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Abstract

We analyze the effect of adding a weak, localized, inhomogeneity to a two
dimensional array of oscillators with nonlocal coupling. We propose and
also justify a model for the phase dynamics in this system. Our model is a
generalization of a viscous eikonal equation that is known to describe the
phase modulation of traveling waves in reaction—diffusion systems. We show
the existence of a branch of target pattern solutions that bifurcates from the
spatially homogeneous state when ¢, the strength of the inhomogeneity,
is nonzero and we also show that these target patterns have an asymptotic
wavenumber that is small beyond all orders in €.

The strategy of our proof is to pose a good ansatz for an approximate form
of the solution and use the implicit function theorem to prove the existence
of a solution in its vicinity. The analysis presents two challenges. First,
the linearization about the homogeneous state is a convolution operator of
diffusive type and hence not invertible on the usual Sobolev spaces. Second, a
regular perturbation expansion in € does not provide a good ansatz for applying
the implicit function theorem since the nonlinearities play a major role in
determining the relevant approximation, which also needs to be ‘correct’ to all
orders in €. We overcome these two points by proving Fredholm properties for
the linearization in appropriate Kondratiev spaces and using a refined ansatz
for the approximate solution which was obtained using matched asymptotics.
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1. Introduction

Reaction—diffusion equations describe the evolution of quantities u(x,#) that are governed
by ‘local nonlinear dynamics, given by a reaction term F'(u), coupled with Fickian diffusion,
% = DAu+ F(u). (1)
They are generic models for patterns forming systems and have applications to a wide range
of phenomena from population biology [Fis37, KPP37], chemical reactions [Win73, KHS81,
Mer92, TF80], fluid [NW69, Seg69] and granular [ER99, AT06] flow patterns, and in waves
in neural [Fit61, NAY62, CHO09] and in cardiac GJP 795 tissue.

The onset of self-organized patterns in reaction—diffusion models typically corresponds to
a bifurcation where a steady equilibrium for the local dynamics & = F(u) loses stability either
through a pitchfork bifurcation, giving a bistable medium, or through a Hopf bifurcation,
giving an oscillatory medium. In the latter case, a defining feature is the occurrence of tempo-
rally periodic, spatially homogeneous states, and an analysis of the symmetries of the system
show that they can generically give rise to traveling waves, spiral waves, and target patterns
[GSS88, DSSS05]. A prototypical example of these behaviors is the Belousov—Zhabotinsky
reaction where chemical oscillations are manifested as a change in the color of the solution.
This system displays self-organized spiral waves, i.e. they form without any external forcing
or perturbation, as well as target patterns, which in contrast form when an impurity is present
at the center of the pattern [SMO06, PV87, TF80].

As already mentioned, these patterns are not specific to oscillating chemical reactions and
in fact can be seen in any spatially extended oscillatory medium. In this more general set-
ting, and for the particular case of target patterns, an impurity or defect constitutes a local-
ized region where the system is oscillating at a slightly different frequency from the rest of
the medium. Depending on the sign of the frequency shift, and for systems of dimensions
d < 2, these defects can act as pacemakers and generate waves that propagate away from the
impurity. In the case when d = 2, these waves are seen as concentric circular patterns that
propagate away from the defect.

Showing the existence of these target pattern solutions in reaction—diffusion systems, and
related amplitude equations, has been the subject of extensive research, see [KH81, TF80,
Hag81, Nag91, MM95, GKS00, SM06, KS07, Jar15] for some examples as well as the refer-
ence in [CH93]. Mathematically one can describe these patterns as modulated wave trains
which correspond to solutions to (1) of the form u(x, t) = u.(¢(x,1); VP(x, 1)), where u. (§; k)
is a 27 periodic function of £ that depends on the wavenumber, k [KH81, DSSS05, KS07]. In
other words, these patterns correspond to periodic traveling waves, whose phase varies slowly
in time and space. Using multiple scale analysis one can show that the evolution of the phase,
¢, over long times is given by the viscous eikonal equation,

¢ = D¢ — |V|*.

This equation has been studied extensively in the physics literature, starting with the work of
Kuramoto [KT76]. More recently it was shown that it does indeed provide a valid approx-
imation for the phase modulation of the patterns seen in oscillatory media [DSSSO05].

Since oscillating chemical reaction can be thought of as a continuum of diffusively coupled
oscillators, it is not surprising that an analogue of the above equation can also be derived as a
description for the phase dynamics for an array of oscillators. Indeed, in appendix A we for-
mally show that the following integro-differential equation provides a phase approximation
for a slow-time, O(1) in space, description of nonlocally coupled oscillators,
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Go=Lx¢—|T*Ve|* +egxy) (xy) R )

This equation will be the focus of our paper. Here the operators £ and J are spatial kernels
that depend on the underlying nonlocal coupling between the oscillators. In particular, the
convolution kernel £ models the nonlocal coupling of these phase oscillators and can be
thought of as an analog of A. Similarly, the term |7 * V<ﬁ|2 =J x V¢ - T x Vo represents
nonlocal transport along diffused gradients and is a generalization of the quadratic nonlinear-
ity of the viscous eikonal equation. Finally, the function g(x,y) represents an inhomogeneity
that perturbs the ‘local’ frequency of the oscillators. Notice that the viscous eikonal equa-
tion is recovered when £ and J are the Laplacian and the identity operator, respectively. This
framework also incorporates other models for spatio-temporal pattern formation, including
the Kuramoto—Sivashinsky equation which corresponds to £ = —A — A%, J = Id.

Our mathematical motivation for studying the above model comes from its nonlocal aspect
and the resulting analytical challenges. The approach we propose for studying the operator £
is novel and could be adapted to study other problems which involve similar convolution oper-
ators. In particular, the type of linear operators that we will consider are a generalization of
the kernels used in neural field models or continuum coupled models of granular flow. Just as
in reaction—diffusion systems, these models exhibit spatio-temporal periodic patterns, bumps,
and traveling waves, (see [Coo05, Erm98, PEO1, KB10a] for the case of neural field models,
and [UMS98, VO98, VOO01, AT06] for the case of patterns in granular flows). In particular,
among the examples of traveling waves seen in experiments and replicated in the neural field
models are spirals and target patterns [HTY t04, KB10b, FB04], which are of interest to us.

The challenge however is that, like our model (2), these systems are not amenable to meth-
ods from spatial dynamics which are typically used to study these phenomena. So we look
for a more functional analytic approach, specifically using the implicit function theorem, for
proving the existence of solutions. As with other integro-differential equations the difficulty
comes from the linearization, which is a noncompact convolution operator, and in general not
invertible when considered as a map between Sobolev spaces. This is a significant analyti-
cal challenge, and one way to overcome this difficulty is to use specific convolution kernels
that allow for these integro-differential equations to be converted into PDEs via the Fourier
Transform [LTO03], or in the radially symmetric case use sums of modified Bessel functions as
models for synaptic footprint to simplify the analysis [FB04].

The approach we consider in this paper is broader as it allows us to consider a larger class
of convolution kernels by showing that these operators are Fredholm in appropriate weighted
spaces. This approach is similar to the one in [JS16], where we treated the one dimensional
case and showed existence of target patterns in a large one dimensional array of oscillators
with nonlocal coupling. For the applications we have in mind, e.g. neural field models, we
need to extend these results to two dimensional arrays.

The two dimensional case is technically more interesting because a regular perturbation
expansion in € does not always provide the correct ansatz. Indeed, in the case with local cou-
pling, the equation

—w=A¢— |V’ +eg(x.y), (xy)€R?

which results from inserting the ansatz ¢(x,y,t) = ¢(x,y) — wt into the perturbed viscous
eikonal equation, is conjugate to a Schrodinger eigenvalue problem via the Hopf-Cole trans-
form, ¢ = — In(¥):

Wl = AU — gg(x,y)¥, (x,y) € R%
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In two dimensions, it is well known that the Schrodinger eigenvalue problem has bound states
ife [ g < 0[Sim76]. Notice that the ground state eigenfunction ¥, can be chosen to be every-
where positive, so that —In(¥y) — wt does define a phase function ¢ solving the viscous
eikonal equation with inhomogeneity. At the same time, the eigenvalue corresponding to the
ground state is small beyond all orders of € (see [Sim76] and section 2 below), and is therefore
not accessible to a regular perturbation expansion. This is the other analytical challenge that
we have to overcome, and our approach is to develop a superasymptotic perturbation expan-
sion for ¢, i.e. an approximation whose error is O(exp(—|c/e|)) and captures behaviors that
are small beyond all orders in €, [Boy99].

To show the existence of traveling waves for equation (2) we make the following assump-
tions on the convolution kernels £ and J. First, we assume the kernel £ is a diffusive and
exponentially localized kernel that commutes with rotations. Consequently, its Fourier sym-
bol L depends only on & = |k|*>. We also impose additional properties that we specify in the
hypotheses 1.1 and 1.2. A representative example to keep in mind throughout the paper is the
convolution kernel that would result in the formal operator A(Id — A)~!.

We reiterate that the model (2) is derived under the assumption that the phase ¢(x, r) varies
slowly in time, with no assumptions on its spatial variation. If we assume that the solutions
also vary slowly in space, then hypothesis 1.2 implies that the nonlocal operator £ can be
(formally) replaced by A, and (2) reduces to the ‘local’ viscous eikonal equation. Indeed, this
is the setting for a substantial body of work on weakly coupled nonlinear oscillators [Kur84,
SL12]. Our additional contribution is that we rigorously show the existence of target solutions
of (2) that vary slowly (on a scale ~e'/€) in space and time, if the model satisfies:

Hypothesis 1.1. The multiplication operator L is a function of £ := |k|2. Its domain can be
extended to a strip in the complex plane, 2 = R x (—i&, i) for some sufficiently small and
positive {y € R, and on this domain the operator is uniformly bounded and analytic. Moreo-
ver, there is a constant &, € R such that the operator L(£) is invertible with uniform bounds
for [Reg| > &,

Our main result, theorem 1 requires £ = 1 in the following hypothesis. We state the hypoth-
esis in more generality because some of the intermediate results also hold more generally with
> 1

Hypothesis 1.2. The multiplication operator L(£) has a zero, £*, of multiplicity £ > 1
which we assume is at the origin. Therefore, the symbol L(§) admits the following Taylor
expansion near the origin.

