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Ecological systems are complex and hierarchically organized in 
space and time1, yet efforts to quantify ecological resilience 
and predict regime shifts have focused on the temporal dimen-

sion2,3. This approach works well when the spatial boundaries of 
ecosystems are clear and fixed. For example, theoretical inference 
of early warning and pending regime change has advanced through 
studies of shallow lake ecosystems, which have hard boundaries that 
make it possible for scientists to ignore external spatial dimensions 
of these complex systems before regime shifts4,5. Advancements have 
been made by extending early warning indicators such as autocor-
relation into spatial contexts6–8. However, the theory and methods 
still assume fixed spatial boundaries of regimes despite their being 
situated in open, complex and dynamic systems9.

The concept of spatial regimes represents a new frontier in resil-
ience science that unifies both spatial and temporal dimensions 
into the study of regime persistence and change across ecosystems 
without fixed boundaries10,11. Spatial regimes are defined as spatial 
extents with discrete boundaries at a given scale that exhibit relative 
homogeneity in structure and composition maintained by feedback 
mechanisms10,12. Theory recognizes that all ecological regimes have 
geographic limits (spatial boundaries) but those limits may not be 
fixed or known12. This perspective differs from classical investiga-
tions of resilience and regime shifts, which have focused primar-
ily on systems with well-known boundary limits and where critical 
transitions have been observed over time2,13. Many systems have 
porous boundaries (for example, grasslands and oceans), many taxa 
are highly mobile (for example, birds and pelagic fish), and system 
boundaries can shift rhythmically or in response to change driv-
ers (for example, climatic and anthropogenic boundaries)14. There 
is no single appropriate scale to define spatial regimes in space or 
show how spatial regime boundaries move over time; this body 
of theory has only recently developed as more powerful metrics  
have emerged9,12.

Here, we build on decades of ecological research on body mass 
size distributions15–17 to disentangle alternative scientific predictions 
about the behaviour of large-scale spatial regimes in an era of global 
environmental change. One prediction, on the basis of an extension 
of resilience theory, is that external environmental forcing will cause 

idiosyncratic behaviour in spatial regimes undergoing collapse, 
similar to the responses of individual species before extinction18,19. 
An alternative hypothesis is that spatial regimes are non-stationary 
and will be conserved because of strong positive feedbacks, such 
that spatial regime boundaries will move in a directional, orderly 
trajectory10,11. Disentangling the predictable and orderly from the 
unpredictable and idiosyncratic provides the foundation for early 
warnings of critical transitions in nature9.

Results and discussion
We analysed 46 years of avian community body mass distribution 
data from the Great Plains of North America to identify spatial 
regime boundaries and then identified patterns in latitudinal spatial 
regime boundary movement over time. Analyses revealed regional, 
poleward shifts in both the southernmost and northernmost spa-
tial regime boundaries. This supports our alternative hypothesis of 
conserved, directional and relatively ordered movement (Fig. 1). 
The northernmost regime boundary has moved faster: >590 km 
from 1970 baselines (0.121 ± 0.080° latitude per year (13 km year−1) 
at 90% confidence interval, CI) compared to about 260 km for 
the southernmost boundary (0.053 ± 0.051° latitude per year 
(6 km year−1) at 90% CI). These differential rates of spatial regime 
movement (northern versus southern boundaries; Fig. 1) match 
expectations associated with Arctic amplification and accelerated 
change in northern versus southern latitudes of temperate North 
America20. Consistent with existing theoretical foundations21, the 
regime moving more quickly also carries with it greater interannual 
volatility in its location (Fig. 1).

Directional (northward) change in spatial regime boundaries 
occurred with relative stability in the number of spatial regimes 
identified over the past half-century (2.91 ± 0.39, 90% CI; Fig. 2). 
The number of spatial regimes detected ranged from 0 to 5, with 
transitory regimes occurring periodically. Changing from the aver-
age of three spatial regimes, a fourth spatial regime emerged more 
consistently in the 2010s decade (2010–2015; Fig. 2). In the early 
decades of our study, spatial regime boundaries showed some con-
gruence with the Great Plains biome’s historic extent (Fig. 2). But 
in subsequent decades, spatial regimes expanded (southernmost  
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regime), moved northward (middle regime) and contracted (north-
ern regimes), providing evidence that spatial regimes are rapidly 
reorganizing and diverging from historic biome extents by the 
2010s (Fig. 2).

