels /ipy, (Hgpp, , 0zpp,) and 6oy, (Hepp, , Orpp, ), Np of observations

of upy, and opy, are required at a series of points (support points) of

coordinates (ﬂ(ElD)Pk (x), a(Eng (x)); . ( g%,}k (x), og’},)k (x)). The observations

corresponding to the pth support point are indicated in the following as

(p)
ﬂg\)/k = Hpy, (ﬂl(fpp)pkv O-%Pk) and G(Dp&k = Opy; (ﬂ%pkﬁEDpk)'

By carrying out a Monte Carlo simulation in the design point x
through the algorithm of Sec. 3, ygpp, (X), orpp,(X) as well as upy, (%),
opy, (X) may be directly estimated from Egs. (29) and (30). The point of
coordinates (ugpp, (X), orpp, (X)) can therefore be chosen as the first sup-
port point of the metamodels, for which the corresponding observations
are ,ug&k (x) (for the metamodel fipy, ), and ag&k (x) (for the metamodel

6py,). The coordinates (ygpk (%), aggpk (%)), for p = 2, ..., Ny, of the
remaining (N, — 1) support points are then generated over a domain
centered around this first support point through optimal Latin hypercube
sampling (Morris and Mitchell, 1995). To obtain the corresponding ob-

servations of yg"),k and Jg"),k for p = 2, ..., N,, the simulation-based

approximation scheme of Sec. 4.3.1 can be invoked. The N, observa-

T
tions are then collected in the vectors ji;,;, = { ,ug&k seees yg\"}’k)} and 6py, =

T
{crl()l&k seees ag\"ﬁ’k)} which will be used, as explained in the following, for the

calibration of the two kriging metamodels /iy, and 6py, .

Kriging prediction model. In this section, since the kriging model
formulation is the same for Ji5,y, and 6py,, the symbol y will be used to
indicate either upy, or opy, so to avoid unnecessary repetition. Given a set
of observations at the points of the sampling plan, ¥y, a kriging prediction
of the function y(ugpp, , crpp, ) is given by:
y(ﬂEnka O'EDPA) =m+Q" (/‘EDPA ) OEDP; )Ril (Y - 1’77) (€2
where y represents the kriging prediction of y; m is the maximum like-
lihood estimator of the mean of the random field defined by taking y as a
realization of a Gaussian process; Q is an N, x 1 vector collecting the
basis functions that depend on yi,p, and ogpp,; and R™!(y — 17m) are the
weights assigned to the basis functions with 1 denoting the N, x 1 unit
vector. In particular, in defining Q and R, a square exponential function is
here assumed for the correlation function, as:

Corr {y (/42)&, ) UgL))P;\ >7y (ﬂ/@)t’k ) (’gl))f’k ) ]

2 . )
+0, agm - a%ﬁ (35)

]
where 0, and 6, are the parameters of the kriging metamodel. Based on
the correlation functions of Eq. (35), the ith basis function is derived as:

= exp [ - (ey‘l‘gm - ﬂgwk

Q (wak » OEDP, ) = Corr [y (ﬂgm ) Ug;w) Y (:MEDPk » OEDP, )] (36)
while the element of the ith row and jth column of R is given by:
R;; = Corr {y (Mgl))ﬁ 5 ng))m ) Y (ﬂgz)ﬁ 5 5%1))@ )} 37)

Having defined R, m may be obtained from the following expression:

