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A B S T R A C T

This paper proposes a framework for the bi-objective optimization of uncertain and dynamic wind-excited systems
whose susceptibility to system-level damage is modeled through probabilistic fragility-based loss measures. In
particular, the proposed framework is based on first reformulating the bi-objective stochastic optimization
problem into a suite of single-objective optimization problems through the ε-constraint approach. Secondly, a new
optimization sub-problem is introduced for efficiently solving the single-objective problems, whose formulation is
based on combining the auxiliary variable vector approach with a new kriging-enhanced approximation scheme.
Because the sub-problem can be fully calibrated and subsequently solved from the results of a single performance
assessment carried out in a fixed point of the design space, efficiency and scalability to high-dimensional problems
is achieved. Through solving a sequence of sub-problems, solutions to the ε-constraint problems are obtained
leading to the identification of the Pareto-optimal solutions of the original bi-objective optimization problem. To
illustrate the applicability, efficiency and scalability of the proposed framework, an example of application to a
large-scale structure is presented, where structural material volume and a system-level loss measure defined in
terms of expectation and standard deviation of the total repair cost are simultaneously minimized.

1. Introduction

The identification of structural designs that simultaneously minimize
the initial cost of the system together with anticipated losses from
damage due to extreme events defines a typical bi-objective optimization
problem. Due to the inherently conflicting nature of these two objectives,
strategies are needed that provide, as an output, a suite of Pareto-optimal
solutions, among which the decision-makers can then choose the
preferred option, i.e. design. In the context of performance-based wind
engineering, if the applicability to structures of practical interest is
sought, such optimization strategies have to be able to deal with high-
dimensional vectors of design variables and computationally intensive
stochastic (e.g. Monte Carlo) simulation-based performance assessment
models. Indeed, due to their generality, most modern performance-based
wind engineering frameworks are based on propagating uncertainty
through complex response, damage and loss models by means of sto-
chastic simulation (e.g. Barbato et al., 2013; Bernardini et al., 2012,
2015a; Chuang and Spence, 2017; Ierimonti et al., 2017, 2018; Cui and
Caracoglia, 2018; Bezabeh et al., 2018; Zheng et al., 2019; Ouyang and
Spence, 2019). An important consequence of this is that direct ap-
proaches for solving the bi-objective optimization problem through

genetic algorithms (e.g. Liu et al., 2005; Fragiadakis et al., 2006; Bocchini
and Frangopol, 2012; Gencturk, 2013; Saadat et al., 2014; Garcıa-Segura
et al., 2017; Xu et al., 2017) are not easily applicable due to their need to
evaluate system performance hundreds, if not thousands, of times before
convergence. To overcome this difficulty, methods have recently been
proposed based on building metamodels of the probabilistic performance
measures in the augmented space of the design and uncertain parameters
(Gidaris and Taflanidis, 2015; Gidaris et al., 2018). While this approach
is extremely robust in terms of the systems it can treat, e.g. general
nonlinear systems, it is not easily applicable to problems with
high-dimensional vectors of design variables due to how this significantly
increases the computational effort required to build themetamodels. This
issue also effects approaches based on building metamodels directly in
the space of the design variables (e.g. Bernardini et al., 2015b; Elshaer
and Bitsuamlak, 2018; Ding and Kareem, 2018; Mu~noz Paniagua and
García, 2019). Alternatively, bi-objective optimization problems may be
reformulated (scalarized) to enable the use of single-objective optimi-
zation algorithms. One of the most popular scalarization strategies is the
ε-constraint method (e.g. Carmichael, 1980; Fu and Frangopol, 1990;
Mavrotas, 2009; Zhang and Reimann, 2014), where a chosen objective is
optimized, using a single-objective method, while the other objective
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functions are used as constraints. Differently from other methods based
on combining the various objective functions into one single function
(such as the weighted sum method), this approach does not require an a
priori articulation of preference (Marler and Arora, 2004) from the
decision-makers and, by using different thresholds for the constraint,
yields a Pareto-optimal set of solutions. The effectiveness of the scalari-
zation method depends, however, on the capability of the embedded
single-objective optimization algorithm of handling the aforementioned
challenges, i.e. high-dimensional vectors of design variables coupled
with estimating performance through stochastic simulation. While
several simulation-based design optimization methods have been pro-
posed that can treat problems in high-dimensional uncertain spaces (e.g.
Zou and Mahadevan, 2006; Jensen et al., 2008; Taflanidis and Beck,
2009; Jensen et al., 2012; Jia and Taflanidis, 2013; Jia et al., 2015),
methods that can treat high-dimensional design spaces are very limited
(Valdebenito and Schu€eller, 2010). A method that can simultaneously
handle high-dimensional design and uncertain spaces together with
system-level probabilistic constraints has been proposed in (Suksuwan
and Spence, 2018a, b). However, the performance functions of the
aforementioned method are strictly limited to structural responses,
notwithstanding the need to translate structural behavior into loss
measures that are meaningful to the decision-makers and the society.

This work is focused on the development of a novel bi-objective
optimization framework that can handle problems involving system-
level probabilistic loss measures that are assessed in terms of fragility
functions, high-dimensional spaces of design variables, and uncertain
dynamic systems driven by stochastic wind excitation. The basic idea
behind the framework is to first reformulate the bi-objective optimiza-
tion problem through the ε-constraint approach. A new sequential
kriging-enhanced optimization model is then introduced for efficiently
solving each ε-constraint problem. Because the kriging-enhanced
sequential approximation scheme at the core of the sub-problem is
defined in the space of the second order statistics of the demand pa-
rameters, scalability to high-dimensional spaces of design variables and
random variables is achieved. An example of application to a large-scale
wind-excited system is presented to demonstrate the effectiveness and
efficiency of the proposed framework.

2. Problem setting

2.1. The bi-objective design optimization problem

The problem of interest to this work is the optimization of structural
systems subject to stochastic wind excitation, where two competing ob-
jectives are considered: the minimization of the initial cost and the
minimization of the anticipated wind-induced losses. The problem is
therefore to identify the solutions that represent the best trade-offs be-
tween these two needs. As such, it can be posed in the form of the
following bi-objective design optimization problem:

Find x ¼ fx1;…; xNgT
to minimize ½VðxÞ;LðxÞ�
subject to xn 2 Xn n ¼ 1;…;N

(1)

where x is a design variable vector containing the N deterministic pa-
rameters used to define the structural system (e.g. member sizes); V
represents a function associated with the initial cost of the structural
system (e.g. structural material volume); L is a function defining a
system-level loss measure for a windstorm of given intensity (e.g. the
expected value of the repair cost); and Xn is the set of values that the nth
component of the design variable vector can assume. Since the two ob-
jectives in Eq. (1) are competing, the optimization will provide a set of
Pareto-optimal solutions, i.e. solutions for which neither objective can be
improved further without degrading the other objective.

For the problems of interest to this work, the initial cost function V is
assumed deterministic and explicit in x, while the loss function L is

defined as a probabilistic function of an appropriate set of decision var-
iables which are uncertain. In general, to be applicable to practical
problems of interest, methods for solving Eq. (1) will have to be capable
of handling both high-dimensional design variable vectors as well as
high-dimensional spaces of random variables necessary for modeling the
multivariate stochastic wind loads.

2.2. Performance of wind-excited systems

In this work, the loss function L is defined as a probabilistic measure
of a decision variable DV, which can represent, for example, the repair
cost necessary to restore the full functionality of the system under a
windstorm of prescribed intensity. In particular, if im indicates the in-
tensity measure of the wind event, the loss function is here expressed as:

L ¼ E½DV jim� þ α � Std½DV jim� (2)

where E½DVjim� and Std½DV jim� are the expected value and the standard
deviation of DV, conditional on im, respectively, while α is a parameter,
with α � 0, which can be selected according to the desired robustness of
the design. In other words, α can be set to zero if the variability of the
decision variable is not important, while a larger α assigns more weight to
the variability, therefore resulting in a more robust design (Tootkaboni
et al., 2012).

