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Abstract— Because of collecting a large amount of personal
data, when the artificial neural network (ANN) is used in human-
related topics, it has raised great concerns on privacy preserva-
tion. A robust solution is to introduce a noise injection mechanism
as differential privacy that promises strong theoretical privacy
guarantees. However, privacy-preserving ANN with noisy input
data has a substantial risk of reducing the recognition accuracy.
Therefore, it is urgently needed to have technologies that can
make users’ data applied to neural networks while strictly pro-
tecting sensitive information. In this paper, a linear optimization
(LO) method is proposed to address this accuracy degradation
by optimizing the performance of memristor in weight updating
processes. Instead of complying with the traditional hardware
and algorithm, the LO method calculates update parameters
along a piecewise line by using different input pulses. The pro-
posed method can mitigate the nonlinear problem of memristor
without prereading the precise current conductance each time,
thereby avoiding complex peripheral circuits. The effectiveness
of the proposed LO method with two-segment, three-segment,
and four-segment models is investigated, respectively. The results
show that under different nonlinearity and different perturbation
noise required by differential privacy theory, the LO method can
increase the recognition accuracy of Modified National Institute
of Standards and Technology (MNIST) handwriting digits by
39.67% on average, which provides more space and margin for
privacy-preserving technology.

Index Terms— Artificial neural network (ANN), memristor,
neuromorphic hardware, nonlinearity, privacy preservation.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) have been applied
successfully in a broad range of applications such as

computer vision, speech recognition, machine translation,
robot control, and medical diagnosis [1]. The performance of
ANN is often directly dependent on a large number of parame-
ters to encode the network and summarize representative data
sets and then to build models for new data analysis. However,
with the fast development of ANN technology and the dramat-
ically increasing amount of user and their linked databases,
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ANN encounters two problems. The first one is computa-
tional bottlenecking. It occurs when the communication and
training processes bring high latency and high energy cost
that challenge hardware with von Neumann architecture and
CMOS technology. The second one is privacy preservation.
The privacy needs to be protected rigorously because the data
collected from users are oftencrowdsourced and may contain
sensitive personal information [2]. For example, in Internet
of things (IoT) applications, devices are typically dispersed
across the globe, allowing for instant communication. The col-
lected data in some cases may contain very private information
of users. However, users are usually unaware of how much
data is actually collected and how the data is used or shared
with others. Therefore, there is always a concern from experts
about privacy preservation [3].
To address computational bottleneck, many technologies are

explored. Memristor-based neuromorphic computing is such a
flexible and attractive technology to meet the increasing needs
of data processing [4], [5]. A memristor is a device with only
three layers structure that cannot only realize desirable device
properties such as sub-10-nm feature sizes [6], subnanosecond
switching speed [7], [8], long write–erase endurance [9], and
nanoamperes programming energy [10], but can also exploit
multilevel conductance states [4]. As a result, it can act as a
nonvolatile memory and realize in-memory calculation where
data can be processed and stored simultaneously. Thus, the
memristor-based system can effectively overcome the obsta-
cles of traditional computing architectures with memory wall,
which is of relevance to current and future computing needs,
such as, cognitive processing, big-data analysis, reservoir
computing, and edge-computing [11].
Privacy preservation is a critical challenge for ANN. The
privacy preserving in ANN is to release statistical information
from collected data sets without compromising the privacy
protection of the individual respondents. An effective method
is to introduce a randomized noise mechanism for differ-
ential privacy technology to quantify the protection ability.
Usually, software-based machine learning algorithms easily
generate such randomized noise [2]. However, noisy and
distorted data would lead to a degradation of the recognition
accuracy in ANN. Accordingly, solutions to balance privacy
preserving and recognition accuracy are indeed needed. One
popular solution is adopting a specific algorithm, but with
considerable computationoverhead, which is neither accept-
able for a general-purpose computing system such as data
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Fig. 1. Concept of memristor-based neuromorphic hardware improvement
for privacy-preserving ANN.

center because of the increasing workload, nor sufficient
to satisfy the portable and edge computing system due to
the resource-constrained, such as mobile devices, wearable
devices, and IoT devices. Therefore, in this paper, we propose
a memristor-based neuromorphic hardware improvement to
enable privacy-preserving ANN without accuracy degradation.
That is to use a linear optimization (LO) method to alleviate
nonlinearity of memristors for weight updating in ANN to
counteract recognition degradation due to noise injection,
as shown in Fig. 1. Therefore, privacy-preserving ANN pro-
vides enough space for randomizing noisy data to ensure
that the publicly visible information do not change much if
one individual in the data set changes, which is enabled by
differential privacy technology—a strictly provable, quantized,
and security-controlled method. Specifically, this paper makes
the following contributions.

