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Article history: New concepts have emerged in theoretical ecology with the intent to quantify complexities in ecological change
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that are unaccounted for in state-and-transition models and to provide applied ecologists with statistical early
warning metrics able to predict and prevent state transitions. With its rich history of furthering ecological theory
and its robust and broad-scale monitoring frameworks, the rangeland discipline is poised to empirically assess
these newly proposed ideas while also serving as early adopters of novel statistical metrics that provide advanced
warning of a pending shift to an alternative ecological regime. We review multivariate early warning and regime
shift detection metrics, identify situations where various metrics will be most useful for rangeland science, and
then highlight known shortcomings. Our review of a suite of multivariate-based regime shift/early warning indi-
cators provides a broad range of metrics applicable to a wide variety of data types or contexts, from situations
where a great deal is known about the key system drivers and a regime shift is hypothesized a priori, to situations
where the key drivers and the possibility of a regime shift are both unknown. These metrics can be used to an-
swer ecological state-and-transition questions, inform policymakers, and provide quantitative decision-making
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Introduction

Rangeland evaluation and monitoring have been intertwined with
advances in ecological theory since the early 20th century (Clements,
1916; Sampson, 1917, 1919). Early successional theory (Clements,
1916) motivated evaluations that linked rangeland degradation to shifts
in vegetation following an orderly successional trajectory (Sampson,
1917, 1919; West, 2003). Models of successional retrogression, intro-
duced shortly after coordinated federal monitoring efforts, attempted
to provide solutions to the deleterious grazing practices and unrestricted
livestock use contributing to widespread soil erosion and increasing
dominance of species with lower forage value (Dyksterhuis, 1949).
The successional retrogression model dominated rangeland manage-
ment for 50 yr, until advances in alternative state theory and the inabil-
ity of the succession-retrogression model to explain many changes in
rangelands prompted a shift to the state-and-transition modeling
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framework introduced by Westoby et al. (1989). State-and-transition
models are one of the most commonly used management frameworks
in the world (i.e., USDA Ecological Site Descriptions State-and-Transition
Models; Briske et al., 2006), but capture only a small component of the
complex, adaptive behaviors that ultimately determine why ecosystems
persist or, alternatively, change form (Twidwell et al., 2013).

New concepts have emerged in theoretical ecology with the intent
to not only quantify complexities in ecological change inherently unac-
counted for in state-and-transition models but to also help applied ecol-
ogists "turn back from the brink" prior to reaching regime shifts (i.e.,
state transitions; definitions provided in Table 1) in ecological systems
(Biggs et al., 2009). These concepts center around the theory that eco-
logical systems can exist in multiple, dynamic basins of attraction (i.e.,
regimes), fundamentally similar to "states" of the state-and-transition
models (Briske et al., 2008; Scheffer, 2009). Overwhelming distur-
bance(s) can push a regime past a threshold and into an alternate re-
gime (Scheffer and Carpenter, 2003; Briske et al., 2005; Folke et al.,
2004). Systems that have undergone shifts to regimes with lower eco-
system service potential (e.g., desertification or woody encroachment
of rangelands) may exhibit hysteretic behavior; that is, restoration to
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Table 1
Glossary of terms.

Term Definition

Early Warning

"hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleoclimate times

“configuration in terms of abundance and composition, function and process, of a system...The terms state and regime are often used interchangeably.

However, regime specifically refers to the processes and feedbacks that confer dynamic structure to a given state of a system” (Angeler and Allen, 2016)

Indicator series, and in laboratory as well as whole lake experiments" (Gsell et al., 2016)
Hysteresis “in which the forward and backward switches occur at different critical conditions” (Scheffer et al., 2001)
“the path out is not the same as the path in” (Angeler and Allen, 2016)
Regime
Regime Shift “conspicuous jumps from one rather stable [regime] to another” (Scheffer et al., 2001)

“Sudden shifts in ecosystems, whereby a threshold is passed and the core functions, structure, and processes of the new regime are fundamentally
different from the previous regime and hysteresis is present.” (Scheffer and Carpenter, 2003)

Regime Shift Metric

“statistical metrics of system resilience [that] have been hypothesized to provide advance warning of sudden shifts in ecosystems” (Gsell et al., 2016)

State “The ‘state’ of a system at a particular instant in time is the collection of values of the ‘state’ variables at that time...the term ‘state’ is loosely used to
describe a characteristic of the system, rather than its state. For example, the lake is in a eutrophic ‘state’, or the rangeland is in a shrub-dominated

‘state’.” (Walker et al., 2002)
State-and-Transition

“.a framework to accommodate a broader spectrum of vegetation dynamics on the basis of managerial, rather than ecological, criteria... initially
designed for application on rangelands characterized by discontinuous and nonreversible vegetation dynamics.” Based on “1) potential alternative

vegetation states [at] a site, 2) potential transitions between vegetation states, and 3) recognition of opportunities to achieve favorable transitions and

Biotic and abiotic system features that define and contrast system states. State variables can be “driving state variables” of system states (i.e., sufficient

Models
hazards to avoid unfavorable transitions between vegetation states” (Briske et al., 2005)
State Variable
changes in driving state variables are known to alter system states) or simply indicative of system state (Walker et al., 2002).
Threshold

“Thresholds are equivalent to tipping points and may be detected as discontinuities or bifurcation points in complex systems” (Angeler and Allen, 2016)

the previous regime would require more effort than if it had been initi-
ated prior to the regime shift, or the restoration would be practically in-
feasible (Scheffer et al., 2001; Folke et al., 2004; Angeler and Allen,
2016). Using metrics that signal early warning indicators (EWIs) and
avoid regime shifts that are undesirable have therefore become a central
pursuit in ecology (Brock and Carpenter, 2006, 2012; Andersen et al.,
2009; Dakos et al., 2012), especially for known regime changes that ex-
hibit strong hysteretic behavior. Theoretical ecologists have explored
the behavior of state variables in systems on the cusp of regime shifts
or where regime shifts were known a priori (Mantua, 2004; Carpenter
et al,, 2011). Much work has been done to assess early warning signals
of regime shifts with univariate data and simple model systems
(Hastings and Wysham, 2010; Burthe et al., 2016); however, univariate
indicators may not capture the true complexity of ecosystem change
possible with multivariate methods (Rodionov, 2004; Allen and Holling,
2008; Spanbauer et al., 2014; Eason et al., 2016).