The cause of the northern movement is unknown but it is con-
gruent with biogeographical patterns of change for multiple global 
change drivers in central North America. Climate change, anthropo-
genic pressures, wildfire trends and woody plant invasions have all 
operated along a putatively south-to-north trajectory over the past 
decades, particularly in the Great Plains22–27 (Fig. 3). Irrespective 
of mechanism, this finding suggests that spatial regimes, and the  

animal body mass distributions we use to identify regimes, are con-
servative, as our alternative hypothesis predicts.

The addition of a spatial dimension without fixed boundaries 
to resilience quantification and regime shift detection allows for 
increased planning horizons in the face of global environmental 
change. We use the movement of spatial regime boundaries in the 
interior of central North America as an illustration (Fig. 4). For a 
network of protected lands in this region, advanced detection would 
come from tracking spatial regime boundaries in a surrounding 
window (Fig. 4). Knowing the ‘baseline’ boundary in 1970 and its 
average northward movement pattern, protected lands in the Flint 
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Fig. 1 | Shifts in spatial regime boundaries demonstrated by breeding bird body mass discontinuities from 1970 to 2015 in the North American Great 
Plains. a, Latitudinal spatial regime boundaries (y axis) determined by log-ranked avian body mass discontinuities (x axis). Black dots represent body mass 
aggregations identified using discontinuity analysis in each breeding bird survey route in the transect. Grey-scale boxes represent spatial regimes. The 
northernmost and southernmost spatial regime boundaries are highlighted by blue and red lines, respectively. b, Spatial regime boundaries (blue triangles, 
northernmost; red triangles, southernmost) detected each year. Lines represent modelled northernmost and southernmost spatial regime boundary 
movement over time with 90% CI (grey ribbon). When northernmost and southernmost boundaries were the same (that is, when only one spatial regime 
boundary was detected in a year), blue and red triangles overlap.
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Fig. 2 | Visualization and tracking of predicted decadal spatial regimes and their boundaries in the North American Great Plains. Black polygons 
represent the historic Great Plains biome extent. Coloured bars represent the predicted extents of spatial regimes in the study area over five decades.  
The number of colours represent the average number of spatial regimes detected in each decade.
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Fig. 3 | Global changes influencing ecological regimes in central North America. Global changes, such as agricultural land conversion, anthropogenic 
climate change, urbanization, woody plant encroachment, increasing frequency/intensities of fire and energy development, are all driving ecological 
change in the North American Great Plains in a putatively south–north trajectory. Predictable, directional (poleward) movement of spatial regime 
boundaries in the Great Plains corresponds to the trajectories of global change drivers. Credit: USDA, NRCS Texas (agriculture).
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Hills ecoregion had decades of early warning that the entire ecore-
gion would soon experience an imminent transition; protected 
lands in the Western Corn Belt Plains ecoregion had >40 year of 
advanced warning (Fig. 4). In this example, a spatial regime bound-
ary moving closer to a given location warns of an impending abrupt 
change—but a change that is relatively predictable as one regime 
replaces another. Theoretically, this should precede traditional 
generic signals of early warning of a regime shift28–30. Traditional 
early warning signals, such as critical slowing down, rising variance 
and flickering, rely on ecological data departing and returning to 
a baseline; this essentially requires a temporal lag before detecting 
even a single iteration of a signal6,29–31.

Our analysis suggests that it is now possible for the science of 
early warning to foster earlier adaptation in environmental man-
agement at subcontinental scales, forcing increased awareness of 
the challenges inherent in the management of stationary ecologi-
cal conditions at a given location32. As a moving ecological regime 
approaches or passes a given location, it becomes increasingly likely 
that the existing ecological regime will collapse and a location 
managed to reflect earlier regimes will become a ‘ghost of regimes 
past’. Policies that mandate management for ghosts of regimes 
past, regardless of the surrounding regime, may be setting them-
selves up for failure in an era of global change and uncertainty33,34. 
Acknowledging this reality has been difficult for ecosystem man-
agers at a given location to accept. Laws such as the Endangered 
Species Act in the United States currently lack the flexibility neces-
sary to solve this general problem of managing for ghosts of past 
regimes because single species are often the prime conservation 
targets. To illustrate this: in our example of spatial regime bound-
aries shifting northward past a conservation land in central North 
America (Fig. 4), land managers tasked with preserving historical 
plant–animal associations will continue to burn and mechanically 
remove woody plants to maintain remnants of the historic tallgrass 
prairie regime while simultaneously losing ground to encroaching 
woody regimes due to positive feedbacks (for example, propagule 
pressure and avian seed dispersal)27,34. Once these coercive man-
agement efforts wane, positive feedbacks will quickly shift to the 
basin of attraction of the surrounding spatial regime12,35. An alterna-
tive approach for land managers is to embrace northward-moving  
spatial regimes and align conservation efforts in northern  
protected areas congruent with the needs of species from a formerly 
southern area; and to ensure viable, dynamic corridors where and 
when needed.

