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Shifting avian spatial regimes in a changing
climate

Caleb P. Roberts ®'2*, Craig R. Allen?, David G. Angeler®*# and Dirac Twidwell’

In the present era of rapid global change, development of early warnings of ecological regime shifts is a major focus in ecol-
ogy. Identifying and tracking shifts in spatial regimes is a new approach with potential to enhance understanding of ecological
responses to global change. Here, we show strong directional non-stationarity of spatial regimes identified by avian community
body mass data. We do this by tracking 46 years of avian spatial regime movement in the North American Great Plains.
The northernmost spatial regime boundary moved >590 km northward, and the southernmost boundary moved >260km
northward. Tracking spatial regimes affords decadal planning horizons and moves beyond the predominately temporal early

warnings of the past by providing spatiotemporally explicit detection of regime shifts in systems without fixed boundaries.

space and time', yet efforts to quantify ecological resilience

and predict regime shifts have focused on the temporal dimen-
sion®’. This approach works well when the spatial boundaries of
ecosystems are clear and fixed. For example, theoretical inference
of early warning and pending regime change has advanced through
studies of shallow lake ecosystems, which have hard boundaries that
make it possible for scientists to ignore external spatial dimensions
of these complex systems before regime shifts**. Advancements have
been made by extending early warning indicators such as autocor-
relation into spatial contexts®™. However, the theory and methods
still assume fixed spatial boundaries of regimes despite their being
situated in open, complex and dynamic systems’.

The concept of spatial regimes represents a new frontier in resil-
ience science that unifies both spatial and temporal dimensions
into the study of regime persistence and change across ecosystems
without fixed boundaries'®'!. Spatial regimes are defined as spatial
extents with discrete boundaries at a given scale that exhibit relative
homogeneity in structure and composition maintained by feedback
mechanisms'®"?. Theory recognizes that all ecological regimes have
geographic limits (spatial boundaries) but those limits may not be
fixed or known'?. This perspective differs from classical investiga-
tions of resilience and regime shifts, which have focused primar-
ily on systems with well-known boundary limits and where critical
transitions have been observed over time>. Many systems have
porous boundaries (for example, grasslands and oceans), many taxa
are highly mobile (for example, birds and pelagic fish), and system
boundaries can shift rhythmically or in response to change driv-
ers (for example, climatic and anthropogenic boundaries)'*. There
is no single appropriate scale to define spatial regimes in space or
show how spatial regime boundaries move over time; this body
of theory has only recently developed as more powerful metrics
have emerged™'”.

Here, we build on decades of ecological research on body mass
size distributions’*~"’ to disentangle alternative scientific predictions
about the behaviour of large-scale spatial regimes in an era of global
environmental change. One prediction, on the basis of an extension
of resilience theory, is that external environmental forcing will cause

E cological systems are complex and hierarchically organized in

idiosyncratic behaviour in spatial regimes undergoing collapse,
similar to the responses of individual species before extinction'®".
An alternative hypothesis is that spatial regimes are non-stationary
and will be conserved because of strong positive feedbacks, such
that spatial regime boundaries will move in a directional, orderly
trajectory'®'’. Disentangling the predictable and orderly from the
unpredictable and idiosyncratic provides the foundation for early
warnings of critical transitions in nature’.

Results and discussion

We analysed 46 years of avian community body mass distribution
data from the Great Plains of North America to identify spatial
regime boundaries and then identified patterns in latitudinal spatial
regime boundary movement over time. Analyses revealed regional,
poleward shifts in both the southernmost and northernmost spa-
tial regime boundaries. This supports our alternative hypothesis of
conserved, directional and relatively ordered movement (Fig. 1).
The northernmost regime boundary has moved faster: >590km
from 1970 baselines (0.121 +0.080° latitude per year (13kmyear™)
at 90% confidence interval, CI) compared to about 260km for
the southernmost boundary (0.053+0.051° latitude per year
(6kmyear™) at 90% CI). These differential rates of spatial regime
movement (northern versus southern boundaries; Fig. 1) match
expectations associated with Arctic amplification and accelerated
change in northern versus southern latitudes of temperate North
America®. Consistent with existing theoretical foundations*, the
regime moving more quickly also carries with it greater interannual
volatility in its location (Fig. 1).