The rangeland discipline, given its emphasis on long-term multivar-
iate experimentation and monitoring programs that occur across multi-
ple spatial and temporal scales, is poised to uniquely contribute to the
science of early warnings and regime shifts in ecology. Theoretical ecol-
ogy will benefit from the myriad of multivariate monitoring data avail-
able in rangelands to continue the tradition in rangelands of empirically
testing new ideas associated with ecological assembly (Briske et al.,
2005). The rangeland discipline will also benefit from merging conver-
gent theoretical ecology concepts and techniques aimed at quantifying
state transitions and providing a quantitative basis for making decisions
in rangeland management (Allen et al., 2016; Angeler and Allen, 2016).
But despite the applicability of early warning and regime shift theory to
rangeland science, evidence suggests that rangeland science is lagging
in the assessment of theoretical indicators used for regime shift predic-
tion (Table 2). To date, most rangeland research has focused on qualita-
tive assessments of state transitions, as opposed to quantitative and
predictive metrics (Bashari et al., 2008; Bestelmeyer et al., 2009;
Twidwell et al., 2013; see Table 2).

In this paper, we review and discuss multivariate metrics used to de-
tect early warnings and regime shifts along with their utility in range-
land evaluation and monitoring. We focus on multivariate metrics
with potential utility for detecting rangelands in transition, as opposed
to univariate indicators, because the rangeland discipline has a long his-
tory of multivariate data inventory and monitoring, and comprehensive
reviews of univariate metrics already exist that can guide rangeland
specialists (e.g., Dakos et al., 2012). For each metric, we review the con-
ceptual foundation leading to its proposed use as an early warning indi-
cator of system-level change, highlight known shortcomings, and

identify specific situations where each metric will be most useful for
rangeland science, monitoring, and management. A suite of multivari-
ate-based early warning and regime shift indicators were reviewed in
this paper and provide a broad range of potential metrics applicable to
a wide variety of data types and contexts—from situations where a
great deal is known about the key system drivers and a regime shift is
a priori hypothesized, to situations where the key drivers and the possi-
bility of a regime shift are both unknown. We then provide three exam-
ples that showcase the potential utility of these metrics to future
pursuits in rangeland science and management.

Literature Review and Methodology

We conducted a formal review using Web of Science to compile dif-
ferent multivariate metrics used for early warning and regime shift de-
tection (Thompson Reuters Corporation, 2018; accessed on January
2016-June 2016). Accordingly, we used the following search terms:
"Regime Shift AND Multivariate AND Each Metric Type".

We found 70 articles that used multivariate early warning and re-
gime shift metrics in ecological studies. In these articles, we found 10
unique metrics, with the number of articles using each metric varying
from 1 to 14 (Average Standard Deviates = 4, Conditional Probability
Analysis = 1, Detrended Correspondence/Detrended Canonical Corre-
spondence Analysis = 11, Discontinuity Analysis = 4, Fisher Informa-
tion = 14, Generalized Modeling = 2, Intervention Analysis/
Autoregressive Moving Averages = 5, Redundancy Analysis-distance-
based Moran’s Eigenvector Map/Asymmetric Eigenvector Map = 11,
Sequential T-test Analysis of Regime Shifts = 14, Vector Autoregressive
Model = 4). Three metrics had been tested as EWI metrics (Conditional
Probability Analysis, Discontinuity Analysis, and Fisher Information),
and the rest were regime shift detection metrics that have the potential
to be or have been proposed as EWI metrics. Thus, we hereafter distin-
guish between “tested” and “proposed” EWI metrics. The earliest appli-
cation of multivariate EWI metrics was in the early 1990s (Ebbesmeyer
et al, 1991), and their use sharply increased beginning in the early
2000s (Thompson Reuters Corporation, 2018). Most studies we found
used multivariate EWI metrics for time-series and aquatic system appli-
cations (Kirkman et al., 2015; Mantua, 2004), with only two studies
using EWI metrics to detect regime shifts in space or terrestrial systems
(Zurlini et al,, 2014; Sundstrom et al., 2017).

To assist in the appropriate selection and application of multivariate
EWI metrics in rangeland applications, we categorized metrics hierar-
chically according to their assumptions and data type requirements
(Fig. 1) and organized the review accordingly. The primary division
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Table 2

Literature review' of the total number of papers and the percentage using a quantitative metric? for early warning and regime shift detection in Rangeland Ecology & Management and

other journals in the discipline.

Search term

In the journal of Rangeland Ecology & Management

In other journals in the discipline with the
additional search term:

Rangeland Ecology

State and Transition 147 (21%) 2250 (30%) 3450 (27%)
Alternative States 36 (31%) 953 (32%) 5690 (30%)
State Transition 24 (17%) 580 (35%) 8470 (30%)
Early Warning 18 (17%) 5340 (26%) 17 500 (71%)
Regime Shift 7 (29%) 672 (42%) 110 000 (46%)
Early Warning Indicator 2 (0%) 87 (61%) 1000 (42%)
Spatial Regime 0 (0%) 9 (33%) 310 (68%)

)

search returns including a quantitative metric.

2 Quantitative metrics considered in our search include: autocorrelation, autoregressive model, autoregressive moving averages, average standard deviates, BDS test, coefficient of
variation, conditional heteroscedasticity, conditional probability analysis, detrended canonical correspondence analysis, detrended correspondence analysis, detrended fluctuation anal-
ysis indicator, discontinuity analysis, fisher information, generalized modeling, intervention analysis, kurtosis, return rate, sequential T-test analysis of regime shifts, skewness, spectral
density, spectral exponent, spectral ratio, standard deviation, and vector autoregressive modeling.

lies in whether driving state variables are known or unknown for the
system in question (Table 3), and whether a relatively small (i.e., lim-
ited) or a relatively large (i.e., unlimited) number of state variables
have been measured (Fig. 1). The second division separates metrics by
whether they require the spatial or temporal "location” of a regime
shift to be hypothesized a priori (Fig. 1). The tertiary division splits met-
rics by specific data type requirements (Fig. 1).

Synthesis of Metrics

Known Driving State Variables/Limited Number of State Variables
Metrics in this division (known/limited) share two assumptions:
driving state variables are known, and driving state variables interact
with each other (Fig. 1). Known/limited metrics all use regression-like
methods, estimate coefficients, and have implicit significance tests

Given a dataset,
which RS/EWI| metric is appropriate?