Spatial regimes may not follow global change trajectories when 
strong local drivers exist, such as immobile environmental filters 
(for example, sandy soil substrates and alkaline soils) or anthropo-
genic or geographic barriers. In these cases, theory predicts that spa-
tial regimes will contract and not ‘move through’ these barriers36,37. 
Over time, if global drivers outweigh local drivers, spatial regime 
boundaries may show high variance as the local system collapses 
and reorganizes in the same location. For example, in our study, the 
southernmost spatial regime boundary (Fig. 2) corresponds broadly 
with the coastal prairie, which is associated with unique sandy soil 
types and has experienced major landscape fragmentation and  
conversion through urbanization and energy development22–27  
(Fig. 3). The southernmost spatial regime boundary showed fidelity 
to the geographic boundary of the coastal prairie from 1970 to 1993  
(Fig. 1). In the mid-1990s, the southernmost boundary began to 
vary more widely in latitude between its original location and nearly 
the latitude of the historic northernmost boundary (Figs. 1 and 2).

Management of spatial regimes, given their conservative nature 
and tools to identify their boundaries, should encourage more adap-
tive measures that both: (1) consider the current and potential future 
scale of change associated with underlying driving processes and (2) 
embrace ecological non-stationarity as part of short-term and long-
term planning horizons. Specializations in conservation ecology 

have struggled to fully move away from the legacy of equilibrium 
management, despite many resilience-based management frame-
works34,38,39. We see the addition of spatial dimensionality without 
fixed boundaries to resilience quantification and early warning 
detection, particularly how spatial regimes behave over time, as 
a necessary ingredient for modernizing environmental manage-
ment in the Anthropocene. Spatial monitoring of regime change 
over time could further efforts to create collaborative networks 
among land stewards and more strategically develop protected 
areas acknowledging the strong non-stationarity that currently 
exists10,12,40. Instead of focusing on historic species assemblages and 
their idealized distribution envelopes, a successful network would 
focus on system-level maintenance of resilient, desirable regimes in 
the face of change.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0517-6.
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Methods
Experimental design. Breeding Bird Survey data manipulation. We used 46 years 
(1970–2015) of the US Geological Survey’s North American Breeding Bird Survey 
data, which is a freely available dataset of avian community composition collected 
by trained observers along permanent, geo-referenced roadside routes across the 
North American continent41. Because routes were still being established in the 
initial years of the Breeding Bird Survey, especially in the Great Plains and western 
portions of North America, to avoid biased estimates of presence/absence we 
consider route data starting in 1970, when about 50% of currently active routes 
had been established (Supplementary Table 1). Along each around 39.5-km route, 
observers make 50 stops (once every 0.8 km) and conduct point-count surveys 
at each stop. During a point-count survey, observers stand at the stop and record 
the abundance of any bird species they detect visually or aurally in a 0.402-km 
radius for 3 min. Surveys begin 30 min before local sunrise and last until the whole 
route is completed. To increase uniformity in bird detection probability, observers 
conduct surveys only on days with low wind speeds, high visibility and little  
(or no) rain. Routes are distributed relatively evenly throughout the United States. 
Due to latitudinal differences in breeding season timing, routes may begin as early 
as May or as late as July.

Because of known negative observation biases for waterfowl and allied 
families, and because water-dwelling avian families follow different body mass 
patterns compared with terrestrial avian families, we removed all species from 
the Anseriformes, Gaviiformes, Gruiformes, Pelecaniformes, Phaethontiformes, 
Phoenicopteriformes, Podicipediformes, Procellariiformes and Suliformes families 
from the analysis16,41. We also removed hybrids and unknowns; and we condensed 
subspecies to their respective species.

Belt transect. Multiple global change drivers are exerting influence in a south-
to-north pattern in the Great Plains. For instance: climate change is shifting 
native and agricultural plant phenologies42 and geographic centres of plant 
species distributions43; woody plant encroachment is causing regime shifts from 
historically grassland regimes to woodland or shrubland regimes27,34; fire frequency 
and size has increased by >400% in the Great Plains26; energy development such as 
oil and gas extraction reduced net primary productivity by about 4.5 Tg between 
2000 and 2015 (ref. 25); agricultural land conversion has led to the northern plains 
losing much of its remaining grassland after commodity prices surged at the 
beginning of the 21st century44; and urbanization and population growth in the 
Great Plains has continually increased in and around already populated areas22. 
To capture latitudinal spatial regime movement that may be responding to these 
south-to-north global change drivers, we selected a belt transect on the ecotone of 
the Great Plains and Eastern Temperate Forests extending from the Gulf of Mexico 
to the edge of the boreal forest in Canada. Specifically, the belt transect extended 
south–north from 28–49° latitude (about 2,300 km) and east–west from 93–97° 
longitude (about 350 km).

