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CONSISTENCY OF MODULARITY CLUSTERING
ON RANDOM GEOMETRIC GRAPHS

BY ERIK DAVIS1 AND SUNDER SETHURAMAN1

University of Arizona

Given a graph, the popular “modularity” clustering method specifies a
partition of the vertex set as the solution of a certain optimization problem.
In this paper, we discuss scaling limits of this method with respect to ran-
dom geometric graphs constructed from i.i.d. points Xn = {X1,X2, . . . ,Xn},
distributed according to a probability measure ν supported on a bounded do-
main D ⊂ Rd . Among other results, we show, via a Gamma convergence
framework, a geometric form of consistency: When the number of clusters,
or partitioning sets of Xn is a priori bounded above, the discrete optimal mod-
ularity clusterings converge in a specific sense to a continuum partition of the
underlying domain D, characterized as the solution to a “soap bubble” or
“Kelvin”-type shape optimization problem.
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1. Introduction. One of the basic tasks in understanding the structure and
function of complex networks is the identification of community structure or mod-
ular organization, where by a community we mean a subset of densely intercon-
nected nodes, only sparsely connected to outsiders (cf. [32, 63]). A widely popular
approach to community detection is the method of modularity clustering, intro-
duced by Newman and Girvan (cf. [55, 57]), which specifies an optimal clustering,
that is, a partition of the network as the solution of a certain optimization problem
(see Section 2 for precise definitions). In particular, the method is used for a vari-
ety of networks arising in scientific contexts, including metabolic networks [43],
epigenetic networks [53], brain networks [46], and networks encoding ecological
[31] and political interactions [62].

On the other hand, a popular model of complex networks with geometric struc-
ture is the random geometric graph, where vertices are sampled from a geometric
domain and edge weights are determined by a function of the distance between
vertices [34, 52, 60]. We note, a well-studied case is the unweighted version, when
the connectivity function is a threshold function of distance. These graphs are well-
established mathematical models of various physical phenomena, such as contin-
uum percolation. They have also found use in a number of applied settings, includ-
ing the modeling of ad hoc wireless networks [10, 29, 45], protein–protein inter-
action networks [64], as well as the study of combinatorial optimization problems
[25, 26]. In clustering studies of these graphs and their variants, the modularity
functional is often used to assess the quality of the clustering obtained [5, 24].

In these contexts, it is a natural question to ask about the consistency of modu-
larity clustering with respect to random geometric graphs. That is, one would like
to know how the modularity clusterings converge or stabilize as the number of
sampled data points or vertices grow, and how to characterize geometrically any
limit clusterings. From the point of view of applications, establishing consistency
is relevant to benchmarking performance. We will focus on a class of random ge-
ometric graphs, where a length scale is introduced in the connectivity function, so
that distances between adjacent vertices shrink as the number of data points grow,
and spatial scaling limits can be taken.
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In this article, we study two questions: The first asks about the large limit be-
havior of the modularity functional on these random geometric graphs, evaluated
on a fixed partition of the underlying geometric domain, a sort of “fixed-point”
limit. The second question asks whether the optimal modularity clusterings for the
discrete graphs converge, and if so to what geometric limit clustering.

With respect to the first question, when the fixed partition of the domain involves
at most K ≥ 1 sets, we show that the limit of the modularity functional, known to
be a priori bounded between −1 and 1, as the sample size grows, is of the form
1 − 1/K plus a term involving the partition, which vanishes when the partition
is “balanced”, that is, when each set in the partition has the same volume with
respect to an underlying measure (Theorem 2.1). As a corollary, we obtain, for
these random geometric graphs, that the maximum of the modularity functional
taken over all partitions, as the sample size grows, tends to 1 (Corollary 2.2). These
limits prove, in the context of random geometric graphs, some heuristics given in
the literature (cf. Section 2.4).

With respect to the second question, we show that, given a fixed upper bound K

on the number of clusters, the optimal modularity clusterings of the discrete ran-
dom graphs converge in a distributional sense to an optimal clustering, satisfying
a certain shape optimization problem (Theorem 2.3). This geometric continuum
optimization problem, of interest in itself, is a form of Kelvin’s problem: Infor-
mally, find a partition of the domain, where each set has the same volume, but
where the perimeters between sets is minimized. Noting the first result above, it
seems natural that a constraint specifying equal volumes would emerge in the lim-
iting shape problem. Nonetheless, it seems intriguing that a form of Kelvin’s shape
optimization problem (cf. Section 2.2) would appear.

Previously, in the literature, a type of statistical consistency of modularity clus-
tering for stochastic block models has been considered. In the stochastic block
model, each data point is assigned a group from K groups according to a proba-
bility π . Then, if the two points belong to groups a and b, respectively, one puts
an edge between them with probability Fa,b. Modularity clustering now gives an
empirical group assignment to each data point. One of the main results shown is
that the proportion of misclassification of empirical group assignments, with re-
spect to the a priori assignment, vanishes in probability, Bickel and Chen [11] for
the model above, Zhao, Levina and Zhu [80] for degree-corrected models, Rohe,
Chatterjee and Yu [66] for high-dimensional models and Le, Levina and Vershynin
[51] via low rank approximation.

In this context, the main focus of the article is to understand the geometry of
optimal partitions, and other asymptotics with respect to the modularity functional.
Our results represent limit results on a “geometric” form of consistency of the
discrete modularity clusterings, which seem not to have been considered before.
Moreover, as a corollary of this type of consistency, we show that the proportion
of misclassification of the data points into sets given by the modularity functional,
with respect to the limit optimization problem, vanishes a.s. (Corollary 2.4).
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We use the recent framework of optimal transport introduced by García Tril-
los and Slepčev in [38], in the context of continuum limits of graph variational
problems, to help relate point cloud empirical measures to absolutely continuous
ones. We rewrite, after some manipulation, the modularity functional in terms of
a “graph total variation” term and a “balance” term (Section 4). The proofs, with
respect to the first question on asymptotics of the modularity functional of a par-
ticular clustering, make use of concentration estimates for these terms through
U -statistics and other bounds.

On the other hand, with respect to the second question, we observe that maxi-
mizers of the modularity functional are the same as minimizers of an energy func-
tional built as the sum of the “graph total variation” and “balance” terms (cf. Sec-
tion 6.1). In this energy functional, the coefficient in front of the “balance” term
diverges as the reciprocal of the length scale when the number of data points grows.
In the limit, the soft penalty “balance” term becomes a hard constraint. We show
convergence of a subsequence of minimizers to an optimizer of the limit prob-
lem by use a modified notion of Gamma convergence that we formulate (cf. Sec-
tion 3.2), together with a compactness principle. For the “liminf” part of Gamma
convergence, although we have to treat the balance constraint, the analysis of the
graph total variation term follows from work in [38], which handles a similar ex-
pression.

However, dealing with the “balance” constraint represents a serious difficulty
with respect to the “limsup” or “recovery sequence” part of the Gamma conver-
gence setup. Without the constraint, one can form the recovery sequence by ap-
proximating with piecewise smooth partitions. However, such approximations be-
come more complicated when also enforcing the “balance” constraint. But, the
probabilistic result for the first question (Theorem 2.1), given for general measur-
able clusterings, already can be seen to yield a recovery sequence, with respect to
the modified notion of Gamma convergence for random functionals. Interestingly,
this notion of Gamma convergence has the same strength, in terms of yielding sub-
sequential convergence, as the more usual formulation (cf. Remark 3.10). Perhaps
of use in other problems, we observe that this more probabilistic approach offers a
different perspective.

With respect to previous work on statistical clustering methods, consistency of
K-means methods have been considered by Pollard in [61], and more recently,
via Gamma convergence, by Thorpe, Theil, Johansen and Cade in [71]. On single
linkage hierarchical clustering, consistency has been shown by Hartigan in [47].
On Fuzzy C-Means clustering, consistency has been considered by Sabin in [67].
With respect to spectral clustering, consistency has been considered by Belkin and
Niyogi in [9], Von Luxburg, Belkin and Bousquet in [77] and García Trillos and
Slepčev in [35], the last article, employing the framework of [38], as in this paper.
We also mention, using Gamma convergence (or “epi-convergence”) techniques,
consistency of maximum likelihood and other estimators was studied by Wets in
[78] and references therein.
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Also, related, Arias-Castro and Pelletier [6] considered the consistency of the
dimension reduction algorithm “maximum variance unfolding”, and Arias-Castro,
Pelletier and Pudlo [7] and García Trillos, Slepčev, von Brecht, Laurent and Bres-
son [39] studied the consistency of Cheeger and ratio cuts. Pointwise estimates
between graph Laplacians and their continuum counterparts were considered by
Belkin and Niyogi [8], Coifman and Lafon [20], Giné and Koltchinskii [40], Hein,
Audibert and Von Luxburg [48] and Singer [69]. Also, spectral convergence in
more general contexts was considered by Ting, Huang and Jordan [72] and Singer
and Wu [70].

In addition, we mention there is a large literature on Gamma convergence of
discrete lattice based variational expressions to continuum optimization problems
(cf. Braides [13], Braides and Gelli [14] and references therein). More recently, see
van Gennip and Bertozzi [73] which studies Gamma convergence of the Ginzburg–
Landau graph based functionals to continuum limits.

The plan of the paper is the following. In Section 2, we define the random ge-
ometric graph model and state and discuss the two main results (Theorems 2.1
and 2.3) on modularity clustering; a brief outline of the proof the theorems is
given in Section 2.5. In Section 3, we discuss preliminaries with respect to weak
convergence topologies, optimal transport distances and Gamma convergence—
we remark that the proof of Theorem 2.3 relies on this section, but the proof of
Theorem 2.1 does not. In Section 4, we develop the modularity functional into a
convenient form amenable to later analysis. In Sections 5 and 6, the proofs of the
two main theorems are given respectively. Finally, in the Appendix, some technical
calculations and proofs, referenced in previous sections, are collected.

2. Model and results. We first introduce in Section 2.1 the modularity func-
tional on graphs with weighted edges. In Section 2.2, we discuss a form of Kelvin’s
continuum shape optimization problem. In Sections 2.3, 2.4 and 2.5, we state our
main theorems, make some remarks and give a brief outline of the proofs.

2.1. Graph partitioning by modularity maximization. Let G = (X,W) be a
weighted graph with vertex set X := {x1, x2, . . . , xn} and weight matrix W , where
the entry Wij ≥ 0 denotes the weight of the (undirected) edge between vertex xi

and xj . The degree of vertex xi is di :=∑
j Wij , and the total weight of the graph is

m := 1
2
∑

i di = 1
2
∑

i,j Wij . When convenient, we will refer to the vertex xi simply
as “vertex i”.

Let U = {Uk}Kk=1 be a partition of the vertex set X. We shall sometimes refer
to the nontrivial sets Uk of U as “clusters”, and we denote by |U | the number of
clusters. We may have |U | < K , if one of the sets Uk is empty. The partition U is
therefore equivalent to an assignment {ci}ni=1 of labels ci ∈ {1, . . . ,K} to vertices,
where Uk = {xi : ci = k} for 1 ≤ k ≤ K .

Modularity was originally introduced as a quantitative measure of the bias to-
wards of vertices in a given cluster to be connected to other vertices in the same
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cluster [57]. Informally, the idea is to measure the proportion of edge weight be-
tween vertices in the same cluster, and compare it to the expected proportion if the
edge weights were redistributed at random, according to a “null” model.

The total proportion of edge weight between vertices in the same cluster is

1

2m

∑
i,j

Wij δ(ci, cj ),

where δ(ci, cj ) is the indicator that ci = cj , and the factor of 1/2 arises because
distinct vertex pairs appear twice in the sum.

Let Eij denote the expected edge weight between vertices i and j under a ran-
dom redistribution model, which we specify below in different forms. Then the
expected proportion of edge weight between vertices in the same cluster is

1

2m

∑
i,j

Eij δ(ci, cj ).

Then the modularity Q is defined to be

Q(U) = 1

2m

∑
i,j

(Wij − Eij )δ(ci, cj ),

and one has −1 ≤ Q ≤ 1. The guiding thought is that a partition U with large
modularity Q(U) would represent a good clustering of the graph.

The most popular choice of null model, and the one originally introduced in
[57], specifies Eij = didj

2m
. For unweighted graphs, where W is the adjacency ma-

trix, this choice corresponds to the configuration model. Namely, with respect to
the vertex degrees d1, . . . , dn, consider the following distribution over graphs with
n vertices and m edges: At each vertex i, place di half-edges. Then, successively
choose a pair of half-edges at random without replacement and connect them to
form an edge with unit weight. Then, to dominant order, the expected number of
edges between vertices i and j behaves as didj

2m
.

Another natural choice corresponds to the Erdős–Rényi model, when Eij = 2m
n2 .

Namely, for unweighted graphs, when W again is the adjacency matrix, if m edges
are distributed uniformly, the expected number of edges between vertices i and j

is Eij = 2m
n2 to dominant order.

More generally, we may define Eij which interpolates in and among these two
possibilities, weighting the degree structure in various ways. For α ∈ R, let S =∑n

i=1 dα
i , and Eij = 2m

dα
i dα

j

S2 . Define the “α”-modularity Q to be

(2.1) Q(U) := 1

2m

∑
i,j

(
Wij − 2m

dα
i dα

j

S2

)
δ(ci, cj ).

When α = 0 or 1, this reduces to the modularity corresponding to the Erdős–Rényi
model or the configuration model, respectively.
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The modularity maximization problem is the following: Given a graph G, find
the partition for which the modularity Q is maximized. In other words, one solves
the following optimization problem:

(2.2) maximize
U

Q(U),

where the maximization occurs over all partitions U of the vertex set. One is partic-
ularly interested in optimal partitions U∗ ∈ arg maxU Q(U), representing a division
of the graph into natural communities.

We also consider the following variant of problem (2.2), in which we restrict
the partitions to have at most K classes:

(2.3)
maximize

U
Q(U),

subject to |U | ≤ K.

We remark that finding a global maximum of the modularity is known to be
NP-hard ([17]). Nonetheless, there are various algorithms to compute approximate
maximizers, among them greedy algorithms (cf. [12, 19]), and relaxation methods
(cf. [49, 56, 58, 79]). There is also a Potts model interpretation of modularity which
offers another computational perspective (cf. [44, 65]).

2.2. Geometric partitioning. We now discuss a continuum partitioning prob-
lem, which will emerge as a scaled limit of the discrete graph partitioning opti-
mization. Consider a domain D ⊂ Rd , and a partition U = {Uk}Kk=1 of D. For what
follows, we take K ≥ 1 to be fixed.

Suppose that we have a probability measure μ on D. We say that a partition U
is balanced with respect to the measure μ if each Uk has equal μ-measure, that is,

μ(Uk) = 1

K
, k = 1, . . . ,K.

Because U is a partition, any two distinct sets Uk and Ul are disjoint. However, if
they are adjacent their boundaries will intersect nontrivially as a d −1 dimensional
surface. When the boundaries of {Uk}Kk=1 are piecewise-smooth, we may measure
the size of the interface between Uk and Ul , with respect to a density φ on D, by∫

∂Uk∩∂Ul∩D
φ(x) dH(d−1)(x),

where dH(d−1) denotes the Euclidean (d − 1)-dimensional surface measure. The
measure of the total interface or perimeter between the sets of U is therefore

(2.4)
1

2

∑
1≤k �=l≤K

∫
∂Uk∩∂Ul∩D

φ(x) dH(d−1)(x),

noting the factor 1/2 accounts for the fact that each distinct pair k, l contributes
twice to the sum.
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Because ∂Uk ∩ D =⋃
l �=k ∂Uk ∩ ∂Ul ∩ D, the quantity (2.4) is equal to

(2.5)
1

2

∑
1≤k≤K

∫
∂Uk∩D

φ(x) dH(d−1)(x).

More generally, for partitions U consisting of measurable sets {Uk}Kk=1, we may
define the weighted perimeter of Uk as follows:

Per(Uk;φ) := TV(1Uk
;φ),

where TV(1Uk
;φ), defined below, is the weighted total variation of the indicator

function 1Uk
. For sufficiently regular sets, this definition agrees with the informal

notion of perimeter (2.5).
Let L∞(D, θ) and Lp(D, θ) be the usual spaces of functions u where inf{C :

|u(x)| ≤ C for θ -a.e. x} < ∞ and
∫
D |u(x)|p dθ(x) < ∞ for 1 ≤ p < ∞, respec-

tively. When θ is Lebesgue measure on D and the underlying domain D is under-
stood, we abbreviate Lp := Lp(D, θ). The weighted total variation of a function
u ∈ L1 is

TV(u;φ) := sup
	∈C1

c (D;Rd )
|	(x)|≤φ(x)

∫
D

u(x)div	(x)dx,

where C1
c (D;Rd) is the space of continuously differentiable, compactly supported

vector fields on D, and div	(x) =∑d
i=1

∂	i

∂xi
. In our later applications, the density

φ will be bounded above and below on D by positive constants. In this case, the
weighted total variation has many of the same properties as the total variation with
respect to the uniform density 1D , discussed in detail in Chapter 3 of [3].