1Ry

38
1"R™11 (38)

m=

4.4. The auxiliary variable vectors

The approximation scheme Sec. 4.3 provides a means to relate
changes in the second order statistics of the decision variables associated
with each PG with changes in the second order statistics of the demand
parameters, i.e. jigpp, and ogpp,. As already mentioned, in order to relate
these last to changes in the design variables x, the concept of auxiliary
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variable vectors (AVVs) (Spence et al., 2016) is leveraged in this work.
To this end, consider a design point x in which the Monte Carlo

scheme of Sec. 3.3.2 has been carried out with the aim of evaluating the

performance of the system in X. Through the augmentation of the simu-

lation process reported in Appendix A, the AVVs, indicated as Y (x) and
Yx(X), can be defined in % for each PG. The interest in defining the AVVs
lies in how it has been shown that they are insensitive to any changes of
the design variables around x (e.g. Spence et al., 2016; Bobby et al.,
2017). This fundamental property allows the following approximate re-
lationships to be introduced for estimating izp, and ogpp, for a point x
that differs from x:

Pepp, (X) 2~ Fgpp (%) =TT (%) Y (%) (39)

OEDP, (X) ~ 8];1);7A (X) = I‘:‘ (X)Yk (;() (40)
where I, is the vector of influence functions whose ith component gives
the response in EDPy due to a unit load applied at the ith degree of
freedom of the system, i.e. the influence functions of the load effect
model of Eq. (6).

4.5. Formulation and solution of the sub-problem

Once a full Monte Carlo simulation is carried out in the current design
point x, the decoupled approximation scheme can be constructed as
outlined in Sec. 4.3.2 and the AVVs can be defined to obtain the re-
lationships illustrated in Sec. 4.4. This allows the following e-constraint
optimization sub-problem to be formulated:

Find  x={x,....xx}"

tominimize  V(x)

Ne
subjectto  L(x) = Zﬁpvk (ﬁEDPA (X)’Z)-\EDPI( (X))
=1

Ng  Ng

+@| > pinov (B, (%), G pr, (X)) - Gy, (Hepp, (%), Geoe, (%) | < Lo

k=1 m=1

X, €X, n=1,....N
(41)

where py,, is the correlation coefficient between DV and DV;, evaluated
in X.

Due to the explicit and computationally cheap nature of the e-
constraint in this problem formulation, any gradient/non-gradient opti-
mization algorithm can be used for its solution. In particular, in this
work, the pseudo-discrete optimality criteria (OC) algorithm (Chan et al.,
1995) is adopted. The derivation of the sensitivities necessary for the
implementation of the algorithm is reported in Appendix B.

For implementation purposes within the algorithm illustrated in the
following section, besides the occurrence of convergence, if, during the
search for the optimal point, the OC algorithm considers a candidate
point x whose corresponding values of jp and ogpp are at the edge of the
domain of the metamodels, the algorithm is terminated and the last
candidate point is used as output.

4.5.1. Adaptive sequential optimization algorithm

The solution of the optimization sub-problem of Eq. (41) will in
general be affected by the approximations that were introduced in the
formulation of the e-constraint, i.e. by the fact that the sub-problem is
exact only in the design point in which both the approximation scheme
and the AVVs are derived. Hence, the optimal point found will in general
be different from the optimal point of the original e-constraint problem of
Eq. (32). To obtain an exact solution to the original e-constraint problem,
sequential optimization strategies have been seen to be effective (e.g. Du
and Chen, 2004; Schuéller and Jensen, 2008). Therefore, in this work, a
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sequential optimization algorithm is developed, consisting in solving a
series of sub-problems, of the kind outlined in Eq. (41), each formulated
in the solution of the previous sub-problem, until convergence is reached,
i.e. until the solution points of two consecutive design cycles coincide,
within a set tolerance. Each formulation and solution of a sub-problem is
termed a design cycle (DC). At convergence, since both the approxima-
tion scheme and the AVVs are exact in the point where the sub-problem is
formulated, the e-constraint — and therefore the solution — is not affected
by any approximations. In addition, at each design cycle, an adaptive
strategy is adopted for formulating the approximation scheme, which
takes advantage of the information gathered in the previous design cycle
about the most promising region of the search space. This adaptivity
results in a more accurate prediction in the region around the current
design point and ultimately in a faster convergence.