The conditional mean and standard deviation of the decision variable
may be determined by solving the following integrals:

E½DV jim� ¼ ∭ dv � pðdvjdmÞ � pðdmjedpÞ � pðedpjimÞ � ddv � ddm � dedp (3)

Std½DV jim� ¼ �∭ ðdv� E½DV jim� Þ2 � pðdvjdmÞ � pðdmjedpÞ � pðedpjimÞ
� ddv � ddm � dedp �1=2 (4)

where E½�j �� and Std½�j �� are the operators of conditional expectation and
conditional standard deviation respectively; DM is the damage measure
indicating the damage state of the structural/nonstructural components
in the system (e.g. window cracking); EDP is the engineering demand
parameter associated with the occurrence of damage (e.g. inter-story
drift ratios); and pð�j �Þ indicates the conditional probability density
functions. In Eqs. (3) and (4) as well as in the rest of the paper, upper-case
letters will be used to indicate random variables and lower-case letters to
indicate their realizations.

As will be discussed later, for the problems of interest to this work,
analytical solutions to Eqs. (3) and (4) are not feasible. As a consequence,
for their solution it is generally necessary to resort to stochastic simula-
tion methods, which are generally computationally demanding, espe-
cially when finite element analyses of large-scale dynamic system are
involved. The repeated evaluation of the probabilistic measure of Eq. (2),
and therefore of these integrals, for different candidate designs when
solving the optimization problem of Eq. (1) further exasperates the
computational challenge of the problem at hand. To overcome this dif-
ficulty, an efficient bi-objective optimization method is here proposed
that is based on formulating single-objective design optimization prob-
lems that can be solved efficiently through a sequential kriging-enhanced
optimization approach, as will be outlined in Sec. 4. In the next section,
the performance assessment framework adopted to determine the
quantities appearing in Eqs. (3) and (4) for a given design x and intensity
im will be presented.

3. Performance assessment

The quantities appearing in Eqs. (3) and (4) can be estimated through
four separate tasks: structural and hazard analysis for the estimation of
the structural response parameters of interest (EDPs) given an intensity
im, damage and loss analysis for the assessment of the consequent system-
level decision variables DV. The models that are used to carry out these
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tasks are discussed in the following.

3.1. Structural and hazard analysis

3.1.1. Structural response model
In this work, the engineering demand parameters, EDPs – i.e. the

structural response parameters of interest – are defined as the non-
directional absolute maximum, over a windstorm of duration T, of the
structural response process rðtÞ:

edpðvH ; usÞ ¼ max
β2½0;2π�

�
max
t2½0;T �

fjrðt; vH ; β;usÞjg
�

(5)

where vH is the site-specific mean wind speed at the height of the
building, β denotes the wind direction, and Us is a vector containing
random variables used to describe the uncertainty in the structural
system.

For a linear system subject to aerodynamic wind loads, the response
process, rðtÞ, may be efficiently estimated through the following load-
effect model (Suksuwan and Spence, 2018a):

rðt; vH ; β; uSÞ ¼ s1½rBðt; vH ; βÞ þ rRðt; vH ; β; uSÞ �
¼ s1

�
ΓT
r fðt; vH ; βÞ þ ΓT

r KΦMqRM ðt; vH ; β; uSÞ
�

(6)

where S1 is a random variable modeling the epistemic uncertainty in
using the load-effect model and is an element ofUS; rBðtÞ and rRðtÞ are the
background and resonant components of rðtÞ; Γr is a vector of influence
functions, each giving the value of r due to a unit load acting at a certain
degree of freedom of the system; fðtÞ is the vector of the external aero-
dynamic loads acting on the system; K is the stiffness matrix of the sys-
tem; ΦM ¼ ½ϕ1;…;ϕM � is the mass normalized mode shape matrix
considering M modes; and qRM

ðtÞ ¼ fqR1 ðtÞ;…; qRM ðtÞgT is a vector con-
taining the first M resonant modal displacement response processes,
which may be estimated through modal analysis.

As can be seen from Eq. (6), in this approach,Mmodes are considered
in calculating the resonant component, while the background component
is directly estimated, and is therefore not affected by modal truncation.
The ith resonant modal response may be calculated as the difference
between the total and the background modal displacement responses as
follows:

qRi ðt; vH ; β;uSÞ ¼ qiðt; vH ; β;uSÞ � qBi ðt; vH ; β;uSÞ (7)

where qiðtÞ is the total modal response process while qBi ðtÞ is the back-
ground modal response process. To estimate, qiðtÞ, the following equa-
tion of motion can be solved:

€qiðtÞ þ 2s3iζis2iωi _qiðtÞ þ ðs2iωiÞ2qiðtÞ ¼ ϕT
i fðt; vH ; βÞ (8)

where the over-dot indicates a derivative with respect to time; ωi and ζi
are the modal circular frequency and damping ratio of the ith mode; S2i
and S3i are random variables modeling uncertainty in ωi and ζi respec-
tively, and are elements of Us. The background component, qBi ðtÞ, can be
estimated as:

qBi ðt; vH ; β;uSÞ ¼ 1

ðs2iωiÞ2
ϕT
i fðt; vH ; βÞ (9)

The aerodynamic wind loads fðtÞ appearing in Eqs. (6), (8) and (9) are
obtained through the stochastic wind load model presented in the
following section.

3.1.2. Stochastic wind load model
The intensity measure, IM, of the wind event is here taken as the

mean wind speed with mean recurrence interval (MRI) of y years, vy ,
extracted from the wind speed records at a suitable meteorological sta-
tion. The purpose of this model is to relate this intensity measure vy –

which is associated with an averaging time τ, the height above ground at
which measurements are taken Hmet , and the terrain roughness length z01
– to the mean wind speed vH , averaged over a time period T, at the
location of interest and at the height of the building H. To relate vy and
vH , a transformation of the following type can be used:

vH ¼ χ
�
T ;H; z0; vyðτ;Hmet ; z01Þ; uE

�
(10)

where z0 is the roughness length at the site of interest while UE is the
vector containing random variables modeling uncertainties in the
roughness lengths, averaging time conversion, modeling errors, sampling
and observational errors in wind speed collection, and uncertainties in
estimating vy . The specific transformation scheme adopted in this work
can be found in Appendix C.

In order to generate realizations of the stochastic wind loads fðtÞ for a
given vH and a wind direction β, a simulation model based on the spectral
proper orthogonal decomposition (POD) of wind tunnel pressure datasets
(Ruan et al., 2006; Kim et al., 2018) is adopted in this work. This allows
complex aerodynamic phenomena, such as vortex shedding, to be taken
into account in the response estimation. Following this model, the
aerodynamic wind loads fðtÞ are modeled as the superposition of Nf in-
dependent vector-valued subprocesses (Chen and Kareem, 2005; Li and
Kareem, 1993; Peng et al., 2017):

fðt; vH ; βÞ ¼
XNf

j¼1

f jðt; vH ; βÞ (11)

where the vector-valued subprocesses f jðtÞ are given by:

f jðt; vH ; βÞ ¼
X
l¼1

Nl�1 n���Ψjðωl; βÞ
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λjðωl; vH ; βÞΔω
q

� cos�ωlt þ ϑjðωl; βÞ

þ θlj
	o

(12)

where Δω is the frequency increment; ωl ¼ lΔω with Nyquist frequency
given by NlΔω; ϑj is a vector of complex angles whose kth component is
given by ϑjkðωlÞ ¼ tan�1ðImðΨjkðωlÞÞ=ReðΨjkðωlÞÞÞ; θlj is an independent
random variable characterizing the stochastic nature of the wind, uni-
formly distributed in [0;2π]; while ΛjðωlÞ andΨjðωlÞ are the eigenvalues
and eigenvectors of f jðtÞ. In particular, ΛjðωlÞ andΨjðωlÞ can be related to
the eigenvalues and eigenvectors of the scaled wind tunnel loads through
the relationship:

Λjðωl; vHÞ ¼
"


vH
vws

�2
#2


vws
vH

�
ΛðwsÞ

j ð~ωÞ (13)

ΨjðωlÞ ¼ ΨðwsÞ
j ð~ωÞ (14)

where vws is the mean wind speed at the top of the rigid model in the wind

tunnel test; ~ω ¼ ðvws=vHÞωl; while ΛðwsÞ
j ð~ωÞ and ΨðwsÞ

j ð~ωÞ are the eigen-
values and eigenvectors of the scaled wind tunnel loads, which are ob-
tained from solving the following eigenvalue problem:�
Sfws ð~ω; vws; βÞ � ΛðwsÞð~ω; vws; βÞI

�
ΨðwsÞð~ω; βÞ ¼ 0 (15)

where Sfws is the cross power spectral density matrix of the wind load
process estimated directly from the wind tunnel data collected at vws.