L(&) = (9" +0( ), for &~0.

Hypothesis 1.3. The kernel J is radially symmetric, exponentially localized, twice con-
tinuously differentiable, and

J(x) dx = 1.

R2

Our strategy to show the existence of traveling waves will be to first establish the Fredholm
properties of the convolution operator £ following the ideas described in [JSW17]. This will
allow us to precondition our equation by an operator .# , resulting in an equation which has
as its linear part the Laplace operator. We then proceed to show the existence of target patterns
in the nonlocal problem. More precisely, we prove theorem 1 where we use the following
notation:
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e Here L2 (R?) denotes the L? space with weight (1 + [x|?)7/2.

e Similarly, HS (R?) denotes the Hilbert space H* with weight (1 + [x|?)?/2.

e Lastly, the symbol M:?(R?) describes the completion of Co(R?) functions under the
norm

p
lull oy = HDO‘M(X) (1 4 [x[2)(Han/2

| <s

Lr(RY)

We describe these last spaces with more detail in section 3.

Theorem 1. Suppose that the kernels L and J satisfy hypotheses 1.1, 1.2 with £ = 1, and
1.3. Additionally, suppose g is in the space L:(R?) with o > 1 and let M = % fRZ g <O.
Then, there exists a number ey > 0 and a C' map

I: [0,e0) — DcCML (R
€ — P

where y > 0and D = {¢ € ML’EI(RZ) | Vo € HL(R?)}, that allows us to construct an e-de-
pendent family of target pattern solutions to (2). Moreover, these solutions have the form

®(r,0,t;¢) = —x(A\e)r) In(Ko(A(e)r)) + 1(r,0:¢) — XN2(e)t,  A(e) > 0.

In particular, as r — 00,

o (r;e) < Cr=% forC € Randé € (0,1); and
e A\(e)> ~4C(e) e exp (3; ) where C(e) represents a constant that depends on €, and
Ye is the Euler constant.

In addition, these target pattern solutions have the following asymptotic expansion for their
wavenumber

1 1
k(e) ~ exp <5M> +0 (r‘”l) as r— oo.
Remark 1.4. If g € L2(R?) with o > 1, it follows that
1/2
/ 181(1 -+ %) dx < { / P+ xP)dx / (1+ |x|2>-1-<”-”/3dx] <o,
R2 R2 R2
and

o/(o+1) ) 1/(o+1)
/ |g|2<7/(<7+1)dx < |:/ |g‘2(1 + |X|2)de} |:/ (1 + |x|2)*0 dx] < 0.
R2 R2 R2

Consequently, there is > 0 such that [g, [g(x)|(1 + [x|°)dx < oo and [, |g(x)['dx < oo,
so that the Schrodinger operator —A + eg satisfies the hypothesis in [Sim76].

Remark. Here and henceforth in the paper the function x (x) € C°°(R)is a cut off function,
whose precise form is immaterial, and satisfies x(x) = 1 for|x| > 2 and x(x) = 0 for |x| < 1.
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The rest of this paper is organized as follows: in section 2 we analyze the case with local
coupling and show the existence of traveling waves for the viscous eikonal equation using
matched asymptotics. In section 3 we review properties of Kondratiev spaces and state
Fredholm properties of the Laplacian and related operators, leaving the proofs of these results
for the appendices. Finally, in section 4 we derive Fredholm properties for the convolution
operator £ and then, guided by the results from section 2, we proceed to prove theorem 1. We
present a formal derivation of the nonlocal eikonal equation (2) in appendix A. In appendix B,
we prove various subsidiary results that are needed for the proof of theorem 1.

2. Matched asymptotics for 2D target patterns

As we discussed in the introduction, the viscous eikonal equation

O = A — Vo[> +eg(x,y), (x.y) € R 3)

is an abstract model for the evolution of the phase of an array of oscillators with nearest neigh-
bor coupling [DSSS05]. The perturbation eg(x,y), a localized function, represents a small
patch of oscillators with a different frequency than the rest of the network. It is well known
that this system can produce target patterns that bifurcate from the steady state, ¢ = 0, when
the parameter ¢ is of the appropriate sign. Our aim in this section is to determine an accu-
rate approximation to these target wave solutions using a formal approach based on matched
asymptotics.

We therefore consider solutions to equation (3) of the form ¢(x, y,¢) = (i(x, y) — wt, where
¢ solves

—w=A¢—|V|*+eg(xy), (xy) eR>, w>0. 4)

We also assume in this section that g is a radial and algebraically localized function that
satisfies

/ lg(N|(1 +r)7rdr < 0o, forsome o > 0. (5)
0

This simplifies our analysis since we can restrict ourselves to finding radially symmetric solu-
tions. In addition, because the viscous eikonal equation (4) only depends on derivatives of ¢,

we can recast it as a first order ODE for the wavenumber ¢ = ¢,

¢

G+ S = tegln) = —w. ®)

Here, w = w(e) is an eigenparameter, i.e. it is not specified, rather it is determined in such a
way as to ensure that the solutions satisfy the required boundary conditions.

For radial solutions that are regular at the origin, {(r)is O(r) as r — 0, and we can rewrite
the ODE in an equivalent integral form

¢ =1 / 1) — w — eg(n)] ndn. )

r

Moreover, because we are bifurcating from the trivial state ( = 0, we can assume that ( is
small if € is small, and posit the following regular expansions

(=eC+8G+EG+-,

w:Ew1+€2w2+E3u)3+~-~.
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Substituting these expressions in (7), we obtain that at O(¢),

G=-7 - ;/0 g(n) ndn.

Now, because we are interested in target patterns, solutions should satisfy { — k() >0
as r — 0o, where k(g) is the asymptotic wavenumber. This requires us to consider func-
tions (; that have a finite limit as r — oo, and forces us to pick w; = 0. The result is that
réi(r) = — [g(r) rdr = =M < oo, in the limit of r going to infinity.

At the same time, from assumption (5) on the algebraic localization of g, we have the
quantitative estimate

M — ri(r)] <

o | e e < c4 0,

so that at order O(£?) we find

Cz=—%+%/0 ¢t mdn,
with ¢ in L!'(R?). Again the boundary conditions force w, = 0, and as a result we obtain
G~ MTZ In ( f) for large values of r. Here the constant r. depends on g and is given by the
following limit

In(r.) = lim [ln(r) — #/0 G Udn] )

r—00
which we know exists from the estimate for |M — r(; (r)].
Note that these expressions for w, and (, imply that the asymptotic wavenumber is o(g2).
In fact, continuing this procedure it is easy to check that we get w; = 0 for all j, so that the
frequency w is o(e") for all orders in €. In addition, the expressions for {; and ¢, yield the
expansion

¢~ M L e2M?* In(r/r.) n

r

(®)

whose terms are not uniformly ordered. For instance,

1
2
€ > e for >r.e — .
| <2| |<l| r r Xp(€M|>

This suggests that the above inner expansion is not uniformly valid. We therefore need to
introduce an outer expansion and match both solution in an intermediate region given by
r~reexp(le!M~!|).

In this intermediate region the inhomogeneity, £g(r), and the frequency, w, are small com-
pared to the other terms in the equation, so that the radial eikonal equation (6) reduces to

¢

Cr+7*<2z0.
r

We can solve this explicitly to find that

1

<= r(C—n(r))’
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where C = C(e) is a, possibly € dependent, constant of integration. Comparing this
result with the inner expansion (8) leads to C ~ E_T/}’ to leading order. We can then write
C=—(eM)~' 4+ co+cie + ... and for fixed r and as € — 0, obtain

¢

Comparing again with the inner expansion (8), we see that r. = exp(cy).
In the outer region, where we retain the frequency, w, and neglect the inhomogeneity, g,
solutions are described by the equation

¢

r

eM  2M?(1 —
BETE L

Cr"‘ _sz_w‘

If we define the “outer’ variable £ = y/wr and scaling function F so that {(r) = /wF(y/wr),
then F satisfies the w (and hence also €) independent equation F¢ + F/§ — F? = —1. Using
the (differentiated) Hopf-Cole transformation F(&) = —¢'(£)/¢(€), and then solving for 1)
gives
Ko (§
Fie) = K]
Ko(¢)
where Ko () is the modified Bessel’s function of the first kind [WW96]. Consequently, for
& = y/wr < 1fixed and € — 0, a solution ¢ of the outer equation is given by
1 (C))
r(—In(v/wr/2) —.)’
where 7, = 0.5772 ... is the Euler constant [AS92]. This approximation is also valid in the

intermediate region, allowing us to match it to the inner expansion,

1 1

~

H(—oh () = In() (=3 mw+In2 =7 —In(r)’

¢(r)

and obtain the following approximation for the frequency

4exp(—27e) ( 2 )
w~—-——2exp| — |.

r2 eM

c

Hence, if we assume eM < 0, this does indeed show that w is small beyond all orders in €.

Remark. The viscous eikonal equation (3) is conjugate to a Schrodinger eigenvalue problem
via the Hopf-Cole transform. The frequency w = —0,¢ in the viscous eikonal equation cor-
responds to the ground state energy for the Schrodinger operator A — £g(r). Indeed, the ex-
pression above is a refinement of the results from [Sim76] and [KS07] for the ground state
eigenvalue/frequency respectively, in that we have an expression for the numerical prefactor.

