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Distributionally Robust Reliability Assessment for
Transmission System Hardening Plan

Under N − k Security Criterion
Ali Bagheri , Member, IEEE, and Chaoyue Zhao , Member, IEEE

Abstract—Increasing the complexity of power transmission net-
works has led power systems to be more vulnerable to cascading
failures. Thus, hardening and reliability assessment of such com-
plex networks have become a must. In addition, the commonly used
N − 1 security criterion does not guarantee the reliability of the
system against possible cascading failures. In this paper, given a
hardening plan, we develop two models to evaluate the reliability
of the power transmission system under N − k security criterion.
In the first model, we quantify the probability of no load-shedding
in the system to assess the possibility of load curtailment. Then,
to have a better insight of the amount of load-shed in the second
model, we use the conditional value-at-risk as a risk measure to
evaluate the reliability of the system. To perform reliability as-
sessment, the information of contingency probabilities is required.
However, such probability information is usually unknown and
cannot be estimated precisely. Therefore, in this paper, we assume
the probability of contingencies as unknown and ambiguous. Then,
we construct an ambiguity set for the unknown probability distri-
bution of contingencies. Our approaches are robust because they
analyze the reliability of the transmission system with respect to
the worst-case distribution in the ambiguity set. We formulate both
models as bilevel programs and solve them using the Bender’s de-
composition technique. Finally, we conduct numerical experiments
on 6-bus and IEEE 118-bus test systems to show the effectiveness
of the proposed approaches.

Index Terms—Conditional value-at-risk (CVaR), distribution-
ally robust optimization (DRO), N − k security criterion,
transmission system reliability analysis.

NOMENCLATURE

A. Sets

B Index set of all buses.
Bi Index set of all buses directly connected to bus i.
Bi(., i) Index set of all incoming transmission lines to bus i.
Bi(i, j) Index set of all outgoing transmission lines from bus i.
E Index set of transmission lines.
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EH Index set of hardened transmission lines.
T Index set of load blocks.

B. Parameters

Fij Flow capacity of transmission line (i, j).
Ci Generation capacity at bus i.
Xij Reactance of transmission line (i, j).
θmin
i Phase angle lower limit at bus i.
θmax
i Phase angle upper limit at bus i.
dit Demand at bus i for load block t.

C. Decision Variables

xit Power generation at bus i for load block t.
fij,t Power flow from bus i to bus j on transmission line

(i, j) for load block t.
θit Phase angle at bus i for load block t.
sit Load shedding at bus i for load block t.

D. Random Variables

vij Binary variable indicating whether transmission line
(i, j) is under contingency (vij = 0) or not (vij = 1).

I. INTRODUCTION

THE RAPID growth of electric power systems and the
creation of very complex interconnected power transmis-

sion networks have made power systems more vulnerable to
cascading failures and large blackouts than in the past [1]. Large
blackouts are among the most catastrophic disasters that threaten
the U.S. economy through massive economic damage of tens
of billions of dollars per year [2]. Transmission system outages
(mostly caused by severe weather conditions [3], [4], aging [5],
[6], and terrorist attacks [7], [8]) are among the major causes
of large blackouts [9]. As a matter of fact, in the deregulated
electricity market, the transmission system is utilized such that
it operates near its limits, i.e., as economically as possible [10],
in which case an initial line outage may affect other system
components and result in cascading failures and large blackouts
(for example, blackouts in February 2008 in Florida [11] and
September 2011 in North America [12]). Therefore, because
of the criticality of the electric power industry to the national
economy and society in general, hardening planning and relia-
bility evaluation of power transmission systems is of significant
importance.
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According to the North American Electric Reliability Council
(NERC), reliability is the degree of power system performance
under which customers’ electricity demand is supplied and de-
livered under accepted standards [13]. This definition of relia-
bility contains two concepts: 1) adequacy: the ability of a power
system to supply the customers’ electricity demand via available
generation units and transmission systems and reserves; and 2)
security: the ability of a power system to keep working after
some contingencies such as transmission line outages or equip-
ment failures. In the literature of power system, the most popular
reliability indices are loss of load probability, loss of load ex-
pectation, and expected energy not supplied [14]. Moreover,
two frequently used techniques for power system’s reliability
analysis are Monte Carlo simulations and contingency analysis.

