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A B S T R A C T

Home range estimation is an important analytical method in applied spatial ecology, yet best practices for
addressing the effects of spatial variation in detection probability on home range estimates remain elusive. We
introduce the R package “DiagnoseHR,” simulation tools for assessing how variation in detection probability
arising from landscape, animal behavior, and methodological processes affects home range inference. We de-
monstrate the utility of simulation methods for home range analysis planning by comparing bias arising from
three home range estimation methods under multiple detection scenarios. We simulated correlated random
walks in three landscapes that varied in detection probability and constructed home ranges from locations
filtered through a range of sampling protocols. Home range estimates were less biased by reduced detection
probability when sampling effort was increased, but the effects of sampling day distribution were minimal. Like
others, we found that kernel density estimates were the least affected by variation in detection probability, while
minimum convex polygons were most affected. Our results illustrate the value of quantifying uncertainty in
home range estimates and suggest that field biologists working in environments with low detection may wish to
weight sample-size greater than concerns about temporal autocorrelation when designing sampling protocols.

1. Introduction

Patterns of animal spatial distribution convey important informa-
tion about how animals perceive and interact with their environments
(Bowman et al., 2002; Lima, 2002; Sih, 2005). Thus, documenting and
explaining when and where animals are found has profound implica-
tions for understanding population and community dynamics and
consequences for the conservation and management of species and their
habitats (Schofield et al., 2010). Technological advances, such as global
positioning system (GPS) tags that determine animal locations using
satellites, have improved our ability to document animal locations and
movements (Mills et al., 2006). However, studies using methods such as
color bands, camera traps, passive integrated transponder tags, and
even small GPS tags deployed in rugged environments, continue to be
subject to bias when the ability to conclude that an animal is occupying
a sampled space given its presence, i.e. detection probability, co-varies
with landscape features that influence the animal’s spatial decisions
(Rettie and McLoughlin, 1999; Camp et al., 2016; Vance et al., 2017).

Furthermore, movement datasets collected using methods such as tra-
ditional radio telemetry continue to be used for longitudinal studies and
conservation planning, and a need exists to quantify uncertainty when
integrating such analyses with emerging methods (Stackhouse, 2012).

Because landscape-driven variation in detection probability can
undermine inference and even create spurious results (Kessel et al.,
2013), detection probability has received considerable attention in the
spatial ecology literature (e.g., Aarts et al., 2008; Frair et al., 2004,
Royle et al., 2014), and analytical methods that explicitly address de-
tection issues are increasingly common (Golding et al., 2017; Kéry and
Royle, 2015; MacKenzie and Royle, 2005). Despite a consensus on the
importance of detection probability to spatial ecological inference,
addressing the effects of detection probability in practice remains a
challenge for investigators planning field protocols and choosing ana-
lytical methods.

Recent analytical improvements have provided methods to account
for detection probability by imputing missing locations, weighting ob-
servations by detection probability prior to rendering a home range
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estimate, or weighting observations to reduce temporal autocorrelation
(Fleming et al., 2018; Horne et al., 2007). Too often, however, detec-
tion probability is unknown and the effects of imputation and weighting
likely vary according to research questions, sampling protocols, and
analytical methods (Fieberg and Börger, 2012). It is difficult to quantify
sampling limitations after data have been collected, especially in long-
term telemetry datasets commonly used by natural resource agencies
and other researchers seeking a practical answer to an applied con-
servation problem. Moreover, a need exists for tools that facilitate ro-
bust field sampling protocols and informed decisions about which home
range estimation method to use for a given question in a given system.
Investigators must be able to identify if a dataset contains sampling bias
or variation in detection probability prior to applying any correction
method, and select the analysis method that most effectively margin-
alizes the effects of varying detection in a given research scenario.
Herein, we introduce the R (R statistical environment; R Core Team,
2018) package DiagnoseHR. DiagnoseHR implements simulation
methods for creating detection-censored animal occurrence records
reflecting a wide range of landscape-driven detection probability dis-
tributions, animal movement patterns, and sampling protocols.

We illustrate the utility of simulating detection-censored datasets
for comparing spatial analysis methods using a case study of home
range size estimation. Ecologists estimate animal home ranges, the
space used while foraging, mating, and caring for young within a de-
fined time period (Burt, 1943; Spencer, 2012), by inputting a set of
relocations from a marked individual into an algorithm that uses the
spatial and sometimes temporal relationships between locations to
elucidate the animal’s use of space (Worton, 1987). Home ranges are
assumed to be an asymptotic function of relocation sample size when an
animal demonstrates some degree of site fidelity (Powell and Mitchell,
2012). The outcome of home range estimation varies by modeling ap-
proach, and is sensitive to sampling issues both within (e.g., sampling
protocols, fix schedules) and beyond (e.g., landscape features) in-
vestigator control (Fig. 1; Gula and Theueurkauf, 2013; Harris et al.,
1990). The effects of limited and biased relocation samples are an issue
of considerable concern in the home range literature (Boulanger and
White, 1990; Laver and Kelly, 2008; Lyons et al., 2013; Signer and
Balkenhol, 2015; Wilson et al., 2018). Although telemetry sampling
protocols, GPS fix schedules, and post-collection data processing
methods traditionally optimize sample size and independence (Otis and
White, 1999; Seaman et al., 1999), heterogeneity in detection prob-
ability across a landscape is often not explicitly addressed.