Driving state variables are known,
Limited number of state variables

Driving state variables are unknown,
Unlimited number of state variables

!—‘—\

Regime shift Nosﬁ {me Nosrl'?i time
hypothesized | | hypothesized hypothesized
2 pHoty a priori a priori
| |
: Explicit; Continuous
Any tvar;able spatia variable of
yP variables single type
DCA,
ASD VAR PCE/CSCTAA’RS
IA/ARMA GM’ RDA-dbMEM/ CPA De
AEM,
FI

Figure 1. A flowchart for determining which multivariate metrics for regime shift/early warning detection are appropriate for a given set of state variables. “Limited” state variables
indicates those metrics are suitable for relatively small number of input variables, and “known drivers” means that the input state variables represent known fundamental influences
on system state. The lowest tier lists appropriate metrics for a given data type. Metrics in bold have been tested as early warning indicators of regime shifts. Metrics not in bold have
been proposed as early warning metrics but only tested as regime shift indicators. RS indicates proposed early warning indicator; EWI, tested early warning indicator; ASD, average
standard deviates; IA/ARMA, intervention analysis/autoregressive moving averages; VAR, vector autoregression; GM, generalized modeling; DCA, detrended correspondence analysis;
DCCA, detrended canonical correspondence analysis; PCA/STARS; principal components analysis/sequential T-test analysis of regime shifts; RDA-dbMEM/AEM, redundancy analysis; FI,
Fisher information; CPA, conditional probability analysis; DA, discontinuity analysis.
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Table 3
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Questions and situational examples for determining when using regime shift/early warning indicator metrics (EWI metrics) could be appropriate. For each question/situation, the “Why”
and “Why not” columns provide positive and negative support, respectively, for the use of EWI metrics.

Should I use Early Warning
Indicator metrics...

Why?

Why not?

System Considerations
If hysteresis is present or likely?

If hysteresis is not present or
likely?

Research Question Considerations

While actively experimenting
with thresholds or regime
shifts?

While passively monitoring state
variables?

To identify historic thresholds or

regime shifts?

To detect spatial regimes?

At any spatiotemporal scale?

Data Availability Considerations
If long-term temporal monitoring
data is available?

If only spatial data is available?

If driving state variables are
known?

Social or Policy Considerations

If social, policy, or legal concerns
require confirmation of
thresholds or regime shifts?

* EWI metrics can allow management to prevent known or unknown
imminent regime shifts.

« Restoration of desirable states will be very costly or infeasible.

* Restoration of desirable states, although possible or simple, will still
be very costly.

» EWI metrics can quantitatively identify when/where thresholds or
regime shifts occur.

» Some EWI metrics can identify and rank relative influences of
driving state variables (see Fig. 1).

* EWI metrics can provide early warnings for unknown or unforeseen
regime shifts.

» EWI metrics can provide an estimate of the typical range of
variability in a state.

» Many EWI metrics have been used extensively to identify historic
thresholds and regime shifts.

« EWI metrics can provide quantitative and qualitative evidence of
the present/absence of thresholds and regime shifts.

« Some EWI metrics have explicit significance tests and can provide
levels of confidence (see Fig. 1).

» Some EWI metrics are amenable to detecting spatial regimes.

« There is sufficient spatial data of the appropriate type to run EWI
metrics amenable to detecting spatial regimes (see Fig. 1).

» Some EWI metrics are amenable to detecting spatial and temporal
regimes.

« There is sufficient spatial and temporal data of the appropriate type
to run EWI metrics.

* Many EWI metrics were designed and have been well-studied in
temporal contexts.

« Long-term temporal data can provide more accurate portrayals of
the typical range of variability in a state. This in turn can increase the
accuracy of EWI metrics.

« Historic thresholds and regime shifts can be identified, providing
insight into potential regime shift hazards in the future.

» Some EWI metrics can use explicitly spatial data to detect early
warnings of regime shifts (see Fig. 1).

« Some EWI metrics can use spatial data to identify spatial ecological
regimes.

» Some EWI metrics are designed for detecting thresholds or regime
shifts with known driving state variables (see Fig. 1).

» Knowing driving state variables may increase the performance of
EWI metrics and allow more accurate and earlier regime shift
detection.

« EWI metrics can provide quantitative and qualitative evidence of
the presence/absence of thresholds and regime shifts.

« Policy or law mandates use of particular conceptual frameworks
(e.g., state-transition models, ecological site descriptions) that would
benefit from inclusion of quantitative metrics.

» Some EWI metrics have explicit significance tests and can provide
levels of confidence (see Fig. 1).

* There is extensive knowledge of system drivers and hysteresis.
Thus, applying finances, time, and effort to preventative
management is more beneficial.

* Same as above.

* The cost to restore the desirable state is low.

« Experimentation on thresholds could cause catastrophic or
expensive consequences, so EWI metrics are not useful or advisable.
« Early warning may not be necessary; simply identifying regime
shifts (e.g., with proposed EWI or regime shift detection metrics)
may be sufficient.

« There are other statistical metrics or procedures in place.

« Early warning may not be necessary; simply identifying regime
shifts (e.g., with proposed EWI or regime shift detection metrics)
may be sufficient.

« Some EWI metrics produce conflicting results when identifying
historic regime shifts, so choosing the most appropriate metric can
be challenging.

« Data type requirements are not met for EWI metrics suitable for
detecting spatial regimes.

« Data type requirements are not met for EWI metrics suitable for
detecting spatiotemporal regimes.

* There is extensive knowledge of system drivers and hysteresis.
Thus, applying finances, time, and effort to preventative
management is more beneficial.

« Patterns may not be detectable with only one point in time.

* Monitoring known driving state variables may suffice for detecting
imminent regime shifts and prioritizing management.

« Available data are insufficient or not appropriate to detect early
warning and regime shifts at the scale necessary to guide policy or
to avoid misinterpretation and misuse.

« There is extensive knowledge of system drivers and hysteresis, so
applying finances, time, and effort for preventative management is
less of a priority than focusing on sociopolitical constraints.

(e.g., Solow and Beet, 2005; Lade and Gross, 2012), making them similar
to nonlinear threshold modeling techniques (Sasaki et al., 2008). For
these metrics, the regime is defined by modeling the interactions and
variability amongst the chosen state variables, and a regime shift is de-
tected when the behavior of state variables deviate significantly from a
"typical" range at a given level of confidence (Gal and Anderson, 2010;
Lade et al., 2013). Two of the known/limited metrics require a priori hy-
potheses of regime shift locations (Average Standard Deviates, Inter-
vention Analysis/Autoregressive Moving Averages), and two known/
limited metrics do not require a priori regime shift hypotheses (Vector
Autoregression, Generalized Modeling). Known/limited metrics that
do not require a regime shift to be hypothesized a priori can potentially

provide early warnings if trends in state variable behavior approach the
given confidence limit (Ives and Dakos, 2012).