Remark. Integrating ¢ = 0,¢, we can determine the phase ¢(r) for the target patterns. From
(8) and (9) we get the inner and outer expansions for the phase ¢

—1In [6_—1‘}1+co+616+~~—1n(7‘)] r fixed,e — 0

qﬁ(r) ~ ¢o + {—ln(Ko(\/(TJV)) &= \/ar fixed,e — 0

where ¢y is an arbitrary phase shift corresponding to a constant of integration.
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The matching procedure above relied strongly on the coupling kernels £ and J being local,
and having a radial inhomogeneity g(r), so the results do not immediately carry over to the case
of nonlocal coupling and/or nonradial and algebraically localized inhomogeneities. Figure 1
depicts numerical results for particular cases of the nonlocal eikonal equation (2) given by

¢ =(1d —A)'A¢— [V(Id — A) "¢ +eg(x.y), (r.y) €R?,

with ¢ = —0.5 and g(x,y) = 10 % (1 + 3x> +y?)~%/? in 1(a) and (b) (respectively g(r,0) =
10 % (1 + cos(46))/(1 + r)* in 1(c) and (d)). This evolution equation was integrated using a
spectral discretization for the spatial operator and exponential time differencing (ETD) for the
time stepping [CMO02, KT05]. The simulations where done for a box of length L = 100 with
N = 512 grid points and a time step of 27 = 0.5, see the code at [Jar18]. We will present a full
discussion of our numerical methods and results in future work; here we only note that the
far-field behavior of the target waves are (nearly) radially symmetric (see figure 1) even in the
general nonlocal problem. Indeed, setting 0,¢ = —w with w > 0, and rescaling to the ‘outer
variables’ X = /wx,y = \/wy, we get V= w12y, A =w A, Further, from the algebraic
localization of g, it follows that

1
—g(w™ %%, w™%5) ~ O(w?) = Oasw — 0.
w

Consequently, the (formal) € — 0 limit equation in the outer variables is the viscous eikonal
equation

—1=(Id —wA)"A¢ — |[V(Id —wA) "¢ + ew g(w™2k,w?9) = Ap — V|
This argument, together with the numerical results depicted in figure 1, suggests that, even

for general inhomogeneities, we may approximate the dynamics of target waves solutions in
the outer region by a radial viscous eikonal equation

= e+ 10,0~ (0,6)"

This intuition will guide our analysis of the nonlocal equation (2) for general coupling kernels
and nonradially symmetric, algebraically localized perturbations g. We will show that the fre-
quency indeed scales as w ~ exp (ELM) with eM < 0, and that the target waves that bifurcate
from the steady state are radially symmetric far away from the inhomogeneity. Our strategy
consists of first finding, in section 4.2, solutions to equation (2), with w = 0, which give the
appropriate intermediate approximation. Then in section 4.3 we find the ‘outer’ solutions to
equation (2) by treating the frequency w as an extra parameter. Finally, in section 4.4 we derive
a relation between the frequency w and the parameter € using asymptotic matching, and then
proceed to prove the results of theorem 1.

3. Weighted spaces

We define the Kondratiev space [McO79], M%7 (R?), withd € N,s € N[ J{0},7y € R,p € (1,00),
as the space of locally summable, s times weakly differentiable functions # : R? — R endowed
with the norm

ol ey = 2 HDa”(X) (L |x?)Ortled/

lal<s

p

Lr(RY)
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Figure 1. g(x,y) = (1+312179ry2)3/2 in figures (a) and (b). Notice how the pattern in the far
field is radially symmetric, figure (a), where as near the inhomogeneity it is elliptical,

figure (b). On the other hand, figures (c) and (d) correspond to a system perturbed by

0 40
g(0.0) = 1tesston
field, figure (c), even though the inhomogeneity, g, is not radially symmetric, which
results in a nonradially symmetric core, figure (d).

. Again notice how the pattern is radially symmetric in the far

From the definition, it is clear that these spaces admit functions with algebraic decay or growth,
depending on the weight ~, and that these functions gain localization with each derivative.
Moreover, given real numbers o, 3, such that & > 3, the embedding M3 (R?) C M} (R)
holds, and additionally if s and r are integers such that s < r then M5 (R?) C MZ”(R?). As in
the case of Sobolev spaces, we may identify the dual (MS?(R))* with the space M_>7(R?),
where p and g are conjugate exponents, and in the case when p = 2 we also have that Kondratiev

spaces are Hilbert spaces. In particular, given f, g € Mf;2 (R9) the pairing
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|a| <s
satisfies all the properties of an inner product. This is not hard to see once we notice that for
every f € L2 (R?) the function f(x)(1 + x|2)7/2 is in the familiar Hilbert space L?(R¢).
We will use this last property to decompose the space Mi'z(Rd ) into a direct sum of its

polar modes. Here we restrict ourselves to the case d =2 which is relevant for our analy-
sis, but mention that a similar decomposition is possible in higher dimensions. More pre-

cisely, using the notation Mf:{’Y(Rd ) to denote the subspace of radially symmetric functions in
M:P(R?), we show that

Lemma 3.1. Given s € N|J{0} and v € R, the space Mfy’z(Rz) can be written as a direct
sum decomposition

Ms2 ]RZ @m’y,

where n € Z and

ml, = {u € M*(R?*) | u=w(r)e" and w(r) € M2 (R?)} .

The proof of this result follows the analysis of Stein and Weiss in [SW16].

Proof. We need to show that each element f € M>” (R?) can be well approximated by an
element in the direct sum @m To obtain a candldate function in the latter space we first
identify R? with the complex plane C by letting z = x + iy for (x,y) € R?. Then, using the
notation z = re'® we write f(z) = f(re'?) for each function f € M*?(R*). By Fubini’s theo-
rem the function f(re'®)is in H*([0,27]) for a.e. r € [0, 00), so we may express this function
as a Fourier series in 6.

1 21

=Y fu(r)e™, where f,(r) = =) F(rel?) - e do.

ne”Z

Notice that the functions f,(r) are in the space Mﬁ;,zy (R?), so that this sum is the desired can-
didate function. Because the series ZN [f,,( )\2 is monotonically increasing and because

by Parseval’s identity it converges to 5- fo 19)2d6), letting gy(r) =27 SN MAGIEE
straight forward calculation shows that

oo 27 oo 2 )
/ ( IF = enl? d9> (1+7)7rdr = / [( I (re)? cw) .
0 0 0 0

Then, by the monotone convergence theorem we may conclude

Hmre”) —2m Y fulr)e

(1+ r2)7rdr.

= Hf—gNHLg,(Rz) —0, as N — oo,
2 (R)

as desired. Moreover, since for a.e. r € [0,00) the function f € H*([0,27]), a simi-

lar argument can be carried out to show that as N — co the expressions

05f (ret?)—
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o ZﬁN (in)f, (r)ei ) — 0 for all integers o < s. This completes the proof of the
L’Y

lemma. O

We also have the following result describing how elements in M}Y’z(]Rd ) decay at infinity
(see appendix B.1 for a proof).

Lemma 3.2. Given fe M (RY), then |f(x)] < C|[f||]‘f4/fz(Rd) (14 [x[2) 02 g
X — 00,

In addition, the next lemma characterizes the multiplication property for Kondratiev spaces.
The lemma is more general than we need in the sense that it holds for complete Riemannian
manifolds that are euclidean at infinity, (M, e). A proof of this result can be found in [CBC81].
We have adapted the notation so that it is consistent with our definition of Kondratiev spaces.

Lemma3.3. If (M, e)is a complete Riemannian manifold euclidean at infinity of dimension
d, we have the continuous multiplication property

M3 (M) x M (M) — M3 (M)
(fiufo) — fi - fo

provided sy, s = s, s < sy +s1 —d/2,and v < v + vy, +d/2.

3.1. Fredholm properties of the Laplacian and related operators

The main appeal of Kondratiev spaces for us is that the the Laplace operator is a Fredholm
operator in these spaces. This is summarized in the following theorem, whose proof can be
found in [McO79]. This result is the basis for deriving Fredholm properties for other linear
operators that will be encountered in section 4.

Theorem 2. Ler 1 <p=q%1<oo, d>2, and y#£d/q+m or y#£2—d/p—m, for
some m € N. Then

A ML (RY) — LO(RY),

is a Fredholm operator and

(1) for2 —d/p < v < +d/q the map is an isomorphism;
(2)ford/qg+m <~y <d/qg+m+ 1, m €N, the map is injective with closed range equal to

Ry, = fEL,’Y’:/f(y)H(y):OforallHEU’Hj ;
j=0

(3)for2—d/p—m—1<~y<2—d/p—m méeN, themap is surjective with kernel equal
to

Here, H; denote the harmonic homogeneous polynomials of degree j.
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On the other hand, if y =2 —d/p — m or v = d/q + m for some m € N, then A does not
have closed range.

Notice that we can use the result from lemma 3.1 to diagonalize the Laplacian. That is,
given u € Mi’EZ(RZ),

2
Au = A <Z un(r)ein9> = Z <8rrun + %arun - %’/M) ein@ = Z(Anun)eing,

n€zZ nez n€Z

where u, € M2, (R?).
One can now combine this decomposition together with theorem 2 to arrive at the follow-

ing lemma.

Lemma 3.4. Let v € R\Z, and n € Z. Then, the operator A, : Mrz}ifz

2 2 (2
(R?) - L2, (R?)
given by

2

1 n
An¢ = arr(b + 78r¢ - 7¢
r r

is a Fredholm operator and,

(1) forl —n <~y <n+ 1, the map is invertible;
(2) for~y > n+ 1, the map is injective with cokernel spanned by r'';
(3) for~y <1 —n, the map is surjective with kernel spanned by r".

On the other hand, the operator is not Fredholm for integer values of .

The next lemma requires that we specify some notation. In this paper we use the sym-
bol W3 to denote the space of locally summable, s times weakly differentiable functions
u: RY — R endowed with the norm

Wi (Re) = > “Da”(x) A1+ X2

lal<s

p

Lr(R4)

[

Then, we write W2 to denote the subspace of radially symmetric functions in Wj*. With this
notation we can summarize the Fredholm properties of the operator %), defined in the next
lemma.

Lemma3.5. Giveny € R )\ € [0,00), and p € (1,0), the operator £ : D — LP, (R?)
defined by

P =0,0+ 18,@ —2X0,®
r

and with domain 29 = {u € Mr]”wpfl

(R?) | O,u € WIL(R?)}, is Fredholm for v #1—2/p.
Moreover,

e it is invertible for v > 1 — 2/p, and
o ir is surjective with Ker = {1} fory < 1—2/p.

Proof. The result follows from proposition B.6 and lemma B.5 in appendix B.3,
which show that the operator £, = (9, + % —2X)0, is the composition of a Fredholm
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operator, O, :Mrlﬁfl(Rz) — M!#(R?), and an invertible operator, (9,+1—2)\):
1p (T2 2

W, D(R*) — L7 (R?). O
Lastly, we include the following proposition whose proof can be found in appendix B.2.