Consider now the following geometric partitioning problem. Among all bal-
anced K-partitions of D, choose that which minimizes the total perimeter of its
sets:

(2.6)
minimize

U

1

2

K∑
k=1

Per(Uk;φ)

subject to μ(Uk) = 1

K
,k = 1, . . . ,K.

See Figure 1 for the behavior when D is a square.
It is clear, by dividing D in terms of a moving hyperplane, that balanced K-

partitions with finite perimeter exist. Also, depending on D, the problem may or
may not have a unique solution (modulo relabeling of sets): Suppose φ = 1 and
dμ = dx. When D is a long, thin rectangle in R2, there is only one perimeter
minimizing division into two sets of equal area. However, when D is a disc in R2,
there are infinitely many such divisions, given by cuts of the disc along a diameter.

The general problem (2.6) can be seen as a type of “soap bubble” problem. It
can also be seen as a bounded domain form of Kelvin’s problem: Find a tiling
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FIG. 1. Local minimizers of problem (2.6) on D = (0,1)2, with φ = 1, dμ = dx, produced using
[16].

of Rd where each tile has unit μ-volume so that the φ-perimeter between tiles is
minimized. We note in passing, when φ = 1 and dμ = dx, in d = 2, this problem
has been solved in terms of hexagonal tiles, and is the subject of much research in
d ≥ 3. See Morgan [54], which discusses these and other related optimizations.

We remark, when φ = 1 and dμ = dx, the problem (2.6) has been considered
in the literature. Cañete and Ritore [18] have studied minimal partitions of the
disc into three regions, and in this context proved that the regions are bounded
by circular arcs making perpendicular contact with the boundary of the disc and
meeting at a 120 degree triple point within. Some conjectures about minimizers
for larger values of K and other domains are presented in Cox and Flikkema [21].
Oudet [59] derives a numerical algorithm, via Gamma convergence, for computing
approximate solutions.

2.3. Results. Before stating the two main theorems, we first define the random
geometric graphs under consideration. We make the following standing assump-
tions throughout on the domain D ⊂ Rd , ground measure ν on D, and underlying
edge weight structure.

(D) D is a bounded, open, connected subset of Rd with Lipschitz boundary.
(M) In d ≥ 1, ν is a probability measure on D with density ρ such that ρ is

Lipschitz and bounded above and below by positive constants.
Further, in d = 1, ρ satisfies additional conditions: (a) ρ is differentiable on

D := (c, d) and (b) ρ is increasing in some interval with left endpoint c and de-
creasing in some interval with right endpoint d .

Let {Xi}i∈N be a collection of i.i.d. samples from ν, and define Xn = {Xi}ni=1.
We will denote by P and E the probability and expectation with respect to the
underlying probability space.

The random geometric graph is constructed from the points Xn through a kernel
function η :Rd →R, where η satisfies:
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(K1)
∫
Rd η(x) dx = 1.

(K2) η is radial and nonincreasing, that is, η(z) ≤ η(z0) if ‖z‖ ≥ ‖z0‖.
(K3) η(0) > 0 and η is continuous at 0.
(K4) η is compactly supported.

There is a large class of kernels admitted under assumptions (K1)–(K4), including
the kernel associated with the well-known random geometric graph, where η is the
indicator function of a ball.

Between vertices Xi , Xj , in terms of a parameter εn, we put an edge with weight

(2.7) Wij =
⎧⎪⎨⎪⎩

1

εd
n

η

(
Xi − Xj

εn

)
=: ηεn(Xi − Xj) if i �= j,

0 otherwise.

The parameter εn > 0 serves as a length scale. For example, if the support of η is
contained in a ball of radius one, then two vertices Xi and Xj are connected by an
edge only if they are separated by a distance no more than εn (cf. Figure 2). Since
the modularity functional Q is the same under weights W and cW , for c > 0, the
factor ε−d

n in (2.7) was chosen so that the expected value of Wij is of order 1.
Under all circumstances, we have εn → 0, although the specific rate at which

εn vanishes will depend on the dimension d , as well as the parameter α. There are
in fact two different sets of assumptions, (I1) being more restrictive than (I2), cor-
responding to our two main results. We first mention typical examples, satisfying
the assumptions. Taking εn = n−β , with β > 0, conditions (I1) and (I2) will hold
if respectively

β <

{
2/(d + 1) if α = 0,1,

1/(d + 1) if α �= 0,1,
and β <

{
min(1/d,1/2), if α = 0,1,

1/(d + 1), if α �= 0,1.

More precisely, (I1) and (I2) are the following:

(I1) When α = 0,1, we suppose that
∑∞

n=1 exp(−nε
(d+1)/2
n ) < ∞. However,

when α �= 0,1, we suppose that
∑∞

n=1 n exp(−nεd+1
n ) < ∞.

FIG. 2. Random geometric graph, constructed from n = 200 uniformly distributed points on the
strip D = (0,4) × (0,1) with connectivity function η = 1|x|<1 and ε = n−0.3.
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(I2) When α = 0 or α = 1, we suppose that

lim
n→∞

(log logn)1/2

n1/2

1

εn

= 0 if d = 1,

lim
n→∞

(logn)3/4

n1/2

1

εn

= 0 if d = 2,

lim
n→∞

(logn)1/d

n1/d

1

εn

= 0 if d ≥ 3.

However, when α �= 0,1, we suppose that
∑∞

n=1 n exp(−nεd+1
n ) < ∞.

In Section 2.4, we discuss motivations behind these assumptions in more detail.
Now, given the set Xn and a sequence {εn}n∈N, denote by Wn the weight ma-

trix with entries given by (2.7), and denote by Gn = (Xn,Wn) the corresponding
weighted random geometric graph. We let

Qn denote the modularity functional (2.1) corresponding to Gn.
Consider a partition U = {Uk}Kk=1 of the domain D. For any n ≥ 1, this induces

a partition Un = {Un,k}Kk=1 of the sample Xn, where for 1 ≤ k ≤ K ,

Un,k = Uk ∩Xn.

THEOREM 2.1 (Asymptotics). Suppose {εn}n∈N satisfies condition (I1). Fix
K ≥ 1 and let U = {Uk}Kk=1 be a partition of D where each Uk is a subset of finite
perimeter, Per(Uk;ρ2) < ∞. Let Un be the induced partition of Xn for n ≥ 1. Then
the modularity Qn(Un) satisfies

(2.8) 1 − 1/K − Qn(Un)
a.s.−−→

K∑
k=1

(
μ(Uk) − 1/K

)2
,

as n → ∞, where dμ(x) = ρ1+α(x) dx∫
D ρ1+α(x) dx

.

Further, if
∑K

k=1(μ(Uk) − 1/K)2 = 0, we have

(2.9)
1 − 1/K − Qn(Un)

εn

a.s.−−→ Cη,ρ

K∑
k=1

Per
(
Uk;ρ2),

as n → ∞, where

Cη,ρ =
∫
Rn η(x)|x1|dx

2
∫
D ρ2(x) dx

and x = (x1, . . . , xd).

One way to interpret these law of large numbers limits is that the nonnegative
quantity, a “balance” term,

K∑
k=1

(
μ(Uk) − 1

K

)2
,
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is a measure of how balanced the partition U is with respect to the measure μ. In
our model, the limiting modularity of a partition is predominantly determined by
the number of clusters and the extent to which they are balanced.

We state a corollary of Theorem 2.1, which follows by considering balanced
partitions where K is not restricted.

COROLLARY 2.2. Suppose the assumptions of Theorem 2.1 are satisfied. Let
Q∗

n = maxUn Qn(Un) denote the maximum modularity associated to Gn, where the
maximum is over all partitions Un of Xn. Then we have, as n → ∞,

Q∗
n

a.s.−−→ 1.

Our second main result is a characterization of the behavior of optimal cluster-
ings U∗

n ∈ arg max|Un|≤K Qn(Un), as n → ∞. To this end, we introduce a suitable
notion of convergence.

To a sequence of sets {Un}n∈N with Un ⊂ Xn, we associate the “graph measures”
{γn}n∈N, where γn = 1

n

∑n
i=1 υ(Xi,1Un(Xi)), and υ· denotes a point mass. In words,

the measure γn is the distribution of the graph of 1Un under the empirical measure
νn on Xn. Let also U ⊂ D and define γ as the distribution of the graph of 1U

under ν. We will write, with respect to a realization of {Xi}i∈N, that, as n → ∞,

(2.10) Un converges weakly (denoted
w−→) to U if γn

w−→ γ.

Correspondingly, consider a sequence of partitions Un = {Un,k}Kk=1 of Xn, and a
partition U = {Uk}Kk=1 of D. Let Sym(K) denote the permutations of {1, . . . ,K}.
Since the sets in the collections Un and U are unordered, we say that, as n → ∞,

Un converges weakly (denoted
w−→) to U

if there exists a sequence {πn}n∈N of permutations in Sym(K) such that

(2.11) γn,πnk
w−→ γk for k = 1, . . . ,K .

THEOREM 2.3 (Optimal Clusterings). Suppose {εn}n∈N satisfies condition (I2).
Let U∗

n ∈ arg max|Un|≤K Qn(Un) be an optimal partition of Xn, for n ≥ 1. Let
also, with respect to problem (2.6), φ = ρ2 and dμ = ρ1+α dx/

∫
D ρ1+α(x) dx.

If U∗ is the unique solution (modulo reordering of its constituent sets) of prob-
lem (2.6), then a.s. U∗

n converges weakly to U∗, in the sense of (2.11).
If there is more than one solution to the problem (2.6), then a.s. U∗

n converges
weakly along a subsequence, in the sense of (2.11), to a solution U∗ of (2.6).

Figure 3 illustrates this result. We remark that, in the proof of Theorem 2.3,
we will in fact show an equivalent form of convergence, in terms of Wasserstein,
Kantorovich–Rubenstein-type (T L1)K distances, via a Gamma convergence state-
ment (Theorem 6.1) for certain energy functionals.
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FIG. 3. Binary partitions produced by modularity clustering of random geometric graphs with
various values of n on the domain D = (0,1) × (0,4), using the algorithm of [58]. Here α = 1, the
density ρ is uniform, η = 1|x|<1, and εn = n−0.3. The red lines indicate the optimal cut associated
with the continuum partitioning problem for K = 2.

We also note that the parameter α, which parametrizes a family of null models
in the modularity functional (2.1), appears in the balancing measure μ associated
with the continuum problem (2.6). As α increases, the measure μ puts more mass
near the modes of the density ρ, altering the optimal partitions as illustrated in
Figure 4. For the choice α = −1, the balancing measure μ is independent of the
density ρ. Still, the weighted perimeter depends on ρ. So, in part (B) of Figure 4,
both sets have area 3/2, but the optimal interface is curved, due to the form of ρ.

We also observe that the notion of convergence in Theorem 2.3 allows to capture
various statistics on the discrete partitions; for instance, we show that the propor-
tion of misclassified points vanishes almost surely.

COROLLARY 2.4. Consider the setting of Theorem 2.3. Let {U∗
nm

}m∈N be a
subsequence of optimal Qnm -modularity partitions of the sample space which a.s.
converges weakly, in the sense of (2.11), to a solution U∗ of (2.6). Then the pro-
portion of correctly classified points converges to 1. That is, a.s. as m → ∞,

pnm := min
1≤k≤K

|{x ∈ Xnm : x ∈ U∗
k ∩ U∗

nm,πnm(k)}|
|{x ∈ Xnm : x ∈ U∗

k }| → 1.

PROOF. It is enough to show, with respect to a sequence of sets Vm ⊂ Xnm

and a set V ⊂ D, of positive Lebesgue measure and finite perimeter, where a.s.
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FIG. 4. Behavior of problem (2.6) for K = 2 and various α on D = (0,1) × (0,3), computed
using a variant of the algorithm in [59]. Here, φ = ρ2, dμ = ρ1+α(x) dx/

∫
D ρ1+α(x) dx, for

ρ(x) ∝ min(2 exp(−4‖x − z‖2),1/2), with z = (1/2,2).

Vm
w−→ V , in the sense of (2.10), that

|{x ∈Xnm : x ∈ V ∩ Vm}|
|{x ∈ Xnm : x ∈ V }| → 1 a.s.

as m → ∞. Then the statement in the corollary would follow by application of this
limit with Vm = U∗

nm,πnm(k) and V = U∗
k for 1 ≤ k ≤ K .

In terms of the measures γm and γ , which govern the graphs of 1Vm and 1V

under νn and ν respectively, we can write

|{x ∈ Xnm : x ∈ V ∩ Vm}|
|{x ∈ Xnm : x ∈ V }| =

∫
D×R 1V (x)y dγm(x, y)∫
D×R 1V (x) dγm(x, y)

.

Since a.s. γm
w−→ γ as m → ∞, by approximating (x, y) 
→ 1V (x)y and (x, y) 
→

1V (x) by bounded, continuous functions, we have∫
D×R 1V (x)y dγm(x, y)∫
D×R 1V (x) dγm(x, y)

a.s.−−→
∫
D×R 1V (x)y dγ (x, y)∫
D×R 1V (x) dγ (x, y)

= 1,

as m → ∞, concluding the argument. �

2.4. Discussion. 1. As alluded to in the Introduction, the phenomena shown
in Corollary 2.2 for random geometric graphs has been considered before in other
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models. Indeed, in [44] the authors provide heuristic arguments for the limiting
behavior Q∗

n → 1 under two regimes: (i) when the graphs are regular lattices, and
(ii) when the graphs are Erdős–Rényi graphs with edge probability p = 2/n. In
[42], the authors derive the limiting behavior Q∗

n → 1 under a sparse graph model,
in which modules of some characteristic size are adjoined to the graph. Further,
these asymptotics are consistent with the empirical results associated with large
real-world graphs [12].

2. It has been observed in the literature that modularity optimization may fail
to identify clusters smaller than a certain level, depending on the total size and in-
terconnectedness of the graph. In other words, modularity possesses a “resolution
limit” in terms of its clustering (cf. [33, 42]). An extreme example is when the
graph contains a pair of cliques (complete subgraphs) connected by a single edge,
but modularity would lump them into a common cluster (cf. Figure 3 of [33]).

In [65], the authors consider a variant of the modularity given by

(2.12) Qλ = 1

2m

∑
i,j

(
Wij − λ

didj

2m

)
δ(ci, cj ),

where λ is a parameter. In [50], the parameter λ is related to the resolution limit
phenomena: Namely, higher values of λ allow for smaller cluster sizes.

The methods used to prove Theorem 2.3 give the following asymptotic behav-
ior of optimal Qλ modularity clusterings: When λ = λn := κε

γ
n is scaled with n,

for γ ≥ 0 and εn satisfying (I2), three distinct possibilities arise for the limiting
problem. When 0 ≤ γ < 1, the continuum partitioning problem remains as it is
in (2.6). When γ = 1, the hard constraints μ(Uk) = 1/K for 1 ≤ k ≤ K of the
limiting problem get replaced by a soft balancing condition, resulting in

(2.13) minimize
U

1

2

K∑
k=1

Per(Uk;φ) + κ

K∑
k=1

(
μ(Uk) − 1/K

)2
.

When γ > 1, the continuum problem degenerates to a perimeter minimization
problem with no balancing condition, which has as its solution a single global
cluster D (and the other K − 1 sets being empty).

3. One can ask also about the reasons behind assumptions (I1) and (I2). With
respect to Theorem 2.1, a lower bound for εn should be informed by the fluc-
tuations of the functional. In fact, the variance of Qn(Un) can be seen to be of
order (n2εd+1

n )−1 when α = 0,1 [by a computation with formula (4.7)]; so, un-
der condition (I1), the variance vanishes. However, when α �= 0,1, a worse bound
is useful to control the nonlinearity of the functional. In particular, an univariate
Bernstein concentration bound is applied twice when α �= 0,1, whereas a stronger
(in this context) U -statistics bivariate concentration bound is only used once when
α = 0,1.

On the other hand, assumption (I2) in Theorem 2.3 is informed by the connec-
tivity radius of the random geometric graphs. For instance, if εn were to vanish
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too quickly, the underlying graphs would contain O(n) disconnected components
(cf. Theorem 13.25 in [60]). Then, presumably, one would be able to find a U∗

n

such that (1/2 − Qn(U∗
n ))/εn

a.s.−−→ 0 and consequently obtain a continuum cluster
point U∗. This is a contradiction, as the resulting partition U∗ would have zero
perimeter—in other words, one of the sets in U∗ would be D itself—and so could
not satisfy the balance conditions. This is a version of the argument in Remark 1.6
of [38].