Directional (northward) change in spatial regime boundaries
occurred with relative stability in the number of spatial regimes
identified over the past half-century (2.91+0.39, 90% CI; Fig. 2).
The number of spatial regimes detected ranged from 0 to 5, with
transitory regimes occurring periodically. Changing from the aver-
age of three spatial regimes, a fourth spatial regime emerged more
consistently in the 2010s decade (2010-2015; Fig. 2). In the early
decades of our study, spatial regime boundaries showed some con-
gruence with the Great Plains biome’s historic extent (Fig. 2). But
in subsequent decades, spatial regimes expanded (southernmost
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Fig. 1] Shifts in spatial regime boundaries demonstrated by breeding bird body mass discontinuities from 1970 to 2015 in the North American Great
Plains. a, Latitudinal spatial regime boundaries (y axis) determined by log-ranked avian body mass discontinuities (x axis). Black dots represent body mass
aggregations identified using discontinuity analysis in each breeding bird survey route in the transect. Grey-scale boxes represent spatial regimes. The
northernmost and southernmost spatial regime boundaries are highlighted by blue and red lines, respectively. b, Spatial regime boundaries (blue triangles,
northernmost; red triangles, southernmost) detected each year. Lines represent modelled northernmost and southernmost spatial regime boundary
movement over time with 90% Cl (grey ribbon). When northernmost and southernmost boundaries were the same (that is, when only one spatial regime

boundary was detected in a year), blue and red triangles overlap.

regime), moved northward (middle regime) and contracted (north-
ern regimes), providing evidence that spatial regimes are rapidly
reorganizing and diverging from historic biome extents by the
2010s (Fig. 2).

The cause of the northern movement is unknown but it is con-
gruent with biogeographical patterns of change for multiple global
change drivers in central North America. Climate change, anthropo-
genic pressures, wildfire trends and woody plant invasions have all
operated along a putatively south-to-north trajectory over the past
decades, particularly in the Great Plains**~* (Fig. 3). Irrespective
of mechanism, this finding suggests that spatial regimes, and the

animal body mass distributions we use to identify regimes, are con-
servative, as our alternative hypothesis predicts.

The addition of a spatial dimension without fixed boundaries
to resilience quantification and regime shift detection allows for
increased planning horizons in the face of global environmental
change. We use the movement of spatial regime boundaries in the
interior of central North America as an illustration (Fig. 4). For a
network of protected lands in this region, advanced detection would
come from tracking spatial regime boundaries in a surrounding
window (Fig. 4). Knowing the ‘baseline’ boundary in 1970 and its
average northward movement pattern, protected lands in the Flint
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Fig. 2 | Visualization and tracking of predicted decadal spatial regimes and their boundaries in the North American Great Plains. Black polygons

represent the historic Great Plains biome extent. Coloured bars represent the predicted extents of spatial regimes in the study area over five decades.
The number of colours represent the average number of spatial regimes detected in each decade.
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Fig. 3 | Global changes influencing ecological regimes in central North America. Global changes, such as agricultural land conversion, anthropogenic
climate change, urbanization, woody plant encroachment, increasing frequency/intensities of fire and energy development, are all driving ecological
change in the North American Great Plains in a putatively south-north trajectory. Predictable, directional (poleward) movement of spatial regime
boundaries in the Great Plains corresponds to the trajectories of global change drivers. Credit: USDA, NRCS Texas (agriculture).
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Hills ecoregion had decades of early warning that the entire ecore-
gion would soon experience an imminent transition; protected
lands in the Western Corn Belt Plains ecoregion had >40year of
advanced warning (Fig. 4). In this example, a spatial regime bound-
ary moving closer to a given location warns of an impending abrupt
change—but a change that is relatively predictable as one regime
replaces another. Theoretically, this should precede traditional
generic signals of early warning of a regime shift**-*". Traditional
early warning signals, such as critical slowing down, rising variance
and flickering, rely on ecological data departing and returning to
a baseline; this essentially requires a temporal lag before detecting
even a single iteration of a signal®*-*'.