Proposition 3.6. Lety € R, o, 8 € Z1 | J{0}, m,d € ZT, and | € 7. Then, the operator,

A™(Id —A)™":Dc L,‘;fzm(Rd) — L,f(Rd),
with domain D = {u € L ,, (R?) | (Id = A)u € Mi’f’gm(Rd)}
e is a Fredholm operator for a +d/p <y < —f — d/p + 2m with kernel and cokernel
given by
B a
Ker = U Hjx, Coker = U Hjxs
j=0 j=0
e and not Fredholm for values of v € {j+d/p :j € Z}.

4. Nonlocal eikonal equations

At the outset, we recall our model nonlocal eikonal equation (2) and the hypotheses on the
coupling kernels. Our goal for this section is to show the existence of target wave solutions for
(2) which bifurcate from the spatially homogeneous solution. We concentrate on the equation

G =Lxp—|T * V<z5|2 +eg(xy), (xy) e R?,

where again we assume L is a diffusive kernel that commutes with rotations. As a conse-
quence its Fourier symbol, L(k), is real analytic and a radial function. We also recall the fol-
lowing assumptions.

Hypothesis. 1.1 The multiplication operator L is a function of £ := [K|?. Its domain can be
extended to a strip in the complex plane, @ = R x (—i&p, i) for some sufficiently small and
positive §y € R, and on this domain the operator is uniformly bounded and analytic. Moreo-
ver, there is a constant &, € R such that the operator L(¢) is invertible with uniform bounds
for [Re&| > &,

Note that, because L(€) is analytic, its zeros are isolated.

Hypothesis. 1.2 The multiplication operator L(§) has a zero, £*, of multiplicity £ which
we assume is at the origin. Therefore, the symbol L(§) admits the following Taylor expansion
near the origin.

L(§) = (=) +0("™"), for &~ 0.
In particular, we pick ¢ = 1.

Hypothesis. 1.3 The kernel J is radially symmetric, exponentially localized, twice con-
tinuously differentiable, and

J(x)dx = 1.

R2
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The idea behind our proof for the existence of target wave solutions is to first show that
the convolution operator £ behaves much like the Laplacian when viewed in the setting
of Kondratiev spaces. In other words, both operators have the same Fredholm properties.
Consequently it is possible to precondition equation (2) by an appropriate operator, .# , with
average one, and obtain an expression which has the Laplacian as its linear part,

M x O =N — M x|T xNVI* +e +g.

We then proceed in a similar manner as in section 2 and look for solutions of the form,

o(x,y,1) = ¢(x,y) — wt. Dropping the tildes from our notation we arrive at
—w=A¢— M |T«Vo|*+e xg. (10)
We will look at the following two problems.

(1) Finding a solution to the intermediate approximation, described by equation (10) with the
value of the frequency, w, equal to zero.

(2) Finding a solution valid on the whole domain described again by equation (10), but where
we let w = A2 be a non-negative parameter.

These two solutions are matched, and then the results of theorem 1 are shown.

This section is organized as follows. In the next subsection we will derive Fredholm prop-
erties for the convolution operator £, as well as mapping properties for a number of related
convolution operators. Then in sections 4.2 and 4.3 we prove the existence of solutions to the
intermediate approximation and to the full problem, respectively. Finally, in section 4.4 we
prove theorem 1.

4.1. Nonlocal operators

The following proposition is the 2-D version of the results form [JSW17], but for convolution
kernels with radial symmetry. The results below follow very closely the proofs outlined in
[JSW17], and we include them for the sake of completeness. The proof shows that, with the
hypothesis 1.1 and the more general version of hypothesis 1.2 in which we assume ¢ € N, the
convolution operator £ has the same Fredholm properties as the operator A,

Proposition 4.1. Let y e R «,8 € N|J{0}, and suppose the convolution operator
L: L?Y_Z(Rz) — L?y (R?) satisfies hypotheses 1.1 and 1.2 with £ € N. Then, with appropriate
domain D and

e fora+2/p<vy<—8-—2/p+2¢ L is aFredholm operator with kernel and cokernel
given by
B a
Ker = U Hjx Coker = U Hiks

j=0 j=0
e whereas fory = {j+2/p:j € Z}, L is not Fredholm.
The above result follows from proposition 3.6 and lemmas 4.2 and 4.3 shown below.

Lemma 4.2. Let the multiplication operator, L(§), satisfy hypotheses 1.1 and 1.2 with
¢ € N. Then L(&) admits the following decomposition:

L(§) = ML(§)Lnr(§) = Lap(§)MR(E),
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where Lyp(€) = (=£)*/(1 + €)*, and My r(§) and their inverses are analytic and uniformly
bounded on (2.

Proof. We will just show the result only for M () since a similar argument holds for
MR(g) Let

L(&)Lyt (§) for €#0

limg 0 L(€)Lyg (&) for £ =0.

ML (§) =

Since both, Lnp(§) and L(£), are analytic, uniformly bounded, and invertible on
QN{¢ € C: |Reg| > &}, it follows that the same is true for My (§). That M (&) is analytic
and bounded invertible near the origin follows from Riemann’s removable singularity theorem
and the following result,

. —10) — [ 1
lim ()L (€) = Im L™ 7

We show next that the operator My /g : L2 (R?) — L2 (RR?) defined by
2 (B2 2 (B2
2R — LE)
u — ]:71 (ML/R(|k|2)I/t) .
is an isomorphism.

Lemma 4.3. The operator My g : L2 (R*) — L2 (R?) with Fourier symbol My r(|k|?) is
an isomorphism for all v € R.

Proof. We first show that M g are bounded from L2 (R?) toitself for values of v € N ({0} .
Indeed this follows from Plancherel’s theorem and the results of lemma 4.2: given u € L?Y(Rz)
we find that

[Myyru)lez = [ML/ria(K) || < C(IM|[c)[[a() [ = C(IM ][ c) u(x) ]2z -

A similar argument shows that the their inverses, ML_/IR : L2(R?) — L2(R?), are bounded.
We can extend this result to values of y € Z~ using duality. Then, because H”(R?)is a com-
plex interpolation space between H7J(R?) and HLY/+1(R?), the result holds for all values of

v eR. O

From lemmas 4.2 and 4.3 it follows that the convolution operator £ : L2 (R?) — L2 (R?)
can be decomposed as

ﬁu = ML o} ENFM = ENF e} MRM

with Lnpu = (Id — A)*Au and Mg : L2 (R?) — L2 (R?) isomorphisms. Furthermore,
both operators, £ and LN, share the same Fredholm properties. This proves proposition 4.1.

Remark. We note here that the integer ¢ that appears in the expression for Lxr is the same
integer describing the form of the Fourier symbol L(&) in hypothesis 1.2. In particular, for our
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problem we have that £ = 1, so that for the remainder of the paper we will only consider this
case.

We are now in a position to define and describe the mapping properties of a related convo-
lution operator, .# which we will use to precondition equation (2). In terms of the invertible
operator M, defined above, .# is given by

A HY(R?) —  HSA(R?),
u — (Id — A)M; u.

It is clear from the definition that .# * ¢ = c for all constants ¢ € R.

In addition, we will also need to find mapping properties for, Id —.# and Id — J. These
operators will appear in the nonlinearities after preconditioning our equation with .# . We
start with the next lemma which establishes the boundedness of the operator .# , which is
straightforward to check.

Lemma4.4. Forv € Rand s € Z the operator A : H: (R*) — H5*(R?) defined by
Mu= (1d — A)M; 'u
is bounded.

Next, we show that in the appropriate spaces the operator Id — .# behaves like the
Laplacian operator.

Lemma 4.5. Lety € R and define A as in lemma 4.4. Then, the convolution operator

Id — . : M2? ) (R?) — L(R?)

is a bounded operator. In particular, the operator is Fredholm with the same Fredholm proper-
ties as A Mff’iz(Rz) — LZ(R?).

Proof. With the notation £ = |k|?, we look at the Fourier Symbol of Id — .# and decom-
pose it as

F(1d — )(€) = (1 + )M (&) (ML“) - 1) .

1+&

Since (Aﬁ(g — 1) satisfies hypotheses 1.1 and 1.2 with ¢ = 1, by proposition 4.1 we can

rewrite it as

(ML(O _ 1) _p &

1+¢2 1+&%

where Fy : ny(]Rz) — H, (R?) is an isomorphism. The result of the lemma follows from this
decomposition. O
Lastly, we show next that the convolution operator Id — 7 is also a Fredholm operator.

Lemma 4.6. The operator Id — J : D — L2 (R?), with domain
D={uell ,(R)|(Id —A)"'ueM?,(R*)},
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has the same Fredholm properties as A(1d — A)~" : D — L2 (R?). Moreover, the operator
d-J: Mi’iz(Rz) — H2(R?) is bounded.

Proof. Since by hypothesis J is radially symmetric and exponentially localized it follows
that its Fourier symbol, J(k), is a radial function and that J(k) — 0 as |k| — oo. Moreo-
ver, since its average is 1, we must also have J(0) = 1. This implies that F(Id — J)(|k|)
satisfies hypotheses 1.1 and 1.2 with ¢ = 1, and that its Taylor expansion near the origin is
F(1d — J)(|k|) ~ O(|k|?). The results of this lemma now follow by proposition 4.1. O

We are now ready to show the existence of solutions for the intermediate approximation
and the full solution.

4.2. Intermediate approximation
In this section we concentrate on the equation
0=A¢p— M *|T*Vo|*+et xg(x,y), (x,y)€R? (11)

which is obtained by preconditioning equation (2) with the operator .# . Here, the result
M * L = A follows from proposition 4.1 and lemma 4.4, since the operator L satisfies
hypotheses 1.1 and 1.2 with £ = 1. Our goal is to show existence of solutions to (11) when g is
assumed to be an algebraically localized function. More precisely, with the definition for the
cut off function, Y, stated in the introduction, we prove the following proposition.