These metrics can provide detailed quantitative and statistically rig-
orous results, but they require substantial system-specific a priori
knowledge (Rudnick and Davis, 2003; Gal and Anderson, 2010). Major
benefits of known/limited metrics include: 1) their ability to assess
the validity of regime shifts and early warnings via null hypothesis
tests and information theoretic approaches and 2) their ability to esti-
mate the directionality and relative importance of the chosen driving
state variables via coefficient estimation (Gal and Anderson, 2010;
Lade and Gross, 2012). Because known/limited metrics assume driving
state variables are known, correctly selecting state variables is essential
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(Solow and Beet, 2005). Not including major driving variables or analyz-
ing irrelevant variables could produce biased estimates or fail to detect
regime shifts (Hare and Mantua, 2000). Additionally, overly conserva-
tive confidence requirements or biased estimates of "typical" ranges of
state variable behavior may cause regime shift detection to lag (Ives
and Dakos, 2012).

Regime Shift Hypothesized a Priori

Average Standard Deviates

Average Standard Deviates (ASD), developed by Ebbesmeyer et al.
(1991), is a proposed EWI metric that focuses on identifying significant
regime shifts using the magnitude of change in multiple time series re-
cords between pre- and post-a priori identified regime shift dates. Hare
and Mantua (2000), Rudnick and Davis (2003), and Mantua (2004)
summarize the methods in detail. Regime shifts are considered signifi-
cant if the sign of standard deviates in all years is the same within
each “half record” (designated by the location of the a priori identified
step change) but opposite between half records, and no value is within
a standard error of zero. This method has been strongly contested by
Rudnick and Davis (2003), who remark on how it is designed to specif-
ically create a step change and is highly sensitive to false positives when
there is noise in the data. Mantua (2004) suggests an alternative
method to mitigate this weakness, but to our knowledge, this has not
been assessed within ecological regime shift literature. As of this review,
ASD has be used solely in marine environments (Mantua, 2004).

Intervention Analysis/Autoregressive Moving Averages

Intervention analysis (IA; Wei, 1994) combined with autoregressive
moving averages (ARMA) is a paired method for detecting significant
changes in the mean of state variables in a time series while accounting
for temporal autocorrelation (Mantua, 2004; Andersen et al., 2009). To-
gether, intervention analysis and autoregressive moving average
models (IA/ARMA) have been used to estimate the significance and
magnitude of regime shifts in time series data (Gedalof et al., 2001).
IA/ARMA requires either a priori knowledge of the regime shift (inter-
vention) or an estimate of the temporal location of the shift, which
can be identified by visual inspection of the time series data (Mantua,
2004). Intervention analysis is a method for confirming the presence
of a regime shift on time series data, and ARMA is used in combination
with IA when temporal autocorrelation is present or suspected in the
data. Although IA accounts for stochastic noise, it may provide more
useful knowledge about a system when using detrended data
(Mantua, 2004).

No Regime Shift Hypothesized a Priori

Vector Autoregressive Model

Vector Autoregressive Modeling (VAR) models interactions between
state variables and estimates coefficients much like a least squares re-
gression (Mantua, 2004) and identifies regime shifts as switches from
locally steady states in fitted values (Gal and Anderson, 2010). A para-
metric bootstrapping technique can determine statistical significance
of changes in fitted values, and Markov-switching techniques can be
added (Gal and Anderson, 2010). VAR has been applied to time-series
data in aquatic systems and simulated data (Mantua, 2004; Solow and
Beet, 2005; Gal and Anderson, 2010; Ives and Dakos, 2012). VAR can de-
tect unknown (not hypothesized a priori) regime shifts and accounts for
autocorrelation between variables and observations (Ives and Dakos,
2012). VAR cannot detect a regime shift in the first or last observation
of a time-series, potentially causing lagged early warnings of regime
shifts (Gal and Anderson, 2010). However, fitted values approaching
the limit of the typical range of variability in a system could still provide
an early warning signal (Ives and Dakos, 2012).

Generalized Modeling

Introduced by Lade and Gross (2012), generalized modeling (GM) as
a proposed EWI metric creates dynamical functions to describe each
variable and their interactions with other variables. Across a macro-
scopic time-scale, certain variables are assumed to change rapidly and
stochastically around a locally stable state ("fast" variables), whereas
others change gradually ("slow variables"). GM detects early warnings
or regime shifts when eigenvalues in the "fast" variables shift away
from their locally stable state (Lade and Gross, 2012). The GM metric
is advantageous in that it requires relatively few time-series data points
to robustly detect early warnings or regime shifts (Lade and Gross,
2012; Lade et al., 2013), and it can account for stochastic fluctuations
in fast variables (Lade and Gross, 2012). However, high levels of noise
in fast variables are known to decrease the accuracy of regime shift de-
tection (Lade and Gross, 2012). Although GM has received little rigorous
statistical testing in ecology, it shares many potential applications with
the VAR metric (Lade and Gross, 2012).

Known OR Unknown Driving State Variables/Unlimited Number of State
Variables

Overall, metrics in this division (unknown/unlimited) have fewer
assumptions than the previous division (Angeler and Johnson, 2012;
Spanbauer et al.,, 2016; Fig. 1). They do not require a priori knowledge
about which state variables drive system form and function (although
known driving state variables can be used), can readily accept an unlim-
ited number of state variable inputs, and do not require a priori hypoth-
eses of the spatial or temporal locations of regime shifts (Rodionov,
2004; Carstensen et al., 2013; Eason et al., 2016; Sundstrom et al.,
2017; Zurlini et al., 2014). However, a few unknown/unlimited metrics
have specific data type requirements, which produce tertiary divisions
(Fig. 1). Metrics that accept any type or combination of state variables
(Sequential T-test Analysis of Regime Shifts, Detrended Correspondence
Analysis, Detrended Canonical Correspondence Analysis, Redundancy
Analysis/distance-based Moran Eigenvector Maps or Asymmetric Ei-
genvector Maps, Fisher Information) define regimes by condensing
state variables into a single value as a series of data points (e.g., a
time-series, a spatial transect). These values fall within a stable range
of variability, and regime shifts occur when values exceed a
predetermined range of variability (e.g., Karunanithi et al.,, 2011; Baho
et al., 2014). Discontinuity analysis, identifies gaps, or scale-breaks, in
continuous, rank-ordered data of a single type (Allen and Holling,
2008). Finally, Conditional Probability Analysis requires explicitly spa-
tial data to detect shifts in cross-scale spatial state variable connectivity
(Zurlini et al., 2014).