Our analysis suggests that it is now possible for the science of
early warning to foster earlier adaptation in environmental man-
agement at subcontinental scales, forcing increased awareness of
the challenges inherent in the management of stationary ecologi-
cal conditions at a given location™. As a moving ecological regime
approaches or passes a given location, it becomes increasingly likely
that the existing ecological regime will collapse and a location
managed to reflect earlier regimes will become a ‘ghost of regimes
past. Policies that mandate management for ghosts of regimes
past, regardless of the surrounding regime, may be setting them-
selves up for failure in an era of global change and uncertainty™*.
Acknowledging this reality has been difficult for ecosystem man-
agers at a given location to accept. Laws such as the Endangered
Species Act in the United States currently lack the flexibility neces-
sary to solve this general problem of managing for ghosts of past
regimes because single species are often the prime conservation
targets. To illustrate this: in our example of spatial regime bound-
aries shifting northward past a conservation land in central North
America (Fig. 4), land managers tasked with preserving historical
plant-animal associations will continue to burn and mechanically
remove woody plants to maintain remnants of the historic tallgrass
prairie regime while simultaneously losing ground to encroaching
woody regimes due to positive feedbacks (for example, propagule
pressure and avian seed dispersal)***. Once these coercive man-
agement efforts wane, positive feedbacks will quickly shift to the
basin of attraction of the surrounding spatial regime'>**. An alterna-
tive approach for land managers is to embrace northward-moving
spatial regimes and align conservation efforts in northern
protected areas congruent with the needs of species from a formerly
southern area; and to ensure viable, dynamic corridors where and
when needed.

Spatial regimes may not follow global change trajectories when
strong local drivers exist, such as immobile environmental filters
(for example, sandy soil substrates and alkaline soils) or anthropo-
genic or geographic barriers. In these cases, theory predicts that spa-
tial regimes will contract and not ‘move through’ these barriers®.
Over time, if global drivers outweigh local drivers, spatial regime
boundaries may show high variance as the local system collapses
and reorganizes in the same location. For example, in our study, the
southernmost spatial regime boundary (Fig. 2) corresponds broadly
with the coastal prairie, which is associated with unique sandy soil
types and has experienced major landscape fragmentation and
conversion through urbanization and energy development®~*’
(Fig. 3). The southernmost spatial regime boundary showed fidelity
to the geographic boundary of the coastal prairie from 1970 to 1993
(Fig. 1). In the mid-1990s, the southernmost boundary began to
vary more widely in latitude between its original location and nearly
the latitude of the historic northernmost boundary (Figs. 1 and 2).

Management of spatial regimes, given their conservative nature
and tools to identify their boundaries, should encourage more adap-
tive measures that both: (1) consider the current and potential future
scale of change associated with underlying driving processes and (2)
embrace ecological non-stationarity as part of short-term and long-
term planning horizons. Specializations in conservation ecology
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Fig. 4 | Spatial regime boundary movement between 37 and 42° latitude
across a network of protected areas in central North America. Black

lines indicate level Il US Environmental Protection Agency ecoregion
boundaries; green polygons indicate protected areas. The ecoregion
labelled 1" is the Flint Hills ecoregion; the ecoregion labeled ‘2" is the
Western Corn Belt Plains ecoregion. Predicted spatial regime boundaries
(coloured horizontal lines) correspond with linear predictions for the years
1970, 1985, 2000 and 2015 (#=0.032 + 0.026° latitude per year; 90% Cl;
F=4.093; P=0.052).