1)A method for mitigating the nonlinearity impact on
memristor-based privacy-preserving ANN: To miti-
gate the impact of memristor’s nonlinearity property,
an effective, hardware-based LO method with low circuit
overhead is proposed, which makes the neuromorphic
system become more accurate and applicable for ANN
application.

2)A mechanism enhancing the immunity of memristor-
based privacy-preserving ANN to nonlinearity property
of memristor device:By applying the LO method under
eight groups of private perturbations that follow the
differential privacy theory, the recognition accuracy of
ANN is proven to get negligible degradation or even
increases than before.

3)Thorough evaluation:We evaluate the proposed method
on standard image classification tasks [12] and conduct
over 1500 simulations that include 4 models, 8 groups
of privacy perturbations, and 49 nonlinearity cases.

4)The tradeoff analysis:The LO method provides a variety
of configuration models, and we discuss how to reduce
the cost by selecting the appropriate model while meet-
ing the privacy and accuracy requirements based on the
actual device.

The rest of this paper is organized as follows. The related
work is presented in Section II. In Section III, the nonlinearity

property of memristor and differential privacy are introduced.
In Section IV, the approach used to address the nonlinearity is
presented. In Section V, the LO method is applied for digits-
image recognition with privacy perturbation and is verified
through the differentially private transformation algorithm [13]
and hardware simulator, NeuroSim+, which is an integrated
hardware framework for benchmarking memristors and array
architectures [14]. Finally, conclusions are made in Section VI.

II. RELATEDWORK

With ANN develops rapidly, it powers intelligent products
by extracting patterns and building models. Meantime, data
privacy greatly impacts our daily life, such as politics, security,
businesses, relationships, health, and finances. The privacy
problem is not limited to the threats associated with private
data exposures or hacking attempts. It is also possible to
glean extra information even if the data are anonymized and
the ANN models are inaccessible. Privacy-preserving ANN
technologies are proposed to make that ANN transform our
society positively without risking our sensitive data, which is
mainly conducted by cryptographic approaches or differential
privacy approaches [15]. Especially, differential privacy, that is
more efficient and popular, resists attacks by adding random
noise to the input data, to iterations in a certain algorithm,
or to the algorithm output. In 2017, the Google security
and privacy team released a Private Aggregation via Teacher
Ensembles (PATE) framework [16], which scales to learning
tasks with large numbers of output classes and uncurated,
imbalanced training data with errors, and it was proven as
tighter differential-privacy guarantees. In 2018, the ARDEN
framework was proposed to protect the sensitive information
via local differentially private and noise training [13]. How-
ever, because these technologies are all based on software
technologies, the presentence of noise is bound to cause a
drop in accuracy and it is impossible to get higher accu-
racy than without the noise injection. Also, software-based
noise injection causes latency problems and computational
overhead. Recently, designers proposed to exploit inherent
noise with the equivalent error-prone hardware to replace
software-based noise to save much power [17], which indicates
the hardware can provide a moreeffective solution to realize
privacy-preserving ANN.
In this paper, instead of using traditional software method,

we propose a LO method that applies in memristor-based
ANN hardware system to improve privacy preserving space for
differential privacy technology. The proposed method focuses
on mitigating the nonlinearity problem of memristors to enable
privacy preserving.

