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Comments and Corrections

Counterexample to the Vector Generalization of Costa’s
Entropy Power Inequality, and Partial Resolution

Thomas A. Courtade , Guangyue Han , and Yaochen Wu

Abstract— We give a counterexample to the vector general-
ization of Costa’s entropy power inequality due to Liu et al.

In particular, the claimed inequality can fail if the matrix-
valued parameter in the convex combination does not commute
with the covariance of the additive Gaussian noise. Conversely,
the inequality holds if these two matrices commute.

Index Terms— Entropy power inequality, Costa’s EPI.

I. INTRODUCTION AND MAIN RESULT

For a random vector X with density on R
n , let h(X) denote

its differential entropy. Let Z ∼ N(0,!Z ) be a Gaussian

vector in R
n independent of X , and let A be a (real symmetric)

positive semidefinite n×n matrix satisfying A # I with respect

to the positive semidefinite ordering, where I denotes the

identity matrix. In [1, Th. 1], Liu et al. claim the following

generalization of Costa’s EPI1 [2]:

e
2
n

h (X+A1/2 Z)
≥ |I − A|1/ne

2
n

h(X) + |A|1/ne
2
n

h(X+Z). (1)

Liu et al. apply (1) in their investigation of the secrecy capacity

region of the degraded vector Gaussian broadcast channel with

layered confidential messages.

The purpose of this note is to demonstrate that (1) can fail

for n ≥ 2, and also to offer a partial resolution. Toward the

first goal, consider n = 2 and let us define

!X =

(

200 100

100 51

)

, !Z =

(

200 0

0 1

)

,

A1/2 =
1

20

(

10 5

5 17

)

. (2)

Taking X ∼ N(0,!X ) and Z ∼ N(0,!Z ) to be independent

Gaussian vectors, we have

1
2πe

e
2
n

h (X+A1/2 Z) = |!X + A1/2!Z A1/2|1/2
≈ 19.53.
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1Entropies are taken to be base e throughout. For a positive semidefinite

matrix M, we write M1/2 to denote the unique positive semidefinite matrix

such M = M1/2M1/2.

On the other hand,

1
2πe

(

|I − A|1/ne
2
n h(X) + |A|1/ne

2
n h(X+Z)

)

= |I − A|1/2|!X |1/2 + |A|1/2|!X + !Z |1/2
≈ 40.28.

Thus, a contradiction to (1) is obtained. We remark that there is

nothing particularly unique about this counterexample, except

that the matrices were chosen to violate (1) by a significant

margin.

Evidently, further assumptions are needed in order for (1)

to hold. To give a simple resolution, we note that it suffices

for the matrices A and !Z to commute.

Theorem 1: Let X be a random vector with density on R
n

whose entropy exists in the usual Lebesgue sense, and let

Z ∼ N(0,!Z ) be a Gaussian vector in R
n independent of X.

If A # I is positive semidefinite and commutes with !Z , then

e
2
n h (X+A1/2 Z)

≥ |I − A|1/ne
2
n h(X) + |A|1/ne

2
n h(X+Z).

Proof: For brevity, we refer the reader to the original

proof of [1, Th. 1], and only point out where the argument

needs to be corrected. To this end, Liu et al.’s proof contains

an incorrect application of the AM-GM inequality in the form

[1, eq. (28)]:

|!−1
Z Cov(Z |Dγ X + Z)(I − D−2

γ )|1/n

≤
1

n
Tr(!−1

Z Cov(Z |Dγ X + Z)(I − D−2
γ )), (3)

where Dγ := (I+γ (A− I))1/2, and γ ∈ [0, 1] parameterizes a

path of perturbation. Indeed, a product of positive semidefinite

matrices is not necessarily positive semidefinite, which can

lead to failure of the AM-GM inequality in the form (3).

For example, returning to the counterexample above where

X ∼ N(0,!X ) and matrices are chosen according to (2),

the eigenvalues of !−1
Z Cov(Z |Dγ X + Z)(I − D−2

γ ) can be

approximately computed as {−0.0053,−0.7273} for γ = 0.5,

in violation of (3).

However, if A and !Z commute, then so do !
−1/2
Z and

(I − D−2
γ )1/2 since real symmetric matrices commute if and

only if they are simultaneously diagonalizable by some orthog-

onal matrix U. Hence,

Tr(!−1
Z Cov(Z |Dγ X + Z)(I − D−2

γ ))

=Tr((I−D−2
γ )1/2!

−1/2
Z Cov(Z |Dγ X +Z)!

−1/2
Z (I−D−2

γ )1/2).