have struggled to fully move away from the legacy of equilibrium
management, despite many resilience-based management frame-
works****. We see the addition of spatial dimensionality without
fixed boundaries to resilience quantification and early warning
detection, particularly how spatial regimes behave over time, as
a necessary ingredient for modernizing environmental manage-
ment in the Anthropocene. Spatial monitoring of regime change
over time could further efforts to create collaborative networks
among land stewards and more strategically develop protected
areas acknowledging the strong non-stationarity that currently
exists'®'>*’, Instead of focusing on historic species assemblages and
their idealized distribution envelopes, a successful network would
focus on system-level maintenance of resilient, desirable regimes in
the face of change.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41558-019-0517-6.
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Methods

Experimental design. Breeding Bird Survey data manipulation. We used 46 years
(1970-2015) of the US Geological Survey’s North American Breeding Bird Survey
data, which is a freely available dataset of avian community composition collected
by trained observers along permanent, geo-referenced roadside routes across the
North American continent’'. Because routes were still being established in the
initial years of the Breeding Bird Survey, especially in the Great Plains and western
portions of North America, to avoid biased estimates of presence/absence we
consider route data starting in 1970, when about 50% of currently active routes
had been established (Supplementary Table 1). Along each around 39.5-km route,
observers make 50 stops (once every 0.8 km) and conduct point-count surveys

at each stop. During a point-count survey, observers stand at the stop and record
the abundance of any bird species they detect visually or aurally in a 0.402-km
radius for 3min. Surveys begin 30 min before local sunrise and last until the whole
route is completed. To increase uniformity in bird detection probability, observers
conduct surveys only on days with low wind speeds, high visibility and little

(or no) rain. Routes are distributed relatively evenly throughout the United States.
Due to latitudinal differences in breeding season timing, routes may begin as early
as May or as late as July.

Because of known negative observation biases for waterfowl and allied
families, and because water-dwelling avian families follow different body mass
patterns compared with terrestrial avian families, we removed all species from
the Anseriformes, Gaviiformes, Gruiformes, Pelecaniformes, Phaethontiformes,
Phoenicopteriformes, Podicipediformes, Procellariiformes and Suliformes families
from the analysis'®"". We also removed hybrids and unknowns; and we condensed
subspecies to their respective species.

Belt transect. Multiple global change drivers are exerting influence in a south-
to-north pattern in the Great Plains. For instance: climate change is shifting

native and agricultural plant phenologies*’ and geographic centres of plant

species distributions*; woody plant encroachment is causing regime shifts from
historically grassland regimes to woodland or shrubland regimes”**; fire frequency
and size has increased by >400% in the Great Plains™; energy development such as
oil and gas extraction reduced net primary productivity by about 4.5 Tg between
2000 and 2015 (ref. *°); agricultural land conversion has led to the northern plains
losing much of its remaining grassland after commodity prices surged at the
beginning of the 21st century*; and urbanization and population growth in the
Great Plains has continually increased in and around already populated areas™.

To capture latitudinal spatial regime movement that may be responding to these
south-to-north global change drivers, we selected a belt transect on the ecotone of
the Great Plains and Eastern Temperate Forests extending from the Gulf of Mexico
to the edge of the boreal forest in Canada. Specifically, the belt transect extended
south—north from 28-49° latitude (about 2,300 km) and east-west from 93-97°
longitude (about 350 km).

Statistical analysis. Identifying discontinuities. For each route falling in the belt
transect, we identified discontinuities in avian community body masses by rank-
ordering the log-transformed body masses of each species observed at each route
for each year. We obtained mean body mass estimates for all species in the analysis
from the CRC Handbook of Avian Body Masses®. We then used the ‘discontinuity
detector’ method* on the log-ranked body masses, which is on the basis of the
Gap Rarity Index for detecting discontinuities in continuous data®. For taxa with
determinant growth, mean body mass has been shown to reliably differentiate

size aggregations and is strongly allometric to the scales at which functions are
carried out by organisms***. Because the discontinuity detector method is known
to overestimate discontinuities in observations with low species richness, we
removed any routes with <40 species observed in a given year (Supplementary
Table 1). We used a power table® to account for sample size (the number of species
observed at each Breeding Bird Survey route in a given year) and average variance
in body masses* to adjust the critical d-value (the value on the basis of Monte
Carlo simulations that identifies significant discontinuities) where N varied®'
(Supplementary Table 2).