In the techniques used in Monte Carlo simulations, the as-
sessment of system reliability is carried out by sampling system
component states. Component state samples are generated ran-
domly either from an estimated distribution of failures (using
historical data of component failures), i.e., random sampling
(e.g., see [15]), or by considering component state transition
probabilities, i.e., sequential sampling (e.g., see [16]). More-
over, to improve the efficiency of Monte Carlo simulation algo-
rithms, several variations of this technique have recently been
proposed, such as variance reduction techniques [17], [18], least
square support vector classifier [19], artificial neural network
[20], fuzzy Monte Carlo technique [21], cross-entropy methods
[22], Latin hypercube sampling [23].

In contingency analysis, a set of contingency states is used
to examine the power system reliability. The contingency set
is created by takingN − 1, . . . , N − k, k = 1, 2, 3, . . . security
criteria into account, where k denotes the number of simul-
taneous component (generation units, transmission lines, etc.)
outages. In industry practice, N − 1 is the most widely used
security criterion by most power systems around the world [24],
[25]. However, it just guarantees the normal operations of the
system under only a single component failure. Although the
probability of two or more simultaneous component failures is
very small, yet it may lead to very severe cascading failures
and blackouts if simultaneous failures happen. Therefore, to
establish more reliable system operations against multiple si-
multaneous contingencies, revised NERC reliability standards
[26] require system operators to apply N − k, k ≥ 2 security
criterion in their analyses. However, for k ≥ 2, the combina-
torial nature of contingency states makes the full contingency
enumeration almost impossible even for medium size systems
and moderate values of k. For more discussions on the com-
plexity of full contingency enumeration, readers are referred
to [27].

To mitigate the computational burden of N − k contingency
analysis, contingency selection procedures have been proposed.
Briefly, contingency selection is the process of identifying the
critical components and constructing a contingency list that in-
cludes very serious single and multiple contingencies. Some
previously conducted studies (see, e.g., [1], [28]–[30]) estimate
the probability of system component failures using the histori-
cal data of component failures. Then, contingencies with higher
probabilities form the contingency list. A statistical method to

estimate the probability of transmission line failures and to iden-
tify vulnerable lines in a transmission system is presented in
[1]. A method based on sub-station configuration and proba-
bility analysis of protection system failures to form a N − k
contingency list is proposed in [28]. Three probabilistic models
to estimate the probabilities of multiple transmission line con-
tingencies are used in [29]. Also, a data mining based method
for contingency analysis is developed in [30]. However, some
other works (see, e.g., [10], [31], [32]) consider the consequence
(e.g., load shedding) of contingency scenarios to form the con-
tingency list. A fast and reliable heuristic algorithm based on
iterative pruning to identify criticalN − 2 contingencies is pre-
sented in [31]. Two contingency screening algorithms to deter-
mine the threatening N − 2 contingencies without solving the
full contingency set are developed in [10]. A method that uses a
small number of representative constraints instead of enumerat-
ing exponentially many constraints forN − k contingency anal-
ysis is developed in [32]. In addition, many optimization-based
approaches have also been utilized for contingency selection
procedures and protective resources allocation, i.e., hardening
planning. For example, [33]–[36], among others, develop bi-
level programs to identify the most critical transmission system
components under N − k contingency criterion. Also, [7], [8],
and [37], among others, develop tri-level optimization mod-
els to simultaneously identify the most critical system compo-
nents and the optimal hardening strategy to mitigate (enhance)
the transmission system vulnerability (reliability) against inten-
tional attacks. Moreover, other approaches such as a random
chemistry algorithm [38] and a combined neural network and
evolutionary algorithm [39] have recently been developed to
study N − k contingency analysis.

All the above-mentioned reliability analysis approaches ei-
ther estimate the probabilities of component failures or assume
the same probability for each component and deal with the con-
sequence of failures. However, historical data for equipment
failures are usually rare; also, the estimated equipment failure
rates, which rely on expert information, are subject to errors.
Even with sufficient historical data, the accurate estimation of
failure rate is extremely difficult. On the contrary, in this pa-
per, we allow the probability of contingencies to be unknown
and ambiguous. We apply the distributionally robust optimiza-
tion (DRO) concept (see, e.g., [40]–[42]) to perform the re-
liability analysis of power transmission systems. DRO-based
approaches have recently received attention from power system
specialists for various problems such as unit commitment [43],
[44], transmission expansion planning and hardening [45], [46]
and reserve scheduling [47], [48]. In this approach, instead of
fixing the probabilities of component failures, we allow them
to vary within a set of probability distributions, which is the
ambiguity set. We develop two DRO models to determine the
reliability of the system, for a given hardening plan, based on
two reliability indices. In the first model, we develop a model
to quantify the worst-case probability under which both system
security and system adequacy are satisfied [we call it worst-case
no load-shed probability (WNLP)]. In the second model, we use
the conditional value-at-risk (CVaR) as its risk measure. CVaR,
which is a well-known risk measure, has gained considerable
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attention in finance and insurance industries [49]. We propose
a model to evaluate the worst-case CVaR associated with the
worst-case contingency distribution in the ambiguity set. The
contributions of this paper can be listed as follows.