The threshold that εn should be larger than, for the graphs to be connected, is
known: In d ≥ 1, it is of order (log(n))1/d/n1/d (cf. [60]). Viewed from this lens,
condition (I2) is more optimal when α = 0,1 than when α �= 0,1—we remark
the α = 0,1 conditions in fact reflect the bounds on the optimal transport maps in
Proposition 3.2, as can be seen in the argument of Theorem 2.3. As alluded above,
when α �= 0,1, the difficulty is in analyzing the nonlinear “balance” term in the
functional, whereas the “total variation” term is handled more optimally.

It is not clear if (I1), (I2), in the case α �= 0,1, are close to optimal or artifacts of
the technical estimates. It would be of interest to investigate further the optimality
of these conditions.

4. We briefly discuss the assumptions on ρ, D, and η. The proof of Theorem 2.3
makes use of certain “transport maps” (cf. Proposition 3.2). For d ≥ 2, we use the
optimal transport results of [37], which require that ρ be bounded above and below
by positive constants, and that D is sufficiently nice. On the other hand, for d = 1,
it is not necessary that ρ be bounded below to define a suitable transport map; here,
the technical condition required is (A.6). However, in all dimensions, we require
a lower bound on ρ, as this enables us to handle the general α �= 0,1 case via a
Lipschitz inequality for the map x 
→ xα (cf. Lemma 5.6). The boundedness of D

is also used in several intermediate technical results. The Lipschitz continuity of
ρ is used for handling the “balance” term in the proof of Theorem 2.3 (principally
in Lemma 5.3, by way of Lemma A.13). We remark that, by a simple modification
of the proof, this condition could be weakened to Hö continuity, with exponent
greater than 1/2.

With respect to η, the radial and monotone assumptions are convenient in re-
lating certain graph functionals to their nonlocal analogues (cf. Lemma 6.3). The
continuity at zero is used in the proof of the compactness property, Lemma 6.11.
Finally, we remark that the compact support of η allows to analyze behavior near
the boundary of D, although this assumption could be weakened to a suitable con-
dition on the decay of η at infinity.

2.5. Brief outline of the proofs of Theorems 2.1 and 2.3. The arguments for
both the main theorems rely on a decomposition of the modularity functional into
“graph total variation” and “quadratic balance” terms, done in Section 4. We re-
mark the identification of the “quadratic balance” term seems new (cf. the different
but related decomposition in [49]), and its analysis will be an integral part of later
asymptotics.
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To prove Theorem 2.1, in Section 5, we use concentration bounds for U -
statistics to compare the random “graph total variation” and “quadratic balance”
parts of the modularity functional to their mean-values, which are separately ana-
lyzed. The argument of Theorem 2.1 does not rely on Section 3, which are prelim-
inaries for Theorem 2.3.

The approach to prove Theorem 2.3 in Section 6 is to formulate both the mod-
ularity clustering problem (2.3) and the continuum partitioning problem (2.6) as
optimization problems on a common metric space (T L1(D))K . In Section 3, we
discuss the T L1(D) topology and framework of García Trillos and Slepčev in [38]
to study weak convergence of “graph measures”. Connections with optimal trans-
portation maps are also made. In addition, a modified form of Gamma convergence
for random functionals, different from other versions in the literature, is introduced
(cf. Remark 3.10), which is a main vehicle behind the argument of Theorem 2.3,
and which may be of its own interest.

Although we wish to maximize the modularity, it will be convenient to pose an
equivalent problem of minimizing a related energy En in Section 6.1. In particular,
the maximum modularity clusterings of the graph Gn = (Xn,Wn) will be related
to the solution of

minimize
V∈(T L1(D))K

En(V),

and the optimal partitions of Problem (2.6) will be related to the solution of

minimize
V∈(T L1(D))K

E(V).

We state in Theorem 6.1 that the random functionals En Gamma converge to
E, in the modified sense as alluded to above. The two limits in the Gamma con-
vergence formulation, “liminf” and “recovery”, are shown in Sections 6.2 and 6.3.
We note that the “recovery” limit relies on the convergence results (5.29), (5.30)
and (5.31); this is the only dependence on Section 5 in Section 6.

In Section 6.4, we state a compactness property for the functionals En, which
together with Theorem 6.1, will imply that the minimizers of En converge subse-
quentially in (T L1)K to a minimizer of E, and thereby prove Theorem 2.3 at the
end of the section.

3. Preliminaries for Theorem 2.3. As a reference for later use in Section 6,
we discuss in Section 3.1 the T L1 topology and framework, introduced by García
Trillos and Slepčev in [38], and connections to weak convergence of graph mea-
sures and optimal transportation maps. Then, in Section 3.2, we define a variant
of Gamma convergence for random energy functionals that we will use to prove
Theorem 2.3.
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3.1. T L1 topology and framework. Given a measurable space S ⊂ Rd , we let
B(S) denote the Borel σ -algebra on S, and similarly let P(S) denote the set of
Borel probability measures on S. Also, given two spaces, S1 and S2, a measurable
map T : S1 → S2, and a measure μ ∈ P(S1), we define the push-forward T�μ ∈
P(S2) by

T�μ(A) = μ
(
T −1(A)

)
for A ∈ B(S2).

In particular, T�μ is the distribution of T X where X has distribution μ.
Given measures μ,θ ∈ P(S), recall that a coupling between μ and θ is a prob-

ability measure π on S × S such that the marginal with respect to the first vari-
able is μ, and the marginal with respect to the second variable is θ . Consider the
set of couplings �(μ, θ) := {π ∈ P(S × S) : π(U × S) = μ(U) and π(S × U) =
θ(U) ∀U ∈ B(S)}. Define the distance on P(S) by

d1,S(μ, θ) := inf
π∈�(μ,θ)

∫
S
|x − y|dπ(x, y).

This is a metric on P1(S), the subset of probability measures in P(S) with fi-
nite first moment. This metric is known as “earth mover’s” distance or the 1-
Wasserstein distance.

When S is complete, a case of a more general result (see Theorem 6.9 of [76])
is the following: Let {μn}n∈N and μ be measures in P1(S). Then, as n → ∞,

(3.1) μn
w−→ μ and first moments converge iff d1,S(μn,μ) → 0.

Now, as in [38], to understand weak convergence of “graph measures”, define
the space T L1(S) by

T L1(S) := {
(μ,f ) : μ ∈ P(S),‖f ‖L1(S,μ) < ∞}

,

and, for (μ,f ) and (θ, g) in T L1(S), define the distance

dT L1,S

(
(μ,f ), (θ, g)

) := inf
π∈�(μ,θ)

∫ ∫
S×S

|x − y| + ∣∣f (x) − g(y)
∣∣dπ(x, y).

One may identify an element (μ,f ) ∈ T L1(S) with a graph measure
(Id × f )�μ ∈ P(S × R), whose support is contained in the graph of f . Con-
sider now, with respect to (μ,f ), (θ, g) ∈ T L1(S), the graph measures γ =
(Id × f )�μ, γ̃ = (Id × g)�θ ∈ P(S ×R). It may be seen that

dT L1,S

(
(μ,f ), (θ, g)

)= inf
π∈�(γ,γ̃ )

∫∫
(S×R)×(S×R)

|x−y|+|s− t |dπ
(
(x, s), (y, t)

)
,

and hence

(3.2) d1,S×R(γ, γ̃ ) is equivalent to dT L1,S

(
(μ,f ), (θ, g)

)
,

in the sense that d1,S×R is bounded above and below by positive multiples of
dT L1,S (cf. Remark 3.2 and Proposition 3.3 of [38]).
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We now restrict S to be the bounded domain D ⊂ Rd introduced in Section 2.3.
We will abbreviate T L1 := T L1(D). Then, for (μ,f ) ∈ T L1, the graph measure
γ = (Id × f )�μ belongs to P1(D × R) in that it has a finite first moment since∫
D |x|+ |f (x)|dμ(x) < ∞. Hence, by (3.2), T L1 can be viewed as a metric space

with metric dT L1,D .
With respect to graph measures γ ′, γ ′′ ∈ P1(D ×R), consider their extensions

γ̄ ′ and γ̄ ′′ to D ×R by setting γ̄ ′(∂D ×R) = γ̄ ′′(∂D ×R) = 0. Then the distance

(3.3) d1,D×R

(
γ̄ ′, γ̄ ′′)= d1,D×R

(
γ ′, γ ′′).

Suppose now (μn,fn)
T L1−−→ (θ, g), and γn and γ are the associated graph measures

on D × R for n ≥ 1. Then, as limn→∞ d1,D×R(γn, γ ) = 0, we have, by (3.2) and
(3.3), that limn→∞ d1,D×R(γ̄n, γ̄ ) = 0. Since D ×R is complete, by (3.1), γ̄n

w−→ γ̄

in P(D ×R) and associated first moments converge, and so, equivalently, γn
w−→ γ

in P(D ×R) and associated first moments converge, as n → ∞.
We now make a remark on definition (2.11) with respect to the product space

(T L1)K , equipped with the product topology. Fix a realization {Xi}i∈N. Recall
the empirical measures νn and probability measure ν on D from the beginning of
Section 2.3. Let Un = {Un,k}Kk=1 be a partition of Xn for n ≥ 1, and U = {Uk}Kk=1
be a partition of D. We say the sequence (νn,Un) := ((νn,1Un,k

))Kk=1 converges

in (T L1)K to (ν,U) := ((ν,1Uk
))Kk=1 if (νn,1Un,k

)
T L1−−→ (ν,1Uk

) for 1 ≤ k ≤ K .
Now, by the comment below (3.3), convergence in the metric dT L1,D implies weak
convergence in P(D × R). But, since indicators of sets are uniformly bounded,
weak convergence of graph measures of indicators in P(D × R) implies conver-
gence of first moments, and so is equivalent, by (3.1) and (3.2), to convergence
with respect to dT L1,D . Hence, noting definition (2.10), we obtain

(3.4) Un,k
w−→ Uk for 1 ≤ k ≤ K if and only if (νn,Un)

(T L1)K−−−−→ (ν,U).

This convergence is certainly sufficient for Un
w−→ U in the sense of definition

(2.11), by choosing the identity permutations. However, we observe an equivalent
condition is the following: Un

w−→ U if and only if there exists a sequence {πn}n∈N
of permutations in Sym(K) such that ((νn,Un,πn(k)))

K
k=1

(T L1)K−−−−→ ((ν,Uk))
K
k=1 for

1 ≤ k ≤ K .
We now discuss when this convergence may be formulated in terms of trans-

portation maps. We say that a measurable function T : D → D is a transportation
map between the measures μ ∈ P(D) and θ ∈ P(D) if θ = T�μ. In this context,
for f ∈ L1(θ), the change of variables formula holds:∫

D
f (y) dθ(y) =

∫
D

f
(
T (x)

)
dμ(x).
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A transportation map T yields a coupling πT ∈ �(μ, θ) defined by πT :=
(Id×T )�μ where (Id×T )(x) = (x, T (x)). It is well known, when θ is absolutely
continuous with respect to Lebesgue measure on D, that the infimum d1,D(μ, θ)

can be achieved by a coupling πT induced by a transportation map T between μ

and θ . Indeed, we note briefly that this is only one result among many others which
relate various “Monge” and “Kantorovich” distances via optimal transport theory.
See [76] and references therein; see also [4, 75].

We will say that a sequence {Tn}n∈N of transportation maps, with Tn�θ = θn,
with respect to a sequence of measures {θn}n∈N ⊂ P(D), is stagnating if

lim
n→∞

∫
D

∣∣x − Tn(x)
∣∣dθ(x) = 0.

The following is Proposition 3.12 in [38].

LEMMA 3.1. Consider a measure θ ∈ P(D) which is absolutely continuous
with respect to the Lebesgue measure. Let (θ, f ) ∈ T L1(D) and let {(θn, fn)}n∈N
be a sequence in T L1(D). The following statements are equivalent:

(i) (θn, fn)
T L1−−→ (θ, f ).

(ii) θn
w−→ θ and there exists a stagnating sequence of transportation maps

Tn�θ = θn such that

(3.5) lim
n→∞

∫
D

∣∣f (x) − fn

(
Tn(x)

)∣∣dθ(x) = 0.

(iii) θn
w−→ θ and for any stagnating sequence of transportation maps Tn�θ = θn,

the convergence (3.5) holds.

In order to make use of the above result on T L1 convergence, we will need to
find a suitable stagnating sequence {Tn}n∈N of transportation maps.

PROPOSITION 3.2. Recall, from the beginning of Section 2.3, the assumptions
on the probability measure ν on D, and that νn denotes the empirical measure
corresponding to i.i.d. samples drawn from ν.

Then there is a constant C > 0 such that, with respect to realizations of {Xi}i∈N
in a probability 1 set �0, a sequence of transportation maps {Tn}n∈N exists where
Tn�ν = νn and

lim sup
n→∞

n1/2‖Id − Tn‖L∞

(log logn)1/2 ≤ C if d = 1,

lim sup
n→∞

n1/d‖Id − Tn‖L∞

(logn)3/4 ≤ C if d = 2,

lim sup
n→∞

n1/d‖Id − Tn‖L∞

(logn)1/d
≤ C if d ≥ 3.
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PROOF. We prove the d = 1 case in the Appendix (Proposition A.18), as a
consequence of quantile transform results for the empirical measure, making use
of the technical conditions assumed on ρ. In García Trillos and Slepčev [37], the
d = 2 and d ≥ 3 cases are first discussed, in the context of concentration estimates
in the literature when D is a cube and ν is the uniform measure, and then proved
for general D and nonuniform ν. �

Although a result of Varadarajan (cf. Theorem 11.4.1 in [27]) implies that a.s.
νn

w−→ ν, Proposition 3.2 gives a way to specify the probability 1 set on which the
weak convergence holds.

COROLLARY 3.3. On the probability 1 set �0 of Proposition 3.2, the empiri-
cal measures νn converge weakly to ν as n → ∞.

PROOF. Let f : D →R be a bounded, Lipschitz continuous function. Since

1

n

n∑
i=1

f (Xi) =
∫
D

f (Tnx) dν(x),

we may write∣∣∣∣∣1n
n∑

i=1

f (Xi) −
∫
D

f (x)dν(x)

∣∣∣∣∣≤
∫
D

∣∣f (Tnx) − f (x)
∣∣dν(x)

≤ C

∫
D

|x − Tnx|dν(x)

≤ C‖Id − Tn‖L∞,

where C is a Lipschitz constant for f . By Proposition 3.2, for each realization of
{Xi}i∈N in �0, we have 1

n

∑n
i=1 f (Xi) → ∫

D f (x)dν(x) as n → ∞. Hence, by
the Portmanteau theorem (Theorem 3.9.1 in [28]), we have the weak convergence
νn

w−→ ν as n → ∞. �

3.2. On Gamma convergence of random functionals. Here, we introduce a
type of �-convergence, with respect to random functionals, which will be an im-
portant tool in the proof of Theorem 2.3 in Section 6, and may be of interest in
its own right. For what follows, let X denote a metric space with metric d and let
Fn : X → [0,∞] be functionals on this space.

We first state the definition with respect to deterministic functionals.

DEFINITION 3.4. The sequence {Fn}n∈N �-converges with respect to the
topology on X if the following conditions hold:
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1. Liminf inequality: For every x ∈ X and every sequence {xn}n∈N converging
to x,

F(x) ≤ lim inf
n→∞ Fn(xn).

2. Limsup inequality: For every x ∈ X, there exists a sequence {xn}n∈N con-
verging to x satisfying

lim sup
n→∞

Fn(xn) ≤ F(x).

The function F is called the �-limit of {Fn}n∈N, and we write Fn
�−→ F .

When we wish to make the dependence on the metric d explicit, we say that
{Fn}n∈N �(d)-converges to F , or F is the �(d)-limit of {Fn}n∈N, etc.

REMARK 3.5. If the liminf inequality holds, the limsup inequality is equiva-
lent to the following condition: For every x ∈ X, there exists a sequence {xn}n∈N
with xn → x and limn→∞ Fn(xn) = F(x). The sequence {xn}n∈N is referred to as
a recovery sequence for x.

A basic consequence of Definition 3.4 is the following (cf. [13], Theorem 1.21).

THEOREM 3.6. Let Fn : X → [0,∞] be a sequence of functionals �-
converging to F . Suppose {xn}n∈N is a relatively compact sequence in X with

(3.6) lim
n→∞

(
Fn(xn) − inf

x∈X
Fn(x)

)
= 0.

Then:

1. F attains its minimum value and

min
x∈X

F(x) = lim
n→∞ inf

x∈X
Fn(x).

2. The sequence {xn}n∈N has a cluster point, and every cluster point of the
sequence is a minimizer of F .

For this theorem to be applicable, it is standard to put some condition on
{Fn}n∈N so that (3.6) implies that the sequence {xn}n∈N is relatively compact in X.

DEFINITION 3.7. We say that the sequence of nonnegative functionals
{Fn}n∈N has the compactness property, if when a sequence {xn}n∈N satisfies the
following two conditions:

(i) {xn}n∈N is bounded in X,
(ii) the energies {Fn(xn)}n∈N are bounded,

then {xn}n∈N is relatively compact in X.
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We now extend the above notions to the random setting. Here, we have a prob-
ability space (�,F,P) and a sequence of functionals Fn : X × � → [0,∞].