III. PRELIMINARIES

A. Differential Privacy

Differential privacy promises a powerful standard
for privacy guarantees either on algorithms or
databases [2], [13], [18]. The definition ofε-differential
privacy and equation are given below.
Definition [20]: A randomized mechanism A satisfies
ε-differential privacy when any adjacent inputdandd,and
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Fig. 2. Neural network between two layers.Vi,Gi,j,andIjrepresent the
input signal inith neuron, the weight of the synapses injth neuron of output
layer andith neuron in input layer, and the output sum that represent the dot
product result ofVandG, respectively.

any outputSofAhold that

Pr[A(d)=S]≤eε·Pr[A(d)=S] (1)

wheredanddare adjacent inputs that differ in a single entry.
In our study, for instance, each training data set is a set of
image-label pairs. Thedanddare two sets that only one
image-label pair is present in one set and absent in the other.
The parameterεis the privacy budget, which evaluates the
privacy guarantee of the randomized mechanismA. A smaller
value ofεmeans the closer recognition accuracies can be
gotten from adjacent inputs andindicates a stronger privacy
guarantee. By this definition, privacy preservation can be
calculated and evaluated throughε.
Typically, adding noise calibrated to the global sensitivity is
a general method for approximating a functionf, denoted as
f, which is the maximal value of||f(d)−f(d)||among any
input pair ofdandd[18], [21]. For instance, the Laplacian
mechanism is defined by

Af(d)=f(d)+Lap( f/ε) (2)

where Lap ( f/ε)is a random variable sampled from the
Laplace distribution with scale f/ε.

B. Artificial Neural Networks Hardware

ANN is computing systems vaguely inspired by the biolog-
ical neural networks that transform inputs to desired outputs
by feed-forward networks. As shown in Fig. 2, each neuron
in the network takes a weighted sum of the outputs of the
prior layer, and then transfers the sum to the next layer. In the
hardware implementation, the neural network can be directly
mapped into a crossbar from where the inputs are connected
into the rows and the outputs are connected into the columns.
Memristor-based crossbar circuit can store the synaptic weight
and calculate the desired result (sum of product), at the same
time, extremely improving the system efficiency. The desirable
properties of memristors support the memristor-based crossbar
circuit to be a promising substitute technology to traditional

Fig. 3. Hardware implementation of neural networks using memristor
crossbar.Vi,Gi,j,andIjrepresent the input signal inith row, the conductance
of the memristor injth column andith row, and the output current that
represent the dot product result ofVandG, respectively.

ones so that researchers begin realizing device-engineering
and array-integration hardware implementation of memristors.
Usually, as shown in Fig. 3, in the hardware application of
the neural network, memristors act as synapses in crossbar
structure and locate in each cross point. However, the nonlinear
property of the memristor degrades the performance of ANN.

C. Nonlinear Property of Memristors

The conductance of the memristor (G)represents the weight
of the synapse and it needs to be updated frequently during
the data training process as determined by learning algo-
rithms. In such an updating process, the conductance can
either increase in a process as long-term potentiation (LTP)
or decrease in a process as long-term depression (LTD),
as shown in Fig. 4(a). Ideally, when LTP or LTD occurs,
the change in the conductance of an ideal synapse device
is proportional to the number of input pulses. Unfortunately,
in reality, such change mismatches the input pulse due to the
nonlinearity of memristors. For instance, as shown in Fig. 4(b),
the curve (black) represents the conductance of an actual mem-
ristor device as a function of the number of input pulses where
the pulses have the same duration and the same amplitude.
While the line (red) in Fig. 4(b) represents the function of
the ideal case. In LTP, as shown in Fig. 4(b), assuming in a
weight update process, the device’s conductance needs to be
updated from pointatob. Usually, the corresponding number
of pulses is calculated according to the ideal case (red). But,
when these pulses are applied to the actual device, instead of
changing from pointatob, the device conductance changes
from pointatoc. Therefore, the actual change of conductance
and the required change are quite different. Similar weight
updating error occurs in the LTD process. Consequently, the
nonlinearity of the memristor causes the weight change of the
synapse device to be inconsistent with the change required



2748 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

Fig. 4. Conductance change (weight updating) curve. (a) Conductance changes with identical input pulses. (b) Weight updating process based on linear line.
(c) Weight updating process based on a piecewise line.