Major advantages of unknown/unlimited metrics include their flex-
ibility and the fact that three have been tested for EWI applications
(Fisher Information, Discontinuity Analysis, Conditional Probability
Analysis; Fig. 1). Additionally, these metrics can consider an unlimited
number of state variables and combinations of data types (except for
Discontinuity Analysis and Conditional Probability Analysis—see
below; Fig. 1), and they requirement of little to no a priori system
knowledge (Mayer et al., 2007; Tian et al., 2008). Some of these metrics
are also capable of significance tests or information theoretic model se-
lection (e.g., Detrended Correspondence Analysis, Detrended Canonical
Correspondence Analysis, Sequential T-test Analysis of Regime Shifts,
Redundancy Analysis-distance-based Moran’s Eigenvector Maps/Asym-
metric Eigenvector Maps; Rodionov and Overland, 2005), but unlike
known/limited metrics, they do not estimate coefficients, meaning sig-
nificance tests for unknown/unlimited metrics may produce less spe-
cific conclusions than other approaches (Rodionov, 2004; Baho et al.,
2014). However, the ability to include unlimited state variables may
lead to including extraneous variables that could in turn lead to spurious
regime shift detections (Sundstrom et al., 2012). Also, because these
metrics do not require input state variables to be drivers or to interact,
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they provide little information on the directionality or relative impor-
tance of state variables regarding regime shifts (Vance et al., 2015).

Any Variable Type

Fisher Information

Fisher Information (FI) is a tested EWI metric, and previous applica-
tions demonstrate its utility for early warning detection, regime shift
detection, and land management decisions (Gonzalez-Mejia et al.,
2015; Eason et al., 2016; Sundstrom et al., 2017). FI is a measure of the
amount of information surrounding an unknown parameter that is ob-
tainable by observation (Fisher, 1922; Karunanithi et al., 2008). It is
rooted in statistical estimation theory and has been applied in variety
of disciplines ranging from quantum mechanics to ecosystem dynamics
(Fath and Cabezas, 2004; Pawlowski et al., 2005; Mayer et al., 2007;
Frieden and Gatenby, 2010). FI was recently adapted to assess changes
in system behavior and detect regime shifts in complex ecological and
social ecological systems (Fath et al., 2003; Karunanithi et al., 2011;
Eason and Garmestani, 2012; Gonzalez-Mejia et al., 2014; Vance et al.,
2015; Sundstrom et al., 2017). As a measure of overall system order, FI
defines regimes as steady or increasing order and regime shifts as sud-
den losses of order (Mayer et al., 2007; Eason et al., 2014). Losses of
order occur when state variables exceed their typical range of variability
(Spanbauer et al., 2014; Eason et al., 2016). In addition to advantages
shared with other unknown/unlimited metrics, FI can detect regime
shifts and early warnings regardless of resolution or length of the data
set (Spanbauer et al., 2014; Eason et al, 2016). For example,
Spanbauer et al. (2014) applied FI to a time series dataset on over 100
species of freshwater diatoms across > 7 000-yr period and found evi-
dence of long-term instability preceding a regime shift in community
structure. Although FI has primarily been used to assess temporal dy-
namics, Sundstrom et al. (2017) also used this method to detect regime
shifts in space (i.e., spatial regime boundaries) in terrestrial and aquatic
community data. Researchers have used FI with other approaches in-
cluding the variance index (Carpenter and Brock, 2006; Sundstrom et
al.,, 2017) and discontinuity analysis (Spanbauer et al., 2016).

Sequential T-Test Analysis of Regime Shifts

Sequential T-Test Analysis of Regime Shifts (STARS) was initially
proposed by Rodionov (2004) as a method for testing for the occurrence
of climatic regime shifts. STARS can provide early warning indicators of
aregime shift via formal statistical significance tests by using a sequen-
tial data processing technique that allows for exploratory analysis that is
not dependent on a priori hypothesis for locating regime shifts
(Rodionov, 2004). STARS has been applied to a range of time series
data beyond climate, including invertebrate and vertebrate community
composition data (Tian et al., 2008; Chiba et al., 2009; Wood and Austin,
2009; Kirkman et al., 2015), snowpack characteristics (Irannezhad et al.,
2015), streamflow (Johnston and Shmagin, 2008), sea surface tempera-
ture (Friedland and Hare, 2007), and thermohaline characteristics
(Matic et al., 2011). This method works well in collaboration with vari-
able reduction techniques such as Principal Components Analysis,
allowing for the inclusion of a large range of climatic, environmental,
and ecological data categories (McQuatters-Gollop and Vermaat, 2011).

Detrended Correspondence Analysis and Detrended Canonical Correspon-
dence Analysis

Detrended correspondence analysis (DCA) and detrended canonical
correspondence analysis (DCCA) are two multivariate ordination
methods typically used on sparse ecological data (Ter Braak, 1986),
often where ecological community assemblage data on species with
normal distributions with respect to environmental gradients need to
be detrended (remove arch effects; Hill and Gauch Jr., 1980). DCA and
DCCA have been used as regime shift detection methods by searching

for flickering, skewness, and autocorrelation of variance over time in
community or assemblage diversity and structure (Carstensen et al.,
2013). For instance, by using a single ordinated axis, DCA identified a
livestock grazing threshold gradient and possible regime shift on range-
land plant communities (Sasaki et al., 2008), and DCCA has been used to
estimate historic diatom Beta diversity (Hobbs et al., 2010; Liu et al.,
2013). DCCA and DCA may be less reliable in detecting changes in sys-
tems if the response variable does not follow a Gaussian distribution
(Ter Braak, 1986).

Redundancy Analysis-Distance-Based Moran’s Eigenvector Maps/Asym-
metric Eigenvector Maps