1) We propose two reliability analysis models for transmis-
sion system hardening plans that hedge against the un-
certainty (inaccuracy) associated with the estimation of
probabilities of component failures. Instead of relying on
estimates, our models consider the worst-case reliability
with the worst-case failure distribution in the ambiguity
set. Moreover, the conservatism of the proposed models
can be adjusted by system operators.

2) Both of our models are formulated in such a way that de-
composition techniques can be easily employed to solve
them using commercial solvers. Here, we apply the Ben-
der’s decomposition technique to solve both the models.

3) We conduct expensive numerical experiments on a mod-
ified 6-bus and IEEE 118-bus test systems. We compare
both the models for various contingency levels and differ-
ent hardening plans to test the performance of our models.

The rest of this paper is organized as follows. In Section II, we
first discuss how to construct the ambiguity set for the unknown
contingency distribution. Then, we develop a DRO-based model
to quantify the WNLP of the system. Afterward, we formulate
a DRO-based model to evaluate the reliability of the transmis-
sion system on the basis of the worst-case CVaR risk measure.
In Section III, we describe the proposed decomposition frame-
work and the solution algorithms. In Section IV, we present
and discuss numerical results. Finally, we conclude this paper
in Section V.

II. PROBLEM FORMULATION

In this paper, we aim to develop risk assessment models for the
transmission system hardening decisions under distributional
uncertainty of N − k contingencies. Basically, we consider the
following constraints to analyze the reliability of a power trans-
mission system:

xit +
∑

j∈Bi (.,i)
fji,t −

∑

j∈Bi (i,.)
fij,t + sit = dit ∀i ∀t (1)

(θit − θjt) −Xijfij,t ≥ 0 ∀t ∈ T ∀(i, j) ∈ EH (2)

(θit − θjt) −Xijfij,t ≤ 0 ∀t ∈ T ∀(i, j) ∈ EH (3)

(θit − θjt) −Xijfij,t +M(1 − vij ) ≥ 0

∀t ∈ T ∀(i, j) ∈ E\EH (4)

(θit − θjt) −Xijfij,t −M(1 − vij ) ≤ 0

∀t ∈ T ∀(i, j) ∈ E\EH (5)

− Fij ≤ fij,t ≤ Fij ∀t ∈ T ∀(i, j) ∈ EH (6)

− Fij vij ≤ fij,t ≤ Fij vij ∀t ∈ T ∀(i, j) ∈ E\EH (7)

xit ≤ Ci ∀t ∈ T ∀i ∈ B (8)

θmin
i ≤ θit ≤ θmax

i ∀t ∈ T ∀i ∈ B (9)

xit, sit ≥ 0 ∀t ∈ T ∀i ∈ B (10)

where constraints (1) observe the power supply adequacy at each
bus. Constraints (2) to (3) represent the relationship between dc
power flow and phase angle for hardened lines. Constraints (4) to
(5) represent the relationship between dc power flow and phase
angle for unhardened lines. That is, if the unhardened lines
are under contingency, i.e., vij = 0, the relationship of power
flow and phase angle as suggested in (2) to (3) does not nec-
essarily hold. Similarly, constraints (6) and (7) observe power
flow capacities for hardened and unhardened lines, respectively.
Constraints (8) and (9) impose power generation capacities and
phase angle limits, respectively.

A. Ambiguity Set

Because of the fact that there are exponentially many N − k
contingency scenarios, and enumerating all of them is almost
impossible (it takes exponential time), in this paper, we create
a list of N contingencies. To this end, two groups of contin-
gencies can be considered: 1) the most probable contingencies;
and 2) the highest impact contingencies (contingencies with the
worst consequences). Then, on the basis of the system opera-
tor’s preferences, either of these or a mixture of them can be
used to create the contingency list. The most probable contin-
gencies and their probabilities can be identified by utilizing the
existing methods in the literature (see, e.g., [1], [28]–[30] among
others). The high impact contingency scenarios can also be iden-
tified by optimization-based methods (see, e.g., [7], [33]–[36],
among others). These contingency scenarios and their assigned
probabilities form a discrete distribution, P̂ , which we call the
reference distribution. Considering the fact that the true proba-
bility of N − k contingencies is unknown, using the reference
distribution, P̂ , we construct an ambiguity set for the ambiguous
probability distribution of N − k contingencies. We define the
following ambiguity set:

D :=
{
P ∈ M+ : d(P, P̂ ) ≤ ϕ (11)

P ≤ P ≤ P
}

(12)

where M+ represents the set of all probability distributions.
In (11), d(P, P̂ ) denotes the probability distance between any
arbitrary distribution, P ∈ D, and the reference distribution, P̂ .
Also, ϕ denotes the tolerance level for the probability distance.
To measure d(P, P̂ ), several probability metrics such asL1 ,L∞,
Wasserstein metric can be utilized. For more detail, interested
readers are referred to [50]. In this paper, we use L1 norm.
According to [43, Proposition 1], given a set of historical data,
the following equation defines the relationship between the size
of data and the value of ϕ under L1 norm:

ϕ =
N
2S

log
2(N )
1 − γ

(13)

where S, N , and γ denote the size of historical data, the number
of contingency scenarios, and the confidence level, respectively.
However, if in practice, the data information for contingencies is
very limited and enough data are not available to learn a practical
value ofϕ, thenϕ can also be decided by the system operators on
the basis of their judgment or preference on the conservativeness
level. Since the worst-case probability distribution is considered
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Fig. 1. Example of the ambiguity set.

in D in the proposed models, to control the conservativeness,
we limit the probability of each contingency occurring with
inequalities (12), where P and P are the lower and the upper
probability limit matrices. Then, the ambiguity set, D, under L1
norm can be represented as follows:

D :=

{
P ∈ RN

+ :
N∑

n=1

|pn − p̂n | ≤ ϕ (14)

p
n
≤ pn ≤ pn∀n

}
(15)

where pn , p
n

, and pn denote the unknown probability, the lower
probability limit, and the upper probability limit for contin-
gency scenario n, respectively. By setting p

n
= p̂n − δ and

pn = p̂n + δ, we can adjust the conservativeness of our mod-
els by changing parameter δ. Note here this ambiguity set also
implicitly contains the correlation information of the contingen-
cies, since it is constructed on the basis of the historical data,
which capture the correlation of contingencies automatically.
Fig. 1 illustrates one sample of the ambiguity set, D, with five
contingency scenarios. The black solid lines show the reference
probabilities of contingency scenarios, and the dash lines show
the ambiguity of the true probabilities from the reference ones.

B. Worst-Case No Load-Shed Probability

In this section, given a hardening plan, we intend to quantify
the worst-case probability of a no load-shedding occurrence over
the entire system. For notational brevity, we let the following:

gi,t(x, f) = xit +
∑

j∈Bi (.,i)
fji,t −

∑

j∈Bi (i,.)
fij,t − dit ∀i ∀t.

(16)

Then, to satisfy the adequacy requirement, we need to deter-
mine decision variables xit, fij,t , and θit such that the probability
of no load-shed over the entire network is maximized. So, we
consider the following program:

max
x,f ,θ∈X

Pr (gi,t(x, f) ≥ 0 ∀i ∀t) (17)

where X denotes the set of all feasible solutions satisfying secu-
rity requirements, i.e., system constraints (2)–(10). In addition,
notice that we have a joint probabilistic objective function, in
(17), to quantify the no load-shed probability for the whole

system. We can reformulate the objective function in (17) as
follows:

max
x,f ,θ∈X

Pr

(
min
i,t

gi,t(x, f) ≥ 0
)
. (18)

The probabilistic objective function above can be expressed
as follows:

max
x,f ,θ∈X

EP

[
1[0,∞)

(
min
i,t

gi,t(x, f)
)]

(19)

where indicator function 1[0,∞)(x) equals 1 if x ∈ [0,∞) and
zero otherwise. Note that, in this paper, instead of making an as-
sumption (by estimation or expert information) for contingency
scenario distribution, P , and taking expectation over P , we let
P be unknown and ambiguous, but belong to the ambiguity set,
D. Then, the strategy here is to allow P to act adversely against
the maximization of the expected value in (19), i.e., bringing
robustness into the model. Hereby, we compute the WNLP by
the following distributionally robust bilevel min–max problem:

min
P ∈D

max
x,f ,θ∈X

EP

[
1[0,∞)

(
min
i,t

gi,t(x, f)
)]