DEFINITION 3.8. We say the (random) sequence {Fn}n∈N �-converges to the
deterministic functional F : X → [0,∞] if:

1. Liminf inequality With probability 1, the following statement holds: For
any x ∈ X and any sequence {xn}n∈N with xn → x,

F(x) ≤ lim inf
n→∞ Fn(xn).

2. Recovery sequence For any x ∈ X, there exists a (random) sequence
{xn}n∈N with xn

a.s.−−→ x and Fn(xn)
a.s−→ F(x).

DEFINITION 3.9. We say the (random) sequence {Fn}n∈N has the compact-
ness property if with probability 1, the sequence {Fn(·,ω)}n∈N has the compact-
ness property in Definition 3.7.

REMARK 3.10. The definition for �-convergence of random functionals, Def-
inition 3.8, is weaker than the one in [38], which prescribes that Definition 3.4
holds with probability 1. However, in our Definition 3.8, with respect to the recov-
ery sequence, the probability 1 set may depend on the sequence, and therefore is
an easier condition to verify, say with probabilistic arguments. Interestingly, this
weaker definition has the same strength in terms of its application in the follow-
ing Gamma convergence statement, Theorem 3.11, a main vehicle in the proof of
Theorem 2.3.

In passing, we also note that the compactness criterion of random function-
als, Definition 3.9, can also be weakened, without altering the statement of the
Gamma convergence Theorem 3.11, to the following: {Fn}n∈N has the compact-
ness property if when a sequence {xn}n∈N satisfies (i) and (ii) in Definition 3.7 on a
probability 1 set, there is a probability 1 subset (both sets may depend on {xn}n∈N)
on which {xn}n∈N is relatively compact. We remark parenthetically in the proof
of Theorem 3.11 where a small change would be made if the weakened criterion
were used. We also note that we do not use this weaker condition in the arguments
of this article.

THEOREM 3.11. Let Fn : X×� → [0,∞] be a sequence of random function-
als �-converging to a limit F : X → [0,∞], in the sense of Definition 3.8, which
is not identically equal to ∞. Suppose that {Fn}n∈N has the compactness property,
in the sense of Definition 3.9, and also the following condition holds: For ω in a
probability 1 set, there exists a bounded sequence, xn = xn(ω), whose bound may
depend on ω, such that

lim
n→∞

(
Fn(xn) − inf

x∈X
Fn(x)

)
= 0.

Then, with probability 1:
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1. F attains its minimum value and

min
x∈X

F(x) = lim
n→∞ inf

x∈X
Fn(x).

2. The sequence {xn}n∈N has a cluster point, and every cluster point of the
sequence is a minimizer of F .

PROOF. Pick x̃ ∈ X, along with a recovery sequence {x̃n}k∈N, so that on a
probability 1 set �1 we have limn→∞ x̃n = x̃ and limn→∞ Fn(x̃n) = F(x̃). Let
�2 be a probability 1 set on which xn = xn(ω) is a bounded sequence where
limn→∞(Fn(xn) − infx∈X Fn(x)) = 0. Hence, on the probability 1 set �1 ∩ �2,
we obtain

(3.7) lim sup
n→∞

Fn(xn) ≤ F(x̃).

Applying the argument for (3.7) with respect to a countable collection
{x̃(m)}m∈N with limm→∞ F(x̃(m)) = infx∈X F(x), we obtain on a probability 1
set �3 ⊂ �2 that

(3.8) lim sup
n→∞

Fn(xn) ≤ inf
x∈X

F(x).

Now, because F is not identically equal to ∞, the right-hand side of the above
inequality is finite. Then, on the probability 1 set �3, the sequences {xn}n∈N and
{Fn(xn)}n∈N are bounded. Let �4 be the probability 1 set on which the compact-
ness property for {Fn}n∈N holds. [If instead the weakened compactness criterion
mentioned in Remark 3.10 is used, with respect to sequence {xn}n∈N, then �4
would be the probability 1 subset of �3 on which {xn}n∈N is relatively compact.]
In particular, on �5 = �3 ∩ �4, the bounded sequence {xn}n∈N is relatively com-
pact. With respect to the set �5, let {xnk

}k∈N be a subsequence converging to a
cluster point x∗, that is, limk→∞ xnk

= x∗.
Let �6 be a probability 1 set on which the liminf inequality holds. Then, on

�7 = �5 ∩ �6, we have

(3.9) inf
x∈X

F(x) ≤ F
(
x∗)≤ lim inf

k→∞ Fnk
(xnk

).

Combining (3.8) and (3.9) shows, since �7 ⊂ �3, that on the set �7 we have

(3.10) lim sup
k→∞

Fnk
(xnk

) ≤ lim sup
n→∞

Fn(xn) ≤ inf
x∈X

F(x) ≤ F
(
x∗)≤ lim inf

k→∞ Fnk
(xnk

).

Hence, we conclude that F attains its minimum value, F(x∗) = infx∈X F(x) and
x∗ is a minimizer of F , proving part of the first statement. In fact, the second
statement also follows: With respect to the probability 1 set �3 ∩�6, every cluster
point of {xn}n∈N is a minimizer of F .

We now show the remaining part of the first statement. With respect to the set
�7, let {xmk

}k∈N be a subsequence of {xn}n∈N where, for some cluster point x∗∗,

lim
k→∞Fmk

(xmk
) = lim inf

n→∞ Fn(xn) and lim
k→∞xmk

= x∗∗.
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Then, by (3.10), we conclude on �7 that limn→∞ Fn(xn) = infx∈X F(x). Since
�7 ⊂ �2, we have on �7 that limn→∞(Fn(xn) − infx∈X Fn(x)) = 0. Hence, we
conclude on �7 that limn→∞ infx∈X Fn(xn) = infx∈X F(x). �

4. Reformulation of the modularity functional. In this section, we write the
modularity functional as a sum of a “graph total variation” term and a “quadratic
balance” term, which will aid in its subsequent analysis.

Recall the modularity functional in Section 2.3 acting on a partition Un =
{Un,k}Kk=1 of the data points Xn into K ≥ 1 sets:

(4.1) Qn(Un) = 1

2m

∑
i,j

(
Wij − 2m

dα
i dα

j

S2

)
δ(ci, cj ).

Here, di =∑
j Wij , 2m =∑

ij Wij , and S =∑
i (
∑

j Wij )
α and the weights Wij =

ηεn(Xi − Xj) if i �= j and equal 0 otherwise. The label ci = k is assigned to the
point Xi if Xi ∈ Un,k for 1 ≤ k ≤ K .

Define In(D) as the collection of indicator functions of subsets of Xn. Natural
members of In(D), in the above context, are un,k = 1Un,k

for 1 ≤ k ≤ K . Note that
the collection {un,k}Kk=1 satisfies

∑K
k=1 un,k = 1Xn .

Observe now that δ(ci, cj ), signifying that Xi and Xj have the same label, can
be expressed in two ways:

(4.2) δ(ci, cj ) = 1 − 1

2

K∑
k=1

∣∣un,k(Xi) − un,k(Xj )
∣∣= K∑

k=1

un,k(Xi)un,k(Xj ).

Applying the first identity in (4.2) to the first term in (4.1) gives

1

2m

∑
i,j

Wij δ(ci, cj ) = 1

2m

∑
i,j

Wij − 1

2

1

2m

K∑
k=1

∑
i,j

Wij

∣∣un,k(Xi) − un,k(Xj )
∣∣

= 1 − 1

2

1

2m

K∑
k=1

∑
i,j

Wij

∣∣un,k(Xi) − un,k(Xj )
∣∣.

Define the graph total variation GTVn(u), acting on u : Xn →R, to be

(4.3) GTVn(u) := 1

εn

1

n(n − 1)

∑
1≤i �=j≤n

ηεn(Xi − Xj)
∣∣u(Xi) − u(Xj )

∣∣.
Then we may write

(4.4)
1

2m

∑
i,j

Wij δ(ci, cj ) = 1 − εn

n(n − 1)

4m

K∑
k=1

GTVn(un,k).
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Similarly, the second relation in (4.2) gives

∑
i,j

dα
i dα

j

S2 δ(ci, cj ) = 1

S2

K∑
k=1

∑
i,j

dα
i dα

j un,k(Xi)un,k(Xj )

= 1

S2

K∑
k=1

(∑
i

dα
i un,k(Xi)

)2

= 1

S2

K∑
k=1

(∑
i

( ∑
1≤j≤n

j �=i

ηεn(Xi − Xj)

)α

un,k(Xi)

)2
.

Define G�n(u), for u : D →R, by

(4.5) G�n(u) := 1

n

n∑
i=1

(
1

n − 1

∑
1≤j≤n

j �=i

ηεn(Xi − Xj)

)α

u(Xi).

Then

∑
i,j

dα
i dα

j

S2 δ(ci, cj ) = n2(n − 1)2α

S2

K∑
k=1

(
G�n(un,k)

)2
.

Note that G�n(1) = S/(n(n − 1)α). With a bit of algebra, we obtain

K∑
k=1

(
G�n(un,k)

)2
=

K∑
k=1

[(
G�n(un,k − 1/K)

)2
+ 2G�n(un,k − 1/K)G�n(1/K) + (

G�n(1/K)
)2]

,

which further equals

K∑
k=1

(
G�n(un,k − 1/K)

)2
+ 2G�n

(
K∑

k=1

(un,k − 1/K)

)
G�n(1/K) + 1

K
G�n(1)2

=
K∑

k=1

(
G�n(un,k − 1/K)

)2 + 1

K
G�n(1)2.
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We have used the relation
∑K

k=1 un,k = 1Xn in the last equality. Hence,

(4.6)
∑
i,j

dα
i dα

j

S2 δ(ci, cj ) = n2(n − 1)2α

S2

[
K∑

k=1

(
G�n(un,k − 1/K)

)2]+ 1/K.

Combining (4.4) and (4.6) gives

1 − 1/K − Qn(Un) = n2(n − 1)2α

S2

[
K∑

k=1

(
G�n(un,k − 1/K)

)2](4.7)

+ εn

n(n − 1)

4m

K∑
k=1

GTVn(un,k).

5. Proof of Theorem 2.1: Asymptotic formula. We analyze the “graph to-
tal variation” and “quadratic balance” terms, identified in the decomposition of
the modularity functional in Section 4, in the first two subsections. Then, in Sec-
tion 5.3, we prove Theorem 2.1.

For this section, in accordance with the assumptions of Theorem 2.1, we sup-
pose that the partition Un = {Un,k}Kk=1 of the data points Xn is induced by a
“continuum” partition U = {Uk}Kk=1 of D into K ≥ 1 sets with finite perimeter
Per(Uk;ρ2) < ∞, where Un,k = {Xi ∈ Xn|Xi ∈ Uk}, for 1 ≤ k ≤ K .

Define I (D) as the collection of measurable indicator functions of subsets
U ⊂ D. Let uk = 1Uk

, and note that uk ∈ I (D) is an extension of the indicator
un,k = 1Un,k

, defined on Xn, for 1 ≤ k ≤ K . Of course, the family {uk}Kk=1 satisfies∑K
k=1 uk = 1D .

5.1. Convergence of graph total variation. To show a.s. convergence of the
graph total variations, we first state that its expectations converge, and then use
concentration ideas to elicit convergence of the random quantities.

Let u ∈ L1(D). We define the nonlocal total variation of u to be

TVε(u;ρ) := 1

ε

∫
D

∫
D

ηε(x − y)
∣∣u(x) − u(y)

∣∣ρ(x)ρ(y) dx dy.

Note that, if X and Y are independent random variables with density ρ, we have

E

[
1

ε
ηε(X − Y)

∣∣u(X) − u(Y )
∣∣]= TVε(u;ρ).

Recalling the definition (4.3) of the graph total variation, we therefore have

E
[
GTVn(u)

]= TVεn(u;ρ).

Let also ση := ∫
D η(x)|x1|dx, where x = (x1, . . . , xd).
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LEMMA 5.1. Let u ∈ L1(D) such that TV(u;ρ2) < ∞. Then we have

(5.1) lim
ε→0

TVε(u;ρ) = ση TV
(
u;ρ2).

PROOF. For general ρ, continuous on D and bounded above and below by
positive constants, and d ≥ 2, the result follows from part of the proof of [38],
Theorem 4.1 (see Remark 4.3 in [38]), which is a much more involved result. This
proof also holds in d = 1. More remarks can be found in the initial arXiv version
of this article [22]. �

We now proceed to the almost sure convergence of the graph total variation to
its continuum limit.

LEMMA 5.2. Fix u ∈ I (D) where TV(u;ρ2) < ∞, and let {εn}n∈N be a se-
quence converging to zero such that

(5.2)
∞∑

n=1

exp
(−nε(d+1)/2

n

)
< ∞.

Then, as n → ∞,

GTVn(u)
a.s.−−→ ση TV

(
u;ρ2).

PROOF. In revision, we remark it has come to our attention that similar, but
different calculations to those we present below are found in [36]; see there also
for remarks concerning the optimality of εn in this context.

Let fn(x, y) = 1
εn

ηεn(x − y)|u(x) − u(y)|, and Efn = E[fn(Xi,Xj )] =
TVεn(u;ρ). Then

GTVn(u) = 1

n(n − 1)

∑
1≤i �=j≤n

(
fn(Xi,Xj ) −Efn

)+Efn.

By Lemma 5.1, we have limn→∞Efn = ση TV(u;ρ2). Therefore, it remains to
argue that limn→∞ 1

n(n−1)

∑
1≤i �=j≤n(fn(Xi,Xj ) −Efn) = 0 almost surely.

Let now

ln(Xi) =
∫
D

fn(Xi, y)ρ(y) dy and mn(Xj ) =
∫
D

fn(x,Xj )ρ(x) dx,

and also hn(Xi,Xj ) = fn(Xi,Xj ) − ln(Xi) − mn(Xj ) +Efn, so that

fn(Xi,Xj ) −Efn = hn(Xi,Xj ) + (
ln(Xi) −Efn

)+ (
mn(Xj ) −Efn

)
.
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Summing this gives

(5.3)

1

n(n − 1)

∑
1≤i �=j≤n

(
fn(Xi,Xj ) −Efn

)
= 1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi,Xj )

+ 1

n

∑
1≤i≤n

(
ln(Xi) −Efn

)+ 1

n

∑
1≤j≤n

(
mn(Xj ) −Efn

)
.

We handle the three terms on the right-hand side of the above equation sepa-
rately. First, note that Eln = Efn. An application of Bernstein’s inequality ([74],
Lemma 19.32) yields, for s > 0, that

(5.4) P

(∣∣∣∣1n ∑
i

ln(Xi) −Efn

∣∣∣∣> s

)
≤ 2exp

(
−1

4

ns2

El2
n + s‖ln‖L∞

)
.

In Lemma A.14 of the Appendix, we prove the upper bounds El2
n ≤ C/εn and

‖ln‖L∞ ≤ C/εn where C is a constant independent of n. Hence, given the assump-
tion (5.2), (5.4) is summable and, therefore, as n → ∞,

(5.5)
1

n

n∑
i=1

ln(Xi) −Efn
a.s.−−→ 0.

Similarly, we have, as n → ∞,

(5.6)
1

n

n∑
j=1

mn(Xj ) −Efn
a.s.−−→ 0.

What remains is the double sum 1
n(n−1)

∑
1≤i �=j≤n hn(Xi,Xj ). Let {Yi}ni=1 be

independent copies of {Xi}ni=1. By the decoupling inequality of de la Peña and
Montgomery-Smith [23], there is a constant C independent of n and h such that

(5.7)

P

(∣∣∣∣ 1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi,Xj )

∣∣∣∣> s

)

≤ CP

(
C

∣∣∣∣ 1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi, Yj )

∣∣∣∣> s

)
.

The sum
∑

1≤i �=j≤n hn(Xi, Yj ) is canonical, that is, EX[hn(Xi, Yj )] = 0 a.s.
and EY [hn(Xi, Yj )] = 0 a.s., where EX and EY denote expectation with respect
to the first and second variables, respectively. A general concentration inequality
for U -statistics given by Giné, Latała and Zinn in Theorem 3.3 of [41], states, for
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canonical kernels {hi,j }1≤i,j≤n, that

P

(∣∣∣∣ ∑
1≤i,j≤n

hi,j (Xi, Yj )

∣∣∣∣> s

)
≤ L exp

[
− 1

L
min

(
s2

R2 ,
s

Z
,

s2/3

B2/3 ,
s1/2

A1/2

)]
,

for all s > 0, where L is a constant not depending on {hi,j }1≤i,j≤n or n, and

A = max
i,j

‖hi,j‖L∞, R2 =∑
i,j

Eh2
i,j ,

B2 = max
i,j

[∥∥∥∥∑
i

EXh2
i,j (Xi, y)

∥∥∥∥
L∞

,

∥∥∥∥∑
j

EY h2
i,j (x,Yj )

∥∥∥∥
L∞

]
,

Z = sup
{
E
∑
i,j

hi,j (Xi, Yj )fi(Xi)gj (Yj ) : E∑
i

f 2
i (Xi) ≤ 1,E

∑
j

g2
j (Yj ) ≤ 1

}
.