Importantly, once ΛðwsÞ
j ð~ωÞ andΨðwsÞ

j ð~ωÞ are obtained through solving Eq.
(15), they can be rapidly scaled to other wind speeds of interest through
Eqs. (13) and (14). This is fundamental for the efficiency of the model, as
it allows Eq. (15) to be solved only once at the wind tunnel speed vws.

For convenience, all the random variables used in generating the

stochastic wind loads fðtÞ are collected in the vector UW ¼ fUT
E ;U

T
θ g

T ,
where Uθ is the vector of the random variables θlj necessary for modeling
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the subprocesses of Eq. (12).

3.2. Damage and loss analysis

3.2.1. Damage model
Damage to a structural or nonstructural component occurs when the

demand on the component, expressed as the value assumed by a specific
engineering demand parameter EDP, exceeds the component's capacity.
In this work, all components that are susceptible to the same EDP are
grouped into a performance group (PG). Following this approach, the
total number of PGs will be indicated in the following as Ng . Given a
demand value edp, the probability of a damage state (DS) occurring for
each component of a PG may be determined through the corresponding
fragility function, defined as:

FrDSðedpÞ ¼ PðDSjedpÞ (16)

In the following, the discrete variable Dkj is used to indicate the
damage state of the jth component of the kth PG. In particular, given that
Ns damage states, i.e. ½DS1;…;DSNs �, are defined for the jth component of
the kth PG, Dkj ¼ i if the damage state is DSi, while Dkj ¼ 0 if no damage
occurs. In general, three possible logical relationships between damage
states may be assumed (Federal Emergency Management Agency
(FEMA), 2012a): 1) sequential (i.e. damage states occur in sequential
order); 2) mutually exclusive (i.e. occurrence of one damage state pre-
cludes another); and 3) simultaneous (i.e. two damage states can, but not
necessarily, occur at the same time). Since the vast majority of damage
states follow a sequential logic, it is assumed in this work. Therefore, with
DSiþ1 more severe than DSi, each component must enter DSi before
entering DSiþ1. Under these circumstances, the probability that the
component is in the ith damage state, given the demand parameter as-
sumes the value edp, can be obtained from the fragility functions as:

P
�
Dkj ¼ i

��edp	 ¼ PðDSijedpÞ � PðDSiþ1jedpÞ ¼ FrDSi ðedpÞ � FrDSiþ1 ðedpÞ
(17)

for i ¼ 0; 1;…;Ns, with FrDS0 ðedpÞ ¼ 1 and FrDSNsþ1 ðedpÞ ¼ 0. It should be
noted that while Eq. (17) is a widely used expression, it is only exact
when the fragility functions are lognormal distributions with the same
dispersion.

In practice, if uDkj is a realization of a random variable uniformly
distributed between 0 and 1, defined for the jth component of the kth PG,
then the damage state of that component can be identified as follows:

dkj ¼ i if FrDSiþ1 ðedpÞ < uDkj � FrDSi ðedpÞ (18)

In this work, the damage states of the components are assumed as
uncorrelated. Therefore, the random variables UDjk are taken as inde-
pendent and identically distributed. Before closing this section, it should
be noted, however, that this assumption, as well as the assumption on the
damage logic as sequential, is not a requirement for the optimization
approach that will be presented in this work. Having said this, consid-
eration of dependency between the damage states would significantly
complicate the damage and loss models, especially if higher order mo-
ments were considered.

3.2.2. Loss model
Once the damage state of the jth component of the kth PG is known,

the corresponding decision variable, dvkj, can be estimated as:

dvkj ¼ F�1
DVkj

�
uLkj
��dkj	 (19)

where uLkj is a random number uniformly distributed between 0 and 1
while FDVkj is the distribution function of DVkj with F�1

DVkj
ðuLkj

��dkj ¼ 0Þ ¼
0, i.e. the decision variable is zero in absence of any damage. The dis-
tributions FDVkj are termed consequence functions in the following.

The system-level decision variable can then be estimated as:

dv ¼
XNg

k¼1

dvk ¼
XNg

k¼1

XNk
c

j¼1

wkjdvkj (20)

where DVk is the decision variable associated with the kth PG, Nk
c is the

total number of components in the kth PG, while 0 � wkj � 1 are co-
efficients that take into account the economies of scale or, if DVk is a
repair time, the simultaneous or sequential nature of the repair actions.
Typically, if DVk is a repair cost, all the wkj can be assumed equal to one.

3.3. System-level loss statistics

In order to estimate the second order statistics, E½DV� and Std½DV�, of
the system-level decision variable, DV, it is first convenient to take
advantage of the linear structure of Eq. (20) and relate E½DV� and Std½DV �
to the second order statistics of the decision variables associated with
each PG as follows:

E½DV � ¼
XNg

k¼1

μDVk
(21)

Std½DV � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNg

k¼1

XNg

m¼1

ρkmσDVkσDVm

vuut (22)

where μDVk
is the expected value of the decision variable associated with

the kth PG (i.e. the expected value of the decision variable due to damage
to the components of the kth PG); ρkm is the correlation coefficient be-
tween DVk and DVm; while σDVk and σDVm are the standard deviations of
DVk and DVm respectively. Equations (21) and (22) illustrate how the
estimation of E½DV � and Std½DV � require the estimation of μDVk

, σDVk , and
ρkm. Approaches to this end will be discussed below.

3.3.1. Analytical approach
The second order statistics μDVk

, σDVk and ρkm can be estimated
analytically through writing them in terms of the laws of total expecta-
tion and variance as:

μDVk
¼ E

h
μDVk jEDPk

i
(23)

σDVk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
h
σ2
DVk jEDPk

i
þ Var

h
μDVk jEDPk

ir
(24)

ρkm ¼
Cov

h
μDVk jEDPk ; μDVm jEDPm

i
σDVkσDVm

(25)

where μDVkjEDPk and σ2DVkjEDPk are the conditional expected value and

variance of DVk given EDPk, respectively; while μDVm jEDPm is the condi-
tional expected value of DVm given EDPm. Because for the loss model of
Sec. 3.2 the conditional statistics μDVk jEDPk and σ2DVk jEDPk can be estimated

through analytical functions, see (Baker and Cornell, 2008), Eqs.
(23)-(25) can be solved exactly. Unfortunately, the aforementioned
functions are nonlinear. This implies that the exact solution to Eqs.
(23)-(25) requires the numerical resolution of the following expressions:

μDVk
¼
Z ∞

�∞
gNLμ ðedpkÞ � fEDPk ðedpkÞdedpk (26)

σDVk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ∞

�∞

�
gNLσ2 ðedpkÞ þ



gNLμ ðedpkÞ � μDVk

�2�
� fEDPk ðedpkÞdedpk

s
(27)
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where gNLμ and gNLσ2 are the nonlinear functions describing μDVi jEDPi and

σ2DVi jEDPi in terms of edpi; fEDPk is the marginal probability density function

(pdf) of EDPk; while fEDPk ;EDPm is the joint probability density function
(jpdf) between EDPk and EDPm.