The proposed adaptive sequential optimization algorithm can be
summarized as follows:

1. Initialization: set DC=1 and x = xo with x¢ denoting the initial
design; generate an optimal sampling plan with N, points, including
the central point. The sampling plan is indicated as a set of points H =

1 1
{@", =),
coordinates.

2. Run a Monte Carlo simulation in x and calculate the first (central)
support point of the metamodels (yglgpk (i),aggpk (X)), for each PG, i.e.
k=1,...,N,.

3. Set the limits of the search domain as [(1 — 5,4)/4,%},,(, (1+ ﬁu)yfgID)Pk] X

(ZﬁNﬂ’ Z(ZNp))}’ where (21,2;) are normalized

(1- 50)523& J(1+ 56)6,9,)&], where 6, and §, are assumed equal to 0.8
for the first DC and 0.5 for the following DCs. Scale the normalized
sampling plan H to the adaptive search domain in the space of yigpp,
and ogpp, centered at (u(Elp)Pk(i), ,(51D)Pk (x)).

4. Determine the calibration points of the metamodels, upy, and &py,
(Sec. 4.3.2). Construct the kriging metamodels (Sec. 4.3.2), calculate
the AVVs (Sec. 4.4) and formulate the sub-problem in x of Eq. (41).

5. Solve the sub-problem until convergence or termination, therefore
defining x/°®) (optimal point, in case of convergence, or last point, in
case of termination) and VIP¢) = V(x(P¢),

vPe-1)| < 5, V(P¢-1) end optimi-

zation with x(P¢) as the final design; otherwise, set x = x°°), DC =

DC + 1, and return to Step 2.

6. Check for convergence: if |V(P¢) —

In order to increase the efficiency of the algorithm, if, when returning
to Step 2 at the end of a given DC, the change in yng)Pk (x) and the change

in c}(EID)Pk (x), for k =1,...,N,, are less than a value &, with respect to the
same quantities at the previous DC, then only the central point of the
sampling plan, i.e. the point of coordinates (,uggpk (i),uggpk (%)), is updated
in Step 4 (Step 3 is therefore unnecessary). This eliminates the need to
evaluate ypy, and opy, at other support points and therefore results in an

increased efficiency.
5. Application

The example presented in this section illustrates how the proposed bi-
objective optimization approach can be efficiently applied to a large-
scale structural system to find optimal designs that minimize the mate-
rial volume of the structural system and the system-level wind-induced
total losses, under a wind with a 1700-year MRL In particular, the total
losses are expressed in terms of a DV which is assumed to be the total
repair cost. Since the cladding system plays a fundamental role in
defining the performance of wind-excited systems, total losses associated
with damage to this system due to excessive structural response will be
considered as the DV.
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Fig. 1. Layout of the example structure: (a) plan view; (b) 3D view; (c) beam and column group assignments for one of the X-direction moment-resisting frames.

5.1. Structural model

The large-scale structural system, shown in Fig. 1, consists in a 37-
story rectangular building. The first story height is 6 m while the other
stories are 4 m high, resulting in a total height of 150 m. The total width
and total depth of the system are 30 m and 60 m, respectively. In this
example, one of the two identical X-direction lateral load-resisting frames
of the 3-dimensional steel tube system is to be designed. The beams and
columns of the X-direction load-resisting frames are grouped symmetri-
cally with respect to the vertical central line as shown in Fig. 1(c). All
beams are chosen to belong to the family of AISC (American Institute of
Steel Construction) W24 steel profiles (i.e. a complete list from W24 x 55
to W24 x 492 is considered). All columns are square box sections defined
by mid-line diameters, b;, that must belong to the discrete set {0.20 m,
0.21m, ..., 3.99m, 4.00 m}, while the wall thickness is given by b;/20.
This grouping scheme results in a total of 259 design variables. In the
initial design, the profile W24 x 176 is assigned to all beams, while a
mid-line diameter of 0.60 m is used for all the columns. The floor systems
are assumed to be rigid diaphragms with area density of 0.1t/m2 In
estimating the resonant response, the first three modes were considered,
with the mean circular frequencies of the initial design being w; = 1.02
rad/s, wy = 3.25 rad/s, and ws = 6.02 rad/s. The mean modal damping
ratios were taken as 1.5%. The distributions of the uncertain parameters
of the vector U; associated with the response estimation (Egs. (6), (8) and
(9)) are reported in Table 1.