Using DiagnoseHR, we simulate an attempt to account for the role of
varying detection probability in a home range analysis of radio tele-
metry data. We simulate the telemetry data collection process and as-
sess how detection probability, sampling design and statistical methods
affect home range inference. We focus on home range size, the total
area used by an animal. Home range size, one of the most commonly
calculated and compared home range metrics, is often applied in con-
servation planning, incurring potentially important consequences when
estimators are biased. We simulated animal movement patterns under
multiple detection scenarios and compare the performance of three
established home range estimators under varying field protocol and
landscape constraints.

2. Materials and methods

2.1. Calculation: simulation approach

The problem of attempting to record locations of marked animals
under varying detection regimes is widespread across ecological field
research (Millspaugh and Marzluff, 2001). Variation in home range
analysis methods and reporting complicate the interpretation of dif-
ferences in home range sizes between systems (Laver and Kelly, 2008),
a common objective of home range studies (e.g., Anderson et al., 2005).
Recent advancements in home range analysis have consequently

focused on making methods more transparent and results more re-
producible (Signer and Balkenhol, 2015). We seek to further the de-
velopment of transparent and reproducible approaches by providing a
tool for simulating animal movement datasets and quantifying home
range estimate uncertainty.

DiagnoseHR is currently available as a package hosted on github
and may be installed using the R package devtools (Wickham et al.,
2018). DiagnoseHR facilitates the creation of simulated animal move-
ment datasets for field planning and home range method selection by
giving the user control over the landscape, animal behavior, and sam-
pling processes. The simulation proceeds in four stages: landscape for-
mation, population initiation, animal movement, and sampling. The
resulting simulated datasets are then available for field planning and
methodological comparison. DiagnoseHR currently supports home
range estimate evaluation for a limited number of home range methods,
with support for more being continually added. Details on DiagnoseHR
are given below, and a full tutorial that will be updated as the package
grows is available at https://github.com/lsw5077/DiagnoseHR.

2.1.1. Landscape formation and population initiation
The user initiates the simulation by constructing a landscape matrix

wherein each cell is assigned a cell-specific detection probability that
constrains an observer’s ability to record the presence of a simulated
organism given its occurrence in the cell. The function make_world()
creates a grid with x and y dimensions of the user’s specification. Each
grid cell is assigned a detection probability drawn from either a random
uniform distribution with user-defined maximum and minimum, or a
beta distribution with user-defined shape parameters. The world is
stored as a data frame, an R data storage object that can hold multiple
data types, for use in the next steps. The user initiates the simulated
population through the populate_world() function by specifying the
number of organisms in the population, the world to populate (the
object created and stored using make_world()), the maximum number
of organisms that may share a cell, and whether initial cells should be
assigned to simulated organisms with or without replacement. If a user
has a landscape with X and Y coordinates and known detection prob-
ability, they may upload it into the simulation as a four-column data
frame with columns “x”, “y”, a unique “cell_id,” and “cell_prob,” the
cell-specific detection probability.

2.1.2. Animal movement simulation
Users initiate and record correlated random walks defined by the

organism’s home range size, a total number of steps, step directions,
distance from home range center, and site fidelity using the function
move_critters(). The move_critters() function initiates and records cor-
related random walks for each simulated organism around the simu-
lation space. The correlated random walk is defined by the world in
which the walk occurs, the specified population created by populate_-
world(), whether the world is to be open or closed (i.e. whether animals
can leave the simulation space), the home range size in square units,
and direction parameters for the correlated random walk. If the user
specifies home range type as “fixed,” (i.e. the same for all individuals in
the population), then each individual is assigned the specified home
range size. If the user specifies home range type as “random,” each
individual draws a home range size from a gamma distribution with
shape equal to the specified home range size and scale of 1 to simulate
home range size variation that may be present in a population.
Organisms make the number of movements specified in the “Nsteps”
argument by selecting a cell from the set of available cells given their
home range sizes. If the world is open, simulated organisms may move
off the simulation space and become undetectable. If the world is
closed, simulated organisms will only make movements to cells with
coordinates greater than or equal to the minimum X and Y coordinates
of the simulation space and smaller than or equal to the maximum X
and Y coordinates of the simulation space. Users may also specify an
optional site fidelity between 0 and 1 that controls how likely
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organisms are to turn back toward their home range centers as they
move farther away. Organisms with a high site fidelity value will be
more likely to turn back with each additional distance unit away from
their home range center than organisms with a low site fidelity value.

The direction of each step in the correlated random walk is

determined in part by a Wrapped Cauchy distribution and step length is
determined using a Weibull distribution, as recommended by Morales
et al. (2004) for simulating GPS track movement data. At each step, the
organism determines a step direction and length depending on the size
of the home range and its position relative to the home range center.