Two fundamental difficulties arise in solving Eqs. (26)-(28). Firstly, as
the number of demands parameters, EDPk, increases, the numerical effort
involved in solving Eqs. (26)-(28) quickly increases. Secondly, the mar-
ginal and joint pdfs, fEDPk and fEDPk;EDPm , of the random vector EDP are not
known a priori for the problems of interest to this work. Therefore,
implementation of the analytical scheme of this section would require
additional analysis (e.g. stochastic simulation) for the identification of
the marginal and pair-wise joint pdfs of EDP.

3.3.2. Monte Carlo simulation
In alternative to the analytical approach, samples of the group-level

decision variables, DVk, can be directly simulated according to the
damage and loss analysis scheme of Sec. 3.2. In particular, if all random
variables introduced in the preceding sections are gathered in a vector

U ¼ fUT
S ;U

T
W ;UT

D;U
T
L g

T , where UD and UL are vectors collecting all
random variables UDkj and ULkj, respectively, the expected value and the
standard deviation of a variable Q (e.g. the decision variable DVk, or the
demand parameter EDPk), given a value of the intensity measure vy , may
be estimated as:

E
�
Q
��vy� � 1

Ns

XNs

i¼1

q
�
uðiÞ; vy

	
(29)

Std
�
Q
��vy� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns � 1

X
i¼1

Ns �
q
�
uðiÞ; vy

	� E
�
Q
��vy�	2

vuut (30)

where Ns is the total number of samples used in the simulation, and uðiÞ is
the ith realization of vector U. Also, the correlation coefficient between
any two variables Qj and Qk can be found from the samples as:

Rho
�
Qj;Qk

��vy� � 
 1
Std
�
Qj

��vy� �Std�Qk

��vy�
�

1
Ns � 1

XNs

i¼1

�
qj
�
uðiÞ; vy

	
� E

�
Qj

��vy� 	�qk�uðiÞ; vy
	� E

�
Qk

��vy� 	 (31)

In general, for the problems of interest to this work (i.e. problems
with high-dimensional vectors of dependent demands with unknown
marginal and pair-wise joint pdfs), this approach is considerably more
efficient than the analytical approach outlined in Sec. 3.3.1.

4. Proposed solution strategy

This section proposes a novel framework for solving the bi-objective
design optimization problem of Eq. (1) with performance objectives
defined in terms of the probabilistic loss measures posed in Eq. (2)
calculated according to the models of Sec. 3. The framework is based on
using the ε-constraint approach to reformulate the bi-objective problem
as a series of single-objective problems that can then be efficiently solved
through the sequential kriging-enhanced optimization strategy that will
be developed in this work.

4.1. The ε-constraint formulation

By following the ε-constraint approach, the bi-objective optimization

problem of Eq. (1) is reformulated by transforming the loss objective into
a constraint. Under these conditions, the optimization problem takes the
form:

Find x ¼ fx1;…; xNgT
to minimize VðxÞ
subject to LðxÞ ¼ E½DVðxÞ� þ αStd½DVðxÞ� � L0

xn 2 Xn n ¼ 1;…;N

(32)

where L0 represents a predefined loss threshold while the constraint
LðxÞ � L0 is the ε-constraint. In Eq. (32) and in the following, condi-
tioning on the intensity measure is dropped for simplicity of notation. It
should be noted that the proposed framework is equally applicable for
problems formulated as a minimization of L subject to a constraint on V.
Through solving a series of ε-constraint optimization problems (which
are now single-objective) for different values of L0, i.e. for L0 ¼ L10;L

2
0;…;

LNε
0 , a set of Pareto optimal solutions (x1; …; xNε ) for the bi-objective

optimization problem of Eq. (1) is determined.

4.2. The decoupling strategy: overview

To efficiently solve each of the ε-constraint problems of Eq. (32), for
each value of L0, it is here proposed to formulate and solve a sequence of
sub-problems for which an approximation of the loss constraint is utilized
in lieu of the actual constraint. This will be accomplished in two steps.
First, an approximation scheme is developed to describe the relationship
between the statistics of DV appearing in the constraint (E½DV� and
Std½DV�) and the statistics of the demand parameters of the various PGs
(μEDPk and σEDPk ). Then, the Auxiliary Variable Vector (AVV) strategy will
be used to find a relationship between μEDPk and σEDPk and the design
variables x. Since both the approximation scheme and the AVVs can be
defined, as explained in the following, based on the results of a single
simulation carried out in a fixed design point, only one simulation is
needed for the formulation and solution of each sub-problem, hence the
efficiency and scalability of the proposed approach. In order to treat the
inherent approximations of the approach, a sequence of sub-problems are
solved, each formulated in the solution of the previous problem, until the
solutions of two successive sub-problems coincide. Because each sub-
problem is exact in the point of formulation, this process ensures solu-
tions to the original problem are found.

4.3. The approximation scheme

4.3.1. The basis of the scheme
In order to treat high-dimensional problems, the variation in the

demand parameters generated by a change in the design variables x is
modeled through the AVV approach and therefore in terms of variations
in the second order statistics, μEDPk and σEDPk , of the demands. As dis-
cussed in Sec. 3.3.1, because the relationship between the decision var-
iables and the demand parameters is nonlinear, any variation in μEDPk and
σEDPk cannot be directly mapped to the changes in the second order sta-
tistics of the decision variables. To overcome this, a scheme is here
introduced for approximately modeling how the demand samples ob-
tained from aMonte Carlo simulation carried out in ~x change as μEDPk and
σEDPk vary due to a change in the design vector. This enables E½DVk� and
Std½DVk� of each PG to be approximately estimated through the stochastic
simulation model of Sec. 3.3.2.

With this in mind, consider a set of samples fedp1k ;…; edpNs
k g, evalu-

ρkm ¼
R∞
�∞

R∞
�∞ gNLμ ðedpkÞ � gNLμ ðedpmÞ � fEDPk ;EDPm ðedpk; edpmÞdedpkdedpm � μDVk

μDVm

σDVkσDVm

(28)
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ated in ~x, with associated mean and standard deviation of μEDPk ð~xÞ and
σEDPk ð~xÞ. As the design point changes from ~x to x, a set of adjusted

samples fedp1k ;…;edp
Ns

k g, whose mean and standard deviation have been
updated to μEDPk ðxÞ and σEDPk ðxÞ, can be conveniently generated by
transforming the samples obtained in ~x as follows:

edp
i
kðxÞ ¼

σEDPk ðxÞ
σEDPk ð~xÞ

�
edpikð~xÞ � μEDPk ð~xÞ

	þ μEDPk ðxÞ i ¼ 1;…;Ns (33)

The validity of the transformation of Eq. (33) can be traced back to

how, for the problems of interest to this work, the reduced variate gik ¼

edpik � μEDPk

�.
σEDPk can be considered independent of the design vari-

ables x (e.g. Suksuwan and Spence, 2018b). Because the transformation
of Eq. (33) is invariant with respect to this reduced variate, i.e. gik ¼ gik,
Eq. (33) provides an accurate means to generate a sample set of demands
that is consistent with changes in μEDPk and σEDPk generated by a change in
x and modeled through the AVV approach. From the adjusted set of

demand samples fedp1k ;…; edp
Ns

k g, the corresponding second order PG
statistics μDVk

, σDVk and ρkm can be estimated through the Monte Carlo
scheme of Sec. 3.3.2, from which E½DV� and Std½DV� of the system-level
constraint of Eq. (32) can then be evaluated through Eqs. (21)-(22).

While the transformation of Eq. (33) enables the use of the AVV
approach, and therefore eliminates the need to propagate uncertainty
through the large-scale and dynamic finite element models character-
izing the structural system, the evaluation of the E½DV� and Std½DV� still
requires the implementation of the Monte Carlo scheme of Sec. 3.3.2 for
each change in the design variable vector x. Because in general optimi-
zation algorithms require hundreds, if not thousands, of calls to the
objective/constraint functions during the optimization process, this can
lead to significant computational slowdowns during the optimization
process.