5.2. Hazard and wind model description

The building is assumed to be located in the Miami area of Florida,

Table 1

Marginal distributions for the components of the vector Us.
Variable Mean C.0.V. Distribution Ref.
S1 1 0.025 Trunc. Normal Minciarelli et al. (2001)
So, % 1 0.3 Lognormal Bashor et al. (2005)
Sg,% 1 0.01 Lognormal Bashor et al. (2005)

*fori=1,...M
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USA. In modeling the hurricane wind hazard, the dataset of milepost
1450 (i.e. Miami) of the hurricane database provided by the National
Institute of Standards and Technology (NIST) was considered (National
Institute of Standards and Technology, 2016). The wind speeds of the
dataset were obtained with an averaging time 7 = 60 s, roughness length
201 = 0.05 m, and height at meteorological station Hp, =10 m. In
transforming samples of ¥, into samples of wind speeds at the site of
interest, vy, the transformation scheme provided in Appendix C was
used, with averaging time T = 3600 s, roughness length at the site of
interest 2o = 2 m, and distribution of the random parameters reported in
Table C.3. In calibrating the data-driven stochastic wind load model of
Sec. 3.1.2, datasets of synchronously measured pressures obtained from
the Wind Pressure Database of the Tokyo Polytechnic University (TPU)
(Tokyo Polytechnic University, 2008) were utilized. In this example, the
datasets corresponding to wind blowing down the X and Y directions (i.e.
alongwind and acrosswind actions) were considered. The wind tunnel
tests were carried out on a 1:300 scale model with a mean wind speed at
the top of the rigid model of 11 m/s. A total number of 510 pressure taps
were used, with a signal length of 32s with sampling frequency of
1000 Hz. In calculating the wind loads acting on each frame, 1/2 of the
X-direction load was considered for each wind direction, while the first
six POD spectral modes of the integrated and scaled loads were consid-
ered in this example.

5.3. Loss model

A midrise stick-built curtain wall is considered forming the building
envelope. Cladding components are susceptible to damage due to inter-
story drift, therefore the maximum inter-story drift ratio in the plane of
the panel is assumed as EDPy. As a result, all cladding components of the
same floor are grouped in the same PG, for a total of 37 PGs each con-
sisting of 60 components. Three sequential damage states are defined for
all components; the suite of fragility curves with associated consequence
functions were obtained from the fragility database of FEMA (Federal
Emergency Management Agency (FEMA), 2012b) and are reported here
for convenience in Table 2.
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Table 2
Parameters of the fragility and consequence functions in terms of repair cost. All
fragility functions are lognormal.

DS Description Fragility Functions Repair Cost

I Pr u [$] Be
1 Gasket seal failure 0.0260 0.25 2055 0.1668
2 Glass cracking 0.0268 0.25 2364 0.1185
3 Glass falling out 0.0339 0.25 2955 0.1185

5.4. Optimization

The values of the limit Ly used in the e-constraint formulation of Eq.
(32) were set to $100000, $250000, $400000, $700000, $1000000.
Various levels of robustness were investigated by varying the value of
parameter a (@ = 0,1, 2). A number N; = 8000 of samples were used in
the Monte Carlo simulation. In implementing the proposed optimization
framework, 6; was set to 10° and &, was set to 0.02. The discrete
optimization scheme outlined in (Chan et al., 1995) was adopted for
solving the sub-problems, due to the discrete nature of the design
variables.