In our context, we take hi,j = hn for i �= j , and hi,j = 0 otherwise, which gives
the constants A = ‖hn‖L∞ , B2 = (n−1)max(‖EXh2

n‖,‖EY h2
n‖), R2 = n(n−1)×

Eh2
n and, after a manipulation, Z ≤ n‖hn‖L2→L2 , where

‖hn‖L2→L2 := sup
{
Eh(X,Y )f (X)g(Y ) : Ef 2(X) ≤ 1,Eg2(Y ) ≤ 1

}
.

It follows that

P

(∣∣∣∣ 1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi, Yj )

∣∣∣∣> s

)

≤ Lexp
[
− 1

L′ min
(

n2s2

Eh2
n

,
ns

‖hn‖L2→L2
,

n2/3s2/3

[max(‖EXh2
n‖L∞,‖EY h2

n‖L∞)]1/3 ,
ns1/2

‖hn‖1/2
L∞

)]
(5.8)

for some constant L′ independent of n and h.
In Corollary A.15 of the Appendix, we prove the upper bounds

Eh2
n ≤ C/εd+1

n ,
∥∥EY h2

n

∥∥
L∞ ≤ C/εd+2

n ,
∥∥EXh2

n

∥∥
L∞ ≤ C/εd+2

n ,

‖hn‖L∞ ≤ C/εd+1
n , ‖hn‖L2→L2 ≤ C/εn.

Hence, the minimum in the right-hand side of (5.8) simplifies to

C min
(
n2εd+1

n s2, nεns, nε(d+2)/3
n s2/3, nε(d+1)/2

n s1/2).
We claim, for sufficiently large n, this minimum will be attained by nε

(d+1)/2
n ×

s1/2: Indeed, by (5.2), nε
(d+1)/2
n → ∞, and so nε

(d+1)/2
n is smaller than n2εd+1

n .

Also, nεn is larger than nε
(d+1)/2
n since εn → 0 and d ≥ 1. In addition, nε

(d+2)/3
n

is larger than nε
(d+1)/2
n as d ≥ 1.
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Hence, by assumption (5.2), the right-hand side of (5.8) converges, yielding as
n → ∞,

(5.9)
1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi,Xj )
a.s.−−→ 0.

Applying (5.5), (5.6) and (5.9) to (5.3) completes the proof. �

5.2. Quadratic balance term. We first consider convergence of certain “mean-
values”, and then treat the random expressions, for various values of α, in the
subsequent subsections.

For u ∈ L1(D) and ε > 0, define �ε(u) by

�ε(u) :=
∫
D

(∫
D

ηε(x − y)ρ(y) dy

)α

u(x)ρ(x) dx.

Let

(5.10) ρε(x) :=
∫
D

ηε(x − y)ρ(y) dy,

and write, with this notation,

(5.11) �ε(u) =
∫
D

u(x)
(
ρε(x)

)α
ρ(x) dx.

Define also

(5.12) �(u) :=
∫
D

u(x)ρ1+α(x) dx.

LEMMA 5.3. Let g be a bounded, measurable function on the domain D. Then
there exists a constant C, independent of g, such that

(5.13)
∣∣�ε(g) − �(g)

∣∣≤ C‖g‖L∞(D)ε,

for all sufficiently small ε. Further, suppose there is a sequence {gε}ε>0 with gε
L1−→

g as ε → 0. Then we have

(5.14) lim
ε→0

�ε(gε) = �(g).

PROOF. We first prove inequality (5.13). By Lemma A.13 in the Appendix,
there exist positive constants A,B such that, for sufficiently small ε, both ρ and
ρε take values in the interval [A,B]. Then we have∣∣�ε(g) − �(g)

∣∣= ∣∣∣∣ ∫
D

g(x)
(
ρε(x)

)α
ρ(x) dx −

∫
D

g(x)
(
ρ(x)

)α
ρ(x) dx

∣∣∣∣
≤ B‖g‖L∞

∫
D

∣∣(ρε(x)
)α − (

ρ(x)
)α∣∣dx

≤ C‖g‖L∞
∫
D

∣∣ρε(x) − ρ(x)
∣∣dx,
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where the last inequality follows from the observation that x 
→ xα is Lipschitz on
the interval [A,B]. By Lemma A.13 again, where

∫
D |ρε(x) − ρ(x)|dx ≤ C′ε is

proved, we obtain ∣∣�ε(g) − �(g)
∣∣≤ C′′‖g‖L∞ε.

We now prove (5.14). Suppose we have a family {gε}ε>0 with gε
L1−→ g as

ε → 0. Then

lim
ε→0

∣∣�ε(gε) − �(g)
∣∣≤ lim

ε→0

∫
D

∣∣gε(x)
(
ρε(x)

)α − g(x)
(
ρ(x)

)α∣∣ρ(x) dx.

Since ρ is bounded, it is sufficient to prove that

lim
ε→0

∫
D

∣∣gε(x)
(
ρε(x)

)α − g(x)
(
ρ(x)

)α∣∣dx = 0.

Writing gερ
α
ε − gρα = gερ

α
ε − gρα

ε + gρα
ε − gρα , one may obtain∫

D

∣∣gε(x)ρα
ε (x) − g(x)ρα(x)

∣∣dx

≤
∫
D

∣∣gε(x) − g(x)
∣∣ρα

ε (x) dx + ‖g‖L∞
∫
D

∣∣ρα
ε (x) − ρα(x)

∣∣dx.

Now, since gε → g in L1, and ρε is bounded above and below by Lemma A.13,
we have that the first term on the right-hand side vanishes in the limit. Likewise,
by Lemma A.13, we have also ρε → ρ Lebesgue a.e. as ε → 0. By dominated
convergence, then, the second term on the right-hand side vanishes, completing
the proof. �

In the following Section 5.2.1, the cases α = 0,1 are considered. Then, in Sec-
tion 5.2.2, the general α �= 0,1 case is treated, where different techniques are used
as the the functional is nonlinear.

5.2.1. Quadratic balance term: α = 0 or α = 1. The expression (4.5) for G�n

simplifies to give

G�n(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n

n∑
i=1

u(Xi) when α = 0,

1

n(n − 1)

∑
1≤i �=j≤n

ηεn(Xi − Xj)u(Xi) when α = 1.

LEMMA 5.4. Fix α = 0. Let u be a bounded, measurable function on the do-
main D, and let {εn}n∈N be a sequence converging to zero such that

lim
n→∞

log logn

nεn

= 0.
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Then, as n → ∞,

1√
εn

(
G�n(u) − �(u)

) a.s.−−→ 0.

PROOF. By the law of the iterated logarithm, and the boundedness of u, we
have

lim sup
n→∞

n√
2n log logn

∣∣G�n(u) − �(u)
∣∣≤ C, a.s.

We may write

1√
εn

(
G�n(u) − �(u)

)= √
2n log logn

n
√

εn

n√
2n log logn

(
G�n(u) − �(u)

)
,

where by assumption, limn→∞
√

n log logn

n
√

εn
= 0. The lemma follows. �

LEMMA 5.5. Fix α = 1. Let u be a bounded, measurable function on the do-
main D, and let {εn}n∈N be a sequence converging to zero such that

(5.15)
∞∑

n=1

exp
(−nε(d+1)/2

n

)
< ∞.

Then, as n → ∞,

1√
εn

(
G�n(u) − �(u)

) a.s.−−→ 0.

PROOF. We first rewrite

1√
εn

(
G�n(u) − �(u)

)= 1√
εn

(
G�n(u) − �εn(u)

)+ 1√
εn

(
�εn(u) − �(u)

)
.

Here, as α = 1, �εn(u) = ∫
D

∫
D ηεn(x − y)u(x)ρ(x)ρ(y) dx dy.

By an application of inequality (5.13), the second term on the right vanishes as
n → ∞. Hence, we must show that limn→∞ 1√

εn
(G�n(u) − �εn(u)) = 0 a.s.

Let fn(x, y) = 1√
εn

ηεn(x − y)u(x). For i �= j , we have Efn = Efn(Xi,Xj ) =
1√
εn

�εn(u). Then

1√
εn

(
G�n(u) − �εn(u)

)= 1

n(n − 1)

∑
1≤i �=j≤n

fn(Xi,Xj ) −Efn.

We now follow the structure of the proof of the GTV case (Lemma 5.2). Al-
though the definition of fn is different, let ln, mn, and hn be given as in Lemma 5.2
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in terms of fn, and write

1

n(n − 1)

∑
1≤i �=j≤n

(
fn(Xi,Xj ) −Efn

)
= 1

n(n − 1)

∑
1≤i �=j≤n

hn(Xi,Xj )

+ 1

n

∑
i

(
ln(Xi) −Efn

)+ 1

n

∑
j

(
mn(Xj ) −Efn

)
.

To complete the proof, we now show that the the three terms on the right- hand
side of the above equation vanish.

As in the GTV case, with respect to {ln}n∈N, we may arrive in the same steps to
an inequality in form (5.4), whose right-hand side is summable: In Lemma A.16
of the Appendix, we prove the upper bounds El2

n ≤ C/εn and ‖ln‖L∞ ≤ C/ε
1/2
n ,

where C is a constant independent of n. Hence, 1
n

∑n
i=1 ln(Xi) − Efn

a.s.−−→ 0 as
n → ∞.

The same argument also gives that 1
n

∑n
j=1 mn(Xj ) −Efn

a.s.−−→ 0 as n → ∞.
Also, analogous steps, as in the GTV case, allows to derive, for the sequence

{hn}n∈N, an inequality in form (5.8). In Corollary A.17 of the Appendix, we prove
the upper bounds

Eh2
n ≤ C/εd+1

n ,
∥∥EY h2

n

∥∥
L∞ ≤ C/εd+1

n ,
∥∥EXh2

n

∥∥
L∞ ≤ C/εd+1

n ,

‖hn‖L∞ ≤ C/εd+1/2
n , ‖hn‖L2→L2 ≤ C/ε1/2

n .

Hence, the minimum in the right-hand side of (5.8), in the current context, is
bounded below by

C min
(
n2εd+1

n s2, nε1/2
n s, nε(d+1)/3

n s2/3, nε(d+1/2)/2
n s1/2).

Note that εn vanishes, and our assumption (5.15) implies that nε
(d+1)/2
n → ∞ as

n → ∞. Therefore, we conclude, for sufficiently large n, that

C min
(
n2εd+1

n s2, nε1/2
n s, nε(d+1)/3

n s2/3, nε(d+1/2)/2
n s1/2)

≥ Cnε(d+1)/2
n min

(
s2, s1/2).

Hence, the right-hand side of (5.8), in the current context, is summable, and as
n → ∞, we have 1

n(n−1)

∑
1≤i �=j≤n hn(Xi,Xj )

a.s.−−→ 0. �

5.2.2. Quadratic balance term: General α. Recall, from (4.5) and (5.12), the
forms of G�n(u) and �(u).
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LEMMA 5.6. Fix a bounded, measurable function u on the domain D, and let
{εn}n∈N be a sequence converging to zero such that

(5.16)
∞∑

n=1

n exp
(−nεd+1

n

)
< ∞.

Then, as n → ∞,

(5.17)
1√
εn

(
G�n(u) − �(u)

) a.s.−−→ 0.

PROOF. Recall the forms of ρε and �ε in (5.10) and (5.11), respectively. We
now introduce the intermediate term:

(5.18) G�n(u) := 1

n

∑
1≤i≤n

ρεn(Xi)
αu(Xi).

Then

G�n(u) − �(u) = G�n(u) − G�n(u) + G�n(u) − �εn(u) + �εn(u) − �(u).

The proof proceeds in three steps:
Step 1. We first attend to G�n(u) − G�n(u). We claim that

(5.19)
1√
εn

(
G�n(u) − G�n(u)

) a.s.−−→ 0,

as n → ∞. Define

Zi = 1

n − 1

∑
1≤j≤n

j �=i

ηεn(Xi − Xj),

so that G�n(u) = 1
n

∑n
i=1 Zα

i u(Xi). Then we have

E[Zi |Xi] = ρεn(Xi),

and further, an application of Bernstein’s inequality (Lemma 19.32 of [74]) gives

(5.20) P
(∣∣Zi − ρεn(Xi)

∣∣> t |Xi

)≤ 2 exp
(
−1

4

t2(n − 1)

a + tb

)
,

where a = E[ηεn(Xi −Xj)
2|Xi] and b = supx∈D |ηεn(Xi − x)|. Recalling the def-

inition ηε(z) = η(z/ε)/εd and the assumptions (K1), (K4), we have a ≤ C/εd
n and

b ≤ C/εd
n . Therefore, inequality (5.20) implies

P
(∣∣Zi − ρεn(Xi)

∣∣> t |Xi

)≤ 2 exp
(
−C

t2(n − 1)εd
n

(t + 1)

)
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in terms of a constant C not depending on n. Applying a union bound gives

(5.21)

P
(

sup
1≤i≤n

∣∣Zi − ρεn(Xi)
∣∣> t

)
≤ nP

(∣∣Zi − ρεn(Xi)
∣∣> t

)
≤ Cn exp

(
−C

t2(n − 1)εd
n

(t + 1)

)
.

By Lemma A.13, there exist positive constants A,B such that, for sufficiently
small ε, both ρ and ρε take values in the interval [A,B]. Let Jn denote the event
that sup1≤i≤n |Zi − ρεn(Xi)| < A/2. Then, if Jn holds, the inequality A/2 < Zi <

B +A/2 is satisfied for all i. Since the function x 
→ xα is Lipschitz on the interval
[A/2,B + A/2], we obtain

(5.22)
∣∣Zα

i − ρεn(Xi)
α
∣∣≤ C

∣∣Zi − ρεn(Xi)
∣∣.

Hence, when Jn occurs, inequality (5.22) and ‖u‖L∞ < ∞ imply, with respect
to another constant C independent of n, that∣∣G�n(u) − G�n(u)

∣∣≤ 1

n

∑
1≤i≤n

∣∣Zα
i − ρεn(Xi)

α
∣∣∣∣u(Xi)

∣∣
≤ C

1

n

∑
1≤i≤n

∣∣Zi − ρεn(Xi)
∣∣≤ C sup

1≤i≤n

∣∣Zi − ρεn(Xi)
∣∣,

and moreover,

1√
εn

∣∣G�n(u) − G�n(u)
∣∣≤ C√

εn

sup
1≤i≤n

∣∣Zi − ρεn(Xi)
∣∣.

It follows, by (5.21), that

P

({
1√
εn

∣∣G�n(u) − G�n(u)
∣∣> t

}
∩ Jn

)
(5.23)

≤ P

(
C√
εn

sup
1≤i≤n

∣∣Zi − ρεn(Xi)
∣∣> t

)
≤ Cn exp

(
−C

t2(n − 1)εd+1
n

t + 1

)
.

On the other hand, by (5.21) again, we have

(5.24) P
(
J c

n

)≤ Cn exp
(
−C

A2(n − 1)εd
n

A + 1

)
.

Combining (5.23) and (5.24) gives

P

(
1√
εn

∣∣G�n(u) − G�n(u)
∣∣> t

)

≤ P

({
1√
εn

∣∣G�n(u) − G�n(u)
∣∣> t

}
∩ Jn

)
+ P

(
J c

n

)
≤ Cn exp

(−C(n − 1)εd+1
n

)
,
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for some constant C not depending on n. From our assumption (5.16) on εn, the
right-hand side of the above display is summable and so, as n → ∞,

1√
εn

(
G�n(u) − G�n(u)

) a.s.−−→ 0.

Step 2. Now, we argue, as n → ∞, that

(5.25)
1√
εn

(
G�n(u) − �εn(u)

) a.s.−−→ 0.

Noting (5.11), since

E
[
ρεn(Xi)

αu(Xi)
]= �εn(u),

by Bernstein’s inequality (Lemma 19.32 of [74]), we have

P

(
1√
εn

∣∣∣∣1n ∑
1≤i≤n

ρεn(Xi)
αu(Xi) − �εn(u)

∣∣∣∣> t

)
≤ 2 exp

(
−1

4

t2εnn

a + t
√

εnb

)
,

where a = E[(ρ(Xi)
αu(Xi))

2] and b = supx∈D |ρεn(x)αu(x)|. Both of these are
bounded by a constant C, and so by the assumption (5.16) on εn, we obtain the
last display is summable and, therefore, (5.25) holds.