Fig. 5. Conductance change curves with pulse number under various
nonlinearity of LTP and LTD.

by the learning algorithm, thereby, reducing the accuracy of
ANN’s recognition.
Since the nonlinearity property of memristor makes the
memristor-based ANN be a challenge especially with the
privacy-preservation mechanism introduced, this paper focus
on mitigating the impact resulted from the nonlinearity
property. We adopt a generalconductance change behavior
model [22] that is defined by the following equations:

GLTP=B 1−e
−PA +Gmin (3)

GLTD=−B 1−e
−P−PmaxA +Gmax (4)

B=
Gmax−Gmin

1−e
−Pmax
A

(5)

whereGmax,Gmin,andPmaxare directly extracted from the
actual test data [22], which represents the maximum conduc-
tance, minimum conductance, and the maximum pulse number
required to switch the device between the minimum and
maximum conductance states.AandBare the parameter that
controls the nonlinear behavior of the weight update. In this
model, by adjustingA, the conductance curve is labeled with
a nonlinearity value (NL) from+6to−6, which represents
the extent to the curve deviates from the ideal linear device
and is shown in Fig. 5. Here the positive (+)and negative (−)
signs are merely to label LTP and LTD, respectively.

IV. METHODOLOGY

A. Linear Optimization Method

To mitigate the impact of the nonlinear property of mem-
ristors on privacy-preserving ANN, a LO method is proposed
in this paper.
The LO method makes conductance update along a piece-
wise line instead of an ideal line by making use of multiple
pulses with the same amplitude but various duration. As shown
in Fig. 4(c), instead of calculating the number of required
pulses along the ideal line (gray), the LO method performs the
calculation along a polyline (red), which fits the actual device
property (black) better. Thus, the error that incurs from the
nonlinearity of memristors can bemuch reduced. For example,
we assume that Fig. 4(c) shows the same conductance change
curve as depicted in Fig. 4(b), but Fig. 4(c) calculates the
needed pulse along a polyline. After the pulses are applied to
pointsa, the conductance difference between the actual points
bandcshown in Fig. 4(c) is much smaller than the difference
between pointsbandcshown in Fig. 4(b). In Fig. 4(c), the
polyline is composed of two lines and we call it a two-segment
LO model. Similarly, based on the number of lines in the
polyline, this method can be applied in a three-segment or a
four-segment LO model, as shown in Fig. 6.
To implement the ANN with the LO method, first, because

of the presence of variations, we need to find the average nor-
malized conductance change curve of over 1000 representative
memristor samples. In this case, although the proposed method
solves nonlinear problems in varying degrees for each device,
it can still greatly alleviate the overall weight-deviations prob-
lem of a memristor-based array, which will be discussed in
Section V-F. Then, we need to choose split points that can
divide the conductance curve into several segments. Thus,
the piecewise line can be gotten. Next, the duration of input
pulses can be calculated by the slope of the original ideal
line,k0, and the slopes of the piecewise line, {k1,k2,...,kn}.
Specifically, the LO method scales the duration of pulses to
k0/kitimes of the original duration in order to balance the
conductance change caused by the nonlinear effect. To imple-
ment the LO method, a set of memory, log2(n)-bit memory,
is also needed to store the segment information, which is used
to select a slope before each weight update. Here,nrepresents
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Fig. 6. Segment models and split point M. (a) Three-segment model.
(b) Four-segment model.

the segment number, such as two, three, and four. In this way,
the larger/smaller the line’s slope is, the shorter/longer the
duration can be selected. Finally, after each weight update, the
comparison operation should be completed to make sure the
memory is updated based on the current conductance range
of each memristor. This comparison does not need to read
precise conductance of memristors but needs to compare with
a reference value to recognize the current segment information
of memristors.

B. Differentially Private Transformation

According to [18], differential privacy is immune to post-
processing: A data analyst, without additional knowledge
about the private database, cannot compute a function of the
output of a private algorithm and make it less differentially
private. This property of differential privacy supports the
differentially private transformation algorithm [13], [20]. This
paper adopts the Laplacian mechanism and follows the private
transformation algorithm [13] where the privacy budgetεis
proven to be calculated with given input data and the neural
network by the following equation:

ε=2σ (6)

whereσis the noise scale in private transformation algorithm
in [13].

V. EXPERIMENTALEVA L UAT I O N

In this section, digit recognition tasks are used as exper-
imental examples to evaluate the effectiveness of the LO

method that aims to mitigate the effect of a memristor’s
nonlinearity in a hardware implementation. A comprehensive
suite of simulations has been conducted to explore the space
of privacy-preservation using the proposed LO method in
memristor-based ANN. We adopt the neural network hardware
platform NeuroSim+[14] with nonlinearity property injec-
tion, as well as private transformation algorithm [13] to per-
form hardware-based privacy-preserving recognition through
the Modified National Instituteof Standards and Technol-
ogy (MNIST) database [12]. The neural network of this
simulator includes 400 neurons as input, 100 neurons as a
hidden layer, and 10 neurons as an output layer, which is used
for recognizing 10 number digits. Each simulation trains up to
125 epochs. Each epoch selects 8000 images randomly from
60 000 training images and takes 10 000 images as a testing
data set.

