




workers who compute A(1, 1)×B(1, 1), A(1, 2)×B(2, 1)
and A(1, 3)×B(3, 1) are added.

It is accepted in High Performance Computing (HPC) that

blocked partitioning of input matrices takes less time than

naive matrix multiplication [1], [2], [15]. For example, in [2],

the authors propose 2.5D matrix multiplication, an optimal

communication avoiding algorithm for matrix multiplication

in HPC/server-based computing, that divides input matrices

into blocks and stores redundant copies of them across proces-

sors to reduce bandwidth and latency costs. However, perhaps

due to lack of a proper analysis for cloud-based distributed

computing, existing algorithms for straggler mitigation in

the cloud do naive matrix multiplication [9]–[11]. Next,

we develop a new cost model for the serverless computing

architecture and aim at bridging the gap between cost analysis

and straggler mitigation for distributed computation in the

serverless setting.

III. COST ANALYSIS: NAIVE AND BLOCKED

MULTIPLICATION

There are communication and computation costs associated

with any distributed algorithm. Communication costs them-

selves are of two types: latency and bandwidth. For example,

sending n words requires packing them into contiguous

memory and transmitting them as a message. The latency

cost α is the fixed overhead time spent in packing and

transmitting a message over the network. Thus, to send Q

messages, the total latency cost is αQ. Similarly, to transmit

K words, a bandwidth cost proportional to K, given by

βK, is associated. Letting γ denote the time to perform one

floating point operation (FLOP), the total computing cost

is γF , where F is the total number of FLOPs at the node.

Hence, the total time pertaining to one node that sends M

messages, K words and performs F FLOPs is

Tworker = αQ+ βK + γF,

where α ≫ β ≫ γ. The (α, β, γ) model defined above

has been well-studied and is used extensively in the HPC

literature [1], [2]. It is ideally suited for serverless computing,

where network topology does not affect the latency costs as

each worker reads/writes directly from/to the cloud storage

and no multicast gains are possible.

However, our analysis for costs incurred during distributed

matrix multiplication differs from previous works in three

principle ways. 1) Workers in serverless architecture cannot

communicate amongst themselves, and hence, our algorithm

for blocked multiplication is very different from optimal

communication avoiding algorithm for HPC that involves

message passing between workers [2]. 2) The number of

workers in HPC analyses is generally fixed, whereas the

number of workers in serverless setting is quite flexible,

easily scaling into the thousands, and the limiting factor is

memory/bandwidth available at each node. 3) Computation

on the inexpensive cloud is more motivated by savings in

Table I: Costs comparison for naive and blocked matrix

multiplication in the serverless setting, where δ < 2.

Cost type Naive multiply Blocked Multiply Ratio: naive/blocked

Latency O(mln2(1−δ)) O(mln1−3δ/2) O(n1−δ/2)

Bandwidth O(mln2−δ) O(mln1−δ/2) O(n1−δ/2)

Computation O(mln) O(mln) 1

expenditure than the time required to run the algorithm. We

define our cost function below.

If there are W workers, each doing an equal amount

of work, the total amount of money spent in running the

distributed algorithm on the cloud is proportional to

Ctotal = W × Tworker = W (αQ+ βK + γF ). (1)

Eq. (1) does not take into account the straggling costs as they

increase the total cost by a constant factor (by re-running

the jobs that are straggling) and hence does not affect our

asymptotic analysis.

Inexpensive nodes in serverless computing are generally

constrained by the amount of memory or communication

bandwidth available. For example, AWS Lambda nodes have

a maximum allocated memory of 3008 MB2, a fraction

of the memory available in today’s smartphones. Let the

memory available at each node be limited to M words. That

is, the communication bandwidth available at each worker

is limited to M words, and this is the main bottleneck of

the distributed system. We would like to multiply two large

matrices A ∈ R
m×n and B ∈ R

n×l in parallel, and let

M = O(nδ). For all practical cases in consideration, δ < 2.

Proposition 3.1: For the cost model defined in Eq. (1),

communication (i.e., latency and bandwidth) costs for blocked

multiplication outperform naive multiplication by a factor of

O(n1−δ/2), where the individual costs are listed in Table I.

We refer the readers to Appendix A of [14] for proof. The

rightmost column in Table I lists the ratio of communication

costs for naive and blocked matrix multiplication. We note

that the latter significantly outperforms the former, with

communication costs being asymptotically worse for naive

multiplication. An intuition behind why this happens is that

each worker in distributed blocked multiplication does more

work than in distributed naive multiplication for the same

amount of received data. For example, to multiply two square

matrices of dimension n, where memory at each worker

limited by M = 2n, a = 1 for naive multiplication and b =√
n for blocked multiplication. We note that the amount of

work done by each worker in naive and blocked multiplication

is O(n) and O(n3/2), respectively. Since the total amount

of work is constant and equal to O(n3), blocked matrix

multiplication ends up communicating less during the overall

execution of the algorithm as it requires fewer workers. Note

2AWS Lambda limits are available at (may change over time)
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

300