4.3.2. The metamodels
To enhance the computational efficiency of the approximation

scheme, it is here proposed to fully decouple the approximation from the
Monte Carlo scheme of Sec. 3.3.2 through the use of kriging metamodels.
This will provide a deterministic mapping between the second order
statistics of group-level decision variables (μDVk

and σDVk ) and the second
order statistics of demand parameters (μEDPk and σEDPk ). Because kriging
metamodels are extremely cheap to evaluate, this approach can signifi-
cantly speed up the internal iterations of the optimization algorithm (e.g.
by two orders of magnitude for the optimality criteria algorithm of the
case study of Sec. 5) as compared to the direct implementation of the
approximation scheme.

From Eqs. (21) and (22), it can be seen that in order to develop a
deterministic mapping between E½DV� and Std½DV� and the second order
statistics of the demands, metamodels that relate μDVk

and σDVk to μEDPk
and σEDPk , as well as ρkm to μEDPk , σEDPk , μEDPm and σEDPm , are required.
However, if it is assumed that ρkm is only weakly dependent on the design
variables x, then only the first set of metamodels are needed. The general
validity of assuming ρkm only weakly dependent on x can be understood
by recognizing how the design variables are independent of the statistical
properties of the basic random variables. Therefore, a change in design
variables cannot significantly alter the statistical dependency between
the decision variables of the PGs. Given their versatility, ordinary kriging
metamodels (Sack et al., 1989; Forrester Keaneet al., 2008) are adopted
in this work for developing the deterministic mapping. Before
continuing, it should be observed that the metamodels developed in this
section are approximate as they are built in terms of the approximation
scheme of Sec. 4.3.1. However, construction of exact metamodels is not
possible as it would require the knowledge of the marginal distributions
of the demand vector EDP which, as discussed in Sec. 3.3.1, are not
known a priori.

Sampling plan and calibration points. In order to calibrate the kriging

metamodels bμDVk
ðμEDPk ; σEDPk Þ and bσDVk ðμEDPk ; σEDPk Þ, Np of observations

of μDVk
and σDVk are required at a series of points (support points) of

coordinates ðμð1ÞEDPk ðxÞ; σ
ð1Þ
EDPk ðxÞÞ;…; ðμðNpÞ

EDPk ðxÞ; σ
ðNpÞ
EDPk ðxÞÞ. The observations

corresponding to the pth support point are indicated in the following as

μðpÞDVk
¼ μDVk

ðμðpÞEDPk ; σ
ðpÞ
EDPk Þ and σðpÞDVk

¼ σDVk ðμðpÞEDPk ;σ
ðpÞ
EDPk Þ.

By carrying out a Monte Carlo simulation in the design point ~x
through the algorithm of Sec. 3, μEDPk ð~xÞ, σEDPk ð~xÞ as well as μDVk

ð~xÞ,
σDVk ð~xÞ may be directly estimated from Eqs. (29) and (30). The point of
coordinates ðμEDPk ð~xÞ; σEDPk ð~xÞÞ can therefore be chosen as the first sup-
port point of the metamodels, for which the corresponding observations

are μð1ÞDVk
ð~xÞ (for the metamodel bμDVk

), and σð1ÞDVk
ð~xÞ (for the metamodelbσDVk ). The coordinates ðμðpÞEDPk ð~xÞ; σ

ðpÞ
EDPk ð~xÞÞ, for p ¼ 2; …; Np, of the

remaining ðNp � 1Þ support points are then generated over a domain
centered around this first support point through optimal Latin hypercube
sampling (Morris and Mitchell, 1995). To obtain the corresponding ob-

servations of μðpÞDVk
and σðpÞDVk

for p ¼ 2; …; Np, the simulation-based
approximation scheme of Sec. 4.3.1 can be invoked. The Np observa-

tions are then collected in the vectors μDVk
¼ fμð1ÞDVk

;…; μðNpÞ
DVk

gT and σDVk ¼
fσð1ÞDVk

;…; σðNpÞ
DVk

gT which will be used, as explained in the following, for the
calibration of the two kriging metamodels bμDVk

and bσDVk .
Kriging prediction model. In this section, since the kriging model

formulation is the same for bμDVk
and bσDVk , the symbol y will be used to

indicate either μDVk
or σDVk so to avoid unnecessary repetition. Given a set

of observations at the points of the sampling plan, y, a kriging prediction
of the function yðμEDPk ; σEDPk Þ is given by:

by�μEDPk ; σEDPk 	 ¼ bm þΩT
�
μEDPk ; σEDPk

	
R�1



y� 1bm� (34)

where by represents the kriging prediction of y; bm is the maximum like-
lihood estimator of the mean of the random field defined by taking y as a
realization of a Gaussian process; Ω is an Np � 1 vector collecting the
basis functions that depend on μEDPk and σEDPk ; and R�1ðy� 1bmÞ are the
weights assigned to the basis functions with 1 denoting the Np � 1 unit
vector. In particular, in definingΩ andR, a square exponential function is
here assumed for the correlation function, as:

Corr
h
y


μðiÞEDPk ; σ

ðiÞ
EDPk

�
; y


μðjÞEDPk ; σ

ðjÞ
EDPk

� i
¼ exp

h
�


θμ
���μðiÞEDPk � μðjÞEDPk

���2 þ θσ
���σðiÞ

EDPk � σðjÞ
EDPk

���2 � i (35)

where θμ and θσ are the parameters of the kriging metamodel. Based on
the correlation functions of Eq. (35), the ith basis function is derived as:

Ωi

�
μEDPk ; σEDPk

	 ¼ Corr
h
y


μðiÞEDPk ; σ

ðiÞ
EDPk

�
; y
�
μEDPk ; σEDPk

	i
(36)

while the element of the ith row and jth column of R is given by:

Rij ¼ Corr
h
y


μðiÞEDPk ; σ

ðiÞ
EDPk

�
; y


μðjÞEDPk ; σ

ðjÞ
EDPk

�i
(37)

Having defined R, bm may be obtained from the following expression:

bm ¼ 1TR�1y
1TR�11

(38)

4.4. The auxiliary variable vectors

The approximation scheme Sec. 4.3 provides a means to relate
changes in the second order statistics of the decision variables associated
with each PG with changes in the second order statistics of the demand
parameters, i.e. μEDPk and σEDPk . As already mentioned, in order to relate
these last to changes in the design variables x, the concept of auxiliary
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variable vectors (AVVs) (Spence et al., 2016) is leveraged in this work.
To this end, consider a design point ~x in which the Monte Carlo

scheme of Sec. 3.3.2 has been carried out with the aim of evaluating the
performance of the system in ~x. Through the augmentation of the simu-

lation process reported in Appendix A, the AVVs, indicated as bϒkð~xÞ and
�ϒkð~xÞ, can be defined in ~x for each PG. The interest in defining the AVVs
lies in how it has been shown that they are insensitive to any changes of
the design variables around ~x (e.g. Spence et al., 2016; Bobby et al.,
2017). This fundamental property allows the following approximate re-
lationships to be introduced for estimating μEDPk and σEDPk for a point x
that differs from ~x:

μEDPk ðxÞ � bμEDPk ðxÞ ¼ ΓT
rk
ðxÞbϒkð~xÞ (39)

σEDPk ðxÞ � bσEDPk ðxÞ ¼ ΓT
rk
ðxÞ�ϒkð~xÞ (40)

where Γrk is the vector of influence functions whose ith component gives
the response in EDPk due to a unit load applied at the ith degree of
freedom of the system, i.e. the influence functions of the load effect
model of Eq. (6).