A. LO Models

The proposed LO method needs to select the split points
in order to determine the types of pulses. According to the
discussion about the weight update error in Section IV, the
more the segments, the less the weight update deviation that is
caused by the nonlinearity, but the higher the circuit cost. Thus,
in order to investigate the tradeoff between the recognition
accuracy of privacy-preserving ANN and the cost of the LO
method, we conduct three models including two-segment,
three-segment, and four-segment models.
As shown in Fig. 6, for two-segment, three-segment, and

four-segment models, split points are selected where they can
divide the conductance range into two, three, and four equal
parts, respectively.

B. Impact of Private Perturbation

To explore the impact of LO method on the memristor-based
privacy-preserving ANN, simulations withεfrom 4 to 16 that
reflects the strength of private preservation are conducted.
The smaller theεis, the larger the noise injection is needed
and vice versa. To compare ANNwith different nonlinearity
of memristor, first, we conduct six groups of simulations
with six different memristors that have the same absolute
nonlinear value of LTP and LTD process. As shown in Fig. 7,
in each figure, the accuracy increases as theεincreases
and all cases with the LO method have better performance
as compared with the original case without the LO method
applied. Among the three models of the LO method, the model
with a higher segment shows higher accuracy. What is more,
as the memristors’ nonlinearity of ANN increase from (1/−1)
to (6/−6), the differences between different models become
larger and larger.
It concludes that the accuracyof four-segment model not

only keeps an accuracy over 70% whenεis larger than 5,
but also has less than 10% accuracy difference from NL
(1/−1) to NL (6/−6). However, the original model without
the LO method gets much moreincreasing accuracy loss
(at least 10%) as nonlinearity increases. Therefore, the four-
segment LO method shows more benefits as the nonlinearity
of memristor increases in ANN. Furthermore, in some cases,
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Fig. 7. Recognition accuracy of the MNIST handwriting digits applyingfour method models with different private perturbation. The NL (x/−y)means the
LTP nonlinearity of memristor isxand the LTD nonlinearity of memristor isy.(a)NL(1/−1). (b) NL (2/−2). (c) NL (3/−3). (d) NL (4/−4). (e) NL (5/−5).
(f) NL (6/−6).

Fig. 8. Recognition accuracy of the MNIST handwriting digitswith the training images when the nonlinearity is NL (6/−6) that is considered as the worst
nonlinearity case. (a) small noise (ε=16). (b) middle noise (ε=5.7). (c) large noise (ε=4).

the accuracy with the privacy preservation gets even higher
accuracy when the LO method applied than the case without
privacy preservation, for example, for four-segment model,
in NL (1/−1), (2/−2), (3/−3), (4/−4), (5/−5), and (6/−6),
whenε≥6.7, 5.7, 4.4, 4, 4, and 4, respectively. This indicates
the LO method makes the memristor-based ANN hardware
get more space for privacy preservation, which would lead
to stronger privacy preservation. In addition, the LO method
provides various LO models that can be chosen according
to the nonlinearity of memristor. When the nonlinearity of
the memristor device is relatively small, such as (1/−1) and
(2/−2), the results of the three-segment model are similar
to that of the four-segment model. Therefore, in this case,

considering tradeoff the performance and the cost, the three-
segment is a better choice.

C. Stability of LO

Later, we take the worst nonlinearity case of memristor
[NL (6/−6)] as an example to explore the impact of different
LO method models withε=16, 5.7, and 4, on recognition
accuracy during the training process. As shown in Fig. 8,
the accuracy of each LO model has a short time of fluctu-
ation before convergence, which is decided by the stochastic
gradient descent (SGD) algorithm of the hardware simulator.
However, these fluctuations are different for different models.
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The four-segment model always gets the highest accuracy as
well as the most stable accuracyplateau and the three-segment
model is also more stable than the two-segment model. The
fluctuation of accuracy increases as the noise level increases.
In addition, because a larger segment model makes weight
updating more fit to the real memristor, causing a smaller
weight updating deviation, the case with more segments has
higher and more stable recognition accuracy during the train-
ing process.