Fig. 1. Conceptual diagram of the home range inference process. Inference of animal home range size is a function of animal (a, c), and investigator (b, d) decisions.
Sampling design (b) determines which locations (a) are available to the investigator, and the animal’s choice of habitat features (c) may determine the detectability of
each location. Choice of home range estimator (d) further influences inferences drawn about home range size.
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The organism first draws a potential step direction from a Wrapped
Cauchy distribution with user-specified Mu, the mean direction taking
any value on the unit circle in radians (0 to 2pi), and rho, the dispersion
parameter varying between 0 and 1. For example, a Wrapped Cauchy
distribution with any mu and a rho of 0 would produce completely
random trajectories, and a Wrapped Cauchy distribution with a mu of
3.14 and a rho of 1 would produce only trajectories of 3.14 radians.
From a biological perspective, the wrapped Cauchy distribution allows
users to describe a central tendency and variation in random walk be-
havior, providing a wide variety of underlying animal movement pat-
terns. Step length is determined by drawing a random number from a
Weibull distribution that with a shape that defaults to 2 and scale by
default equal to the radius of the user-specified home range. However,
the user may specify any shape and scale parameters for the Weibull
distribution using the arguments “wei_shape” and “wei_scale.”

To ensure that users may control the degree to which the simulated
organisms move around a central location reflecting a home range, we
developed a functional relationship between the organism’s distance
from its home range center and the probability the organism’s next step
would be directed toward its home range center (Pc; equation 1). This
relationship is given as:

=
+

Pc
exp sf

exp sf

( * )

1 ( * )

d
r

d
r

Equation 1: DiagnoseHR calculates organisms’ probability of turning
back toward their home range center as a function of site fidelity and
distance from home range center.

Where sf is the organism’s site fidelity, a number between 0 (no site
fidelity) and 1 (high site fidelity), d is organism’s distance from home
range center if it makes the Weibull-determined step length in the
Wrapped Cauchy-determined potential direction, and r is the radius of
the user-specified home range size. Assuming a finite home range size,
the probability of turning toward the home range center increases with
increasing distance from home range center, and site fidelity defaults to
1. If Pc is greater than a random number drawn from a random uniform
distribution between 0 and 1, the organism will turn back toward its
home range center. If Pc is not greater than the random uniform draw,
the organism will continue in its Wrapped Cauchey-determined direc-
tion. Because the tools provided are open source, users may readily
alter the Pc curve equation as needed.

2.1.3. Sampling
DiagnoseHR allows the user to sample the simulated movement

record using multiple sampling schemes reflecting realistic field plan-
ning constraints in situations where relocations are limited by observer
time (e.g., color bands, radio telemetry) or limited automated reloca-
tion ability (e.g., for very small GPS tags with limited battery life or
memory). The function sample_world() allows the user to sample the
correlated random walks created using the move_critters() function
within the detection constraints of the user’s simulated world and de-
fined sampling protocols. The process of detecting an animal given its
presence includes stochasticity that we endeavor to reproduce by in-
cluding stochastic variation in the landscape and the simulated organ-
isms’ behavior.

DiagnoseHR provides tools for assessing the stochastic effects of
individual organism behavior on detectability by drawing an in-
dividual-specific detection probability for each organism at each step
from a random uniform distribution between zero and one. When the
observer attempts to sample an occupied cell, they are successful when
the cell-specific detection probability exceeds the organism-specific
detection probability. The sample_world() function samples a user-de-
fined detection world, “world,” movement record, “walk,” number of
cells per time step, “n.cells,” a number of time steps to sample, “sam-
ple.steps,” whether to sample with replacement within a time step,
“replace.step,” and whether to sample with replacement in the entire

sampling simulation, “replace.world.”
A simulated relocation is designated as detected when the user’s

sampling protocol samples an occupied cell whose cell detection
probability exceeds the organism’s detection probability and not de-
tected when the cell is not sampled, or the organism’s detection prob-
ability exceeds the cell’s detection probability. sample_world() gen-
erates a list containing all cells sampled, all animal movements and the
detection/sampling-censored movement record. By comparing the re-
sults of home ranges calculated with all locations the animal occupied,
and only those detected under sampling constraints, the investigator
may assess how different sampling schemes and estimators are likely to
affect inferences made for a specific question or application in light of
detection and sampling constraints.

2.2. Other functions: estimator performance and uncertainty

We propose that simulated datasets may be a useful planning tool
and that investigators conducting home range analyses may consider
three supplementary methods to quantify uncertainty in home range
estimates: asymptote assessment, sensitivity plots, and leverage plots.
The concept of the home range as an asymptotic function of relocation
sample size has an intuitive ecological significance, but it is not im-
mediately apparent when a given home range estimate reaches an
asymptote. Indeed, a home range estimate that does not reach an
asymptote may still be ecologically relevant, but the interpretation will
be different. For example, a non-asymptotic home range may provide
information about space use, but not give a minimum viable space re-
quirement for conservation. We follow previous suggestions (e.g., Laver
and Kelly, 2008) that home range analysis should include an assessment
of whether a home range estimate is asymptotic. Additionally, variation
in detection probability may result in a dataset where low-detection
spaces are under-represented and a relatively few relocations can have
an outsized impact on home range size estimates. Quantifying the im-
portance of each relocation to a home range estimate therefore has
value for identifying potential bias and assessing the outcomes of home
range analysis. DiagnoseHR provides utility for creating asymptote
plots, sensitivity plots, and leverage plots that facilitate assessment of
the importance of sample size and individual relocations on the relia-
bility of estimates. The functions described below are currently com-
patible with the minimum convex polygon, local convex hull, and
kernel utilization density methods from package adehabitatHR
(Calenge and Fortmann-Roe, 2017), and will be continually expanded
to include new methods. Because DiagnoseHR is an open source R
package hosted on github, users may also modify package source code
to experiment with other home range methods and contribute their
expansions.