Step 3. By Lemma 5.3, we have |�εn(u) − �(u)| ≤ C‖u‖L∞εn. It follows that

(5.26)
1√
εn

(
�εn(u) − �(u)

)→ 0,

as n → ∞. Combining (5.19), (5.25) and (5.26) gives (5.17). �

5.3. Proof of Theorem 2.1. Recall equation (4.7) which decomposes the mod-
ularity Qn(Un) with respect to partitions Un of Xn induced from a partition U =
{Uk}Kk=1 of D, where each of the sets Uk have finite perimeter, Per(Uk;ρ2) < ∞.

Since S/(n(n − 1)α) = G�n(1) and
∫
D ρ1+α(x) dx = �(1), by Lemmas 5.4,

5.5, and 5.6, which cover the cases α = 0, α = 1, and α �= 0,1, we have

(5.27)
S

n(n − 1)α
a.s.−−→

∫
D

ρ1+α(x) dx

as n → ∞. In particular, when α = 1, we have, as n → ∞,

(5.28)
2m

n(n − 1)
= 1

n(n − 1)

∑
1≤i,j≤n

i �=j

ηεn(Xi − Xj)
a.s−→

∫
D

ρ2(x) dx.

Further, these same lemmas, applied to the indicators {uk = 1Uk
}Kk=1, imply that

K∑
k=1

(
G�n(uk − 1/K)

)2 a.s.−−→
K∑

k=1

(
�(uk − 1/K)

)2
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as n → ∞. Hence, combining these limits,

(5.29)
n2(n − 1)2α

S2

[
K∑

k=1

(
G�n(uk − 1/K)

)2] a.s.−−→
K∑

k=1

(
μ(Uk) − 1/K

)2
,

as n → ∞, with dμ(x) = ρ1+α(x)∫
D ρ1+α(x) dx

.

By Lemma 5.2, we have, as n → ∞,

K∑
k=1

GTVn(uk)
a.s.−−→ ση

K∑
k=1

TV
(
uk;ρ2),

where ση = ∫
Rd η(x)|x1|dx. Therefore, as n → ∞,

(5.30)
n(n − 1)

4m

K∑
k=1

GTVn(uk)
a.s.−−→ ση

2
∫
D ρ2(x) dx

K∑
k=1

TV
(
uk;ρ2).

Since limn→∞ εn = 0, and TV(uk;ρ2) < ∞ for 1 ≤ k ≤ K as the sets in U have
finite perimeter, noting (5.28) and (5.30), we have that εnn(n−1)

4m

∑K
k=1 GTVn(uk)

vanishes a.s., as n → ∞. Hence, from the limit (5.29), we obtain the first statement
(2.8) in Theorem 2.1.

To prove the second statement (2.9), we write, dividing (4.7) by εn, that

1 − 1/K − Qn(U)

εn

= n2(n − 1)2α

S2

[
K∑

k=1

(
1√
εn

G�n(uk − 1/K)

)2
]

+ n(n − 1)

4m

K∑
k=1

GTVn(uk).

By assumption, the partition U is balanced with respect to dμ, and so

K∑
k=1

(
μ(Uk) − 1/K

)2 = 0.

Equivalently, recalling the definition (5.12) of �, we have �(uk − 1/K) = 0 for
1 ≤ k ≤ K .

Hence, writing gk = uk − 1/K , it follows that

(5.31)
K∑

k=1

(
1√
εn

G�n(uk − 1/K)

)2
=

K∑
k=1

(
1√
εn

(
G�n(gk) − �(gk)

))2
a.s.−−→ 0,

as n → ∞, by Lemmas 5.4, 5.5 and 5.6 for the various cases of α. Combining
(5.30) and (5.31) gives

1 − 1/K − Qn(U)

εn

a.s.−−→ ση

2
∫
D ρ2(x) dx

K∑
k=1

TV
(
uk;ρ2),

as n → ∞. This completes the proof of Theorem 2.1. �
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6. Proof of Theorem 2.3: Optimal clusterings. Following the approach out-
lined in Section 2.5, we reformulate the modularity clustering problem on the same
space as the continuum partitioning problem and state a Gamma convergence re-
sult (Theorem 6.1) relating the two optimizations in Section 6.1. In Sections 6.2
and 6.3, we prove the “liminf” and “recovery” parts of Theorem 6.1. Finally, in
Section 6.4, we show a compactness principle and combine previous elements to
prove Theorem 2.3.

6.1. Reformulation as a mimimization problem and Gamma convergence. Re-
call the identity (4.7),

1 − 1/K − Qn(Un)

= n2(n − 1)2α

S2

[
K∑

k=1

(
G�n(un,k − 1/K)

)2]+ εn

n(n − 1)

4m

K∑
k=1

GTVn(un,k),

where Un = {Un,k}Kk=1 is a partition of the data points Xn and un,k = 1Un,k
∈ In(D)

for 1 ≤ k ≤ K . As is our convention, we note that some of the {Un,k}Kk=1 may be
empty sets, and so generally we have |U | ≤ K .

In a sense, what we have done for the modularity functional in (4.7) is to write
it such that its “�-development” (cf. [15] and references therein) is explicit. In
passing from (4.7) to a �-limit directly, the “total variation” term vanishes and one
recovers only a coarse-grained description of optimal clusterings, characterized as
balanced partitions with no condition on the perimeters.

For a finer description of optimal clusterings, we rescale the energies. Define

(6.1) Fn(Un) := 1

εn

n2(n − 1)2α

S2

[
K∑

k=1

(
G�n(un,k − 1/K)

)2]
and

(6.2) TVn(Un) := n(n − 1)

4m

K∑
k=1

GTVn(un,k),

so that the problem of maximizing Qn(Un) over clusterings Un of Xn with |Un| ≤
K is equivalent to that of minimizing Fn(Un) + TVn(Un).

We now formulate the modularity optimization problem on the space
(T L1(D))K . Recall that νn denotes the empirical measure. We define

Mn(D) :=
{(

(νn, un,k)
)K
k=1 : un,k ∈ In(D),

K∑
k=1

un,k = 1Xn

}
,

and note that Mn(D) ⊂ (T L1(D))K . We often write elements of Mn(D) as

(νn,Un) := {
(νn, un,k)

}K
k=1,

where un,k = 1Un,k
and Un = {Un,k}Kk=1.
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Define En : (T L1(D))K × � → [0,∞] by

(6.3) En(Vn) =
{
Fn(Un) + TVn(Un) if Vn = (νn,Un) ∈ Mn(D),

∞ otherwise.

The energy minimization problem

(6.4) minimize
Vn∈(T L1(D))K

En(Vn),

is equivalent to the K-class modularity clustering problem (2.3), in the sense that
Un is a solution to (2.3) iff Vn = (νn,Un) is a solution to (6.4).

Similarly, we define continuum functionals on partitions U = {Uk}Kk=1 of D, via
their indicators {uk}Kk=1 ⊂ I (D), by

(6.5) F(U) =

⎧⎪⎪⎨⎪⎪⎩
0 if

K∑
k=1

(
μ
(
U(k))− 1/K

)2 = 0,

∞ otherwise,

and

(6.6) TV(U) = Cη,ρ

K∑
k=1

TV
(
uk;ρ2),

where dμ = ρ1+αdx/
∫
D ρ1+α(x) dx and

Cη,ρ = ση

2
∫
D ρ2(x) dx

=
∫
D η(x)|x1|dx

2
∫
D ρ2(x) dx

.

Define M(D) ⊂ (T L1(D))K by

M(D) :=
{(

(ν, uk)
)K
k=1 : uk ∈ I (D),

K∑
k=1

uk = 1D,

K∑
k=1

TV
(
uk,ρ

2)< ∞
}
.

As before, we denote elements of M(D) by

(ν,U) := {
(ν, uk)

}K
k=1,

where U = {Uk}Kk=1 and uk = 1Uk
for 1 ≤ k ≤ K .

Define the energy E : (T L1(D))K → [0,∞] as

(6.7) E(V) :=
{
F(U) + TV(U) if V = (ν,U) ∈ M(D),

∞ otherwise.

Then, with μ as above and φ = ρ2, the continuum partitioning problem (2.6),
which does not include the prefactor Cη,ρ , is equivalent to

(6.8) minimize
V∈(T L1(D))K

E(V),

in the sense that U is a solution to (2.6) iff V = (ν,U) is a solution to (6.8).
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As noted in Section 2.2, since there is a solution to (2.6), the problem (6.8) also
possesses a solution. In particular, the energy E is not identically infinite.

We now state the Gamma convergence, with respect to the metric space (T L1)K

equipped with the product topology, used later in the proof of Theorem 2.3.

THEOREM 6.1. Suppose the assumptions of Theorem 2.3 are satisfied. Then
the random functionals En : (T L1(D))K ×� → [0,∞], given in (6.3), �-converge
in (T L1)K to E : (T L1(D))K → [0,∞], given in (6.7):

En
�((T L1))K−−−−−−→ E,

as n → ∞, in the sense of Definition 3.8.

PROOF. The proof of Theorem 6.1 is in two steps. In Section 6.2, via
Lemma 6.7, we give the “liminf” estimate. In Section 6.3, through Lemma 6.9,
we prove the “recovery sequence” property. �

6.2. Liminf inequality. We now argue the liminf inequality for the �-
convergence in Theorem 6.1, according to Definition 3.8. Recall that �0 denotes
the probability 1 set of realizations {Xi}i∈N, under which Proposition 3.2 holds.

We first show a closure property of Mn(D) and M(D).

LEMMA 6.2. On the probability 1 set �0, the following holds: Suppose
{Vn}n∈N is a sequence in Mn(D) and V = ((μk,uk))

K
k=1 ∈ (T L1(D))K satisfies∑K

k=1 TV(uk, ρ
2) < ∞. Then, if Vn

(T L1)K−−−−→ V , we have V ∈ M(D).

PROOF. Fix a realization in the probability 1 set �0, and let Vn =
((νn, un,k))

K
k=1 and V = ((μk,uk))

K
k=1. By the characterization of T L1 conver-

gence, Lemma 3.1, for each 1 ≤ k ≤ K we have νn
w−→ μk , and so by Corollary 3.3

it follows that μk = ν. Further, we have

lim
n→∞

∫
D

∣∣uk(x) − un,k(Tnx)
∣∣ρ(x) dx = 0,

where {Tn}n∈N is the sequence of transportation maps given in Proposition 3.2.
Hence, as ρ is bounded above and below on D, it follows that uk is the L1 limit

of a sequence of indicator functions ũn,k(x) := un,k(Tnx) ∈ I (D). It follows, by
subsequential Lebesgue a.e. convergence, that uk ∈ I (D). Similarly, the relation∑K

k=1 uk = 1D follows from the corresponding relations for {un,k}Kk=1. Thus, given
the perimeter assumption on V , we conclude V = ((ν, uk))

K
k=1 ∈ M(D). �

We now establish the following technical lemma, which adapts a technique from
the proof of Theorem 1.1 in [38] to relate graph functionals with their continuum
nonlocal analogues.

Recall that we have defined earlier �(g) = ∫
D ρ1+α(x)g(x) dx and ρε(x) =∫

D ηε(x − y)ρ(y) dy [cf. equations (5.12) and (5.10)].
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LEMMA 6.3. On the probability 1 set �0, the following statement holds:
Given any sequence of uniformly bounded, nonnegative functions {gn}n∈N, and

a function g, if (νn, gn)
T L1−−→ (ν, g), then

(6.9) lim
n→∞G�n(gn) = �(g).

PROOF. Fix a realization in the probability 1 set �0. Recall, from (4.5), that

G�n(gn) = 1

n

n∑
i=1

(
1

n − 1

∑
1≤j≤n

j �=i

ηεn(Xi − Xj)

)α

gn(Xi)

= nα

(n − 1)α

1

n

n∑
i=1

(
1

n

n∑
j=1

ηεn(Xi − Xj) − ηεn(0)

n

)α

gn(Xi).

Let {Tn}n∈N be the transport maps in Proposition 3.2, and let Rn(x) :=∫
D ηεn(Tnx − Tny)ρ(y) dy. Since Tn�ν = νn, by a change of variables, we have

G�n(gn) = nα

(n − 1)α

∫
D

(
Rn(x) − ηεn(0)

n

)α

gn(Tnx)ρ(x) dx.

Step 1. First, suppose that η is of the form η(x) = a for |x| < b and η(x) = 0
for |x| > b, with

∫
Rd η(x) dx = 1. Define

(6.10) εn := εn + 2
‖Id − Tn‖L∞

b
,

and note that, for Lebesgue a.e. (x, y) ∈ D × D,

|x − y| > bεn implies |Tnx − Tny| > bεn.

By the form of η, we have the bound

η

(
Tnx − Tny

εn

)
≤ η

(
x − y

εn

)
.

Integrating with respect to ρ(y) dy, and scaling appropriately, we obtain

Rn(x) ≤ (εn/εn)
dρεn(x)

for Lebesgue a.e. x ∈ D.
By the assumption (I2) on εn, together with the estimates in Proposition 3.2 on

{Tn}n∈N, it follows that εn vanishes slower than ‖Id − Tn‖L∞ , and so for large n

we have

ε̃n := εn − 2
‖Id − Tn‖L∞

b
> 0.

In particular, for Lebesgue a.e. (x, y) ∈ D × D,

|Tnx − Tny| > bεn implies |x − y| > bε̃n



CONSISTENCY OF MODULARITY CLUSTERING 2045

and so

(6.11) η

(
x − y

ε̃n

)
≤ η

(
Tnx − Tny

εn

)
.

Again, integrating with respect to ρ(y) dy and scaling appropriately, we obtain a
lower bound of Rn(x), and can write, for Lebesgue a.e. x,

(6.12) (ε̃n/εn)
dρε̃n

(x) ≤ Rn(x) ≤ (εn/εn)
dρεn(x).

By the assumption (I2) on the rate εn, we observe that

lim
n→∞

ε̃n

εn

= lim
n→∞ 1 + 2

‖Id − Tn‖L∞

εn

= 1.

Similarly, we have limn→∞ εn

εn
= 1.

In light of (6.12), and Lemma A.13 in the Appendix, which bounds ρε from
above and below and shows limε→0 ρε = ρ, we make two observations:

(i) For Lebesgue a.e. x, we have Rn(x) → ρ(x) as n → ∞.
(ii) There exist constants A′,B ′ > 0 such that, for all large n, A′ ≤ Rn(x) ≤ B ′

for Lebesgue a.e. x.

Step 2. Now let η be a simple function satisfying assumptions (K1)–(K4),
which implies that we may write η as a convex combination η = ∑L

l=1 λlη
l

for functions η(l) satisfying the assumptions of Step 1. We let R
(l)
n (x) :=∫

D η
(l)
εn (Tnx − Tny)ρ(y) dy so that Rn(x) =∑(l)

l=1 λlR
(l)
n (x).

Hence:

(i) For Lebesgue a.e. x, each R
(l)
n (x) → ρ(x) as n → ∞. The same holds for

the convex combination Rn.
(ii) There exist constants A′,B ′ > 0 such that, for all large n, A′ ≤ R

(l)
n (x) ≤

B ′ for Lebesgue a.e. x. Therefore, the same holds for Rn.

Since limn→∞ nεd
n = ∞ by the assumption (I2), we have ηεn(0)/n ≤

‖η‖L∞(nεd
n)−1 vanishes as n → ∞. Then, by bounded convergence,

lim
n→∞

∣∣G�n(gn) − �(g)
∣∣

= lim
n→∞

∣∣∣∣ ∫
D

Rn(x)αgn(Tnx)ρ(x) dx −
∫
D

g(x)ρ(x)1+α dx

∣∣∣∣
≤ lim

n→∞

∫
D

∣∣Rn(x)αgn(Tnx) − ρ(x)αg(x)
∣∣ρ(x) dx.

Since ρ is bounded, we now argue that

lim
n→∞

∫
D

∣∣Rn(x)αgn(Tnx) − ρ(x)αg(x)
∣∣dx = 0.
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By adding and subtracting ρ(x)αgn(Tnx), we obtain∫
D

∣∣Rn(x)αgn(Tnx) − ρ(x)αg(x)
∣∣dx

≤
∫
D

∣∣Rn(x)α − ρ(x)α
∣∣gn(Tnx) dx +

∫
D

∣∣gn(Tnx) − g(x)
∣∣ρα(x) dx.

With respect to the first term on the right-hand side, by assumption, gn(Tnx)

is uniformly bounded. Also, the sequence Rn is bounded above and below, and
converges Lebesgue a.e. to ρ, so by dominated convergence the integral van-
ishes in the limit. With respect to the second term on the right-hand side, suppose

(νn, gn)
T L1−−→ (ν, g) as n → ∞. Since ρ is bounded above and below, we have ρα

is bounded, and the corresponding integral, by the characterization of T L1 conver-
gence in Lemma 3.1, also vanishes in the limit.

Hence, when the kernel η is a simple function, we have that

(6.13) lim
n→∞G�n(gn) = �(g).