4.5. Formulation and solution of the sub-problem

Once a full Monte Carlo simulation is carried out in the current design
point ~x, the decoupled approximation scheme can be constructed as
outlined in Sec. 4.3.2 and the AVVs can be defined to obtain the re-
lationships illustrated in Sec. 4.4. This allows the following ε-constraint
optimization sub-problem to be formulated:

Find x¼fx1;…;xNgT
tominimize VðxÞ
subject to bLðxÞ ¼XNg

k¼1

bμDVk

�bμEDPk ðxÞ;bσEDPk ðxÞ
	

þα

"XNg

k¼1

XNg

m¼1

~ρkmbσDVk

�bμEDPk ðxÞ;bσEDPk ðxÞ
	 �bσDVm

�bμEDPm ðxÞ;bσEDPm ðxÞ
	#1=2 � L0

xn 2Xn n¼ 1;…;N

(41)

where ~ρkm is the correlation coefficient between DVk and DVm evaluated
in ~x.

Due to the explicit and computationally cheap nature of the ε-
constraint in this problem formulation, any gradient/non-gradient opti-
mization algorithm can be used for its solution. In particular, in this
work, the pseudo-discrete optimality criteria (OC) algorithm (Chan et al.,
1995) is adopted. The derivation of the sensitivities necessary for the
implementation of the algorithm is reported in Appendix B.

For implementation purposes within the algorithm illustrated in the
following section, besides the occurrence of convergence, if, during the
search for the optimal point, the OC algorithm considers a candidate
point xwhose corresponding values of μEDP and σEDP are at the edge of the
domain of the metamodels, the algorithm is terminated and the last
candidate point is used as output.

4.5.1. Adaptive sequential optimization algorithm
The solution of the optimization sub-problem of Eq. (41) will in

general be affected by the approximations that were introduced in the
formulation of the ε-constraint, i.e. by the fact that the sub-problem is
exact only in the design point in which both the approximation scheme
and the AVVs are derived. Hence, the optimal point found will in general
be different from the optimal point of the original ε-constraint problem of
Eq. (32). To obtain an exact solution to the original ε-constraint problem,
sequential optimization strategies have been seen to be effective (e.g. Du
and Chen, 2004; Schu€eller and Jensen, 2008). Therefore, in this work, a

sequential optimization algorithm is developed, consisting in solving a
series of sub-problems, of the kind outlined in Eq. (41), each formulated
in the solution of the previous sub-problem, until convergence is reached,
i.e. until the solution points of two consecutive design cycles coincide,
within a set tolerance. Each formulation and solution of a sub-problem is
termed a design cycle (DC). At convergence, since both the approxima-
tion scheme and the AVVs are exact in the point where the sub-problem is
formulated, the ε-constraint – and therefore the solution – is not affected
by any approximations. In addition, at each design cycle, an adaptive
strategy is adopted for formulating the approximation scheme, which
takes advantage of the information gathered in the previous design cycle
about the most promising region of the search space. This adaptivity
results in a more accurate prediction in the region around the current
design point and ultimately in a faster convergence.

The proposed adaptive sequential optimization algorithm can be
summarized as follows:

1. Initialization: set DC¼ 1 and ~x ¼ x0 with x0 denoting the initial
design; generate an optimal sampling plan with Np points, including
the central point. The sampling plan is indicated as a set of pointsH ¼
fðzð1Þ1 ; zð1Þ2 Þ; …; ðzðNpÞ

1 ; zðNpÞ
2 Þg, where ðz1; z2Þ are normalized

coordinates.
2. Run a Monte Carlo simulation in ~x and calculate the first (central)

support point of the metamodels ðμð1ÞEDPk ð~xÞ;σ
ð1Þ
EDPk ð~xÞÞ, for each PG, i.e.

k ¼ 1;…;Ng .

3. Set the limits of the search domain as ½ð1� δμÞμð1ÞEDPk ; ð1þ δμÞμð1ÞEDPk � �
½ð1� δσÞσð1ÞEDPk ;ð1þ δσÞσð1ÞEDPk �, where δμ and δσ are assumed equal to 0.8
for the first DC and 0.5 for the following DCs. Scale the normalized
sampling plan H to the adaptive search domain in the space of μEDPk
and σEDPk centered at ðμð1ÞEDPk ð~xÞ;σ

ð1Þ
EDPk ð~xÞÞ.

4. Determine the calibration points of the metamodels, μDVk
and σDVk

(Sec. 4.3.2). Construct the kriging metamodels (Sec. 4.3.2), calculate
the AVVs (Sec. 4.4) and formulate the sub-problem in ~x of Eq. (41).

5. Solve the sub-problem until convergence or termination, therefore
defining xðDCÞ (optimal point, in case of convergence, or last point, in
case of termination) and VðDCÞ ¼ VðxðDCÞÞ.

6. Check for convergence: if jV ðDCÞ � V ðDC�1Þj < δ1V ðDC�1Þ, end optimi-
zation with xðDCÞ as the final design; otherwise, set ~x ¼ xðDCÞ, DC ¼
DCþ 1, and return to Step 2.

In order to increase the efficiency of the algorithm, if, when returning

to Step 2 at the end of a given DC, the change in μð1ÞEDPk ð~xÞ and the change

in σð1ÞEDPk ð~xÞ, for k ¼ 1;…;Ng , are less than a value δ2 with respect to the
same quantities at the previous DC, then only the central point of the

sampling plan, i.e. the point of coordinates ðμð1ÞEDPk ð~xÞ;σ
ð1Þ
EDPk ð~xÞÞ, is updated

in Step 4 (Step 3 is therefore unnecessary). This eliminates the need to
evaluate μDVk

and σDVk at other support points and therefore results in an
increased efficiency.

5. Application

The example presented in this section illustrates how the proposed bi-
objective optimization approach can be efficiently applied to a large-
scale structural system to find optimal designs that minimize the mate-
rial volume of the structural system and the system-level wind-induced
total losses, under a wind with a 1700-year MRI. In particular, the total
losses are expressed in terms of a DV which is assumed to be the total
repair cost. Since the cladding system plays a fundamental role in
defining the performance of wind-excited systems, total losses associated
with damage to this system due to excessive structural response will be
considered as the DV.
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5.1. Structural model

The large-scale structural system, shown in Fig. 1, consists in a 37-
story rectangular building. The first story height is 6m while the other
stories are 4m high, resulting in a total height of 150m. The total width
and total depth of the system are 30m and 60m, respectively. In this
example, one of the two identical X-direction lateral load-resisting frames
of the 3-dimensional steel tube system is to be designed. The beams and
columns of the X-direction load-resisting frames are grouped symmetri-
cally with respect to the vertical central line as shown in Fig. 1(c). All
beams are chosen to belong to the family of AISC (American Institute of
Steel Construction) W24 steel profiles (i.e. a complete list fromW24� 55
to W24� 492 is considered). All columns are square box sections defined
by mid-line diameters, bi, that must belong to the discrete set {0.20m,
0.21m, …, 3.99m, 4.00m}, while the wall thickness is given by bi=20.
This grouping scheme results in a total of 259 design variables. In the
initial design, the profile W24� 176 is assigned to all beams, while a
mid-line diameter of 0.60m is used for all the columns. The floor systems
are assumed to be rigid diaphragms with area density of 0.1 t/m2. In
estimating the resonant response, the first three modes were considered,
with the mean circular frequencies of the initial design being ω1 ¼ 1:02
rad/s, ω2 ¼ 3:25 rad/s, and ω3 ¼ 6:02 rad/s. The mean modal damping
ratios were taken as 1.5%. The distributions of the uncertain parameters
of the vectorUs associated with the response estimation (Eqs. (6), (8) and
(9)) are reported in Table 1.