5.5. Results and discussion

Fig. 2 shows sets of Pareto optimal points, in the space of the two
objectives V and L, associated with different levels of robustness (i.e.
values of a). Since three values of a have been considered, and the e-
constraint optimization was run for five values of ¢, a total of 15 designs
were obtained. As expected, for a given value of «, the probabilistic loss
measure under a wind with MRI of 1700 years is higher for a lower initial
cost (i.e. less material volume), while, given a certain loss measure, a
higher initial cost (i.e. a heavier system) is required if a higher value of a
(i.e. a more robust structure) is chosen.

It can be observed that a is directly related to the probability of
exceeding any given loss threshold Ly. Indeed, an increase in a corre-
sponds to reducing the overall response of the system, and therefore the
probability of exceeding any given L. To estimate this probability for a
given value of a and Ly, the N; samples of the final Monte Carlo simu-
lation carried out in solving the optimization problem of Eq. (32) through
the proposed algorithm of Sec. 4.5.1 can be used to evaluate the
following expression:

1 & ;
P(DV > Ly|vi700) = IVZ L (u? D100 (42)
s

260

240

220

V [m?]

200 |

180

160

140

L [US Dollars]

x10°

Fig. 2. Pareto fronts of optimal points in the space of the objective functions for
different values of the parameter a.
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P(DV > Lo|vi700)

Ly [US Dollars|

Fig. 3. Probability of exceedance of the loss threshold L, for various Pareto-
optimal designs. Target point with P(DV > $500000[V1700) = 0.03 and point
obtained by running simulation #16, with @ = 1.65, are also shown.

where [; is an indicator function that assumes the value 1 if dv(u(i) ,V1700)
> Lo and 0 otherwise. By evaluating Eq. (42) for each of the 15 Pareto-
optimal configurations of Fig. 2, the system-level failure probabilities
shown in Fig. 3 are obtained. The practical significance of Fig. 3 is that
not only does it provide a more complete picture of the system's perfor-
mance, it also provides a means for decision-makers to identify which
value of a to consider in choosing an optimal trade-off solution. For
example, if the stakeholders' performance objective of interest is to
achieve designs with less than a 3% probability of exceeding $500000 of
repair cost for a 1700-year MRI windstorm, then, from the linearly
interpolated dotted lines of Fig. 3, a value of approximately a = 1.65
should be considered. Once the value of « is identified, an additional
constrained optimization with a = 1.65 and Lo = $500000 can be run to
check the effective failure probability and to identify the set of design
variables defining the optimal trade-off solution. For this example, this
corresponds to design #16, which, as indicated in Fig. 3, has a failure
probability of 2.63%. This examples illustrates how Figs. 2 and 3 provide
an effective and concise system-level decision space for identifying
optimal trade-off solutions. It should be observed that the accuracy of the
interpolated results can be increased as desired by increasing the number
of loss thresholds considered in the e-constraint problem as well as the
number of steps in the range considered for a.

5.5.1. Numerical performance of the e-constraint solution strategy

To illustrate the performance of the sequential optimization algo-
rithm of Sec. 4.5.1, Figs. 4 and 5 show the convergence histories of the
two objective functions, material volume and loss respectively, for design
#9. The efficiency of the proposed method is apparent from the limited
number of design cycles required to obtain convergence. Indeed, it can be
seen that a design that satisfies the constraint was obtained after only
three design cycles, with the remaining design cycles fine-tuning the
objective function of the e-constraint problem. Fig. 5 shows the com-
parison between the approximate and exact loss values at the end of each
design cycle. As can been seen, notwithstanding the significant changes
in loss in the first couple of design cycles, the approximation scheme
introduced in this work proved effective with rapid and steady conver-
gence to the exact value. Similar results were seen for all 16 of the design
points of Figs. 2 and 3.