. (20)

By defining new variable, yn = 1[0,∞)
(
mini,t gni,t(x, f)

)
, for

each contingency scenario, n, and using the big-M method, we
can obtain the following equivalent reformulation of (20):

min
P ∈D

max
x,f ,θ∈X

N∑

n=1

pnyn (21)

gni,t(x, f) ≥ −M(1 − yn ) ∀i ∀t ∀n (22)

yn ∈ {0, 1} ∀n. (23)

C. Worst-Case CVatR (WCVaR)

In this section, given a hardening plan, we propose a new reli-
ability analysis scheme for power transmission systems by con-
sidering the CVaR risk measure, which is also known as mean
excess loss, mean shortfall, or tail VaR [49]. CVaR is closely
related to the popular measure of risk VaR (an upper percentile
of the loss distribution) and is defined as the weighted average
of VaR and losses strictly exceeding VaR. CVaR, in comparison
with VaR, has nice mathematical properties such as translational
invariance, sub-additivity, convexity, and homogeneity, all of
which make this risk measure coherent and practical to use in
optimization problems. Moreover, from the above-mentioned
definition, VaR can never be more than CVaR. For more details,
readers are referred to [49]. We let the following:

Li,t(x, f) = (−gi,t(x, f))+ ∀i ∀t (24)

be the loss (load shedding) associated with decision variables
xit, fij,t , and θit, where (x)+ = max{0, x}. Then, since we aim
to evaluate the reliability of the whole transmission system,
we define a joint loss function as L(x, f) =

∑
i

∑
t Li,t(x, f).

Therefore, β–CVaR for the joint loss function L(x, f) and for
the probability level β ∈ (0, 1) can be presented as [49] follows:

β–CVaR = min
α
α+

1
1 − β

EP

[
(L(x, f) − α)+]

(25)
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where P denotes the probability distribution of random con-
tingencies. To ensure adequacy, we need to determine decision
variables xit, fij,t , and θit such that β–CVaR is minimized.
Accordingly, we develop the following program:

min
x,f ,θ∈X ,α

β–CVaR (26)

where X denotes the same set as that in Section II-B. Following
the procedure in Section II-B, we propose a DRO-based ap-
proach to minimize the worst-case β–CVaR (β-WCVaR), based
on the worst-case probability distribution of random contingen-
cies in the ambiguity set, D. Accordingly, we have the following
bilevel max–min program:

max
P ∈D

min
x,f ,θ∈X ,α

α+
1

1 − β
EP

[
(L(x, f) − α)+]

. (27)

Here, notice that there exist two (.)+ terms in the objective
function of β-WCVaR model (27), i.e., (L(x, f) − α)+ and
L(x, f), according to (24). To linearize Li,t(x, f), we use aux-
iliary variables, zn , for each contingency scenario, n, and add
the following constraints to β-WCVaR model (27):

znit ≥ − gni,t(x, f) ∀i ∀t ∀n (28)

znit ≥ 0 ∀i ∀t ∀n. (29)

Also, to linearize (L(x, f) − α)+ in (27), we use auxiliary
variables, un , for each contingency scenario, n, and add the
following constraints to β-WCVaR problem (27):

un ≥
∑

i

∑

t

znit − α ∀n (30)

un ≥ 0 ∀i ∀t ∀n. (31)

We eventually attain the following reformulation of
β-WCVaR problem (27):

max
P ∈D

min
x,f ,θ∈X ,α

α+
1

1 − β

N∑

n=1

pnun (32)

s.t. Constraints (28)–(31). (33)

III. SOLUTION METHODOLOGY

In this section, we describe our solution approaches for
solving both the proposed DRO-based models: WNLP [i.e.,
(21)–(23)] and β-WCVaR [i.e., (32) and (33)]. We employ the
Bender’s decomposition algorithm to solve both the models.
We explain the solution algorithms in detail in the following
sections.

A. Solution Approach for WNLP Model

Based on WNLP problem formulation, (21)–(23), we utilize
the following Bender’s decomposition framework to solve this
problem. We define the master problem and the sub-problem as
follows:

1) Master Problem: We first represent the linear reformu-
lation of (14) in the ambiguity set, D, (14) and (15), as the

Fig. 2. Solution algorithm for WNLP model.

following inequalities:

N∑

n=1

kn ≤ ϕ (34)

kn ≥ pn − p̂n ∀n (35)

kn ≥ p̂n − pn ∀n (36)

where variables kn represent |pn − p̂n |. The master problem for
WNLP model is represented as follows:

(WNLP-MP) min
p

ω1 (37)

s.t.
N∑

n=1

pn = 1 (38)

Constraints (15) and (34)–(36) (39)

Cutting planes (40)

where ω1 denotes the objective value of the sub-problem that
we will discuss in the next section. Also, constraint (38) ensures
that variables pn represent scenario probabilities.