Proposition 4.7. Let m € N and suppose g is a localized function in the space L%(R?),
with weight strength o € (m + 1,m + 2). Then, there exists an ¢y > 0 and a C' map

¢ : (—60,50) — M?Y’Ez(Rz) x R
£ — <¢, ao>

with 1 <~ < 2, that allows us to construct an €- dependent family of solutions to equa-
tion (11). Moreover; this solutions are of the form

m

B(r,0;e) = —x(r)In(1 —apIn(r)) + ¢ Z dq <X(r)> e? 1 ¢(r,0;¢),

r|0“
a=—m
a#0
where,
e the constant ag = eag + O(g?), with ag; = — 5= [p. g(x) dx;

o for a € [—m,m] (" Z\{0} the constants ao = 51— [ 027r M+ g(r,0)r*e?do rdr; and
e the function ¢ < Cr'""'asr — oo.

The proof is based on the following ansatz,
. _ ibn iaf n .
¢(r’ 0’ E) - 'l]Z)O(r) +6Zq/}ﬂ(r)el + € Z aOLCOl(r)e + (?b(r? 97 6) (12)

nez a=—m

n#0 a#0

where the function

Yo(r) = —x(r)In(1 —apIn(r)), ao € R,
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is motivated by the asymptotic analysis of section 2. In particular, notice that the function
In(1 — agIn(r)) solves the equation Aty — (9,2)* =0, and it admits the following series
expansion

1 1
—In(1 —apln(r)) = apIn(r) + §<a0 In(r))* + §(a0 In(r))* +---,
provided |ao In(r)| < 1. As a result we see that

Ao — apx In(r)) — (0,400)* + Aagx In(r) = Aag In(r) + localized,

and it is this last equality which proves useful in the simplification of equation (11) and one of
the reason why vy was picked as we have done.

In addition, we let C,(r) = r\%l and for the moment we assume that for n # 0 the
pair (¢,,a,) € Mrzﬁ_z(Rz) x R solves the equations for the first order approximation to
equation (11),

1 2

8rrwn + ;&% - %wn + anAnCn + gn(r) = OfOI‘ 0 < |i’l| < m (13)
1 n? .

arrwn + ;ard)n - ﬁwn + gn(r) = Ofor m < |l’l| (14)

Here, the inhomogeneous terms g,, for n € Z, are just the polar modes of g = .# * g obtained
using lemma 3.1.
We now wish to look at the operator F : Mi’zz(Rz) x R x R — L2 (R?), obtained by

inserting the ansatz (12) into equation (11). A straight forward calculation using the results
from lemma 3.1 and the choice of 1)y shows that
F(¢,ap;€) = A + apAx In(r) + £go + P(9),
P(¢) = = %|T Vo[ + Vo[ + (Atho — apAxIn(r) — [Vo[*)

The dependence on ¢ in the definition of the nonlinearity P comes through the function &,
which is just the ansatz (12).

To show the results of proposition 4.7 we apply the implicit function theorem to find the
zeros of F. It is easy to check that F depends smoothly on €, so that we are left with showing
three things:

(1) The equations (13) and (14) are invertible.
(2) The operator F : M,ZY’EZ(RZ) x R x R — L2 (R?) is well defined for 1 <y < 2.
(3) The derivative D, F |c—o= £ defined as .Z : Mf/’iz(]Rz) x R — L2(R?),
Z(¢p,a) = Ad + aAxIn(r)
is invertible.

We start with item (1). From lemma 3.4 we know that in the setting of radial Kondratiev
spaces and for n € N J{0} the operators,

MMEL®) o L) .
6 Dbt 106 - Lo (1)
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are invertible for values of o € (1 —n, 1+ n) and are Fredholm index i = —1 for values of
o > n+ 1. It is for this reason, and our assumption that m + 1 < ¢ < m + 2, that we have
added correction terms, Cy(r), only for values of 0 < |n| < m. In particular, we show in the
next lemma that the functions A, C, span the cokernel of the operator (15), so that by an appli-
cation of Lyapunov Schmidt reduction it follows that the equations (13) and (14), are solvable
and that the value of the constants, a,, is given by

a, = f/ gu(r)r" rdr, for 0< |n| <m.
nJo

Moreover, since the functions 1, are in Mfﬁ_z(Rz) for values of o € (m+ 1,m+ 2), the

results from lemma 3.2 imply that these functions satisfy [¢,,| < Cr=2" for large values of r.

Lemma4.8. Letn € N, take v > 1 + n, and define A, = 0,, + %8, + 75 Then, the opera-

tor L, : Mi’i_z(Rz) x R — L} (R?) defined as
_ X
La(6.a) = Do +ad, ()

is invertible.

Proof. This is a consequence of lemma 3.4 and the fact that the function A, (r%,,‘) spans the

cokernel of A, : Mz,zi R2) — 12 _(R?), for n € N. Indeed, a short calculation shows that
ry—2 ry

/000 A, (%) ' rdr = —n.

Next, we show that the operator F' is well defined.
Lemma4.9. Lervy € (1,2), then the operator P : MEY’EZ(IW) — L2 (R?) given by
P(9) = = +|T Vo' + [Vio|* + (Mg — apAxIn(r) = [V [?),
and with ¢(r, 0; ) as in (12), is well defined.

Proof. Since 1o(r) = —xIn(1 — apIn(r)), we know that the expression (At — agAx
In(r) — [Vho|?) is localized.

To show that the remaining terms are in L?Y(Rz) we let ®(r,0;¢) = ¢(r,0;¢) — 1), and
write

M FNT x VO =M [|T* VO +2(T + V®) - (T x Vo) + | T * Vb, ] .

From hypothesis 1.3 it is not hard to see that the operator J satisfies,

J: Mfy’z(Rz) —{uce Mfy’z(]Rz) | D°u € HZHS(RZ)}, vy e R.

We can also check that the term ® is in the space M;’El (R?), which together with the map-
ping properties of J and lemma 3.2, implies that the expression (J * V®) is bounded and
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decays as |x| 7. As a result the function |7 * V®|* € H2(R?) and we may conclude from the
mapping properties of .# stated in lemma 4.4 that the term .# * | J * V®|? is well defined.
Similarly, since Vi) € M2?(R?) with —1 <7 <0, it follows from lemma 3.2 and
the mapping properties of J that |J * V1)g| decays as |xI~!. Consequently, the function
(T * Vi) - (J * V®) is in the space H>(R?) and the product ./  (J * V) - (J * V®)
is well defined.
Lastly, we look at the expression . * | J * Vh|? — |Vbo|?, and rewrite it as follows

M| T x Vo> — Vo> = = [|(T — 1d) % Vipo|> +2(J — 1d) = Vb - o]
(M — Td) * [V

Using lemma 4.6 we see that the term (J — Id) % V) is in the space H,ZY(RZ), which being a
Banach algebra implies that the same term squared is in HZY (R?). Then, the mapping proper-
ties of .# and the boundedness of V1), show that the first term of the above expression is well

defined. To show that the last term is also in the space LZ, (R?) we use lemma 3.3 to check that
|Vho|? is in M2?(IR?) and then appeal to the results of lemma 4.5. O

To complete the proof of proposition 4.7 we need to show item (2). Since the nonlineari-
ties are in the space L (R?) with v € (1, 2) the results from theorem 2 show that the operator
AN MEY’EZ (R?) — L2 (R?)isinjective with cokernel spanned by 1. A short calculation shows that
Jg2 AxIn(r) dx = 2, from which it follows that the operator & : M>2,(R?) x R — L2 (R?),

L(d,a) = Ap+ alAxIn(r)

is invertible. If we now consider regular expansions for ¢ and ag, and apply Lyapounov
Schmidt reduction to the equation

A¢ + apAx In(r) + 8o + P(¢) = 0,
the result is that ag = €ag; + O(e?) with

1 / . 1
an] = —— - _
ol 2 R2 go 2 R2 g

In addition, using lemma 3.2 we see that the function ¢ < Cr7~! for large values of r. This
completes the proof of proposition 4.7.

4.3. Full solution for fixed w = A2

The following equation is obtained by preconditioning (2) with the operator .# and then
assuming that we have an ansatz ¢(x, y,t,€, \) = ¢(x,y,&) — A\’t, where ) is another param-
eter. Dropping the tildes from our notation:

N =Ap— M+ |T* V| +ed xg(xy) (xy) €R. (16)

We are again interested in solutions that bifurcate from the steady state ¢ = 0 when € # 0 and
A > 0. We point out that in our original problem the value of A? depends on ¢, since it repre-
sents the frequency, w, of the target waves that emerge from the introduction of a perturbation.
In the next subsection we will find the value of w = A by matching the solutions from sec-
tion 4.2 with the solutions from proposition 4.10 stated next.
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Proposition 4.10. Suppose g is in the space L2 (R?) with ¢ > 0. Then, there exists num-
bers g9, Ao > 0 and a C! map
I': (—e0,20) x [0,h) — DCM? (R
(CPY > ¢

where v >0 and D= {¢ € M;’El(Rz) | Vo € H\(R?)}, that allows us to construct an
(e, N)-dependent family of solutions to equation (16). Moreover, these solutions are of the

form,

O(r,0;e, ) = —x(Ar) In(Ko(Ar) + ¢(r,0;¢, N),

where

e the function K(z) is the zero-th order modified Bessel’s function of the second kind, and
e the function ¢ < Cr=7 asr — oo.

To show the results of the above proposition we again consider an appropriate ansatz moti-
vated by the results from section 2

¢(r,0) = —x(Ar) In(Ko(Ar)) + ¢(r, 0). (17)

For ease of notation we define 1y(r) = —x(Ar) In(Ko(Ar)) and remark that the function
—In(Ko(Ar)) is a solution to the equation —A\* = A¢yy — [Vy|*. As a consequence, when
inserting the above ansatz into equation (16) we find that ¢ must satisfy

0=A¢—2\0,¢ + et g(r,0) + P($), (18)

where the nonlinear term P(¢) is given by
P(9) = = %|T x V" + [Vbo|* +200,6 + (X* + Agho — [V ),

and again ¢ is as in ansatz (17).

We have chosen to use polar coordinates to highlight the form of the linearization and to
take advantage of the polar decomposition of Kondratiev spaces. As in the previous section,
we make use of the right hand side of equation (18) as an operator F : D x R x R — D,

F(die,\) = 1d — 2" (et + g(r,0) + P()) .
where D ={¢¢ M,'Y’EI(Rz) | Vo € HY(R?)}, and L) is defined as &, :DcC
MI2 | (R) — 12 (R?)