The function hrAsym() helps users determine whether a home range
estimate reaches an asymptote as the number of relocations collected
increases. hrAsym() recalculates each home range estimate iteratively,
adding relocations to the initial minimum subsample as specified by the
package adehabitatHR (five for MCP, 10 for LCH and KDE). hrAsym()
then plots the resulting home range size curve to provide a visual as-
sessment of when or whether home range size converges on an
asymptote.

Sensitivity plots facilitate discussion of uncertainty in estimated
home range size by employing a “jackknife” method to demonstrate
how a home range estimate changes when individual relocations are
iteratively removed. By iteratively recalculating home ranges, leaving
out one relocation at a time and plotting relocation ID on the x-axis and
home range size on the y-axis, users may assess how sensitive the es-
timate is to the addition or removal of a specific point. A home range
estimate that is sensitive to the addition or removal of relocation will
result in a sensitivity plot with larger and more frequent fluctuations in
estimated home range size, while a less sensitive estimate will appear
“smoother.” We emphasize that the definition of a “large” fluctuation
depends entirely on the ecology of the study species and the intended
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application of the analysis. The function hrDiag() in package
DiagnoseHR creates an sensitivity plot for each individual in a reloca-
tion dataset and returns a list, “out,” into the global environment. Out
contains a data frame of re-estimated home ranges, “results,” and a
summary table, “result_tab.” result_tab displays the minimum, max-
imum, mean, standard error, 25th and 50th percentiles of each in-
dividual’s re-estimated home range size. A more sensitive home range
will exhibit a relatively larger range between maximum and minimum
estimated home range size.

DiagnoseHR further quantifies error in home range size estimation
resulting from detection or sampling processes by calculating bias as:

=Bias Observed Home Range Size Expected Home Range Size
Expected Home Range Size

Equation 2: DiagnoseHR calculates bias as the proportional difference
between observed and expected home ranges, relative to expected
home range.

Where the “expected” home range is the home range calculated
using all possible locations and the selected home range estimator, and
the “observed” home range is the home range calculated in the same
estimator using the locations collected in a given detection scenario and
sampling scheme. For example, a bias of 0.50 represents a 50% over-
estimate of home range size and a bias of -0.50 represents a 50% un-
derestimate of home range size. Because it is difficult to compare the
sensitivity of differently-sized home range estimates, we suggest as-
sessing bias as a scaled value, or leverage, calculated as:

=L b
max b( )i

i

Equation 3: DiagnoseHR calculates leverage of each relocation as the
bias resulting from removing that relocation divided by the maximum
bias created by removing any relocation in the relocation set.

Where Li is the leverage of the ith point, bi is the bias of the home
range measurement when point i is removed, and max (b) is the max-
imum bias of any location in the relocation dataset. When individual
relocation leverages are displayed in a histogram, the resulting plot
demonstrates the scaled relative importance of each relocation to the
home range estimate. A home range in which many points contribute
similarly to the home range size estimate will have a leverage histogram
with many observations clustered around 0, but if a few points are
having a larger effect, the observations will be distributed away from
zero toward the extreme ends of the leverage histogram. Whereas the
sensitivity plot will vary according to the magnitude of the home range,
leverage is unaffected by the overall size of a home range. Users may
therefore compare the sensitivity of variously sized home range esti-
mates by using the sensitivity plot in conjunction with the leverage plot.
hrDiag() calculates leverage for each individual relocation in a reloca-
tion dataset and returns one leverage histogram for each individual in
the dataset.

2.3. Case study

We simulated an observer making home range inferences from
traditional radio telemetry data collected under three detection regimes
reflecting variation in detection across populations and environments
(Fig. 2). We initiated one simulated organism per iteration, on simu-
lation spaces containing 1.44 million cells, with detection probabilities
determined by detection scenario. Cells in the uniform “high-detection”
scenario were assigned detection probabilities drawn from a random
uniform distribution from 0.7 to 0.9. Cells in the “random” scenario
received a detection probability drawn from a random uniform ranging
from 0 to 1.0, and cells in the uniform “low-detection” scenario re-
ceived a detection probability drawn from a random uniform of 0.1 to
0.3. The probabilities of each cell were redrawn at the beginning of
each iteration, but remained constant during each movement trial.