Statistical analysis. Identifying discontinuities. For each route falling in the belt 
transect, we identified discontinuities in avian community body masses by rank-
ordering the log-transformed body masses of each species observed at each route 
for each year. We obtained mean body mass estimates for all species in the analysis 
from the CRC Handbook of Avian Body Masses45. We then used the ‘discontinuity 
detector’ method46 on the log-ranked body masses, which is on the basis of the 
Gap Rarity Index for detecting discontinuities in continuous data47. For taxa with 
determinant growth, mean body mass has been shown to reliably differentiate 
size aggregations and is strongly allometric to the scales at which functions are 
carried out by organisms48,49. Because the discontinuity detector method is known 
to overestimate discontinuities in observations with low species richness, we 
removed any routes with <40 species observed in a given year (Supplementary 
Table 1). We used a power table50 to account for sample size (the number of species 
observed at each Breeding Bird Survey route in a given year) and average variance 
in body masses45 to adjust the critical d-value (the value on the basis of Monte 
Carlo simulations that identifies significant discontinuities) where N varied51 
(Supplementary Table 2).

Spatial regime detection. To detect spatial regimes in each year, we ordered routes 
in ascending latitude and transformed the discontinuities into a data matrix for 
analysis. Specifically, in order from the lowest ranked body mass aggregation to 
the highest, we calculated the sizes of body mass aggregations (the log-ranked 
length of each aggregation), the sizes of gaps between aggregations (the log-ranked 
length of each gap) and the locations of aggregations (the log-transformed body 
mass of the species with the lowest body mass in each aggregation) for each route17. 
We cast these into a matrix using the ‘dcast’ function in the ‘reshape2’ and ‘data.
table’ packages in R, where every row represented a route in a given year and every 
column an aggregation size, gap size or aggregation location52–54. We calculated 
separate Bray–Curtis dissimilarity matrices from each year’s data.

To identify spatial regimes, we ran constrained hierarchical clustering on each 
year’s distance matrix starting at the southernmost (lowest latitude) Breeding 
Bird Survey route and proceeding by order of latitude to the northernmost 
Breeding Bird Survey route (highest latitude). Constrained hierarchical clustering 
directionally separates multivariate data series into homogeneous, non-overlapping 

segments; it constrains clusters so that only adjacent, contiguous samples  
(a contiguous segment of Breeding Bird Survey routes along a spatial transect) 
are allowed to cluster17,55. This method is commonly used to delineate temporally 
ordered regimes in paleo community data56,57 and to detect significant community 
transitions along spatial transects55,58. To perform constrained hierarchical 
clustering, we used the ‘chclust’ function with the ‘CONISS’ method from the ‘rioja’ 
package in R (ref. 59).

We used the broken stick model (‘bstick.chclust’ from the ‘rioja’ package in R) 
to determine the number of significant clusters17,59,60. The broken stick method, 
commonly used in conjunction with constrained hierarchical clustering, tests the 
distribution of clusters from constrained hierarchical clustering against multiple 
null random distributions of clusters to ascertain the number of significant 
clusters17,57,60. Because constrained hierarchical clustering identifies homogeneous, 
non-overlapping areas of self-similarity, significant clusters can be interpreted  
as regimes; boundaries between significant clusters can be interpreted as  
regime boundaries. Therefore, we considered the latitudes of significant  
cluster boundaries from each year to be the location of spatial regime boundaries 
from that year17.

Tracking movement in spatial regimes. We tested for non-random movement in 
spatial regime boundaries over time by fitting generalized additive models (‘mgcv’ 
package in R) to the northernmost and southernmost spatial regime boundaries61. 
Because generalizing additive models did not detect non-linearity in either the 
northernmost (estimated degrees of freedom (edf) = 1.00, F = 6.56, P = 0.02) 
or southernmost (edf = 1.00, F = 3.21, P = 0.08) spatial regime boundaries, we 
estimated the mean rate of movement in spatial regime boundaries using linear 
regression (Fig. 1). We classified the northernmost boundary each year as the 
spatial regime boundary with the greatest latitude; we classified the southernmost 
boundary each year as the spatial regime boundary with the lowest latitude. We 
excluded years from the linear regression analysis in which we detected no spatial 
regimes from the analysis (1980, 1984, 1985, 1990, 1991, 1997, 1998 and 2001). For 
years in which only one spatial regime boundary was detected (years with only two 
spatial regimes), the single boundary was counted as both the northernmost and 
southernmost boundary.