Step 3. Now, we consider general η satisfying properties (K1)–(K4). We first
approximate η by simple functions η(k), satisfying (K2)–(K4), with η(k) ≤ η and
η(k) → η pointwise.

Let G�
(k)
n (gn) = 1

n

∑n
i=1(

1
n−1

∑n
j=1 η

(k)
εn (Xi − Xj))

αgn(Xi), and λk =∫
D η(k)(x) dx. Then, by (6.13), we have

lim
n→∞

1

λα
k

G�(k)
n (gn) = �(g).

Because η(k) ≤ η, and the sequence {gn}n∈N is assumed nonnegative, we have that

lim inf
n→∞

1

λα
k

G�n(gn) ≥ �(g),

and taking the limit λk → 1 as k → ∞ gives

(6.14) lim inf
n→∞ G�n(gn) ≥ �(g).

Likewise, consider approximating η by simple functions η(k) satisfying (K2)–
(K4), with η(k) ≥ η and η(k) → η pointwise. Then, similarly, we obtain that

(6.15) lim sup
n→∞

G�n(gn) ≤ �(g).

Combining inequalities (6.14) and (6.15) gives (6.9). �

LEMMA 6.4. On the probability 1 set �0, the following statement holds:

Given any sequence {Vn}n∈N such that Vn
(T L1)K−−−−→ V , where Vn = (νn,Un) ∈

Mn(D) and V = (ν,U) ∈ M(D), then

(6.16) F(U) ≤ lim inf
n→∞ Fn(Un).
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PROOF. Fix a realization in the probability 1 set �0. If F(U) = 0, the above
inequality holds trivially. We now consider the other case when F(U) = ∞.
Recalling the definitions of F and � earlier in the section, this means that
there is a 1 ≤ k ≤ K such that uk = 1Uk

satisfies �(uk − 1/K) �= 0. Let δ =
�(uk − 1/K)2 > 0.

Now, by Corollary 3.3, νn
w−→ ν, and so (νn,1/K)

T L1−−→ (ν,1/K) by Lemma
3.1, as n → ∞. Therefore, by Lemma 6.3, as n → ∞ we have

G�n(1/K) = 1

K

S

n(n − 1)α
→ 1

K
�(1) = 1

K

∫
D

ρ1+α(x) dx.

By decomposing G�n(un,k − 1/K) = G�n(un,k) − G�n(1/K) and noting

Lemma 6.3 again, it follows that, if Vn
(T L1)K−−−−→ V , then

lim
n→∞

K∑
k=1

(
G�n(un,k − 1/K)

)2 =
K∑

k=1

(
�(uk − 1/K)

)2
.

In particular, there is an N > 0, depending on the realization, such that, for n > N ,
we have

K∑
k=1

(
G�n(uk − 1/K)

)2 ≥ δ/2.

Since

Fn(Un) = 1

εn

n2(n − 1)2α

S2

K∑
k=1

(
G�n(un,k − 1/K)

)2
,

and n2(n−1)2α

S2 −→ (
∫
D ρ1+α(x) dx)−2, it follows that

lim inf
n→∞ Fn(Un) ≥ lim inf

n→∞
C

εn

K∑
k=1

(
G�n(uk − 1/K)

)2 ≥ lim inf
n→∞

Cδ

2εn

= ∞.

Hence, in this case also, inequality (6.16) holds. �

LEMMA 6.5. On the probability 1 set �0, the following statement holds:

Given any sequence {un}n∈N such that (νn, un)
T L1−−→ (ν, u), then

ση TV
(
u;ρ2)≤ lim inf

n→∞ GTVn(un),

where ση = ∫
Rd η(x)|x1|dx.

PROOF. The desired statement follows the same argument given for the liminf
inequality for the Gamma convergence stated in Theorem 1.1 in [38]; see Step 3 of
Section 5.1 of [38]. There, the probability 1 set is �0. We note this proof, although
stated for d ≥ 2, also holds in d = 1 with the same notation. More remarks can be
found in the initial arXiv version of this article [22]. �



2048 E. DAVIS AND S. SETHURAMAN

LEMMA 6.6. On the probability 1 set �0, the following statement holds:

Given any sequence {Vn}n∈N such that Vn
(T L1)K−−−−→ V , where Vn = (νn,Un) ∈

Mn(D) and V = (ν,U) ∈ M(D), then

TV(U) ≤ lim inf
n→∞ TVn(Un).

PROOF. Fix a realization in the probability 1 set �0. Note that νn
w−→ ν by

Corollary 3.3, and so (νn,1)
T L1−−→ (ν,1) by Lemma 3.1, as n → ∞. Hence,

by Lemma 6.3, applied with α = 1 and gn ≡ 1, we have that G�n(1) = 2m/

(n(n − 1)) −→ ∫
D ρ2(x) dx, as n → ∞.

Recall that TVn(Un) = (n(n − 1)/4m)
∑K

k=1 GTVn(un,k). If Vn
(T L1)K−−−−→ V , by

Lemma 6.5, we have

ση TV(uk;ρ) ≤ lim inf
n→∞ GTVn(un,k)

for 1 ≤ k ≤ K . It follows that

TV(U) = Cη,ρ

K∑
k=1

TV
(
uk;ρ2)≤ lim inf

n→∞
n(n − 1)

4m

K∑
k=1

GTVn(un,k),

where Cη,ρ = ση/(2
∫
D ρ2(x) dx). �

LEMMA 6.7. On the probability 1 set �0, the following statement holds:

Given any sequence {Vn}n∈N in (T L1(D))K and V ∈ (T L1)K such that Vn
(T L1)K−−−−→

V as n → ∞, then

E(V) ≤ lim inf
n→∞ En(Vn).

PROOF. Fix a realization in the probability 1 set �0. Without loss of gen-
erality, we may assume that Vn = (νn,Un) ∈ Mn(D), as En(Vn) diverges other-
wise. We will also assume lim infEn(Vn) < ∞, as otherwise the statement is triv-

ial. Now, if Vn
(T L1)K−−−−→ V , by Lemma 6.5, we have V = ((μk,uk))

K
k=1 satisfies∑K

k=1 TV(uk, ρ
2) < ∞. By Lemma 6.2, it follows then that V = (ν,U) ∈ M(D).

Also, by Lemmas 6.4 and 6.6, we have

TV(U) ≤ lim inf
n→∞ TVn(Un) and F(U) ≤ lim inf

n→∞ Fn(Un).

Adding these two liminf inequalities gives E(V) ≤ lim infn→∞ En(Vn). �

6.3. Existence of recovery sequence. The a.s. recovery sequence associated
with (ν,U) in M(D) will be {(νn,Un)}n∈N ⊂ Mn(D), where Un is the partition of
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Xn induced by U . However, before proving this in Lemma 6.9, we first establish a
preliminary result.

LEMMA 6.8. Fix u ∈ L1(D), and let {Tn}n∈N be the transport maps given in
Proposition 3.2. Then, a.s.,

u ◦ Tn
L1−→ u as n → ∞.

PROOF. Let uε be a Lipschitz function such that
∫
D |u(x)−uε(x)|dx < ε. Let

A > 0 be a lower bound for ρ on D. It follows that

(6.17)

A

∫
D

∣∣u(Tnx) − u(x)
∣∣dx

≤
∫
D

∣∣u(Tnx) − uε(Tnx)
∣∣ρ(x) dx

+
∫
D

∣∣uε(Tnx) − uε(x)
∣∣ρ(x) dx +

∫
D

∣∣uε(x) − u(x)
∣∣ρ(x) dx.

We rewrite the first term in the right-hand side of (6.17) in terms of the data set
Xn: ∫

D

∣∣u(Tnx) − uε(Tnx)
∣∣ρ(x) dx = 1

n

n∑
i=1

∣∣u(Xi) − uε(Xi)
∣∣.

By the strong law of large numbers, limn→∞ 1
n

∑n
i=1 |u(Xi) − uε(Xi)| =∫

D |u(x) − uε(x)|ρ(x) dx < ε, almost surely.
For the second term in (6.17), let C be the Lipschitz constant for uε . Then a.s.,

by Proposition 3.2,

lim sup
n→∞

∫
D

∣∣uε(Tnx) − uε(x)
∣∣ρ(x) dx ≤ lim sup

n→∞
C‖ρ‖L∞‖Tn − Id‖L∞ = 0.

Taking limits in (6.17) therefore gives a.s. that

lim sup
n→∞

∫
D

∣∣u(Tnx) − u(x)
∣∣dx ≤ 2A−1ε.

Letting ε go to zero along a countable sequence establishes the lemma. �

LEMMA 6.9. Let V ∈ (T L1(D))K . If V = (ν,U) ∈ M(D), let Vn = (νn,Un) ∈
Mn(D), where Un,k = Uk ∩ Xn for 1 ≤ k ≤ K and n ≥ 1. On the other hand, if
V /∈ M(D), let Vn = V for n ≥ 1.

Then, a.s., as n → ∞,

Vn
(T L1)K−−−−→ V and En(Vn) → E(V).
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PROOF. In the case that V /∈ M(D), since the sequence {νn}n∈N is composed
of distinct elements, for all large n, V /∈ Mn(D), and hence En(V) = E(V) = ∞.

Suppose now that V = (ν,U) ∈ M(D). In the following, we will use the fact that

un,k(x) = 1Un,k
(x) = 1Uk

(x) = uk(x) when x ∈ Xn. To show a.s. that Vn
(T L1)K−−−−→

V as n → ∞, by Lemma 3.1, it is enough to show a.s. that νn
w−→ ν and, for 1 ≤

k ≤ K , that

(6.18)
∫
D

∣∣un,k(Tnx) − uk(x)
∣∣dν(x) =

∫
D

∣∣uk(Tnx) − uk(x)
∣∣ρ(x) dx → 0,

as n → ∞, since Tnx ∈ Xn implies un,k(Tnx) = uk(Tnx).
The a.s. convergence νn

w−→ ν follows, for instance, by Corollary 3.3. On the
other hand, the limit (6.18) follows by Lemma 6.8.

To show that a.s. En(Vn) → E(V), we need to show that

(6.19) TVn(Un)
a.s.−−→ TV(U) and Fn(Un)

a.s.−−→ F(U),

as n → ∞. Since condition (I2) on {εn}n∈N implies condition (I1), we shall see
that these limits in fact follow from three statements in the proof of Theorem 2.1.

In particular, recall the definitions (6.2) and (6.6) of TVn and TV respectively.
Then, since un,k = uk on Xn, the limit TVn(Un)

a.s.−−→ TV(U), as n → ∞, follows
from (5.30).

With regards to the Fn convergence, we consider two possibilities. First, sup-
pose that U is balanced. Then, recalling the definition (6.1), and again noting that
un,k = uk on Xn, it follows from (5.31) that Fn(Un)

a.s.−−→ F(U) = 0 as n → ∞.
Suppose now that U is not balanced, so that

∑K
k=1(μ(Uk) − 1/K)2 �= 0. Then

(5.29) implies, as n → ∞, that Fn(Un)
a.s.−−→ F(U) = ∞. Having considered all

cases, (6.19) is established. �

6.4. Compactness and proof of Theorem 2.3. After a few preliminary esti-
mates, we supply the needed compactness property for the graph energies {En}n∈N
in Theorem 6.12. Then we prove Theorem 2.3 at the end of the section.

LEMMA 6.10. Let {un}n∈N be a sequence of indicator functions on D, un ∈
I (D), and {εn}n∈N be a sequence of positive numbers with limn→∞ εn = 0. If

sup
n∈N

TVεn(un;1D) < ∞,

then {un}n∈N is relatively compact with respect to the L1 topology.

PROOF. This result is a special case of Proposition 4.6 of [38] and Theo-
rem 3.1 of [2], which treat more involved settings. See, however, the initial arXiv
version of this article [22] for a streamlined argument in our situation, which makes
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use of the assumptions that the functions {un}n∈N are {0,1}-valued, and that the
kernel η is compactly supported. �

Recall that �0 denotes the probability 1 set of realizations of {Xi}i∈N under
which Proposition 3.2 holds.

LEMMA 6.11. Suppose {εn}n∈N satisfies condition (I2). On the probability 1
set �0, the following holds: Given any sequence {un}n∈N of indicator functions on
the data points, un ∈ In(D), if

sup
n∈N

GTVn(un) < ∞,

then {(νn, un)}n∈N is relatively compact with respect to the T L1 topology.

PROOF. We begin as in the proof of Lemma 6.3. Fix a realization in the prob-
ability 1 set �0. Suppose that η is of the form η(x) = a for |x| < b and η(x) = 0
for |x| > b. Let ε̃n := εn −2‖Id−Tn‖L∞

b
, with respect to the transport maps {Tn}n∈N.

Then, for all large n, ε̃n > 0, and we have inequality (6.11),

η

(
x − y

ε̃n

)
≤ η

(
Tnx − Tny

εn

)
Lebesgue a.e. (x, y) ∈ D × D

Let A > 0 be a lower bound for ρ on D. Then

A2
∫
D

η

(
x − y

ε̃n

)∣∣un(Tnx) − un(Tny)
∣∣dx dy

≤
∫
D

η

(
x − y

ε̃n

)∣∣un(Tnx) − un(Tny)
∣∣ρ(x)ρ(y) dx dy

≤
∫
D

η

(
Tnx − Tny

εn

)∣∣un(Tnx) − un(Tny)
∣∣ρ(x)ρ(y) dx dy

= εd+1
n GTVn(un).

The above inequality is equivalent to

(ε̃n/εn)
d+1 TVε̃n

(un ◦ Tn;1D) ≤ GTVn(un).

Since limn→∞ ε̃n/εn = 1, the bound supn GTVn(un) < ∞ implies that

sup
n

TVε̃n
(un ◦ Tn;1D) < ∞.

It follows, by Lemma 6.10, that the family {un ◦ Tn}n∈N is relatively compact
with respect to the L1 topology. Since, by Corollary 3.3, νn

w−→ ν, we conclude
by Lemma 3.1 that {(νn, un)}n∈N is relatively compact in T L1.

Suppose now η is an arbitrary kernel satisfying assumptions (K1)–(K4). Since η

is continuous at zero, and η(0) > 0, there is some radius R such that η̃ = η(0)
2 1|x|<R
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satisfies η̃ ≤ η. Let c = ∫
Rd η̃(x) dx. Then, if G̃TVn denotes the graph total varia-

tion associated to the kernel η̃/c (instead of η), we have

GTVn(un) ≥ cG̃TVn(un).

Since supn GTVn(un) < ∞ implies supn G̃TVn(un) < ∞, it follows from our pre-
vious discussion that the sequence {(νn, un)}n∈N is relatively compact in T L1(D).

�

THEOREM 6.12. Suppose {εn}n∈N satisfies condition (I2). On the probability
1 set �0, the following holds: Given any sequence {Vn}n∈N ⊂ (T L1)K , if

sup
n∈N

En(Vn) < ∞,

then {Vn}n∈N is relatively compact with respect to the (T L1)K topology.

PROOF. Fix a realization in the probability 1 set �0. Let Vn be a sequence with
supn En(Vn) < ∞. By definition of En, it follows that Vn = (νn,Un) ∈ Mn(D)

where Un = {Un,k}Kk=1 for n ∈ N. By Corollary 3.3, we have νn
w−→ ν. Since

(νn,1D)
T L1−−→ (ν,1D) by Lemma 3.1, we have, by Lemma 6.3, that G�n(1) =

2m/(n(n− 1)) → ∫
D ρ2(x) dx. Recall now that En(Vn) = TVn(Un)+Fn(Un) and

TVn(Un) = n(n − 1)

4m

K∑
k=1

GTVn(un,k),

where un,k = 1Un,k
for 1 ≤ k ≤ K . Hence, given that supn∈N En(Vn) < ∞, we

have

sup
n∈N

GTVn(un,k) < ∞,

for 1 ≤ k ≤ K . Thus, by Lemma 6.11, the collection {(νn, un,k)}n∈N is relatively
compact in T L1 for 1 ≤ k ≤ K . Thus, {Vn = ((νn, un,k))

K
k=1 = (νn,Un)}n∈N is

relatively compact in (T L1)K . �

PROOF OF THEOREM 2.3. We have seen in Theorem 6.1 that

En
�((T L1)K)−−−−−−→ E,

in the sense of Definition 3.8. By Theorem 6.12, the graph energies En have the
compactness property according to Definition 3.9. Also, as noted in Section 6.1,
the energy E is not identically infinite.

For each realization {Xi}i∈N, let U∗
n ∈ arg max|Un|≤K Qn(Un) be an optimal par-

tition. Then, by the discussion in Section 6.1, U∗
n is a minimizer of Fn + TVn,

and so Vn = (νn,U∗
n ) ∈ Mn(D) is a minimizer of En. The sequence {Vn}n∈N is
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also bounded in (T L1)K : Indeed, we have
∫
D |x|dνn(x) ≤ supx∈D |x| and, for

u∗
n,k = 1U∗

n,k
, ‖u∗

n,k‖L1 ≤ vol(D)‖u∗
n,k‖L∞ ≤ vol(D).