Redundancy Analysis (RDA)-distance-based Moran’s Eigenvector
Maps/Asymmetric Eigenvector Maps (dbMEM/AEM) is a proposed
EWI metric that detects regime shifts and changes in ecological struc-
ture by identifying ecological patterns at different spatial or temporal
scales; that is, it disentangles decadal, interannual, seasonal, and
intraseasonal patterns in time series or continental, regional, and local
patterns in data (Borcard and Legendre, 2002; Borcard et al., 2004;
Angeler et al., 2009). A refinement of the principal coordinate of neigh-
bor matrix approach, this metric instead uses RDA and models space or
time with a dbMEM or dbAEM approach (Dray et al., 2006; Angeler et
al., 2009). Rather than using spatial coordinates or a linear time vector
directly, dbMEM and AEM carry out a Fourier transformation to spec-
trally decompose the spatial/temporal relationships among data points
into orthogonal eigenfunctions. The resulting functions look like sine
waves (or distorted sine waves if the sampling is irregular) of distinct
frequencies that are then used as predictor variables in the RDA
(Angeler et al., 2010). The number and structure of predictor variables
obtained for analysis depends on the length/spatial extent and resolu-
tion/grain of the underlying data set. dbMEM differs from AEM in that
the latter includes a linear vector in addition to the sine waves, which
allows modeling unidirectional processes in time and space (e.g., hydro-
logical flow in streams; Baho et al,, 2014; Gothe et al., 2014). The RDA-
dbMEM/AEM methods uses rigorous permutation testing, allowing for
the determination of robust patterns and numerical assessment of the
relative importance of patterns detected at each scale using the amount
of adjusted variance explained. This metric has been used in both spatial
and temporal contexts with data from lakes and streams (Angeler et al.,
2014), marine systems (e.g., Angeler et al., 2014), ancient aquatic sys-
tems (Spanbauer et al, 2014), and terrestrial ecosystems (e.g.,
Widenfalk et al., 2016). These analyses often focus on assessing the or-
ganization of the complex behavior and resilience of these systems
and their application in management (Angeler and Allen, 2016).

Continuous Variables of the Same Type

Discontinuity Analysis

Discontinuity analysis (DA) is a method developed to objectively
identify discontinuities, or scale breaks, in rank-ordered data, and it
has been tested as an EWI metric (Allen and Holling, 2008; Sundstrom
et al.,, 2012; Nash et al.,, 2014; Spanbauer et al., 2016). DA arises from
ecological theory that posits ecosystems are multiscaled and hierarchi-
cal as a result of structuring processes operating over discrete ranges
of spatial and temporal scales (Allen and Starr, 1982; Holling, 1992).
Both ecological structure and the species that interact with that struc-
ture are scaled in the sense that they function within a limited and par-
ticular range of spatial and temporal scales (Allen and Holling, 2008).
Animal body masses, which are highly allometric with life-history traits,
fall into size classes detectable by DA and can be used as a proxy for the
complex spatial and temporal scales of ecological structure and struc-
turing processes (Nash et al., 2014). Changes in body mass size classes
in a system over time or space can therefore suggest changes in ecolog-
ical regimes when regime shifts represent shifts in basic ecological
structuring processes (Peterson et al., 1998). For example, used in



C.P. Roberts et al. / Rangeland Ecology & Management 71 (2018) 659-670 665

conjunction with constrained hierarchical clustering, DA detected early
warnings of regime shifts in paleodiatom data in freshwater lakes by
identifying shifts in the number and location of diatom body mass dis-
continuities (Spanbauer et al., 2016). DA also detected simplified fish
size classes in degraded coral reefs compared with healthier reefs
(Nash et al., 2013).

Explicitly Spatial Variables

Conditional Probability Analysis

Conditional Probability Analysis (CPA) uses explicitly spatial data to
detect regime shifts by assessing changes in spatial cross-scale land
use-land cover connectivity (Zurlini et al., 2014). Using multiple spatial
data layers, it calculates proportional land use-land cover (Pc) and con-
nectivity (i.e., adjacency; Pcc) within moving spatial windows of various
sizes. As Pc of a given land use-land cover type increases, Pcc increases
steadily until a threshold point is breached. At this threshold, a regime
shift occurs: as a new land use-land cover regime spreads, Pc abruptly
increases exponentially, and Pcc increases much more slowly. In the sin-
gle study we found using CPA, the authors detected an early warning of
aregime shift toward desertification as a result of increased agricultural
land connectivity in an urban-rural region of southern Italy (Zurlini et
al,, 2014).

Discussion

The rangeland discipline has one of the longest histories of using
large-scale rangeland inventories and analyses to influence major land
management decisions and avoid alternative ecological regimes with
less ecosystem service potential (West, 2003). In North America, the
first well-coordinated national inventory of terrestrial resources oc-
curred in the United States in 1934 to address concerns over ecological
transformations due to soil erosion (National Erosion Reconnaissance
Survey). In the decades following, US land management agencies have
launched multiple inventory frameworks aimed at maintaining favor-
able conditions and preventing deleterious regime shifts such as moni-
toring range quality, estimating degree of rangeland degradation,
maintaining so-called climax communities, and tracking the degree of
invasion by exotic species (West, 2003). But although monitoring ef-
forts have been successful at identifying ecosystem changes after their
occurrence, they often rely on subjective expert opinion or system-spe-
cific knowledge applied after the fact, thereby removing the ability to
predict surprises inevitable in ecological systems (Twidwell et al.,
2013).

The early warning and regime shift detection metrics we review are
meant to avoid problems associated with subjectivity and system-spe-
cific knowledge requirements. These metrics are often specifically de-
signed to predict surprise and can be applied to presently available
rangeland monitoring inventories to directly answer rangeland man-
agement and state-transition concerns in a spatially explicit manner.
While EWI metrics have not undergone robust experimental evaluation
in ecology and even less in the rangeland discipline (Table 2), many ro-
bust multivariate rangeland datasets have potential for testing and ap-
plying the early warning indicators that can be applied to multivariate
data (e.g., the Natural Resources Conservation Service’s “Natural Re-
sources Inventory,” the US Forest Service’s “Forest Inventory and Analy-
sis Program,” the US Department of Agriculture’s Animal and Plant
Health Inspection Service’s “Mormon Cricket/Grasshopper Assessment
Program”; USDA NRCS, 2015; USDA Forest Service, 2018; USDA APHIS,
2018). For instance, the generalizability of unknown/unlimited metrics
such as Fisher Information or Sequential T-test Analysis of Regime Shifts
makes them amenable for use in surveillance monitoring frameworks
that collect broad swathes of data of various types, and any state vari-
able could be of interest (Hutto and Belote, 2013). Additionally, some
unknown/unlimited metrics like RDA-dbMEM/AEM and Discontinuity
Analysis have the potential to identify regime shifts and early warning

while also estimating the complexity and resilience of rangelands—
thereby providing more detailed information on the state of the system
and potentially how close or far it is from a regime shift. Conversely,
sites with long-term monitoring (e.g., Long-Term Ecological Research
[LTER] sites, U.S. Department of Defense lands, or individual properties)
or where long-term data might be available in the future, and where the
drivers are known (e.g., percent cover of woody plants at Konza Prairie
LTER, bare ground at Jornada Basin LTER; Jornada Basin LTER, 2018;
Konza Prairie LTER, 2018), known/limited metrics have high potential
for early warning applications, depending on how data were collected:
for instance, fitted values for percent bare ground at Jornada Basin flick-
ering outside “typical” range of variability or consistently moving to-
ward the boundaries of the typical range of variability could represent
early warnings of a state transition (Solow and Beet, 2005; Dakos et
al., 2012; Ives and Dakos, 2012). Similarly, EWI metrics requiring hy-
pothesized regime shift locations (e.g., Average Standard Deviates, In-
tervention Analysis/Autoregressive Moving Averages) can be used in a
post-hoc manner with long-term data, and they could also potentially
be turned to produce early warnings by sequentially hypothesizing re-
gime shifts in time series data. EWI metrics can also be used to detect re-
gime shifts in spatial rangeland datasets (i.e., as has been assessed with
Fisher Information for breeding bird data; Sundstrom et al., 2017).