D. Privacy-Preserving Space for Various Nonlinearity

Since for a memristor, the NL of LTP is not usually equal to
the NL of LTD [23]–[26], we further investigate 49 different
memristor devices whose NLs of LTP and LTD are from
0to6(−6). For those 49 memristors, we perform 49 sim-
ulations in four models (original case without the LO method,
two, three, and four segment models) and with eight privacy
protection noises, respectively. We also simulated the ANN
without privacy protection and LO method, resulting in Fig. 9,
where the recognition accuracy result is represented by a
colored square and the average accuracy of these 49 memristor
nonlinearity cases is 55.97%, which is regarded as a parameter
that reflects the overall performance of the original ANN.
Next, Fig. 10 shows recognition accuracies of ANN hard-
ware without LO applied and with three LO models applied,
respectively. It shows the results of three noise levels applied
[ε= 16 (small), 5.7 (middle), and 4 (large)]. To compare
the overall effectiveness of the proposed method, the average
accuracy results are calculated by averaging the accuracy
of 49 NL cases, which is shown under each figure. The
results show an increasing accuracy, when the segment in LO
model increases, the noise level decreases, and the nonlinearity
decreases, respectively. When the four-segment LO model is
applied andεequals 5.7, the average can reach 75.46% that
is a 47.74% improvement compared to the result 27.72%
for that without the LO model. Fig. 11 shows the accuracy
improvement in three noise level applying the four-segment
model. It shows that the average accuracy improvements are
37.05%, 47.73%, and 34.22%, respectively. Moreover, to study
the average accuracy improvement of the LO method, Table I
lists the average accuracy for four models with theεbetween
4 and 16. As listed in Table I, when the LO method applied,
the case with the average accuracy that is larger than the
case without noise (55.97%), gives more space for privacy-
preservation.

E. Cost Analysis

Models with more segments have better performance of
ANN, but they need more cost for storage space and circuits
to generate more types of pulses as listed in Table I. However,
some nonlinearity cases, their performance with two-segment
or three-segment is similar to four-segment model, such as
memristors, with NL (1/−1) in Fig. 7(a). Therefore, although
the four-segment model achieves the highest average accuracy
for 49 NL cases, we should consider different NL cases
independently to lower the unnecessary cost of storage space
and circuits. Also, the LO method brings additional access in

Fig. 9. Recognition accuracy of the MNIST handwriting digits without the
privacy-preservation and LO method. The average accuracy of the 49 mem-
ristors’ nonlinearity cases is 55.97%.

TABLE I

COST ANDAVERAGEACCURACYWITHDIFFERENTMODELS

order to read and write the memory used for storing segment
information. As shown in Fig. 12, these accesses do not induce
extra latency, because they are conducted with memristors’
reading and calculation at the same time, nearly hidden and
covered in memristors’ operations. The proposed method
only brings latency overhead for the comparison operation,
as shown in Fig. 12. But such comparison time is only a small
ratio in one cycle. Finally, as compared with state-of-the-art
works [13], [22], [27]–[30], the proposed method needs less
circuit complexity including a simpler pulse generator for the
same amplitude pluses.

F. Variations of Memristors

The physical mechanism of the conductance modulation in
most prospective synaptic devices is typically an ionic recon-
figuration process based on electro/thermodynamics. This
thermally activated ion migration and process variations are
responsible for unavoidable variations including nonlinear-
ity, device-to-device, cycle-to-cycle, andON/OFFconductance
variations [22], [31], [32]. Considering variations exist among
real devices, we simulate five variations that subject to stan-
dard normal distributionN(μ,σ)to explore the effectiveness
of the four-segment LO method. In our simulation, minimum
conductance, maximum conductance, and device-to-device
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Fig. 10. Recognition accuracy of memristor-based ANN withdifferent models for 49 nonlinearity cases of memristor.