The argument of the second trace term is clearly positive

semidefinite, and therefore (3) holds for all γ ∈ [0, 1] under

the additional assumption that A and !Z commute, thereby

repairing Liu et al.’s proof. !
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II. REMARKS

The critical application of inequality (1) by Liu et al.

(see [1, p. 1877]) assumes only that A and !Z are diagonal

matrices, so the conclusions of [1] appear to be unaffected,

aside from [1, Th. 1]. In fact, Ekrem and Ulukus [3] obtained

the same secrecy capacity results using a different argument.

Nevertheless, [1] has been cited numerous times in the liter-

ature, so other published results may be affected to varying

degrees. As one example, a computation in [4] similarly

overlooks non-commutativity of the matrices A and !Z ,

leading to the incorrect conclusion that [1, Th. 1] is a corollary

of [4, Th. 3]. Despite the error, the validity of [4, Th. 3] is

not impacted, and the corrected computation, showing that

[4, Th. 3] implies Theorem 1 above, can be found

in [5, Sec. III.A]. Other works may be more seriously affected,

but we do not attempt to give an accounting of consequences

here.

In closing, we remark that the additional assumption that

A and !Z commute is a relatively strong one. It can easily

be seen, using the simultaneous diagonalization property of

A and !Z by a common orthogonal matrix, that Theorem 1

has a completely equivalent statement where Z ∼ N(0, I) and

A is restricted to be a diagonal matrix with diagonal entries

0 ≤ ai ≤ 1, i = 1, . . . , n. Theorem 1 should be viewed as

an extension of Costa’s original 1985 result (which assumed

identical parameters ai ) in this sense. As pointed out to the

authors by an anonymous referee, a standard information-

theoretic argument may be used to establish Theorem 1 as

a corollary of Costa’s original inequality, without appealing

to the perturbation framework used in [1]. This argument has

been included in the appendix.

APPENDIX

What follows is a proof of Theorem 1 using Costa’s entropy

power inequality [2]. In particular, we shall prove Theorem 1

in the equivalent setting noted in the closing statement above,

where Z ∼ N(0, I) and A is a diagonal matrix with diagonal

entries 0 ≤ ai ≤ 1, i = 1, . . . , n. The argument below was

provided by an anonymous referee.

Y1 := X + A1/2 Z1, and Y2 := Y1 + (I − A)1/2 Z2,

where Z1, Z2 are independent copies of Z ∼ N(0, I), also

independent of X . Since A is assumed diagonal with entries

a1, . . . , an , Theorem 1 may thus be written as
n

∏

i=1

(1 − ai )
1/ne

2
n
(h(X)−h(Y1)) +

n
∏

i=1

a
1/n
i e

2
n
(h(Y2)−h(Y1)) ≤ 1.

(4)

We consider the exponential terms separately. By the

Csiszár sum identity,

h(X) − h(Y1) =

n
∑

i=1

(

h(X i |X
i−1, Y n

1,i+1)

−h(Y1,i |X
i−1, Y n

1,i+1)
)

=

n
∑

i=1

(

h(X i |Vi ) − h(Y1,i |Vi )
)

,

where Vi := (X i−1, Y n
1,i+1). Similarly,

h(Y2) − h(Y1) =

n
∑

i=1

(

h(Y2,i |Y
i−1
2 , Y n

1,i+1)

−h(Y1,i |Y
i−1
2 , Y n

1,i+1)
)

≤

n
∑

i=1

(

h(Y2,i |Vi ) − h(Y1,i |Vi )
)

,

where the last inequality follows from

I (X i−1; Y2,i |Y
i−1
2 , Y n

1,i+1) ≤ I (X i−1; Y1,i |Y
i−1
2 , Y n

1,i+1),

which holds by Markovity induced by construction of Y1, Y2.

Hence, (4) holds if

e
1
n

∑n
i=1 log(1−ai )+2 h(X i |Vi )−2 h(Y1,i |Vi )

+ e
1
n

∑n
i=1 log(ai )+2 h(Y2,i |Vi )−2 h(Y1,i |Vi ) ≤ 1.

By convexity of x )→ ex , it is sufficient to show that

(1 − ai )e
2 h(X i |Vi )−2 h(Y1,i |Vi ) + ai e

2 h(Y2,i |Vi )−2 h(Y1,i |Vi ) ≤ 1

for each i . However, this is just the conditional form of Costa’s

scalar inequality for concavity of entropy power, which holds

again by convexity of x )→ ex , and the easily verified fact that

Vi → X i → Y1,i → Y2,i .
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