L= A — 220,60, A0,

The results of the proposition then follow by finding the zeroes of F via the implicit func-
tion theorem, keeping in mind that the operator is only defined for values of A > 0. We first
notice that F depends smoothly on € for all values of ¢ € R, that F(0;0,0) = 0, and that the
Fréchet derivative, DgF | (. x)—(0,0)= I, is invertible. Thus, we are left with showing the fol-
lowing two points:

(1) the operator F : D x R x R — D is well defined, and
(2) itis C! with respect to A € [0, Ag) for some A9 > 0.
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Table 1. In this section we will make use of the asymptotic behavior of Ky(z) and its
derivative 8,Ko(z) = —K(z) (see [AS92]), which we summarize in this table.

z—0 z— 00
Ko(2) —In(z/2) — 7 + O(*| In2|) Ze (1 +0(1/2))
Ki(2) 1 4+0(z]Inz]) e (1+0(1/z))

The results of item (1) are true if we can show that the nonlinearities are well defined in
Lgr (R?), and if the linear operator L) is invertible. The following lemma shows that the first
assertion is true.

Lemma 4.11. Let vy > O, then the operator P : D — L?y (R?), defined by
P(§) = =t  |T * Vo[ + Vol +220,0 + (N + Agh — |V [)

and with ¢(r, 0; ) as in equation (17), is bounded.

Proof. Because 1y = —x In(Ko(Ar)), the expression in the parenthesis is localized. To
show that the remaining terms are also well defined in the space L% (R?) we write

M |Tx VPP ==l « [|T « V> = 2(T % V) - (T * Vihy) + | * Vbo|*] .

Since ¢ is in the space D it follows from hypothesis 1.3 that the term (J * V) isin H3 (R?),
and it is then clear that the expression, . * |7 * V¢|* is in L2 (R?).

Next, we look at the difference

/\8,(23 — M * [(j * V&) : (j * V’lﬁo)] :)‘arqg — M * [(\7 * 5,(5) (j * ar¢0)]
=X0,¢ — M * [(T % 0,0)(T * (Opho — A+ A))]
+AT %06 — AT 0,0
=MJT — Id) 0,6 — A\t * (T % 0,9)
=l % [(T % (00 = M(T *0,))] .
where we used the fact that () is a radial function to do the simplifications. Using lemmas

4.4 and 4.6, and because 0,¢ is in the space H,2y (IR?), one is able to check that the first two
terms in the last equality are well defined functions in L%Y (R?). The last term is localized since

Oy = )‘éé((;;;) approaches \ as r goes to infinity, see table 1 in section 2.

Finally, we consider the difference

M |T % Nipol? = [Vipol? =+ |T * (0rb0 = X+ M) = (8,4h0)
=M+ [|T * (Obo = NP + 20T * (Do — N)] + A = (9,400)%,

where in the he last equality we used the fact that .# * A = \. Because the function 0, ap-
proaches A in the far field, It is now easy to see that the above expression is localized. O

Our next task is to show that the linear operator 2 : D — LEY (R?) is invertible. To that
end we use lemma 3.1 and decompose ¢ into its polar modes,
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2
f)\gb = Z <arr¢n + 16r¢n - i¢n - 2/\8;«(25,,) eine‘

r r2
nez

It follows that %, is invertible if for each n € Z the following operators are also invertible:

Drn Dy — Lf’,y(Rz)
¢ = O+ 18,6 T —2)9,0.
Here we used the notation introduced in section 3, and defined D, = {u € m,_, | Ou €
L7 (R?),8,u € L} (R*)}, so that D = @) D,. Since the multiplication operator 'r‘—j : D, —
L?_(R?) is compact, the invertibility of £, follows from lemma 3.5, provided v > 0. We

summarize this result in the following lemma.

Lemma 4.12.  Given y > 0, the operator £ : D — L2 (R?),
L6 = Ag - 2)0,6

is invertible

Finally, to show item (2) we prove that .,2”/\_1 : L?Y(Rz) — D depends continuously on the
parameter \.

Lemma 4.13. Given y > 0, the operator £ : D — L2 (R?),
Db = Ad—200,0,

and its inverse, are both C' in \ forvalues of A > 0.

Proof. That the operator %), is continuous with respect to the parameter \ is straightfor-
ward. To show the same result for its inverse we will use the notation £, = £ () to highlight

the dependence of the operator on the parameter \. At the same time, for f € LEY (R?) and for
general A > 0, we denote by ¢(\) the solution to £\ ¢ = f and we look at this next equality

SN+ hN) —d(\) = = LN LA+ hA) — L (V)] SN+ k).

Because the operator [.Z(A 4+ hA) — £ ())] is bounded from D to LZ(R?) it follows that
Z~1(X\) is continuous with respect \. A short calculation shows that the derivative of Z~1(\)
with respect to A is an operator from L2(R?) to D of the form A.Z~'()\)0,.£~'()), and a
similar analysis justifies that this operator is indeed continuous with respect to \. O

Notice that because ¢ € D C Mi’il (R?), lemma 3.2 implies that |¢| < Cr~" for large val-
ues of r. This completes the proof of proposition 4.10

4.4. Matching and proof of the main theorem

We first find a relation between the frequency, w, and the parameter €, and then proceed to
show the results from theorem 1.

Given g € L2(R?), with values of o > 1, we know from proposition 4.7 that the intermedi-
ate solution is of the form
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®(r,0;¢) = —x(r)In(1 — ag In(r)) + ¢(r, b; ¢),

with ¢ < r=¢, for large r and for values of & € (0,1). At the same time the results from sec-
tion 4.3 show that solutions to (16) are given by

U(r,0;e,A) = —x(Ar) In(Ko(Ar)) + ﬂ(r, 0;e, )

where again 1[) < r~%, for values of & > 0 and large r.

Since the intermediate approximation is only valid so long as| In(r)| < —1/ag, and because
we are assuming A is small beyond all orders, we may pick the scaling » = ne /A, withn ~ O(1),
to do the matching. Notice that in this scaling the function Ko(Ar) ~ —In(Ar/2) — ~,, where
7. is the Euler constant. We can then match the wavenumbers, V® and VU, to obtain
A = 2e " exp(—1/ap). This in turn gives us an expression for w:

4
o = 4o exp(-2an) ~ 4CE)e P exp ( F). )
€Jr2 8

where we use the approximation ag = ag 1€ + ag2e? + O(e?), with ag; = —ﬁ Jg: & so that

Remark. Notice that:

(1) The above expression shows that if € fRz g(x)dx < 0 the frequency w is smaller than €
beyond all orders, which is consistent with our assumptions. In addition, w(e) depends
smoothly on € on the interval € € (0, c0), and by defining w(0) = d.w(0) = 0 we may
also conclude that w(e) is continuously differentiable with respect to € on the closed
interval [0, 0o).

(2) In section 2 we derived the following approximation for the frequency:

4e= 2 < 4 )
W~ exp )
re € fRz 4

The constant r, that appears in this expression is therefore accounted for by the constant
C(e) in (19).

We can now prove our primary result, theorem 1, for the nonlocal eikonal equation
¢ =Lx¢—|T* Vo] +eglny) (xy) €R?
which we restate here for the reader’s convenience.

Theorem. Suppose that the kernels L and J satisfy hypotheses 1.1, 1.2 with ¢ = 1, and 1.3.
Additionally, suppose g is in the space L:(R?) with o > 1 and let M = ﬁ fR2 g < 0. Then,
there exists a number €y > 0 and a C! map

I': [0,e9) — DcML (R
€ — P

wherey > 0and D = {¢ € M;’El (R?) | Vo € HL(R?)}, that allows us to construct an e-de-
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pendent family of target pattern solutions to (2). Moreover, these solutions have the form

®(r,0,t;¢) = —x(A\(€)r) In(Ko(A(e)r)) + b(r,0:¢) — XN2(e)t,  A(e) > 0.

In particular, as r — 00,

e (r;e) < Cr°,forC € Rand 6 € (0,1); and
e A\(e)* ~4C(e) e exp (55 ). where C(e) represents a constant that depends on €, and
Ye is the Euler constant.

In addition, these target pattern solutions have the following asymptotic expansion for
their wavenumber

1 1
k() ~ exp <8M> +0 (1’54‘1) as r— oo.

Proof. Considering solutions ®(x,#) = ¢(x) — A\’t we arrive equation (16). Then, letting

o(r,0,1,¢) = —x(A(e)r) In(Ko(A(e)r)) + o(r,0;¢) — )\2(5)2‘, Ale) >0,

the above analysis together with the matched asymptotics shows the smooth dependence of A
on the parameter ¢, for € € (0, 00). We can further define ) so that it is continuously differen-
tiable with respect to € as € — 0. The same arguments as in proposition 4.10 can be adapted,
but now the nonlinear operator F specified in that proof depends only on €. Therefore, there
exists an g9 > 0 so that the above ansatz indeed represents an e-dependent family of solutions
to (16) for € € [0,&¢). The theorem follows directly. O

5. Discussion

In this paper we derive a model nonlinear integro-differential equation to describe the phase
evolution of an array of oscillators with nonlocal diffusive coupling ( see equation (2) and
appendix A). We prove the existence of target wave solutions in such systems when a pace-
maker is introduced, which we model as a localized perturbation of the natural frequency of
the oscillators. This work builds on earlier results by Doelman et al on phase dynamics for
modulated wave trains [DSSS05], and on work by Kollar and Scheel on radial patterns gener-
ated by inhomogeneities [KS07]. In contrast to the systems considered in the earlier papers,
our model equation accounts for nonlocal interaction and nonradially symmetric perturba-
tions, so our results are applicable to a wider class of systems. However, in other aspects, the
earlier results are stronger and they motivate natural directions for future work. In particular:

(1) Starting from a reaction—diffusion system, Doelman e? al rigorously prove the validity of
the (local) viscous eikonal equation as a reduced, modulational equation [DSSS05]. Our
nonlocal model (2) generalizes this equation but its derivation in appendix A is purely
formal. A natural question would be the rigorous validation of our model as a reduction
of a nonlocal reaction—diffusion equation, e.g a neural field model.