Fig. 11. Recognition accuracy improvement of four-segment LO model.The average accuracy improvement of each figure is shown under each figure.
(a) small noise (ε=16). (b) middle noise (ε=5.7). (c) large noise (ε=4).

variation subject toN (Gmax,σ× Gmax),N (Gmin,σ×
Gmin),andN[NL(LTP),σ]andN[NL(LTD),σ], respec-
tively. Cycle-to-cycle variation is illustrated in the following
equation [22]:

G=G+(Gmax−Gmin)×N(0,σ)×(Np)
α (7)

whereNp represents the needed pulse number in each weight
update,αrepresents the impact ofNp and it is set to 0.5 in our
simulations.ON/OFFratios are configured as 16 in variation
1 and 14 in variation 2. For variations 1 and 2 in Table II,
we setσof minimum conductance, maximum conductance,
device-to-device, and cycle-to-cycle variation as 6%, 6%, 1/1,
1%, and 18%, 18%, 3/3, 3%, respectively [33].

TABLE II

RECOGNITIONACCURACYWITHDIFFERENTVARIATIONS

In the presence of variations, the proposed method can keep
recognition accuracies higher than 75% when the noise level
and variations are both small. Under the same circumstance
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TABLE III

COMPARISON OF THESTATE-OF-ART

Fig. 12. One cycle timing schematicin weight update process. (a) Without
LO method. (b) With LO method. The memory represents the added memory
component and the memristor represents the memristor that acts as a synapse
in neural network.

without the LO method, recognition accuracies are not higher
than 12%. Although as the variations and noise level increase,
the accuracies of cases withthe LO method decrease, they
are still much higher than the accuracies without the LO
method. It concludes that in realdevice condition when various
variations exist, the proposed LO method is still proven to be
an effective method for privacy preserving.

G. Comparison With Other Works

As listed in Table III, instead of optimizing the algorithm
for privacy preservation [13], the proposed LO method is

simple and feasible to addresses accuracy degradation due
to privacy preservation by optimizing ANN in the hardware.
As compared with the state-of-the-art [13], [22], [27]–[30],
the LO method does not need to read the precise conductance
of memristor before every writing operation and does not need
to change the amplitude of the update-pulses each time so
that it avoids complex peripheral circuits. What is more, with
a four-segment model, the LO method is almost immune to
the nonlinearity of memristor.Because our simulations are all
based on the standard SGD algorithm and a regular hardware
simulator, the recognition results still have a large space to
be improved by using a more efficient ANN algorithm or by
high-performance memristor devices. The method we propose
is a universal method that works for all memristor-based
hardware with nonlinear characteristics. Accordingly, the LO
method is an effective technique to address the weight devia-
tion issue caused by the nonlinearity property of memristors
in privacy-preserving ANN; also, it provides multiple configu-
rations to meet different requirements of privacy preservation.

VI. CONCLUSION

In this paper, the LO method is proposed to improve the
performance of memristor-based privacy-preserving ANN and
it is verified based on the MNIST database, the differentially
private algorithm, and the memristor-based neural network
simulator. Instead of adopting the traditional algorithm-based
technology, the LO method focuses on hardware implemen-
tation to enable privacy-preserving ANN. It does not need
to read the precise conductance of memristor before every
writing operation in weight-updating process and does not
need to change the amplitude of the update-pulses each time
in ANN, which avoids complex peripheral circuits. The two-
segment, three-segment, and four-segment models for 49 types
of memristors with nonlinearity from (0/−0) to (6/−6) have
been developed to investigate the effectiveness of the pro-
posed method, the results indicate 34.22%–47.73% average
recognition accuracy improvement when the privacy budget
εranges from 4 to 16. It concludes: 1) the proposed privacy-
preserving ANN has an increasing accuracy, when the segment
in the LO model increases, the noise level decreases, and the
nonlinearity decreases, respectively; 2) a LO model with more
segments not only has a stronger immunity to nonlinearity
but also gets higher and more stable accuracy; and 3) the
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proposed method is proven to be effective when variations
exist. Furthermore, in somecases, since the accuracy with
privacy preservation gets even higher accuracy, the LO method
is applied to provide more space and margin for privacy
preservation. Finally, the LO method aims at mitigating the
nonlinearity impact of memristor devices; therefore, it can
be adapted to many other memristor-based hardware systems.
Consequently, the LO method is proven to be an effective
technique that can prevent accuracy loss and increase privacy
preservation space for privacy-preserving ANN.
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