2) Sub-Problem: In each iteration of the algorithm, given
the solution, p∗, obtained in the master problem, we solve
sub-problem ψ1(p∗) as follows:

(WNLP-SP) ψ1(p∗) = max
x,f ,θ

N∑

n=1

p∗nyn (41)

s.t. Constraints (22)–(23) (42)

x, f, θ ∈ X. (43)

3) Solution Algorithm: Since we allow load-shedding in the
system, the sub-problem is always feasible. In addition, the
master problem solution, p∗, only appears in the sub-problem
objective function and does not affect the feasibility of the sub-
problem. So, we do not need to check the feasibility of the
solution of the master problem. Therefore, to generate optimality
cuts in each iteration, for fixed WNLP-MP solutions p∗ and
ω∗

1 , WNLP-SP is solved to obtain ψ1(p∗). Then, for the case
where ψ1(p∗) > ω∗

1 , the following optimality cut is added to
WNLP-MP:

ω1 ≥
N∑

n=1

pny
∗
n . (44)

The solution algorithm is summarized in the flowchart shown
in Fig. 2.
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Fig. 3. Solution algorithm for WCVaR model.

B. Solution Approach for WCVaR Model

For WCVaR model, the problem formulation [i.e., (32) to
(33)] has a similar structure to that of WNLP model. Hence, a
similar solution procedure based on the Bender’s decomposition
is applied to solve the proposed model.

1) Master Problem: For WCVaR model, we can represent
the master problem (WCVaR-MP) as follows:

(WCVaR-MP) max
p

ω2 (45)

s.t. Constraints (38)–(40) (46)

where ω2 denotes the objective value of the sub-problem
presented in the next section.

2) Sub-Problem: For the solution, p∗, obtained by solving
WCVaR-MP, we have the following subproblem:

(WCVaR-SP) ψ2(p∗) = min α+
1

1 − β

N∑

n=1

p∗nun (47)

s.t. Constraints (28)–(31) (48)

x, f, θ ∈ X. (49)

3) Solution Algorithm: Similarly, the feasibility of the mas-
ter problem solution, p∗, to WCVaR-SP is always guaranteed.
Thus, only optimality cuts are needed. In each iteration, for the
fixed WCVaR-MP solutions, p∗ andω∗

2 , we obtainψ2(p∗). Then,
we check whether ψ2(p∗) < ω∗

2 . If so, we add an optimality cut
to WCVaR-MP as follows:

ω2 ≤ α∗ +
1

1 − β

N∑

n=1

pnu
∗
n . (50)

We can illustrate the solution algorithm for WCVaR model
by the flowchart in Fig. 3.

IV. NUMERICAL RESULTS

In this section, to show the effectiveness and efficiency of
the proposed approaches, we present numerical experiments on
a modified 6-bus test system and IEEE 300-bus test system
(available at http://www.maths.ed.ac.uk/optenergy/LocalOpt/
300busnetwork_other.html). We use C++ and CPLEX 12.6 on
a computer with Intel(R) Xeon(R) 3.2 GHz and 8 GB memory
to implement all the experiments.

For computational simplicity, we set the probability of each
component failure/contingency to be 0.01, and we consider
the critical contingencies with high impact in the contingency

Fig. 4. Modified 6-bus system.

TABLE I
BUS DATA FOR 6-BUS SYSTEM

TABLE II
LINE DATA FOR 6-BUS SYSTEM

list to increase the robustness of the proposed approaches.
Therefore, our contingency list includes the worst-consequence
contingency scenarios and the scenario of no line outage occur-
rence. We use the robust optimization approach proposed in [7]
to identify the worst-consequence contingency scenarios.

A. 6-Bus System

We test a modified 6-bus system consisting of three generation
units, seven transmission lines, and six load nodes. The 6-bus
system specifications are presented in Fig. 4 and Tables I and II.