(2) On the other hand, Kollar and Scheel showed the existence of target wave solutions for
the ‘original’ reaction—diffusion system (1), in a situation where the inhomogeneity
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g = g(r) is aradial function. This motivates proving the existence of target patterns in the
‘original’ neural field or continuum coupled model without appealing to a reduced model
of phase dynamics.

(3) Kollar and Scheel also considered the case of perturbations with positive mass, i.e. the
‘mass’ ¢ [ g > 0, and showed the existence of weak sinks and contact defects. The latter
can be characterized as waves which propagate towards the core, but with wavenumber
that converges to zero at infinity. We conjecture that a similar result should hold in our
model (2) for nonradial inhomogeneities and radial convolution kernels (where the origin
is a distinguished point). We believe that this case is accessible to the methods presented
in this paper.

(4) The case of a mass zero perturbation was considered previously in [Sim76]. Here,
the author shows the existence of a weakly bound ground state with an energy
—w ~ —exp(—1/(ce)?), with &, ¢ > 0. Preliminary analysis indicates that an analogous
result is true for our nonlocal eikonal equation (2).

One of our main findings is that nonradially symmetric inhomogeneities generate target
patterns which are radially symmetric in the far field. This behavior can be understood heuris-
tically by noticing that when € = 0 the proposed phase equation is invariant under rotations.
On the other hand, when € # 0 the inhomogeneity breaks the radial symmetry but only in a
region near its core where its presence is not negligible. Our simulations confirm this behav-
ior showing target patterns that are nonradially symmetric near the origin, but that recover
this symmetry in the far field. This behavior can also be explained by the analysis. When we
decompose our full equation into polar modes (see section 4.3), the only solution that does not
decay algebraically is the one that corresponds to the zero-th mode equation. This suggest that
what is relevant for the system is the mass of the inhomogeneity and not its shape. This stands
in contrasts to the behavior of radially symmetric propagating fronts in bistable reaction—
diffusion system for dimensions two or higher [Rou04]. In this case, nonradially symmetric
perturbations to the original front persist and solutions lose their original radial symmetry.

As mentioned in the introduction, the approximations that we have obtained for the fre-
quency of the target patterns are in good agreement with, and in fact refine previous results.
However, for values of € that we can numerically compute with, they are not accurate enough
to enable us to compare the expressions for the frequency in (19) with simulations. In ongoing
work, we are developing higher order asymptotic solutions to correctly predict and compare
the frequency with numerical experiments.

Finally, the applications that motivated our model equation were large collections of dis-
crete objects, e.g. neurons or particles in a granular medium. Because they involve a large
number of interacting units, it seems reasonable to use a continuum model to describe these
systems. Our results show that, in general, target wave patterns are found whenever an oscil-
latory extended system with (possibly nonlocal) diffusive coupling is perturbed by an inho-
mogeneity (of the appropriate sign). A natural question is to characterize patterns in smaller
networks, i.e. systems that cannot be approximated as a continuum. This question involves an
extra complication, since the topology of the network now becomes very relevant.

For regular networks, like chains or rings of oscillators with nearest neighbor coupling,
it has been shown that a single pacemaker can entrain the whole system [RMOO06]. A simi-
lar result was found for networks where the oscillators are connected at random [KMO04].
However, in general, the question of understanding the transition to synchrony and the stabil-
ity of this solution in networks with different topologies is challenging (see ADGK™ 08 and
references therein). For example, in the case of all to all coupling this transition is a function
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of the coupling strength [Kur75], but as connections are removed at random the transition
depends now on how many oscillators are still connected [ROHOS5]. At the same time, new
types of synchronous states called chimeras have been discovered in simulations of oscillators
with nonlocal coupling, [KB02]. These solutions are characterized by having a fraction of the
oscillators in phase while the rest are in complete asynchrony (see [YHLZ13] and references).
A similar behavior was also found in a reaction—diffusion system that can be approximated
by an integro-differential equation. In this case, chimera states appear as spiral wave solutions
with a core that is not in synchrony [SK04]. There is a wealth of such physical phenomena
that are yet to be analyzed rigorously, and in the future we hope to further investigate aspects
of the central question, namely the interplay between discreteness, nonlocal spatial coupling
and ‘local’ oscillatory behavior.
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Appendix A. A hierarchy of evolution equations for the phases of coupled
oscillators

A continuum of oscillators with stable limit cycles and small variations in their natural fre-
quencies can be described by the Stuart-Landau equations [Kur84]

Orz(x,y. 1) = i(1 + €g(x.y)z+ (1 — 21z

where € < 1, and time has been scaled so that the natural frequencies are all close to 1. We
assume the coefficient of the nonlinear term IzIz is real, while full generality allows for a non-
zero imaginary part resulting in a dependence of the oscillation frequency on the local ampl-
itude |z| [Kur84]. Introducing a non-zero imaginary part for this coefficient will not change
any of our conclusions, since |z| &~ 1 as we argue below, so the frequency is still nearly con-
stant spatially, just ‘renormalized’ to a different value.

There are indeed many different ways to spatially couple these oscillators. In order to con-
strain the possible models, we will impose the following requirements:

(1) If € = 0, the uniform states z = e"T% are (neutrally) stable. This is clearly necessary if
we hope to describe the € # 0 behavior through a slow modulation of the phase, i.e. by
replacing the constant ¢y with a slowly varying (in time) function ¢(x, y, ?).

(2) The spatial coupling between the oscillators is weak. Quantitatively, we will assume that
the coupling is O(e).

(3) The spatial coupling is isotropic and translation invariant. In particular, this implies that
the entire systems is nearly isotropic and translation invariant, and the only place where
this symmetry is ‘weakly’ broken is through explicit spatial dependence of the natural
frequencies of the oscillators encoded in the term e2g(x, y).

(4) The overall dynamics has a global gauge symmetry z(x,y,t) — e'®z(x,y, ) for any con-
stant ¢o. This symmetry is appropriate for studying slow behavior in systems with fast
oscillations (here the natural frequencies /= 1 for the oscillators correspond to the ‘fast’
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time scale) and reflects the fact that the slow behavior is independent of the exact choice
of the origin of time (the phase shift ¢y) if it is governed by averaging over many periods
of the fast oscillations [AKO02].

Spatial couplings satisfying these requirements are of the form e£ % F(|z|*)z, where L*
denotes convolution with a kernel that is isotropic and O(1) as e — 0. Convolutions are mani-
festly translation invariant and F(Iz1*)z is the general form of a gauge invariant term. Finally,
in order to maintain the neutral stability of the uniform states z = el +% for e = 0, we will
need that £ x 1 = 0, i.e. constants are in the kernel of £. Taken together, this suggests that we
should consider models of the form

Oz =i(1+eg)z+ (1= [zP)z+ e(Lix Fi(leP)z + Lok a2+ .. + Lo x Fa(l2])2)-

This is the appropriate generalization of the complex Ginzburg-Landau equation [Kur84,
AKO2] to our context of nonlocally coupled oscillators whose frequencies are amplitude
independent. Following the approach in [Kur84], we write z(x,y,t) = r(x,y, t)ei’+i¢(x’y”)
and expect that r(x,y,1) = 1 (corresponding to the natural dynamics of the oscillators) and
|0:¢| < 1 (since we have already accounted the dominant part of the oscillatory behavior
7~ e'). We will call ¢ the relative phase of the oscillators. While the relative phase varies
slowly in time, we make no a priori assumptions about its spatial variation. The above argu-
ments suggest that we can replace IzI> by 1 in the above expressions to get

L=F (1)L +F(1)Ly+ -+ F,(1)L,
Or + 10,6 = ie*g + (1 — |r|P)r + ee 7 ?L x re'®.
Separating the real and imaginary parts gives the evolution equations for r and ¢. Our assump-
tions imply that the dominant part of the r dynamics is d;r ~ r(1 — r?) so that the system
relaxes to its slow manifold r ~ 1 quickly, i.e on the time scale of the natural oscillations.

Indeed, r is slaved to ¢ in this regime and we can solve by linearizing r(1 — r?) ~ —3(r — 1)
near r = 1 to obtain

€ . .
~ 1+ =Rele?Lxe?| ~ 1.
r + 3 [ ]
To this order of approximation, the evolution equation for the phase is therefore
Or¢ =eg+1Im[e L xe?], (A.1)

where 7 = et is the natural slow time that arises from balancing the time deriv-
ative of ¢ with the nonlocal coupling. This equation can also be recast as
07 d(x) = eg(x) + [ Kr(|x = X'|) sin(¢p(x') — ¢(x))dx’ + [ Ki(]x = x'[) cos(¢(x') — ¢(x))dx" by
splitting into real and imaginary parts. This is a variant of a well known equation in the context
of neural field models (see [SL12] and references therein).

We now specialize (A.1) to particular types of spatial coupling L. The class of translation
invariant, isotropic, differential operators of finite order that annihilate the constants are given
by

Lxz=(a+ib))Az+ (ay + iby)) A’z + - - - + (a, + ib,) A"z

where A = 92 + 5‘3 is the Laplacian. This motivates the definitions
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Ti[¢] = Im [e_i¢Akei¢] ,  Xk[é] =Re [e_i¢Akei¢] . k=1,2,3,....
In terms of these operators, the slow evolution of the relative phase ¢ is given by
0-¢ = eg + arl1[] + biZ1[¢] + - + @l (0] + Dy En[0). (A.2)

These evolution equations, for different choices of a;, b;, are universal models for the slow
time evolution of the relative phases of coupled oscillators. We can compute the first few 'y
and Y exphcltlly to obtam

—IV¢|2
[a[g] = A% = 2|Vg[*A¢ — 4Ve - VV§V
aolg] = [Vo[* -4V - V(Ag) —2|VVG|* - (Ag)*

where VV¢ is the 2 x 2 Hessian matrix. The expressions for I'y and X, quickly get
very complicated as k increases,. We therefore record a few observations on the struc-
ture of I'y and 3 that are easy to show by an inductive argument using the recursion

Y+ il = e YA [(Ek71[¢] + il“k,l[¢])ei¢’]

(1) Every term in I'; and X has a total of 2k spatial derivatives of ¢.