Hence, on the full set of realizations {Xi}i∈N, denoted as �, the sequence
xn = Vn, in the metric space (T L1)K , satisfies the hypotheses of Theorem 3.11.
Therefore, with respect to realizations {Xi}i∈N on a probability 1 set �∗, Vn con-
verges in (T L1)K , perhaps along a subsequence, to a limit V , which is a mini-
mizer of E, and is therefore of the form V = (ν,U∗). Since the “liminf” inequal-
ity, Lemma 6.7, holds on �0, we note that �∗ ⊂ �0. Moreover, by Corollary 3.3,
νn

w−→ ν on �∗. Therefore, by (3.4), on �∗, U∗
n converges weakly, perhaps along

a subsequence, to the limit U∗, which is an optimal partition of the continuum
problem (2.6) with φ = ρ2 and dμ = ρ1+α/

∫
D ρ1+α(x) dx.

In fact, on �∗, the distances βn := inf{d(T L1)K (Vn,V) : V ∈ arg minE}, where
d(T L1)K is the product metric for (T L1)K convergence, satisfy βn → 0 as n → ∞.
For if not, there is a subsequence {nm}m∈N with βnm → β > 0. However, by the
above discussion one may find a further subsequence {n′

m}m∈N with βn′
m

→ 0, a
contradiction.

Moreover, if problem (2.6) has a unique solution U∗ = {U∗
k }Kk=1, modulo per-

mutations, then arg minE = {((ν, u∗
π(k)))

K
k=1 : π ∈ Sym(K)}, where we recall

Sym(K) denotes the permutations of {1, . . . ,K} and u∗
k = 1U∗

k
for 1 ≤ k ≤ K .

Thus, on the probability 1 set �∗, since βn → 0, one may construct a sequence
{πn}n∈N of permutations such that, as n → ∞, ((νn, u

∗
n,πn(k)))

K
k=1 converges in

(T L1)K to (ν,U∗) = ((ν, u∗
k))

K
k=1. Hence, by (3.4), U∗

n

w−→ U∗, in the sense of
(2.11). �

APPENDIX

A.1. Approximation lemma. Recall that ρε(x) := ∫
D ηε(x − y)ρ(y) dy.

LEMMA A.13. Under the standing assumptions on ρ, D and η in Section 2.3,
we have the following:

(i) ρε converges pointwise to ρ as ε ↓ 0.
(ii) There exists a constant C such that, for sufficiently small ε,

(A.1)
∫
D

∣∣ρε(x) − ρ(x)
∣∣dx ≤ Cε.

(iii) There exist constants a, b such that, for sufficiently small ε,

0 < a ≤ ρε(x) ≤ b for all x ∈ D.

PROOF. The pointwise convergence in item (i) follows from continuity of ρ.
We now focus attention on item (ii), inequality (A.1). For the moment, fix x ∈

D. Since η is compactly supported, we take R such that η(z) = 0 for |z| > R. Then
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for 0 < ε < dist(x, ∂D)/R, we have, since
∫
R η(x)dx = 1, that

ρ(x) =
∫
x+z∈D

ηε(z)ρ(x) dz and so

ρε(x) − ρ(x) =
∫
x+z∈D

ηε(z)
(
ρ(x + z) − ρ(x)

)
dz.

Let L be a Lipschitz constant for ρ. Then∣∣ρε(x) − ρ(x)
∣∣≤ L

∫
x+z∈D

ηε(z)|z|dz ≤ L

∫
|z|≤diam(D)

ηε(z)|z|dz

= Lε

∫
|z|≤diam(D)/ε

η(z)|z|dz ≤ Lε

∫
Rd

η(z)|z|dz.

Because
∫
R η(x) dx = 1 and η(z) = 0 for |z| > R, the above implies

(A.2)
∣∣ρε(x) − ρ(x)

∣∣≤ LRε.

Let DRε = {x ∈ D|dist(x, ∂D) < Rε} and ∂RεD = D \ DRε . We write∫
D

∣∣ρε(x) − ρ(x)
∣∣dx =

∫
DRε

∣∣ρε(x) − ρ(x)
∣∣dx +

∫
∂RεD

∣∣ρε(x) − ρ(x)
∣∣dx,

and consider the two terms separately. On DRε , applying inequality (A.2) yields

(A.3)
∫
DRε

∣∣ρε(x) − ρ(x)
∣∣dx ≤ vol(D)LRε.

For the second integral, note that because the boundary is Lipschitz, there is a
ε0 > 0 and constant C such that vol(∂DRε) ≤ CRε for 0 < ε < ε0. It follows that

(A.4)
∫
∂RεD

∣∣ρε(x) − ρ(x)
∣∣dx ≤ 2C‖ρ‖L∞Rε.

Combining (A.3) and (A.4), it follows, for sufficiently small ε > 0, that∫
D |ρε(x) − ρ(x)|dx ≤ CRε, where C is a constant independent of ε.

For item (iii) of the lemma, note that because the boundary of D is Lipschitz,
there exists constants r0, r1 such that, for any x ∈ D and 0 < r < r1,

0 < r0 <
vol(D ∩ B(x, r))

vol(B(x, r))
,

where B(x, r) denotes the ball of radius r centered at x (cf. the discussion about
cone conditions in Section 4.11 of [1]).

By assumption, ρ is bounded above and below: 0 < A ≤ ρ(·) ≤ B . Also, by
assumption (K3), η is continuous at zero and η(0) > 0, so we may take r so that
0 < η(0)/2 ≤ η(z) for |z| < r . Let η̃(x) = η(0)1B(x,r)/2vol(B(x, r)). Then

0 < Ar0η(0)/2 ≤ A

∫
D

η̃(x − y)dy ≤
∫
D

ηε(x − y)ρ(y) dy = ρε(x).

Since
∫
R ηε(x)dx = 1, the bound ρε(x) ≤ B also holds, completing the item. �
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A.2. Estimates for GTV Limsup. Recalling the notation in the proof of
Lemma 5.2, we let fn(Xi,Xj ) = 1

εn
ηεn(Xi − Xj)|u(Xi) − u(Xj )|, as well

as ln(Xi) = 1
εn

∫
D ηεn(Xi − y)|u(Xi) − u(y)|ρ(y) dy, and mn(Xj ) = 1

εn
×∫

D ηεn(x − Xj)|u(x) − u(Xj )|ρ(x) dx. Here, u ∈ I (D) satisfies TV(u;ρ2) < ∞.

LEMMA A.14. There exists a constant C such that, for sufficiently large n,
we have the following bounds:

|Efn| ≤ C, ‖fn‖L2→L2 ≤ C/εn, Ef 2
n ≤ C/εd+1

n , El2
n ≤ C/εn,∥∥EY f 2

n

∥∥
L∞ ≤ C/εd+2

n , ‖ln‖L∞ ≤ C/εn,
∥∥EXf 2

n

∥∥
L∞ ≤ C/εd+2

n ,

Em2
n ≤ C/εn, ‖fn‖L∞ ≤ C/εd+1

n , ‖mn‖L∞ ≤ C/εn.

PROOF. Recall that Efn = TVεn(u;ρ). By Lemma 5.1, this converges to
TV(u;ρ2) < ∞ as n → ∞, and hence |Efn| ≤ C.

To address Ef 2
n , we have

Ef 2
n =

∫
D

∫
D

1

ε2
n

(
ηεn(x − y)

)2∣∣u(x) − u(y)
∣∣2ρ(x)ρ(y) dx dy.

Since η is bounded above, we have (ηεn(x − y))2 ≤ Cηεn(x − y)/εd
n . Because

u ∈ I (D), we have |u(x) − u(y)|2 = |u(x) − u(y)|. Hence,

Ef 2
n ≤ C

∫
D

∫
D

1

ε2
n

1

εd
n

ηεn(x − y)
∣∣u(x) − u(y)

∣∣ρ(x)ρ(y) dx dy

≤ C TVεn(u;ρ)/εd+1
n ≤ C′/εd+1

n .

Likewise, one may get the bound, using that ρ is bounded,

EY f 2
n =

∫
D

1

ε2
n

(
ηεn(x − y)

)2∣∣u(x) − u(y)
∣∣2ρ(y) dy

≤ C

∫
D

ηεn(x − y)ρ(y) dy/εd+2
n ≤ C′/εd+2

n .

By the symmetry of fn, this also gives EXf 2
n ≤ C′/εd+2

n .
Recall that ‖fn‖L2→L2 is given by

‖fn‖L2→L2 = sup
{∫

D×D
fn(x, y)h(x)g(y)dν(x)dν(y) :

‖h‖L2(D,ν) ≤ 1,‖g‖L2(D,ν) ≤ 1
}
.

It is straightforward to show
∫
D |fn(x, y)|ρ(x) dx ≤ C/εn, and similarly for the

integral with respect to y, where C is some constant independent of n. Thus, with
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respect to the map Jg(x) = ∫
D fn(x, y)g(y)ρ(y) dy, by Theorem 6.18 of [30], we

have ‖Jg‖L2(D,ν) ≤ C‖g‖L2(D,ν)/εn, which implies ‖fn‖L2→L2 ≤ C/εn.
Now considering ln, we have

El2
n =

∫
D

(
1

εn

∫
D

ηεn(x − y)
∣∣u(x) − u(y)

∣∣ρ(y) dy

)2
ρ(x) dx.

By Jensen’s inequality, it follows that

El2
n ≤ 1

ε2
n

∫
D×D

ηεn(x − y)
∣∣u(x) − u(y)

∣∣2ρ(y)ρ(x) dy dx

= 1

ε2
n

∫
D×D

ηεn(x − y)
∣∣u(x) − u(y)

∣∣ρ(y)ρ(x) dy dx ≤ 1

εn

Efn ≤ C/εn.

Similarly, as ρ is bounded, we have∣∣ln(x)
∣∣= 1

εn

∫
D

ηεn(x − y)
∣∣u(x) − u(y)

∣∣ρ(y) dy

≤ 1

εn

∫
D

ηεn(x − y)ρ(y) dy ≤ C/εn.

The same argument applied to mn gives the required inequalities. �

Recall, from the proof of Lemma 5.2, that hn(Xi,Xj ) = 1
εn

ηεn(Xi − Xj) ×
|u(Xi) − u(Xj )| − ∫

D fn(Xi, y)ρ(y) dy − ∫
D fn(x,Xj )ρ(x) dx + TVεn(u;ρ).

COROLLARY A.15. There exists a constant C, such that, for sufficiently large
n, we have the following bounds:

Eh2
n ≤ C/εd+1

n ,
∥∥EY h2

n

∥∥
L∞ ≤ C/εd+2

n ,
∥∥EXh2

n

∥∥
L∞ ≤ C/εd+2

n ,

‖hn‖L∞ ≤ C/εd+1
n , ‖hn‖L2→L2 ≤ C/εn.

PROOF. Since hn(Xi,Xj ) = fn(Xi,Xj ) − ln(Xi) − mn(Xj ) +Efn, we have√
Eh2

n ≤
√
Ef 2

n +
√
El2

n +
√
Enm2 +

√
(Efn)2.

All terms in the right-hand side may be bounded by
√

C/εd+1
n , and hence Eh2

n ≤
C/εd+1

n .
Similarly, in the bound√∥∥EXh2

n

∥∥
L∞ ≤

√∥∥EXf 2
n

∥∥
L∞ +

√∥∥EXl2
n

∥∥
L∞ +

√∥∥EXm2
n

∥∥
L∞ +

√
(Efn)2,

all terms on the right are dominated by
√

C/εd+2
n , so ‖EXh2

n‖L∞ ≤ C/εd+2
n .

By symmetry of hn, this gives ‖EY h2
n‖L∞ ≤ C/εd+2

n .
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Likewise, a similar triangle inequality gives ‖hn‖L∞ ≤ C/εd+1
n .

For the last bound, we write

‖hn‖L2→L2 ≤ ‖fn‖L2→L2 + ‖ln‖L2→L2 + ‖mn‖L2→L2 + |Efn|
≤ ‖fn‖L2→L2 + ‖ln‖L∞ + ‖mn‖L∞ + |Efn|,

and note each term in the right-hand side is bounded by C/εd
n . �

A.3. Estimates for GF Limsup. Recall, from the proof of Lemma 5.5, the
notation fn(Xi,Xj ) = 1√

εn
ηεn(Xi − Xj)u(Xj ), ln(Xi) = 1√

εn

∫
D ηεn(Xi − y) ×

u(Xi)ρ(y) dy, and mn(Xj ) = 1√
εn

∫
D ηεn(x − Xj)u(x)ρ(x) dx. Here, u ∈ I (D).

LEMMA A.16. There exists a constant C, such that, for sufficiently large n,
we have the following bounds:

|Efn| ≤ C/ε1/2
n , ‖fn‖L2→L2 ≤ C/ε1/2

n , Ef 2
n ≤ C/εd+1

n ,

El2
n ≤ C/εn,

∥∥EY f 2
n

∥∥
L∞ ≤ C/εd+1

n , ‖ln‖L∞ ≤ C/ε1/2
n ,∥∥EXf 2

n

∥∥
L∞ ≤ C/εd+1

n , Em2
n ≤ C/εn,

‖fn‖L∞ ≤ C/εd+1/2
n , ‖mn‖L∞ ≤ C/ε1/2

n .

PROOF. These inequalities are easier than the ones in Lemma A.14, and fol-
low from the boundedness of u and ρεn(x) = ∫

D ηεn(x − y)ρ(y) dy. �

Recall that hn(Xi,Xj ) = fn(Xi,Xj ) − ln(Xi) − mn(Xj ) + Efn. The proof of
the following is similar to that of Corollary A.15.

COROLLARY A.17. There exists a constant C, such that, for sufficiently large
n, we have the following bounds:

Eh2
n ≤ C/εd+1

n ,
∥∥EY h2

n

∥∥
L∞ ≤ C/εd+1

n ,
∥∥EXh2

n

∥∥
L∞ ≤ C/εd+1

n ,

‖hn‖L∞ ≤ C/εd+1/2
n , ‖hn‖L2→L2 ≤ C/ε1/2

n .

A.4. Transport distance in d = 1. We define the transport maps {Tn}n∈N in
d = 1 and establish a bound on the rate at which ‖Id − Tn‖L∞ → 0 as n → ∞.

Recall that by assumption (M) of Section 2.3, ν is a probability measure on
D = (c, d) with density ρ that is differentiable, Lipschitz and bounded above and
below by positive constants. Further, ρ is increasing in some interval with left
endpoint c and decreasing in some interval with right endpoint d . Let F denote the
distribution function of ν.

Given a sample Xn = {X1, . . . ,Xn}, we let Fn denote the distribution function
of the empirical measure νn = 1

n

∑n
i=1 υXi

. We define Tn by

(A.5) Tnx = F−1
n

(
F(x)

)
,
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where F−1
n (t) = inf{x ∈ R : t ≤ Fn(x)}. The map Tn is a valid transport map, that

is, Tn�ν = νn.
By the assumptions on ρ, it follows that

(A.6) sup
c<x<d

F (x)
(
1 − F(x)

)∣∣ρ′(x)
∣∣/ρ2(x) < ∞.

It is known (see Theorem 3 on p. 650 of [68]) that when (i) ρ > 0 on (c, d),
(ii) inequality (A.6) is satisfied, and (iii) ρ is increasing in some interval with left
endpoint c and decreasing in some interval with right endpoint d , the standardized
quantile process

Qn(t) := g(t)
√

n
[
F−1

n (t) − F−1(t)
]
,

with g(t) = ρ(F−1(t)), satisfies, almost surely,

(A.7) lim sup
n→∞

sup
0<t<1

∣∣Qn(t)/
√

2 log logn
∣∣≤ 1.

Since ρ is bounded above and below by nonnegative constants, so is g, and so
we have constants C,C′ > 0 such that

C
∣∣Qn(t)

∣∣≤ √
n
∣∣F−1

n (t) − F−1(t)
∣∣≤ C′∣∣Qn(t)

∣∣.
Since ρ is positive, F is strictly increasing, and hence we have

C sup
0<t<1

∣∣Qn(t)
∣∣≤ sup

c<x<d

√
n
∣∣F−1

n

(
F(x)

)− F−1(F(x)
)∣∣≤ C′ sup

0<t<1

∣∣Qn(t)
∣∣.

Recalling our definition of Tn, this may be rewritten as

C sup
0<t<1

∣∣Qn(t)
∣∣≤ √

n‖Id − Tn‖L∞ ≤ C′ sup
0<t<1

∣∣Qn(t)
∣∣.

In light of (A.7) and the above inequality, we obtain the following estimate.

PROPOSITION A.18. There is a constant C such that, almost surely, the trans-

port maps Tn, defined by (A.5), satisfy limn→∞
√

n‖Id−Tn‖L∞√
log logn

≤ C.
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