The new concept of spatial regimes brings together early warning,
regime shift, and state-transition theories by identifying where ecolog-
ical regime shifts/state-transitions are taking place in space and time.
Derived from regime shift and alternative state theory, spatial regimes
are defined as spatially explicit ecological systems maintained by feed-
back mechanisms that exhibit self-similarity in structure and composi-
tion within their boundaries (Allen et al., 2016; Sundstrom et al.,
2017). The abundance of spatial data for rangelands (e.g., remotely
sensed vegetation indices, fire history data, land use-land cover data),
the geographic breadth of monitoring sites (e.g., the NRCS Natural Re-
sources Inventory’s sites distributed throughout private agricultural
lands across the United States), and the geographic site-descriptive
goals of many rangeland initiatives (e.g., Ecological Site Descriptions)
suggest high potential for applying the spatial regime concept in con-
junction with EWI metrics in rangelands. For instance, we report only
a single article using an EWI metric in a spatial regime context
(Sundstrom et al., 2017) and none in rangelands (Table 2), but other
EWI metrics with similar approaches to Fisher Information (e.g., Se-
quential T-test Analysis of Regime Shifts, Discontinuity Analysis) could
also be used for spatial regime detection on large-scale (e.g., the US Geo-
logical Survey’s “North American Breeding Bird Survey”) or local-scale
(e.g., georeferenced LTER site) datasets. Likewise, CPA, as a tested EWI
metric that requires explicitly spatial data, could potentially be used to
detect spatial regimes via cross-scale connectivity in remotely sensed
rangeland data, searching for early warnings in loss of rangeland hetero-
geneity, for signs of fragmentation, or for signs of over-connectedness
and rigidity traps (Fuhlendorf and Engle, 2001; Hobbs et al., 2008;
Zurlini et al., 2014; Peters et al., 2015).

Ignoring the interaction between space and time when searching for
patterns indicating early warnings and regime shifts can lead to ecolog-
ical misinterpretations of underlying structure of state variables (Nash
et al., 2014; Baho et al., 2015). For instance, temporal early warnings
of regime shifts in yeast populations were found to be suppressed in
systems with high levels of connectivity, suggesting that EWI perfor-
mance is jeopardized by ignoring integrated spatial-temporal compo-
nents (Dai, 2013). To incorporate interactions between scale-specific
spatial and temporal processes into early warning and regime shift
modeling, approaches such as spatial/temporal eigenfunction analyses
(e.g., the RDA-dbMEM/AEM metric reviewed above; Blanchet et al.,
2008) have arisen to identify characteristic spatial and temporal scales
at which processes act to structure the distribution of species in a com-
munity (Dray et al., 2006, 2012; Peres-Neto and Legendre, 2010; Smith
and Lundholm, 2010). Often spatial/temporal eigenvectors are com-
bined with canonical ordination techniques or other multivariate
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community models to account for spatial-temporal patterns in commu-
nity data, thereby offering increased performance for detecting regime
shifts in systems where there is strong coupling of spatial and temporal
variation at multiple scales (Legendre and Gauthier, 2014). Although
many EWI metrics do not, spatial/temporal eigenfunction analyses
often require large-scale and/or long-term data relative to the commu-
nity of interest, making the intensive monitoring data collected by
rangeland scientists and managers imperative for using these EWI met-
rics and disentangling spatiotemporal scaling issues.

To identify situations when EWI metrics would be useful and appro-
priate, primary considerations relate to system characteristics, research
questions, data availability, and social or policy concerns (Table 3; Fig.
1). Although EWI metrics often require little a priori knowledge of sys-
tems, some system-specific information can help decide which or if EWI
metrics are appropriate (Lade et al., 2013; Mantua, 2004). For instance,
the presence of hysteresis or thresholds may increase the cost of resto-
ration, making detecting early warnings of regime shifts the more palat-
able option (Suding and Hobbs, 2009). Choosing when to use a metric
will also depend on the research goal (e.g., active experimentation on
regime shifts or passive monitoring), and data availability (Sample
size, is it spatial? Is it temporal?; Fig. 1). In addition to ecological and sta-
tistical considerations, social or policy concerns can influence when or if
to use EWI metrics. EWI metrics can provide evidence, and even esti-
mates of confidence, to support the presence or absence of thresholds
and regime shifts (Rodionov, 2004; Ives and Dakos, 2012). This can be
used to inform policymakers and provide decision-making tools for
managers. For example, an early warning signal could represent a policy
“trigger point” for initiating management or restoration (Lindenmayer
et al.,, 2013; Eason et al., 2016). Data constraints (e.g., time-series and
spatial data with sufficient resolution to cover relevant ecological scales
are usually absent), the lack of detailed knowledge for many traits, or-
ganisms, and processes represent a general limitation to the application

of regime shift detection in rangelands. However, several extant na-
tional or regional monitoring programs may provide data for testing
the regime shift indicators reviewed in this paper. Several experimental
monitoring initiatives (Borer et al., 2014; Nutrient Network, 2018) are
underway to overcome this limitation.

Management Implications

Early warning metrics and regime shift detection provide practical
tools to assess rangeland vulnerability and resilience in the face of
rapid environmental change. Here, we draw upon three examples
where the scientific exploration of these metrics can benefit core pur-
suits in the rangeland discipline. We encourage readers to read the full
articles to obtain more information.