Spatial regime detection. To detect spatial regimes in each year, we ordered routes
in ascending latitude and transformed the discontinuities into a data matrix for
analysis. Specifically, in order from the lowest ranked body mass aggregation to
the highest, we calculated the sizes of body mass aggregations (the log-ranked
length of each aggregation), the sizes of gaps between aggregations (the log-ranked
length of each gap) and the locations of aggregations (the log-transformed body
mass of the species with the lowest body mass in each aggregation) for each route’.
We cast these into a matrix using the ‘dcast’ function in the ‘reshape2’ and ‘data.
table’ packages in R, where every row represented a route in a given year and every
column an aggregation size, gap size or aggregation location’~**. We calculated
separate Bray—Curtis dissimilarity matrices from each year’s data.

To identify spatial regimes, we ran constrained hierarchical clustering on each
year’s distance matrix starting at the southernmost (lowest latitude) Breeding
Bird Survey route and proceeding by order of latitude to the northernmost
Breeding Bird Survey route (highest latitude). Constrained hierarchical clustering
directionally separates multivariate data series into homogeneous, non-overlapping
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segments; it constrains clusters so that only adjacent, contiguous samples

(a contiguous segment of Breeding Bird Survey routes along a spatial transect)

are allowed to cluster'”*. This method is commonly used to delineate temporally
ordered regimes in paleo community data***” and to detect significant community
transitions along spatial transects™**. To perform constrained hierarchical
clustering, we used the ‘chclust’ function with the ‘CONISS’ method from the ‘rioja’
package in R (ref. **).

We used the broken stick model (‘bstick.chclust’ from the ‘rioja’ package in R)
to determine the number of significant clusters'>*>*". The broken stick method,
commonly used in conjunction with constrained hierarchical clustering, tests the
distribution of clusters from constrained hierarchical clustering against multiple
null random distributions of clusters to ascertain the number of significant
clusters'”""". Because constrained hierarchical clustering identifies homogeneous,
non-overlapping areas of self-similarity, significant clusters can be interpreted
as regimes; boundaries between significant clusters can be interpreted as
regime boundaries. Therefore, we considered the latitudes of significant
cluster boundaries from each year to be the location of spatial regime boundaries
from that year'”.

Tracking movement in spatial regimes. We tested for non-random movement in
spatial regime boundaries over time by fitting generalized additive models (‘mgcv’
package in R) to the northernmost and southernmost spatial regime boundaries®’.
Because generalizing additive models did not detect non-linearity in either the
northernmost (estimated degrees of freedom (edf) =1.00, F=6.56, P=0.02)

or southernmost (edf=1.00, F=3.21, P=0.08) spatial regime boundaries, we
estimated the mean rate of movement in spatial regime boundaries using linear
regression (Fig. 1). We classified the northernmost boundary each year as the
spatial regime boundary with the greatest latitude; we classified the southernmost
boundary each year as the spatial regime boundary with the lowest latitude. We
excluded years from the linear regression analysis in which we detected no spatial
regimes from the analysis (1980, 1984, 1985, 1990, 1991, 1997, 1998 and 2001). For
years in which only one spatial regime boundary was detected (years with only two
spatial regimes), the single boundary was counted as both the northernmost and
southernmost boundary.

We also assessed spatial regime boundary movement at the scale of a regional
protected areas network. Specifically, we tracked spatial regime boundary
movement from 1970 to 2015 between 37 and 42° latitude to assess the utility of
spatial regime tracking for early warnings for land management and the length of
planning horizons spatial regimes provided (Fig. 4). As above, we quantified spatial
regime boundary latitudinal movement over time using linear regression.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data are available in the Supplementary Data.