We test this system for various contingency levels. We
construct three contingency lists for k = 1, 2, 3. For k = 1, the
contingency list includes all single transmission line contin-
gency scenarios and a no-contingency scenario. For k = 2, we
consider a contingency list of 11 scenarios (10 critical con-
tingency states out of all contingencies with k = 1, 2 and a
no-contingency state). Furthermore, for k = 3, we construct a
contingency list of 16 scenarios (15 critical contingency states
out of all contingencies with k = 1, 2, 3 and a no-contingency
state). We report the WNLP and the worst-case CVaR (WC-
VaR) (for β = 0.95) in Tables III and IV, respectively. Here, we

http://www.maths.ed.ac.uk/optenergy/LocalOpt/300busnetwork_other.html
http://www.maths.ed.ac.uk/optenergy/LocalOpt/300busnetwork_other.html
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TABLE III
WNLP FOR 6-BUS SYSTEM

TABLE IV
WCVAR FOR 6-BUS SYSTEM

also use several hardening plans with different budgets (i.e., the
number of hardened lines) to show our model’s capability for
examining the performance of different hardening decisions.
For this test system, we observe that the system reliability is
guaranteed under N − 1 security criterion both under WNLP
and WCVaR reliability indices. However, this is not the case
for k = 2, 3. Nevertheless, by putting hardening plans into ac-
tion, we are able to bring higher levels of reliability into the
system. In Tables III and IV, the first column represents harden-
ing decisions, where NH denotes no transmission line has been
hardened. For example, plan (4, 6) indicates that transmission
lines 4 and 6 are hardened. However, different hardening plans
lead to different levels of reliability. For example, plan (4, 6),
compared with plan (2, 4) in N − 2 case, or plan (4, 5, 6), com-
pared with plan (2, 4, 5) inN − 3 case, show higher WNLP but
less WCVaR (better reliability indices).

B. 300-Bus System

In this section, we test our reliability analysis models by con-
ducting experiments on a larger test system, i.e., IEEE 300-bus
test system, which consists of 300 buses, 69 generators, and
411 transmission lines. We test our models based on N − 3
transmission line contingencies. Accordingly, we create a con-
tingency list of 46 scenarios, including 45 worst-consequence
contingency scenarios among all contingencies with k = 1, 2, 3
and a no-line-outage scenario. In our experiments, we evalu-
ate our model’s performance by using different hardening plans
with various hardening budgets.

1) Sensitivity Analysis of ϕ: We conduct experiments for
different values of ϕ (the distribution distance tolerance level)
to see how the value ofϕ affects our model’s performance. Here,
we set the value of δ (the scenario probability tolerance level)
to be 0.005. Tables V and VI represent the values of WNLP and
WCVaR (for β = 0.95), respectively. In Table V, we observe
that as the number of hardened lines increases (more hardening

TABLE V
EFFECTS OF ϕ ON WNLP

TABLE VI
EFFECTS OF ϕ ON WCVAR

TABLE VII
EFFECTS OF δ ON WNLP

budget), the worst-case probability of no load-shed increases.
From Table VI, we see that with more hardened lines, the worst-
case CVaR value decreases. In other words, with more hardening
budget, the transmission system reliability increases. We also
observe that as the value of ϕ decreases, the value of WNLP
increases (WCVaR decreases). In fact, with smaller values of
ϕ, the ambiguity set of probability distributions gets tighter
and both WNLP and WCVaR models become less conservative.
Therefore, the objective value of WNLP increases (WCVaR
decreases). In addition, by comparing the results in Tables V and
VI, another important observation is that although the values of
WNLP for plans 208 and 316 are the same, there is a significant
difference between the values of WCVaR for these plans. This
observation admits that the worst-case CVaR can bring about
a better insight of system reliability than that by WNLP. The
computational times (denoted by T), for all the settings, are also
presented in Tables V and VI.

2) Sensitivity Analysis of δ: Here, we assess the effects of the
value of δ on the performance of our models. We use the same
contingency list and the same hardening plans as Section IV-B1.
We set the value of ϕ to be 0.01. We report WNLP and WCVaR
values for different values of δ, in Tables VII and VIII, respec-
tively. We see that as the value of δ increases, the value of WNLP
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TABLE VIII
EFFECTS OF δ ON WCVAR

TABLE IX
LOAD-SHEDDING (MW)

decreases (WCVaR increases). That is because as the value of
δ increases, the ambiguity set becomes larger, and our models
get more conservative. Notice again, infrequency of component
failures and the scarcity of failure historical data lead to rela-
tively large values of ϕ and over conservatism. In such cases, as
shown in Tables VII and VIII, our model’s conservatism can be
adjusted by changing the value of δ.