5.2. Hazard and wind model description

The building is assumed to be located in the Miami area of Florida,

USA. In modeling the hurricane wind hazard, the dataset of milepost
1450 (i.e. Miami) of the hurricane database provided by the National
Institute of Standards and Technology (NIST) was considered (National
Institute of Standards and Technology, 2016). The wind speeds of the
dataset were obtained with an averaging time τ ¼ 60 s, roughness length
z01 ¼ 0:05 m, and height at meteorological station Hmet ¼ 10 m. In
transforming samples of vy into samples of wind speeds at the site of
interest, vH , the transformation scheme provided in Appendix C was
used, with averaging time T ¼ 3600 s, roughness length at the site of
interest z0 ¼ 2 m, and distribution of the random parameters reported in
Table C.3. In calibrating the data-driven stochastic wind load model of
Sec. 3.1.2, datasets of synchronously measured pressures obtained from
the Wind Pressure Database of the Tokyo Polytechnic University (TPU)
(Tokyo Polytechnic University, 2008) were utilized. In this example, the
datasets corresponding to wind blowing down the X and Y directions (i.e.
alongwind and acrosswind actions) were considered. The wind tunnel
tests were carried out on a 1:300 scale model with a mean wind speed at
the top of the rigid model of 11m/s. A total number of 510 pressure taps
were used, with a signal length of 32 s with sampling frequency of
1000Hz. In calculating the wind loads acting on each frame, 1/2 of the
X-direction load was considered for each wind direction, while the first
six POD spectral modes of the integrated and scaled loads were consid-
ered in this example.

5.3. Loss model

A midrise stick-built curtain wall is considered forming the building
envelope. Cladding components are susceptible to damage due to inter-
story drift, therefore the maximum inter-story drift ratio in the plane of
the panel is assumed as EDPk. As a result, all cladding components of the
same floor are grouped in the same PG, for a total of 37 PGs each con-
sisting of 60 components. Three sequential damage states are defined for
all components; the suite of fragility curves with associated consequence
functions were obtained from the fragility database of FEMA (Federal
Emergency Management Agency (FEMA), 2012b) and are reported here
for convenience in Table 2.

Fig. 1. Layout of the example structure: (a) plan view; (b) 3D view; (c) beam and column group assignments for one of the X-direction moment-resisting frames.

Table 1
Marginal distributions for the components of the vector US.

Variable Mean C.O.V. Distribution Ref.

S1 1 0.025 Trunc. Normal Minciarelli et al. (2001)
S2i 	 1 0.3 Lognormal Bashor et al. (2005)
S3i 	 1 0.01 Lognormal Bashor et al. (2005)

* for.i ¼ 1;…;M
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5.4. Optimization

The values of the limit L0 used in the ε-constraint formulation of Eq.
(32) were set to $100000, $250000, $400000, $700000, $1000000.
Various levels of robustness were investigated by varying the value of
parameter α (α ¼ 0; 1;2Þ. A number Ns ¼ 8000 of samples were used in
the Monte Carlo simulation. In implementing the proposed optimization
framework, δ1 was set to 10�6 and δ2 was set to 0.02. The discrete
optimization scheme outlined in (Chan et al., 1995) was adopted for
solving the sub-problems, due to the discrete nature of the design
variables.

5.5. Results and discussion

Fig. 2 shows sets of Pareto optimal points, in the space of the two
objectives V and L, associated with different levels of robustness (i.e.
values of α). Since three values of α have been considered, and the ε-
constraint optimization was run for five values of ε, a total of 15 designs
were obtained. As expected, for a given value of α, the probabilistic loss
measure under a wind with MRI of 1700 years is higher for a lower initial
cost (i.e. less material volume), while, given a certain loss measure, a
higher initial cost (i.e. a heavier system) is required if a higher value of α
(i.e. a more robust structure) is chosen.

It can be observed that α is directly related to the probability of
exceeding any given loss threshold L0. Indeed, an increase in α corre-
sponds to reducing the overall response of the system, and therefore the
probability of exceeding any given L0. To estimate this probability for a
given value of α and L0, the Ns samples of the final Monte Carlo simu-
lation carried out in solving the optimization problem of Eq. (32) through
the proposed algorithm of Sec. 4.5.1 can be used to evaluate the
following expression:

PðDV > L0jv1700Þ ¼ 1
Ns

X
i¼1

Ns

Ii
�
uðiÞ; v1700

	
(42)

where Ii is an indicator function that assumes the value 1 if dvðuðiÞ; v1700Þ
� L0 and 0 otherwise. By evaluating Eq. (42) for each of the 15 Pareto-
optimal configurations of Fig. 2, the system-level failure probabilities
shown in Fig. 3 are obtained. The practical significance of Fig. 3 is that
not only does it provide a more complete picture of the system's perfor-
mance, it also provides a means for decision-makers to identify which
value of α to consider in choosing an optimal trade-off solution. For
example, if the stakeholders' performance objective of interest is to
achieve designs with less than a 3% probability of exceeding $500000 of
repair cost for a 1700-year MRI windstorm, then, from the linearly
interpolated dotted lines of Fig. 3, a value of approximately α ¼ 1:65
should be considered. Once the value of α is identified, an additional
constrained optimization with α ¼ 1:65 and L0 ¼ $500000 can be run to
check the effective failure probability and to identify the set of design
variables defining the optimal trade-off solution. For this example, this
corresponds to design #16, which, as indicated in Fig. 3, has a failure
probability of 2.63%. This examples illustrates how Figs. 2 and 3 provide
an effective and concise system-level decision space for identifying
optimal trade-off solutions. It should be observed that the accuracy of the
interpolated results can be increased as desired by increasing the number
of loss thresholds considered in the ε-constraint problem as well as the
number of steps in the range considered for α.

5.5.1. Numerical performance of the ε-constraint solution strategy
To illustrate the performance of the sequential optimization algo-

rithm of Sec. 4.5.1, Figs. 4 and 5 show the convergence histories of the
two objective functions, material volume and loss respectively, for design
#9. The efficiency of the proposed method is apparent from the limited
number of design cycles required to obtain convergence. Indeed, it can be
seen that a design that satisfies the constraint was obtained after only
three design cycles, with the remaining design cycles fine-tuning the
objective function of the ε-constraint problem. Fig. 5 shows the com-
parison between the approximate and exact loss values at the end of each
design cycle. As can been seen, notwithstanding the significant changes
in loss in the first couple of design cycles, the approximation scheme
introduced in this work proved effective with rapid and steady conver-
gence to the exact value. Similar results were seen for all 16 of the design
points of Figs. 2 and 3.

To illustrate the adaptive updating of the kriging metamodels during
the optimization process, Figs. 6 and 7 report the kriging models con-
structed for μDVk

and σDVk during the resolution of the ε-constraint
problem associated with design #9 and performance group k ¼ 22. The
largest kriging surfaces of Figs. 6 and 7 correspond to the first designFig. 2. Pareto fronts of optimal points in the space of the objective functions for

different values of the parameter α.

Fig. 3. Probability of exceedance of the loss threshold L0 for various Pareto-
optimal designs. Target point with PðDV > $500000jv1700Þ ¼ 0:03 and point
obtained by running simulation #16, with α ¼ 1:65, are also shown.

Table 2
Parameters of the fragility and consequence functions in terms of repair cost. All
fragility functions are lognormal.

DS Description Fragility Functions Repair Cost

μf βf μc [$] βc

1 Gasket seal failure 0.0260 0.25 2055 0.1668
2 Glass cracking 0.0268 0.25 2364 0.1185
3 Glass falling out 0.0339 0.25 2955 0.1185
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cycle and allow a global search of the design space, while the smaller
surfaces correspond to the updating scheme that adaptively concentrates
the solution efforts to the region around which the first candidate solu-
tion was identified. The overall quality of the initial kriging models can

be clearly seen from the strong correspondence between the kriging
models constructed in design cycles successive to the first. Similar results
were seen for all PGs.

Finally, it should be observed that from a theoretical standpoint, the
proposed approach could treat multiple probabilistic objectives. Indeed,
the approximation scheme of Sec. 4.3 and the AVVs of Sec. 4.4 can be
simultaneously applied to more than one probabilistic objective.
Because, after approximation, both the objective and constraint functions
are deterministic from the perspective of the sub-problem of Eq. (41), the
sequential solution strategy of Sec. 4.5.1 would (after appropriate nota-
tion changes) be equally applicable. Therefore, as long as the probabi-
listic objective can be described through loss and damage models of the
type outlined in this work, there is no theoretical reason that the
approach could not be applied to problems involving two probabilistic
objectives.