Code availability
R code and instructions for repeating analyses are available in the
Supplementary Data.
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When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
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Clearly defined error bars
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Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection We used the publicly available North American Breeding Bird Survey dataset maintained by the US Geological Survey.
Data analysis We used R version 3.5.0 for all analyses. We have attached reproducible computer code for R statistical software, and we have reported
sources for functions and code not available via CRAN packages.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data is freely available via the U.S. Geological Survey’s North American Breeding Bird Survey database. We have also included the body mass and species
presence/absence data used in a supplementary file along with reproducible computer code.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We used North American Breeding Bird Survey data (BBS) along a south-to-north belt transect extending south-north from 28 — 49
degrees latitude (approximately 2300 km) and east-west from 93 — 97 degrees longitude (approximately 350 km). We then identified
spatial boundaries in bird regimes (spatial regimes) and tracked their movement over time.
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Research sample We collected 46 years (1970 — 2015) of the U.S. Geological Survey’s North American Breeding Bird Survey data (BBS), which is a freely
available dataset of avian community composition collected by trained observers along permanent, georeferenced roadside routes
across the North American continent. Because routes were still being established in the initial years of the BBS, especially in the
Great Plains and western portions of North America, to avoid biased estimates of presence/absence we consider route data starting
in 1970, when approximately 50% of currently active routes had been established (Table S1). Along each approximately 39.5 km
route, observers make 50 stops (once every 0.8 km) and conduct point-count surveys at each stop. During a point-count survey,
observers stand at the stop and record the abundance of any bird species they detect visually or aurally within a 0.402 km radius for
three minutes. Surveys begin thirty minutes prior to local sunrise and last until the whole route is completed. To increase uniformity
in bird detection probability, observers conduct surveys only on days with low wind speeds, high visibility, and little or no rain. Routes
are distributed relatively evenly throughout the United States. Due to latitudinal differences in breeding season timing, routes may
begin as early as May or as late as July.

Sampling strategy Our sample size was simply the number of North American Breeding Bird Survey routes conducted each year within our study area.
We established the belt transect due to the multiple global change drivers (e.g., climate change) influencing ecological regimes along
the ecotone of the Great Plains and Eastern Temperate Forests extending from the Gulf of Mexico to the edge of the boreal forest in
Canada.

Data collection The North American Breeding Bird Survey conducts annual roadside avian point-count surveys. These surveys are conducted by
volunteers and compiled in a central database maintained by the US Geological Survey.

Timing and spatial scale We analyzed data from the North American Breeding Bird Survey from 1970 - 2015. Data is collected annually. We considered all
breeding bird data extending south-north from 28 — 49 degrees latitude (approximately 2300 km) and east-west from 93 — 97
degrees longitude (approximately 350 km).

Data exclusions Because the discontinuity analysis method we used became biased at low species richness, we excluded breeding bird survey routes
on which < 30 bird species were detected. This is an established cutoff in the literature--see our citations for reference.

Additionally, because of known negative observation biases for waterfowl and allied families and because water-dwelling avian
families follow different body mass patterns than terrestrial avian families, we removed all species from the Anseriformes,
Gaviiformes, Gruiformes, Pelecaniformes, Phaethontiformes, Phoenicopteriformes, Podicipediformes, Procellariiformes, and
Suliformes families from the analysis. We also removed hybrids and unknowns, and we condensed subspecies to their respective
species.

Reproducibility Because the number of survey routes varied across years, we initially checked our results by only using survey routes that were
established in the beginning of the study (1970) and were repeated every year after. Although this resulted in a lower sample size,
we found results (spatial regime movement patterns) were extremely similar to when we used the entire dataset.

Randomization Because our analysis determined the groups we analyzed (i.e., spatial regime boundaries), randomization was not required.

Blinding Because our data was collected from a publicly-available database, we did not use blinding.
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