We simulated 1000 correlated random walks around the simulated

landscape under each detection scenario, running four iterations in
parallel. Each iteration had an independently drawn random seed
(L'Ecuyer-CMRG) using the foreach package (Microsoft &West S.,
2017). At the start of each iteration, an organism was generated at a
random home range center within the landscape matrix and given a
home range with radius equal to 492 cells. The animal then made daily
movements between cells within its home range over a 120-day study
period, creating 120 opportunities for it to be observed. The direction of
the daily movements was determined using a Wrapped Cauchy dis-
tribution with rho=0 and mu=0), and Pc was calculating using a
modified version of the more general function given above to create an
exponentially increasing probability of turning toward the home range
center as the animal’s distance from home range center increased:

=
+

Pc
e

0.999
1 d r(4.741 9.407* / )

Equation 4: The function relating simulated organism distance from
home range center and probability of turning around in the case study.

For the case study, we divided the 120-day study period into 10, 12-
day sampling periods. Within each sampling period, days were desig-
nated as either a “sampling day,” when the collection of daily move-
ments was attempted, or an “off day,” when the collection of daily
movements was not attempted. To examine the effects of investigator
sampling effort, we used six different sampling frequencies: one, two,
three, four, six, or twelve days out of each 12-day sample period. To
address the effects of temporal autocorrelation, an issue of some con-
cern in the spatial ecology literature, we applied two sampling schemes
to each of our six sampling frequencies. The first sampling scheme used
was an evenly spaced schedule (hereafter “sequential”), wherein ob-
servations were attempted every one, two, three, four, six, or twelve
days to create an even sampling schedule across each of the sampling
periods. We also employed a grouped sampling scheme (hereafter
“clustered”), wherein all observations (one, two, three, four, six, or 12)
were attempted on consecutive days starting with the first day of the
sampling period. For example, in a four-out-of-12-days sequential
sampling schedule, days one, four, seven, and 10 would be sampled out
of every 12-day sampling period up to 120 days, whereas in a four-out-
of-12-days clustered sampling schedule, days one, two, three, and four
out of every 12-day sampling period would be sampled up to 120 days.
We thus created iterations with identical sample sizes but differing
potential for temporal autocorrelation.

We used the simulated relocation datasets collected under each of
the detection scenarios to estimate home range size under each of the
12 sampling schemes using three home range methods: Minimum
Convex Polygon (MCP), Kernel Density Estimation (KDE), and Local
Convex Hulls (LCH) in the R Package adehabitatHR (Calenge and
Fortmann-Roe, 2017). MCP draws the smallest convex polygon possible
by connecting exterior locations around an animal’s recorded reloca-
tions (Burt, 1943; Hayne, 1947). MCP represents the simplest method of
constructing home ranges and is prone to both underestimating and
over-estimating home range size (Börger et al., 2006). Calenge and
Fortmann-Roe (2017) suggest removing a small number of outliers in
MCP analyses to mitigate the over-estimation of home range size, so we
constructed MCP estimates using 90% of the relocations in each itera-
tion.

KDE estimates the distribution of individual space use across a home
range by pairing a bivariate kernel function to each relocation (Worton,
1987, 1989, 1995). The kernel functions are averaged with the kernel
functions of the neighboring relocations to create a utilization dis-
tribution (Van Winkle, 1975). Isopleths, polygons that contain a given
percentage of relocations, within the range of 50–90% are less biased
by sample size (Börger et al., 2006), so we used a 90% isopleth to de-
termine the area of individuals’ home ranges for comparison with the
results of the other two methods. We used the default ad-hoc smoothing
method, which assumes that the kernel is bivariate normal (Calenge
and Fortmann-Roe, 2017).
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LCH examines space use by connecting either a specific number of
locations or locations within a set distance of the root location to form
hulls, minimum convex polygons that comprise parts of a home range,
then merging overlapping or adjacent hulls together to represent a
home range (Getz and Wilmers, 2004). We used an adaptive LCH
method where the sum of the distances between locations within the
hull and the root location had to be less than the specified distance a
(the greatest distance between two locations). The adaptive LCH al-
lowed the number of locations within a hull to fluctuate based upon the
density of locations, creating smaller hulls in areas of high use and
larger hulls in areas of low use (Getz et al., 2007). We recorded the rate
at which home ranges were successfully estimated under each simula-
tion permutation (i.e., the rate at which the home range estimation
function produced a home range estimate without encountering a fatal
error).

We assessed the effects of sampling schedule, detection scenario,
and home range estimator by fitting one generalized linear model with
a Gaussian error distribution in package lme4 in the R statistical com-
puting environment (R 3.5.1; Bates et al., 2017; Bolker et al., 2009).
Because we were interested in assessing the relative contributions of
home range estimator choice, detection scenario, and sampling sche-
dule to home range bias regardless of sign, we centered and scaled on 0
the absolute value of home range bias measurements. The model re-
lated scaled absolute bias of home range estimates to home range es-
timator (MCP, KDE, LCH) and sampling scheme (i.e. clustered or se-
quential) as well as an interaction between detection scenario and
scaled number of days sampled. We assessed model fit using pseudo-R2

(Zhang, 2018).