To illustrate the adaptive updating of the kriging metamodels during
the optimization process, Figs. 6 and 7 report the kriging models con-
structed for upy, and opy, during the resolution of the e-constraint
problem associated with design #9 and performance group k = 22. The
largest kriging surfaces of Figs. 6 and 7 correspond to the first design
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Fig. 4. Convergence history of the objective function V for design #9.
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Fig. 5. Convergence history of the objective function L for design #9 (a = 1,
¢ = $700000). The approximate value of L, L, is also shown.
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Fig. 6. Example of adaptively updated kriging metamodel of upy,, for
design #9.

cycle and allow a global search of the design space, while the smaller
surfaces correspond to the updating scheme that adaptively concentrates
the solution efforts to the region around which the first candidate solu-
tion was identified. The overall quality of the initial kriging models can
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Fig. 7. Example of adaptively updated kriging metamodel of opy,, for
design #9.

be clearly seen from the strong correspondence between the kriging
models constructed in design cycles successive to the first. Similar results
were seen for all PGs.

Finally, it should be observed that from a theoretical standpoint, the
proposed approach could treat multiple probabilistic objectives. Indeed,
the approximation scheme of Sec. 4.3 and the AVVs of Sec. 4.4 can be
simultaneously applied to more than one probabilistic objective.
Because, after approximation, both the objective and constraint functions
are deterministic from the perspective of the sub-problem of Eq. (41), the
sequential solution strategy of Sec. 4.5.1 would (after appropriate nota-
tion changes) be equally applicable. Therefore, as long as the probabi-
listic objective can be described through loss and damage models of the
type outlined in this work, there is no theoretical reason that the
approach could not be applied to problems involving two probabilistic
objectives.

Before closing this section, it should also be observed that, while this
work was based on using kriging metamodels for defining the functions
tipy, (Mepp, » 0Epp,) and opv, (pepp, - oppp,) (ie. the functions between the
second order moments of the group losses and the second order moments
of the group demands), alternative approaches could be considered. In
particular, future developments of this work will focus on defining new
mappings that seek to take advantage of the analytic expressions that can
be derived for the conditional moments ypy, gpp, @and Gpy,|Epp, -

6. Conclusions

This paper presented an efficient bi-objective design optimization
framework for uncertain wind-excited systems. Two competing objec-
tives were considered: the material volume of the structure, which is
associated to the initial cost, and a system-level probabilistic measure of
the anticipated wind-induced losses of the system under wind events of
prescribed intensities. The challenge in defining such a framework lies in
the necessity of using stochastic simulation-based performance assess-
ment frameworks within a bi-objective optimization written in terms of
high-dimensional vectors of design variables. To overcome this chal-
lenge, a framework is proposed based on reformulating the original
problem into a series of single-objective problems through the e-
constraint approach. To efficiently solve each e-constraint problem, a
sequential kriging-enhanced optimization scheme is introduced that is
based on decoupling the probabilistic performance assessment from the
optimization problem. This is achieved through the introduction of a
high-quality optimization sub-problem that is defined in terms of kriging
metamodels and a set of auxiliary variable vectors. The fundamental
property of the sub-problem is that it can be fully constructed from the
results obtained from a single run, in a fixed point of the design space, of
the simulation-based performance assessment model. This ensures the
scalability of the sub-problem to high-dimensional spaces of design
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variables. By solving a sequence of sub-problems, each formulated in the convergence properties of the proposed approach were demonstrated.
solution of the previous, a solution to the original -constraint problem is

obtained, therefore providing estimates of the Pareto optimal set of the Acknowledgments
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tunnel informed stochastic wind loads. The efficiency and strong

Appendix A. The Auxiliary Variable Vectors

To derive the AVVs in the current design point X, it is first necessary to consider the following variable that can be defined for each realization of U:

ledpi(u,%) — p,, (u,X) |Cx (u, X)L, (X)