Example 1: Earlier detection of rangelands in transition

Decades of field monitoring data have been collected in rangelands
with the hope of providing earlier signals of rangeland transitions.
Roberts et al. (in review) identify spatial regimes in actual grassland mon-
itoring data (Fig. 2A) and then demonstrate the potential to use an EWI to
detect, via simulation of future field monitoring, 1) the spatial scale at
which a new shrubland regime emerged and expanded over time (Fig.
2B), and 2) the potential to detect earlier warning of transitions via flick-
ering (Fig. 2C), an established early warning signal (Dakos et al., 2012).
The study drew from actual field monitoring data collected across a 4-
km transect at the Niobrara Valley Preserve, Nebraska. Sampling of com-
munity composition and structure identified the presence of smooth
sumac (Rhus glabra) within an expansive Sandhills grassland prairie, but
constrained hierarchical clustering did not identify the patch with
sumac as one of the current spatial regimes present at the site. A simula-
tion was conducted over time, using known assembly rules derived from
previous research, to test the potential for future field monitoring to be
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Figure 2. The emergence of new states, and the potential to avoid collapses in existing states, has been a preeminent focus of rangeland ecology and management. Roberts et al. (in review)
incorporate the spatial regimes concept into field monitoring data collected along a 4 km transect at the Niobrara Valley Preserve, Nebraska, USA. This study identifies (A) the existing
number and types of spatial regimes at the site, (B) the potential for using an early warning indicator in conjunction with the spatial regime concept to identify, via simulation of
future field monitoring (table of assembly rules for each time step), the location and spatial scale at which a shrubland regime emerged and the emergence of novel/unknown

regimes, at the cost to the previously dominant grassland regime, over time.
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Figure 3. Integrative metrics that accommodate multivariate data are being explored to assess their potential utility to detect early warning and regime change in complex adaptive
systems. Spanbaeur et al. (2014) compare various multivariate and univariate indicators using paleo-diatom data. Several populations of species experienced increased variability in
this study, but conflicting patterns make it difficult to operationalize univariate statistics to characterize the behavior of this complex, multivariate system. Similar trends and
observations might be expected in rangelands, but research has been limited, to date, to test these concepts and to assess their practical utility to rangeland managers.

paired with the clustering method in order to detect the emergence of a scale of shifting spatial regime boundaries, which could serve as “trigger
sumac-dominant regime over time. A major implication from this study points” for enacting management actions or changing policies in an adap-
is that early warning indicators can be used to identify the location and tive monitoring/management framework (Lindenmayer et al., 2013).

%
Nevada
Fires ~ 100
50 =
Annuals
= Perennials L 80 o™
540 1 — shrubs o
3 Bare Ground *
030 60 o
z T
3 o
£ 20 - -40 &
& e
10 4 L o0 I
0 L L B O O I O B B 0 Perennials, Annuals, v
1985 1990 1995 2000 2005 2010 2015 Annuals Annual Shrubs 5 10 20
Forbs/Grasses km

Figure 4. Future availability of remote sensing products with high spatiotemporal resolution has great potential to be incorporated into multivariate metrics used to detect early warning
signals and regime shifts. The bottom left panel shows trends in annual percent cover of annual forbs/grasses, perennial forbs/grasses, shrubs, and bare ground from 1984-2017 within an
area in Nevada, USA that is experiencing cheatgrass (Bromus tectorum) invasion. Bars denote the area of the Dun Glenn fire and subsequent smaller scale fires that burned within the
original fire perimeter. The image to the right is a single year of the remotely-sensed data for the area of the Dun Glenn and subsequent fires for a single year. The triangle below the
image indicates which colors correspond with a continuum of plant functional type percentages on the remotely-sensed image.
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Example 2: Preparing management for system-level change

A fundamental problem in the development of leading indicators is
that the performance of univariate indicators have been inconsistent,
with high uncertainty surrounding their potential to predict future re-
gime change (Brock and Carpenter, 2012). Traditional (univariate) lead-
ing indicators also typically require the critical variables driving
transitions to be known a priori, which is unrealistic in a future charac-
terized by novelty and uncertainty. Spanbauer et al. (2014) assess some
of the multivariate indicators featured in this review and compare their
utility to univariate indicators (Fig. 3). This paper reveals a general prob-
lem all-too familiar to rangeland scientists and managers; that is, mon-
itoring and management focused on a particular species or state
variable of interest effectively masks community-level analyses from
detecting system-level change. This paper shows that acting based on
traditional univariate indicators becomes infeasible given the inconsis-
tent signals and lack of spatial boundary detection needed to differenti-
ate patterns among multiple populations of interest. In contrast, the
authors conclude that more integrated measures that accommodate
multivariate data have the potential to better reflect the reality of com-
plex and adaptive ecological systems, like rangelands, and how to
operationalize spatially explicit signals of regime change.

Example 3: Advances in rangeland monitoring and application

Investments in technological innovation and computer processing is
leading to rapid growth in strategic targeting tools that makes huge
amounts of information and data readily accessible for rangeland sci-
ence and planning. For example, utilizing robust ground level measure-
ments, machine learning, and high performance cloud-based
computing, Jones et al. (in review) produce annual maps with historical
(1984-2017), continuous cover data (0-100%) of plant functional
groups for US rangelands (Fig. 4). The data product removes the barrier
of single class, arbitrarily delineated categorical data (e.g., where a pixel,
landscape, or region is classified solely as grassland, shrubland, or tree),
which removes information necessary to explore the potential utility of
the early warning and regime shift metrics featured in this review. In
addition, by utilizing frameworks that do not require or utilize a priori
knowledge of states but instead focuses on transitions that are detect-
able and measurable, it is possible to identify spatial risks or vulnerabil-
ities to transitions and then concentrate management activities where it
is most needed and will be most effective. The coupling of these data
and frameworks will prompt a shift from the static inventory and
state mapping paradigm (Steele et al., 2012) within rangeland ecology
to one of variability and transitions (Fuhlendorf and Engle, 2001;
Twidwell et al., 2013).

Overall, the EWI metrics we review and, more broadly, the early
warning/spatial regime paradigm represent quantitative, more objec-
tive decision-making tools for rangeland management in the face of
ecological uncertainty (Lindenmayer and Likens, 2009; Allen et al.,
2017). Traditional inventory and monitoring efforts are not designed
with the spatial specificity needed to provide indicators of sudden
change in many rangeland systems; however, statistical theory is ad-
vancing to be able to better incorporate broad-scale monitoring and in-
ventory data for purposes of early warning and regime shift detection.
Rangeland science is in a solid position to experimentally assess and in-
tegrate these metrics into monitoring and management, given the disci-
pline’s long-term focus on broad-scale monitoring and inventory data.
Moving forward, the quantitative metrics reviewed herein could fit
within joint efforts to couple adaptive management and monitoring as
part of a co-learning process—where the utility of the metrics are tested
and the monitoring necessary for their application is critiqued while
also using an iterative decision-making process to guide their adoption.
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