3. Results

3.1. Diagnostic plots

The sensitivity plot produced by the hrDiag() function for sample
data from the low detection scenario was more jagged than the one
produced using sample data from the high detection scenario (Fig. 3a-
b). In the leverage plots, values were largely clustered around 0 when
detection was high and distributed away from 0 when detection was
low (Fig. 3b-c). The asymptote assessment generated by hrAsym() ex-
hibited an asymptote under high detection conditions (Fig. 3d) but not
under low detection conditions (Fig. 3e).

3.2. Case study

We ran 108,000 simulation iterations that resulted in 93,633 suc-
cessful home range calculations. As expected, the number of relocations
successfully detected was positively related to sampling effort and
scenario detection probability. For a given sampling effort, the high
detection scenario yielded the greatest number of relocations, followed

by the random scenario, and the low detection scenario yielded the
fewest relocations. For example, under the minimum sampling effort
(i.e., 10 sampling days) the mean (± SE) number of observations col-
lected was 1.95 (± 0.02) for the low detection scenario, 4.95 (± 0.02)
for the random scenario, and 7.98 (± 0.02) for the high detection
scenarios. Similarly, the mean number of observations collected under
the maximum sampling intensity (i.e., 120 sampling days) was 23.86
(± 0.06), 59.97 (± 0.07), and 96.15 (± 0.06), for low, random and
high detection scenarios respectively. Detection scenario also affected
the rate at which home ranges were successfully calculated. The high-
detection scenario achieved 100% success at 20 sampling days, the
random scenario achieved 100% success at 40 days, and the low de-
tection scenario did not achieve 100% success until all 120 days were
sampled. Sampling scheme (i.e., clustered or sequential sampling) did
not affect the number of observations collected, or the proportion of
home ranges that were successfully estimated. The KDE estimator
generated the lowest mean absolute bias (24.62% ± 0.14%; Fig. 4a-b),
followed by the LCH estimator (39.75% ± 0.13%; Fig. 4c-d) and the
MCP estimator (50.30%±0.14%, Fig. 4e-f). When we accounted for
positive and negative bias, the distinction was more pronounced, with
KDE displaying a mean bias of 7.50% ±0.20%, whereas LCH
(−37.70% ± 0.15%) and MCP (50.00% ± 0.14%) systematically
underestimated home range size under every detection scenario.

The the model examining causes of variation in bias under varying
sampling designs and detection constraints explained 47.50% of the
variance in scaled absolute bias. Bias was negatively associated with
increasing sampling effort and detection probability (Table 1). Bias was
greater for LCH and MCP estimates than for KDE estimates, and while
the effect of sampling scheme was statistically significant, sequential
sampling did not appreciably change predicted bias (Fig. 5). The in-
teraction between detection scenario and sampling days was sig-
nificant, with bias decreasing slightly more for each additional sam-
pling day in the high and random detection scenarios than in the low
detection scenario.

4. Discussion

Home range estimation and other spatial ecology analytical
methods are continually improving through technological and mod-
eling advances (e.g., Fieberg and Börger, 2012; Horne et al., 2007;
Laver and Kelly, 2008; Signer and Balkenhol, 2015). Nevertheless, de-
tection effects persist for methods limited by observer time and ex-
pertise, like radio telemetry and color band relocation (e.g., Silva et al.,
2018), for cryptic species like many herpetofauna (Ćorović et al., 2018),
and for GPS studies in which bias co-varies with animal habitat pre-
ferences (Ironside et al., 2017). The pervasive yet unpredictable effects
of variation in detection probability necessitate tools for planning field
protocols and choosing modeling methods to fit a study’s detection and
methodological conditions. DiagnoseHR facilitates the creation of

Fig. 2. Case study detection probability scenarios. Detection probability in the high-detection scenario was drawn at each iteration from a random uniform dis-
tribution of 0.7–0.9. Detection probability in the random scenario was drawn from a random uniform distribution of 0–1, and detection probability in the low-
detection scenario was drawn at each iteration from a random uniform distribution of 0.1–0.3. The example matrices pictured are 25× 25 sections of the
1200× 1200 simulation spaces.
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simulated datasets reflecting a wide range of detection conditions, an-
imal movement patterns, sampling schedules, and home range estima-
tion methods to facilitate efficient field protocols and effective analyses.

We simulated movement data and the home range estimation pro-
cess to assess how sampling effort interacted with detection probability
to influence home range estimate bias for three home range estimators

and two sampling schemes under three detection scenarios. Home
ranges estimated for the same simulated individual under multiple
detection scenarios and methods produced drastically different results
even when sampling effort was similar (Figs. 4–5). Home range esti-
mate bias was negatively associated with increasing sampling effort
under all detection scenarios, but decreased slightly more for each unit