Yi(u,X) = pp(u,X) + - 3()] (A1)

where y,, and o, are the mean and standard deviation of the component response process of Eq. (6) respectively while yy and Cy are the mean and the
covariance matrix of the following vector-valued stochastic process:

F(t;u,%) = 5, [f(5;u) + KX)®y(X)q,, (;u,%)] (A.2)
The interest in defining Y}, is that when this variable is multiplied with the influence function FT , the following static relationship holds:
edpy(u,%) = I (%)Y (u,%) (A.3)

The advantage of Eq. (A.3) is that it provides an exact static relationship between the nominal system and the engineering demand parameter, EDPy.
To this end, the following AVVs can be defined as:

Y (%) = py, (X) (A4
Y (%) = % (A.5)

where Hr,, and Cy, are the mean and covariance matrix of Y} respectively.

The 51gn1f1cance of the AVVs lays in the fact that when Y, and Yy are statically applied to the nominal structure with stiffness K, the resulting
responses in ry coincide with the expected value and the standard deviation of the engineering demand parameter, EDPy. In other words, the following
holds:

o, (%) = T (V. (%) (A.6)
OEDP, (i) = FZ (i)Yk(i) (A.7)
where, the relationships are exact at the current design point x.

Appendix B. Sensitivity Analysis

The partial derivative of the performance constraint I with respect to the jth component of x can be obtained as:

0x; Oepp, 0% 0epp,  Ox; b L Opepp, 0% 00epp,  OX;

IL(x) & <aﬁDVA eon, (X) | O oo, (x)> {”ﬁ o ) <U Y iz (x) 9y, 90mr, (x)
- 2. Std DV(x i P
1

i 0 (2 P v Q) ) ®1)
where Jipy, and Gpy, are explicit functions of yppp, and ogpp,; while M nd (’“Eg;xf(x) are given by:
Heor, (X) Eg;/ ® . arg;fx)?k(i) (B.2)
dokor,(x) _ L, (x Yy ® (B.3)

0x; 0x,/
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where the partial derivatives of the influence functions I';, can be obtain through classic approaches (Chan et al., 1995; Spence and Gioffre, 2011).
Appendix C. Wind speed transformation scheme

The design wind speed at the site of interest, V4, can be obtained by transforming the extreme wind speed, ¥, averaged over a time interval r at a
meteorological station, to the site-specific wind speed, Vy, through the following probabilistic transformation model based on the Logarithmic Law
(Minciarelli et al., 2001):

eszo \“° In[H/(esz _
> °> Mflelvy(nf]menzﬂl) (C.1)

v, T = T
(W, Ty20) = eres(r, )<e6m W[Hy/ (o201

where 2 is the roughness length at the site of interest; zyp; and H,,, are the roughness length and height at the meteorological station; § is an
empirical constant taken as § = 0.0706; and E;, to E; are uncertain parameters collected in Ug. Specifically, E; and E; account for obser-
vational and sampling errors in collecting the meteorological wind speeds; E4, Es, and E; model the uncertainties associated with the actual
values of § and of the roughness lengths 2, and 2¢1; Es(7, T) is the conversion factor that accounts for the errors in converting between wind
speed averaging times; while E; is a model uncertainty to be used in the case of hurricanes and tornadoes. Possible marginal distributions for
the elements of vector Ug are given in Table C3.

Table C.3
Possible marginal distributions for the elements of vector Ug
Variable Mean C.0.V. Distribution Ref.
E, 1 0.1 Trunc. Normal Minciarelli et al. (2001)
Ey 1 0.025 Normal Diniz et al. (2004)
E3 a 0.075 Normal Diniz et al. (2004)
E,4 1 0.1 Trunc. Normal Diniz et al. (2004)
Es 1 0.3 Trunc. Normal Diniz et al. (2004)
Eg 1 0.3 Trunc. Normal Diniz et al. (2004)
E; 1 0.05 Normal Diniz et al. (2004)

# Dependent on averaging times 7 and T.
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