We also assessed spatial regime boundary movement at the scale of a regional 
protected areas network. Specifically, we tracked spatial regime boundary 
movement from 1970 to 2015 between 37 and 42° latitude to assess the utility of 
spatial regime tracking for early warnings for land management and the length of 
planning horizons spatial regimes provided (Fig. 4). As above, we quantified spatial 
regime boundary latitudinal movement over time using linear regression.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available in the Supplementary Data.

Code availability
R code and instructions for repeating analyses are available in the  
Supplementary Data.
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Software and code
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Data collection We used the publicly available North American Breeding Bird Survey dataset maintained by the US Geological Survey.

Data analysis We used R version 3.5.0 for all analyses. We have attached reproducible computer code for R statistical software, and we have reported 
sources for functions and code not available via CRAN packages.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data is freely available via the U.S. Geological Survey’s North American Breeding Bird Survey database. We have also included the body mass and species 
presence/absence data used in a supplementary file along with reproducible computer code.
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Study description We used North American Breeding Bird Survey data (BBS) along a south-to-north belt transect extending south-north from 28 – 49 
degrees latitude (approximately 2300 km) and east-west from 93 – 97 degrees longitude (approximately 350 km). We then identified 
spatial boundaries in bird regimes (spatial regimes) and tracked their movement over time.

Research sample We collected 46 years (1970 – 2015) of the U.S. Geological Survey’s North American Breeding Bird Survey data (BBS), which is a freely 
available dataset of avian community composition collected by trained observers along permanent, georeferenced roadside routes 
across the North American continent. Because routes were still being established in the initial years of the BBS, especially in the 
Great Plains and western portions of North America, to avoid biased estimates of presence/absence we consider route data starting 
in 1970, when approximately 50% of currently active routes had been established (Table S1). Along each approximately 39.5 km 
route, observers make 50 stops (once every 0.8 km) and conduct point-count surveys at each stop. During a point-count survey, 
observers stand at the stop and record the abundance of any bird species they detect visually or aurally within a 0.402 km radius for 
three minutes. Surveys begin thirty minutes prior to local sunrise and last until the whole route is completed. To increase uniformity 
in bird detection probability, observers conduct surveys only on days with low wind speeds, high visibility, and little or no rain. Routes 
are distributed relatively evenly throughout the United States. Due to latitudinal differences in breeding season timing, routes may 
begin as early as May or as late as July.

Sampling strategy Our sample size was simply the number of North American Breeding Bird Survey routes conducted each year within our study area. 
We established the belt transect due to the multiple global change drivers (e.g., climate change) influencing ecological regimes along 
the ecotone of the Great Plains and Eastern Temperate Forests extending from the Gulf of Mexico to the edge of the boreal forest in 
Canada. 

Data collection The North American Breeding Bird Survey conducts annual roadside avian point-count surveys. These surveys are conducted by 
volunteers and compiled in a central database maintained by the US Geological Survey.

Timing and spatial scale We analyzed data from the North American Breeding Bird Survey from 1970 - 2015. Data is collected annually. We considered all 
breeding bird data extending south-north from 28 – 49 degrees latitude (approximately 2300 km) and east-west from 93 – 97 
degrees longitude (approximately 350 km).

Data exclusions Because the discontinuity analysis method we used became biased at low species richness, we excluded breeding bird survey routes 
on which < 30 bird species were detected. This is an established cutoff in the literature--see our citations for reference.  
 
Additionally, because of known negative observation biases for waterfowl and allied families and because water-dwelling avian 
families follow different body mass patterns than terrestrial avian families, we removed all species from the Anseriformes, 
Gaviiformes, Gruiformes, Pelecaniformes, Phaethontiformes, Phoenicopteriformes, Podicipediformes, Procellariiformes, and 
Suliformes families from the analysis. We also removed hybrids and unknowns, and we condensed subspecies to their respective 
species.

Reproducibility Because the number of survey routes varied across years, we initially checked our results by only using survey routes that were 
established in the beginning of the study (1970) and were repeated every year after. Although this resulted in a lower sample size, 
we found results (spatial regime movement patterns) were extremely similar to when we used the entire dataset.

Randomization Because our analysis determined the groups we analyzed (i.e., spatial regime boundaries), randomization was not required.

Blinding Because our data was collected from a publicly-available database, we did not use blinding.

Did the study involve field work? Yes No
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