Fig. 3. Example sensitivity plot (a, b), leverage plot (c, d), and asymptote assessment (e, f) outputs from functions hrDiag and hrAsym for the same individual
monitored in high (a, c, e) and low (b, d, f) detection conditions. Asymptotic and relatively insensitive estimates produced a smooth elasticity plot (a), leverages
mainly distributed around 0 (c), and a home range size which approached an asymptote as sample size increased (e). The more sensitive estimate displayed a jagged
sensitivity plot (b), leverages distributed away from 0 (d), and a home range size that did not reach an asymptote with additional relocations (f).
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increase in sampling effort under the random and high detection sce-
narios when compared to the low detection scenario (Table 1, Fig. 5).
The case study results demonstrate that landscape-driven variation in
detection probability is likely to confound comparisons of space use
among populations of wide-ranging species, assessments of variation
among individuals within the same population, and may even create
biased estimates of space use within individual home ranges. Our
findings are congruent with the expansive body of home range litera-
ture suggesting that additional relocations increase the precision of
home range estimates (e.g., Seaman et al., 1999; Swihart and Slade,
1985; Horne et al., 2007; Fieberg, 2007; reviewed in Frair et al., 2010).
DiagnoseHR additionally demonstrates how landscape variation in de-
tection probability interacts with variation in sampling effort to create
variation in home range estimates between systems. Our results em-
phasize the need for investigators to report the rate of location success
and failure, for home range analysis and potentially for other analyses

Fig. 4. Bias decreased with increasing sam-
pling effort and detection probability. LCH and
MCP tended to underestimate home range size
at lower sampling intensities and detection
probabilities. KDE consistently displayed a
mean bias close to 0, and variation in bias
among KDE estimates decreased with in-
creasing detection probability and sampling
intensity.

Table 1
Parameter estimates and p-values for the model examining causes of variation
in absolute bias under varying sampling designs and detection constraints
compared to home ranges estimated with all possible relocations. Bias de-
creased with sampling effort and was greater for LCH and MCP estimates than
for KDE estimates.

Parameter Estimate P-value

Intercept (Low detection scenario, KDE, clustered sampling) 0.10 < 0.01
Detection scenario: random −0.62 < 0.01
Detection scenario: high −0.93 < 0.01
Scaled samples per iteration −0.43 < 0.01
Home range estimator: LCH 0.53 < 0.01
Home range estimator: MCP 0.91 < 0.01
Sampling scheme: sequential −0.02 < 0.01
Detection scenario: random * scaled samples per iteration −0.09 < 0.01
Detection scenario: high * scaled samples per iteration −0.09 < 0.01

Fig. 5. Predicted scaled absolute bias was ne-
gatively associated with increasing sampling
effort under all detection scenarios and home
range estimation methods. Whereas the pre-
dicted decreases in bias per unit sampling effort
were similar for random and high detection
scenarios, the slope of the low detection sce-
nario was slightly shallower. The predicted bias
intercept was likewise highest for the low de-
tection scenario, intermediate for the random
detection scenario, and lowest for the high
detection scenario. The bias intercepts were
lowest for KDE, intermediate for LCH, and
highest for MCP. Sampling scheme i.e. clus-
tered or sequential) had relatively little effect,
such that the plotted lines appear to overlap
and so are not shown with contrasting colors or
patterns.
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such as spatial capture-recapture models of dispersal distances (Ergon
et al., 2014; Schaub et al., 2014).

Whereas the interaction of detection probability and sampling effort
had a strong effect on the accuracy of home range estimates, the effects
of sampling scheme (i.e. whether samples were clustered or sequential),
were minimal (Table 1). The greater relative importance of detection
and sampling effort compared to the importance of sampling scheme
suggests that the tradeoff between sample independence and sample
size in low-detection field scenarios may be best addressed by
weighting sample size higher than independence when drafting field
protocols, as has been suggested by others (e.g., Otis and White, 1999;
Fieberg, 2007). The case study was designed to reflect traditional radio
telemetry studies where collecting relocations is often labor-intensive
and field conditions or the temporal bounds of the life stage of interest
limit the duration of studies. The case study therefore simulated tra-
deoffs between sample independence and sample size, an issue with
application beyond radio telemetry studies. Indeed, DiagnoseHR may
facilitate planning for spatial ecology methods with different inherent
tradeoffs. Notably, studies with small GPS units must make tradeoffs
between battery life, sample size, and temporal autocorrelation. The
simulation tools provided by diagnoseHR may readily facilitate plan-
ning for such scenarios by producing detection scenarios corresponding
to real detection landscapes, and sampling schemes calibrated to reflect
different GPS battery life-sample size-autocorrelation tradeoffs.

In addition to providing tools for understanding the effects of var-
iation in sampling design and detection, DiagnoseHR facilitated com-
parison of home range estimators in the context of varying detection
scenarios. KDE exhibited the smallest mean bias and smallest mean
absolute bias under all detection scenarios, while MCP and LCH esti-
mators systematically underestimated home range size (Fig. 4). The
finding that MCP underestimated home range size is perhaps counter-
intuitive given the potential for MCP to enclose areas not used by an
animal, but aligns with previous studies (e.g., Girard et al., 2002)
suggesting that MCP tends to underestimate home range size when
sampling effort is high. Our finding that KDE is less subject to detection-
imposed bias than other methods also corresponds with previous work
(e.g., Börger et al., 2006; Seaman et al., 1999; Seaman and Powell,
1996). KDE may represent a conservative option when the purpose of
home range estimation is to provide ecological inference and guidance
for conservation actions. Systematic underestimation of home range
size may lead to skewed density estimates and misinformed conserva-
tion planning. Given sufficient funding, conserving too large a space is
unlikely to cause an undesirable conservation outcome, whereas con-
serving too little space based on a systematic underestimate of home
range size could render conservation actions ineffective.