Before closing this section, it should also be observed that, while this
work was based on using kriging metamodels for defining the functions
μDVk

�
μEDPk ; σEDPk

	
and σDVk

�
μEDPk ; σEDPk

	
(i.e. the functions between the

second order moments of the group losses and the second order moments
of the group demands), alternative approaches could be considered. In
particular, future developments of this work will focus on defining new
mappings that seek to take advantage of the analytic expressions that can
be derived for the conditional moments μDVk jEDPk and σDVkjEDPk .

6. Conclusions

This paper presented an efficient bi-objective design optimization
framework for uncertain wind-excited systems. Two competing objec-
tives were considered: the material volume of the structure, which is
associated to the initial cost, and a system-level probabilistic measure of
the anticipated wind-induced losses of the system under wind events of
prescribed intensities. The challenge in defining such a framework lies in
the necessity of using stochastic simulation-based performance assess-
ment frameworks within a bi-objective optimization written in terms of
high-dimensional vectors of design variables. To overcome this chal-
lenge, a framework is proposed based on reformulating the original
problem into a series of single-objective problems through the ε-
constraint approach. To efficiently solve each ε-constraint problem, a
sequential kriging-enhanced optimization scheme is introduced that is
based on decoupling the probabilistic performance assessment from the
optimization problem. This is achieved through the introduction of a
high-quality optimization sub-problem that is defined in terms of kriging
metamodels and a set of auxiliary variable vectors. The fundamental
property of the sub-problem is that it can be fully constructed from the
results obtained from a single run, in a fixed point of the design space, of
the simulation-based performance assessment model. This ensures the
scalability of the sub-problem to high-dimensional spaces of design

Fig. 5. Convergence history of the objective function L for design #9 (α ¼ 1,

ε ¼ $700000). The approximate value of L, bL, is also shown.

Fig. 6. Example of adaptively updated kriging metamodel of μDV22
for

design #9.

Fig. 7. Example of adaptively updated kriging metamodel of σDV22 for
design #9.

Fig. 4. Convergence history of the objective function V for design #9.
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variables. By solving a sequence of sub-problems, each formulated in the
solution of the previous, a solution to the original ε-constraint problem is
obtained, therefore providing estimates of the Pareto optimal set of the
original bi-objective optimization problem. To illustrate the framework,
sets of Pareto optimal designs were obtained for a 37-story moment
resisting frame with 259 discrete design variables and subject to wind
tunnel informed stochastic wind loads. The efficiency and strong

convergence properties of the proposed approach were demonstrated.
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Appendix A. The Auxiliary Variable Vectors

To derive the AVVs in the current design point ~x, it is first necessary to consider the following variable that can be defined for each realization of U:

ϒkðu; ~xÞ ¼ μFðu; ~xÞ þ
½edpkðu; ~xÞ � μrk ðu; ~xÞ �CFðu; ~xÞΓrk ð~xÞ

σ2rk ðu; ~xÞ
(A.1)

where μrk and σrk are the mean and standard deviation of the component response process of Eq. (6) respectively while μF and CF are the mean and the
covariance matrix of the following vector-valued stochastic process:

Fðt;u; ~xÞ ¼ s1
�
fðt; uÞ þKð~xÞΦMð~xÞqrM ðt;u; ~xÞ

�
(A.2)

The interest in defining ϒk, is that when this variable is multiplied with the influence function ΓT
rk
, the following static relationship holds:

edpkðu; ~xÞ ¼ ΓT
rk
ð~xÞϒkðu; ~xÞ (A.3)

The advantage of Eq. (A.3) is that it provides an exact static relationship between the nominal system and the engineering demand parameter, EDPk.
To this end, the following AVVs can be defined as:

bϒkð~xÞ ¼ μϒk
ð~xÞ (A.4)

ϒ�
kð~xÞ ¼ Cϒk ð~xÞΓrk ð~xÞ

σEDPk ð~xÞ
(A.5)

where μϒdk
and Cϒdk

are the mean and covariance matrix of ϒk respectively.

The significance of the AVVs lays in the fact that when bϒk and �ϒk are statically applied to the nominal structure with stiffness K, the resulting
responses in rk coincide with the expected value and the standard deviation of the engineering demand parameter, EDPk. In other words, the following
holds:

μEDPk ð~xÞ ¼ ΓT
rk
ð~xÞbϒkð~xÞ (A.6)

σEDPk ð~xÞ ¼ ΓT
rk
ð~xÞ�ϒkð~xÞ (A.7)

where, the relationships are exact at the current design point ~x.

Appendix B. Sensitivity Analysis

The partial derivative of the performance constraint bL with respect to the jth component of x can be obtained as:

∂bLðxÞ
∂xj

¼
XNg

k¼1

 
∂bμDVk

∂μEDPk

∂μEDPk ðxÞ
∂xj

þ ∂bμDVk

∂σEDPk
∂σEDPk ðxÞ

∂xj

!
þ α
2 � Std½DVðxÞ �

"XNg

k¼1

XNg

m¼1

ρkmð~xÞ �
 bσDVm ðxÞ

 
∂bσDVk

∂μEDPk

∂μEDPk ðxÞ
∂xj

þ ∂bσDVk

∂σEDPk

∂σEDPk ðxÞ
∂xj

!

þ bσDVk ðxÞ


∂bσDVm

∂μEDPm

∂μEDPm ðxÞ
∂xj

þ ∂bσDVm

∂σEDPm

∂σEDPm ðxÞ
∂xj

�!#
(B.1)

where bμDVk
and bσDVk are explicit functions of μEDPk and σEDPk ; while

∂μEDPk ðxÞ
∂xj and ∂σEDPk ðxÞ

∂xj are given by:

∂μEDPk ðxÞ
∂xj

� ∂ΓT
rk
ðxÞ

∂xj
bϒkð~xÞ (B.2)

∂σEDPk ðxÞ
∂xj

� ∂ΓT
rk
ðxÞ

∂xj
ϒ�

kð~xÞ (B.3)
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where the partial derivatives of the influence functions Γrk can be obtain through classic approaches (Chan et al., 1995; Spence and Gioffr�e, 2011).
Appendix C. Wind speed transformation scheme

The design wind speed at the site of interest, VH , can be obtained by transforming the extreme wind speed, vy , averaged over a time interval τ at a
meteorological station, to the site-specific wind speed, VH , through the following probabilistic transformation model based on the Logarithmic Law
(Minciarelli et al., 2001):

vHðuw;T ; z0Þ ¼ e7e3ðτ; TÞ


e5z0
e6z01

�e4δ ln½H=ðe5z0Þ �
ln½Hmet=ðe6z01Þ �e2e1vyðτ;Hmet ; z01Þ (C.1)

where z0 is the roughness length at the site of interest; z01 and Hmet are the roughness length and height at the meteorological station; δ is an
empirical constant taken as δ ¼ 0:0706; and E1, to E7 are uncertain parameters collected in UE. Specifically, E1 and E2 account for obser-
vational and sampling errors in collecting the meteorological wind speeds; E4, E5, and E6 model the uncertainties associated with the actual
values of δ and of the roughness lengths z0 and z01; E3ðτ;TÞ is the conversion factor that accounts for the errors in converting between wind
speed averaging times; while E7 is a model uncertainty to be used in the case of hurricanes and tornadoes. Possible marginal distributions for
the elements of vector UE are given in Table C3.

Table C.3
Possible marginal distributions for the elements of vector UE

Variable Mean C.O.V. Distribution Ref.

E1 1 0.1 Trunc. Normal Minciarelli et al. (2001)
E2 1 0.025 Normal Diniz et al. (2004)
E3 a 0.075 Normal Diniz et al. (2004)
E4 1 0.1 Trunc. Normal Diniz et al. (2004)
E5 1 0.3 Trunc. Normal Diniz et al. (2004)
E6 1 0.3 Trunc. Normal Diniz et al. (2004)
E7 1 0.05 Normal Diniz et al. (2004)

a Dependent on averaging times τ and T.
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