3) Comparison With Simulation Method: In this section, we
compare the proposed approaches with the traditional simula-
tion method (denoted by Sim). We numerically show that the
proposed WNLP and WCVaR approaches are more reliable than
Sim. First, we generate 1000 sample contingency scenarios as
the historical record of contingencies, and obtain the reference
distribution, P̂ , and the ambiguity set, D, (see Section II-A)
based on the historical data. Then, we use Sim to get the opti-
mal generation level, power flow, and phase angle (x∗, f ∗, θ∗)Sim

with the reference distribution, P̂ ; we then solve WNLP
to get the optimal generation level, power flow, and phase
angle, all denoted by (x∗, f ∗, θ∗)WNLP, and worst-case distri-
bution, P-WNLP; we then solve WCVaR to get the optimal
generation level, power flow, and phase angle, all denoted by
(x∗, f ∗, θ∗)WCVaR, and worst-case distribution, P-WNLP. No-
tice, to get (x∗, f ∗, θ∗)Sim, we use constraints (1)–(10), for each
scenario n, with the objective of minx,f ,θ

∑N
n=1 p̂n sn . We then

fix the decisions, (x∗, f ∗, θ∗), generated by Sim, WNLP, and
WCVaR accordingly and test them with 100 000 new generated
contingency scenarios. We compare the load-shedding amount
using the obtained (x∗, f ∗, θ∗) for Sim, WNLP, and WCVaR,
and we report the results in Table IX for variety of hardening
plans. We observe that the operation decisions obtained using
both WNLP and WCVaR lead to less amount of load-shedding
as compared to the one by Sim. That is because the decisions
obtained using WNLP and WCVaR are based on the worst-case
probability distribution of contingencies, which are more robust
and reliable than the traditional simulation approach.

TABLE X
AMOUNT OF ADJUSTMENT

TABLE XI
95% CONFIDENCE INTERVAL OF NO LOAD-SHED PROBABILITY USING SIM

Then, we test the case in which the operation decisions,
(x, f, θ), are adjustable in real-time operations. In this case,
we compare the amount of necessary adjustments in (x, f, θ) to
minimize the load-shedding for three approaches, respectively.
We report the results in Table X for different hardening plans.
We observe that the operations decisions of both WNLP and
WCVaR require less adjustments than the ones of Sim, which
means that the decisions obtained by WNLP and WCVaR are
more robust than the ones obtained by Sim, and, therefore, lead
to less real-time operational costs.

In addition, we show that the proposed method is computa-
tionally efficient than the transitional simulation approach. First,
we set γ = 0.95 and get the worst-case no load-shed probabili-
ties via WNLP model. Then, we generate 100 samples of 1000
contingency scenarios and obtain the no load-shed probability
for each sample, and then obtain the 95% lower tailed confi-
dence interval of no load-shed probability by Sim. We report the
bounds of the 95% confidence interval and their corresponding
CPU times in Table XI for different hardening plans. We see that
the bounds of the confidence intervals (i.e., worst-case no load-
shed probabilities) are very close to the ones of WNLP with γ =
0.95 (i.e., the case of ambiguity set with 95% confidence level).
However, we observe that the CPU times of Sim are significantly
higher than those of WNLP. These results show that, by using
WNLP model, we are able to obtain a lower bound for no load-
shed probability without conducting a huge number of experi-
ments and simulations, and it is more computationally efficient.

V. CONCLUSION

In this paper, we proposed two reliability analysis schemes
for power transmission system hardening under distributional
uncertainty of random contingencies and under N − k security
criterion. We used the DRO-based concept to develop two opti-
mization models to assess transmission network reliability for a
given transmission hardening plan. First, we developed a model
to quantify the worst-case probability of no load-shedding oc-
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currence over the entire system. In the second model, we utilized
the CVaR as a risk measure and computed the worst-case CVaR
to evaluate the transmission system reliability. In both models,
instead of assuming a fixed probability estimate (by historical
data or expert information) for contingency scenarios, we let the
ambiguous probability distribution of contingencies belong to
an ambiguity set. Then, we considered the worst-case probabil-
ity distribution in the ambiguity set to make a robust reliability
analysis of the system. We formulated both models in bilevel
programs and employed the Bender’s decomposition algorithm
to solve them. Using numerical experiments, we showed that our
models are capable of distinguishing more effective hardening
plans from others. Besides, we observed that as the size of his-
torical data increases, the conservatism of our models decreases.
In addition, we showed that, in case of scarcity of historical data,
the conservativeness of the proposed models can be adjusted by
the system operators.
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