Even if conservation planning is not the objective of a study, ex-
ploring the behavior of home range estimates can add depth to dis-
cussions of home ranges’ ecological significance and provide insights on
when to apply detection-mitigating analytical techniques (e.g., Frair
et al., 2004, 2010; Horne et al., 2007; Katajisto and Moilanen, 2006).
Using the function hrDiag(), users may examine the sensitivity of home
range estimates and compare home range estimates using medians and
quantiles. If sensitivity and leverage plots reveal that a few points have
an exaggerated impact on the home range estimate, the investigator
may subject those points to increased scrutiny to assess whether they
arise from equipment or investigator error, or whether they perhaps
result from detection bias. For example, if the removal of a few re-
locations drastically alters a home range estimate and the relocations
occur in the same vegetation community, or are isolated by a particular
landscape feature, those relocations may warrant further scrutiny, as
their effects could indicate a detection issue. Users may understand or
mitigate estimate sensitivity by incorporating models of detection
probability into their analyses and applying methods such as Brownian
Bridge kernel utilization density that impute an animal’s likely path
between observations (Horne et al., 2007). The classical definition of a
home range assumes that home range size approaches an asymptote as

the number of relocations increases (Burt, 1943). Recent work has
questioned whether a home range must be asymptotic to be useful for
ecological inference or conservation planning (Powell and Mitchell,
2012). Indeed, the question of how long an individual’s home range
takes to reach an asymptote, or whether it asymptotes at all can provide
information about how individuals with apparently similar home range
sizes may differ in space use (Laver and Kelly, 2008). Using the hrAsym
() function, it is possible to assess whether an estimate is indeed
asymptotic by iteratively adding relocations. The resulting diagnostic
plots can facilitate effective comparison between individual and po-
pulation estimates of home ranges.

We used simulation tools from the R package DiagnoseHR to ex-
amine the interacting effects of detection probability and sampling ef-
fort on home range estimation using varying sampling protocols and
estimators. Our findings are largely congruent with previous studies of
detection, home range estimation method, and sampling intensity in
isolation, demonstrating that simulated detection-censored movement
records have utility for planning and methodological comparison. In the
case study presented here, detection probabilities were randomly dis-
tributed in space. Users may readily apply the tools in DiagnoseHR to
ask more nuanced questions about how the spatial distribution of de-
tection probabilities affects home range inference and other spatial
analysis methods. For example, an investigator could ask how the size
of a home range affects bias given different detection scenarios, or how
different assumptions in the correlated random walk affect size esti-
mation. Users may study the effects of spatial variation in detection by
uploading a simulated world with deliberate patches of high and low
detection probability, or by manipulating the degree of heterogeneity in
detection probability. Future studies could additionally ask how the
degree of site fidelity affects bias in home range estimates by manip-
ulating the site fidelity values in different detection scenarios.
Understanding the behavior of estimators under varying conditions will
continue to have value, particularly for longitudinal studies and re-
assessment of long-term datasets, such as those maintained by natural
resource agencies.

Investigators seeking to conduct home range analyses may choose
from an ever-increasing array of estimation methods (e.g., Lyons et al.,
2013; Wilson et al., 2018). Simulating test datasets offers investigators
a way to assess tradeoffs among estimators while designing field stu-
dies. Moreover, simulating detection-censored occurrence datasets has
the potential to provide utility beyond home range analysis. Diag-
noseHR’s detection cells and sampling intervals may symbolize any real
increment of space or time per the user’s needs. Datasets generated by
DiagnoseHR may therefore have utility for planning and evaluating
other spatial ecology methods, such as ecological niche modeling or
mark-recapture abundance estimation, in which investigators seek to
understand the distribution of organisms. Because DiagnoseHR is an
open source R package, we and others may continually add new
methods to the sensitivity functions and use test datasets to evaluate
emerging spatial ecology analytical methods. The supplementary home
range diagnostic methods we present begin to fill a practical gap by
empowering investigators to plan field studies with an analysis in mind,
evaluate the validity of home range estimate assumptions, and assess
estimate sensitivity when comparing home range estimates from dif-
ferent systems.

5. Conclusions

Ultimately, our results demonstrate that home range analyses
should be conducted in response to clearly defined scientific questions
in the context of a well-understood system. The methods we provide
facilitate the strategic planning of animal movement studies and the
open discussion of home range results. Moreover, uncertainty in home
range estimates should not be ignored or used as a justification to
discard home range analyses. Rather, uncertainty in home range ana-
lyses, when explicitly discussed, has the potential to add value and
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depth to home range analyses and facilitate the application of home
range analysis as a tool for ecological inference and conservation. Our
approach of empowering investigators to simulate animal movement,
landscape variation, and investigator behavior processes is an ad-
vancement in animal movement simulation that facilitates assessment
of tradeoffs in home range data collection and analysis.
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