(2) T’ has terms that are homogeneous with degrees 1,3,...,2k — 1in ¢, Vo, VV ¢, ... and
3 has terms that are homogeneous with degrees 2,4, ..., 2k.

(3) Tk[¢] = Akp+ h.o.t, 3i[¢)] is an isotropic sum/difference of squares of kth order spatial
derivatives of ¢ + h.o.t, where h.o.t. refers to terms that are higher order in the homoge-
neity in ¢.

[¢] =
Y1l =
] =
| =

We can obtain the dispersion relation by substituting a plane wave ansatz
¢ = kex + kyy — w(ky, ky) 7 into (A.2) with € = 0 to obtain

w = bik* — bok* +

where k* = kZ + k7. We will henceforth restrict ourselves to the case where the long-wave dis-

d’w
Ui
de | o

ing the linear and quadratic terms in I'; and ¥;. The first two equations in this hierarchy are

0-¢ = eg + a1 A¢ — by [V
07 = g + a1 AP+ ay N’¢ — by |V o[> — by (2] VV | + (Ag)?).

A basic consistency check for our procedure is that the first equation in the hierarchy is
indeed the usual viscous eikonal equation.

One method in modeling physical phenomena is to retain just as many terms in the model
as necessary to obtain the desired behavior in the solutions. Here, we take a slightly different
modeling approach. Our goal is to get the right small k (long-wavelength) behavior. To this
end, we will approximate the quadratic terms involving the sums/differences of squares by a
single term of the form —|7 * V¢|? that captures the long-wave behavior of these nonlineari-
ties. That is, we will require that, for an exponent « that is as large as possible, and for all
compactly supported smooth function ¥ > 0, we have

persion coefficien = 2b; > 0. We define a hierarchy of evolution equations by retain-

(A.3)

/ {B1IV6F + b22IVVGP + (A0)%) — |7 + Vol2} s (7.7 ) dudy ~ O(L™) as L — oo.
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For any function g€ L'(R?), the dominated convergence theorem implies that, as
L— o0, [glx,y)¢ (3, %) dxdy — ¥(0)2(0) where § = F(g) denotes the Fourier transform
of g. Consequently, for ¢ € Co(R?), our requirement that the approximation should capture
the right long-wave behavior of the nonlinearity can be written as

F (bi|V]* + b2 (2]VVe]* + (Ag)?)) (0) = F (|T = Vo[*) (0).

We now show that we can indeed find an expression for the Fourier symbol corresponding to
the convolution operator J satisfying this condition.

With k = (ki, k) representing our variable in Fourier space and defining the nonlinear
operator N by

N(9) :]—‘(b1 (07 + 0}) + 2b2 (%, + 20, + b3,) + ba (P + 20y + ¢§y))
=~ bi (ki * kid + ko % ko) + 3b2 (K36 % K36 + K36 * K3 0)
+ 4by (kika¢ * kika @) + 22 (K¢ + K3 0)),

a straight forward computation then shows that
M@0 = [ 01+ 3alaP 0o -a)dla) da
NGO = [ I-a)d(=a)ign i) - (~igr. ~iaz)(a)ia) da

where J(K) = /b1 + 3b,|k|2. Since this holds for all ¢ € Co(R?), it is clear then that the
Fourier symbol for [J can be picked to be precisely the multiplication operator J(K).

An inductive argument allows us to extend these ideas to higher order equations in the
hierarchy (see (A.3), viz. truncating (A.2) at quadratic order, followed by a reduction of the
quadratic terms as above will give a reduced model

b= NG~ |T * Vo[,
where the kernel J has a Fourier symbol of the form

1/2

I) = |3 eyl
J

and the constants ¢; are universal (i.e. independent of the differential operator £) and can be
computed explicitly. In particular, c; = 1,¢, = 3.

If we assume that the function ¢'? is band-limited, a physically reasonable assumption pre-
cluding the presence of arbitrarily small-scale structures in the pattern of the relative phase, we
can extend the above argument to reduce (A.2) for general (i.e. not necessarily a finite order
differential operators) £ and J with continuous Fourier symbols L = L(|k|), J = J(|k|) that
are also exponentially localized. Indeed observing that the space Co(R?) is dense in weighted
Sobolev spaces, an argument by approximation gives a reduction of (A.2) to

Orp=cg+Lxp—|T*Vo|.

By rescaling 7 and ¢ we can, W.L.O.G, seta; = 1,b; = 1, so that L(0) = 1,J(0) = L. This is
the basic model (equation (2) that we consider in the body of the paper.

4192



Nonlinearity 31 (2018) 4162 G Jaramillo and S C Venkataramani

Appendix B. Proofs of subsidiary results

B.1. Algebraic decay in Kondratiev spaces

Lemma.3.2. Let f € ML (RY) then |f(x)] < C“f”le(Rd)(l + [x[?) =0 H4/2) g x| — 0.

Proof. Let (6, r) represent spherical coordinates in d dimensions, with r being the radial
direction and 0 representing the coordinates in the unit sphere, 3. Then

R 2
2
/Elf(Ml d0</2</oo |a,f(9,s)|ds) a9
R 2
:/ </ soes’y+l|arf(0’s)|s(d—])/2 ds> de
% [eS)
R 2 R 2
< 20 2004119, (8, 2(d—1)d> 10
L) ([ somarosse o

2041 2
SRV, roy

where @ = —(y + 1) + (1 — d)/2 and R is fixed. We therefore have the following inequality
Hf("R)”LZ < R_(’H_d/Z) ||vf||LE,+1(Rd)'

From Adams and Fournier [AF03, theorem, 5.9] we know that there exist a constant C such
that

(1-9)

1 5 R) oo < CIF (s R ymo ey 1 C R ey

where § = dp/(dp + (mp — d)q) and 1/q + 1/p = 1 . Choosing p = ¢ = 2 and m = 0, we ob-
tain
(5 B)lloo < CIFC R |2 < CR™OTDV 12 - 0

B.2. Fredholm properties of A™(1d — A)~'

In this section we look at the Fredholm properties of the operator

A™(Id —A)":DC L, (RY) —s LI(RY)

with domain D = {u(x) € L?_, (R?) | (1d — A)~'u(x) € Mfr"f’;m(Rd)}. More precisely, we
prove the following proposition.

Proposition.3.6. Lety € R, o, 3 € Z*|J{0}, m,d € Z*, and | € Z. Then, the operator

A™(Id —A) iDLl (RY) — LE(RY),

with domain D = {u € L? _,, (RY) | (Id — A)~lu e M2 (RY)}

y—2m y—2m
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e is a Fredholm operator for o +d/p < v < —f —d/p + 2m with kernel and cokernel
given by
B a
Ker = U H;r, Coker = U Hix;
j=0 j=0
e and not Fredholm for values of v € {j+d/p :j € Z}.

The proof consists in showing that the operator A™(Id — A) is the composition of

(1) an invertible operator (Id — A)~": D C L!_,(RY) — Mf/'f’gm(]Rd) C Wﬁ'i’gm(Rd)
(2) and a Fredholm operator A™ : Mi’f’g(Rd ) — L2(RY).

Item (1) follows from lemma B.1, and the result of item (2) from lemma B.4. Then, the span
of the kernel and cokernel of A™(Id — A) can be determined using lemma B.3 and duality.

We start by showing the operator (Id — A) is an isomorphism in weighted spaces. As part
of the proof we need the following theorem by Kato, see [Kat13].

Theorem (Kato, p.370). Let T(v) be a family of compact operators in a Banach space
X which are holomorphic for all v € C. Call v a singular point if 1 is an eigenvalue of T (7).
Then either all v € D are singular points or there are only finitely many singular points in
each compact subset of D.

With the notation (x) = (1 4 |x|?)!/2, we are now ready to show that:
Lemma B.1. Given s€Z,pe(l,0),y€R, the operator (Id — A):

WP (RY) — Wffz’p (RY) is an isomorphism.

Proof. We show the result only for s > 2, since the results can be extended to all s € Z by
duality. We have the following commutative diagram

s, d (1d-A) s=2, d
Wwer(RY) 2 gre2e(Re)
(x)7 (x)7
A(v)

Ws,p(Rd) Ws—Q,p(Rd)

where A(Y)u = (Id — A)u+T(Y)u, and T(y)u = —v(y + 2)[x>(x) ~*u + v(x) 2u+
29(x)~2x - Vu . The operator T(vy) may be approximated using compactly supported func-
tions. It then follows by the Rellich Kondrachov embedding theorem that T'(+y) is a compact
perturbation of (Id — A) : WS (R?) — Ws=2P(RY).

The results of the lemma follow if we can show that Ker A(y) = {0} for all v € R. Sup-
pose for the moment that this is not true and that we can find a number v* € R and a function
u € WS (R?) such that A(y*)u = 0. Then, from the commutative diagram and the embedding
WX (RY) € WiP(RY), with v < v*, we obtain that A(y)u = 0 for all v < ~v*.

On the other hand, the operator

W (RY)  — Ws=2P(RY)
u — (Id — A)~'T(y)u,
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which is compact and analytic for all v € C, has A =1 as an eigenvalue if and only
if A(y) has a non trivial kernel. We have therefore shown that A = 1 is an eigenvalue of
(Id — A)~!'T(y) for all ¥ < v*. Now, Kato’s theorem implies that A = 1 is an eigenvalue of
(Id — A)~!T(y) for all y € C. In particular, this result holds form v = 0, which is a contra-
diction as (Id — A) is invertible. It therefore follows that Ker A(y) = {0} for all v € R and
that (Id — A) : WS (RY) — W5~2P(R) is an isomorphism. O

Before showing the Fredholm properties of A™ in Kondratiev spaces we need some results
concerning homogenous polynomials. For more detailed proofs regarding the following
results see [SW16].

Homogenous polynomials. Let P,, denote the space of complex valued homogenous poly-
nomials in R¢ of degree m, and let H,, C P,, denote the subspace of harmonic polynomials.
One can define a inner product in P,,, via (P, Q) = P(D)Q, where the bar denotes complex
conjugation and P(D) is the differential operator by which x; is replaced with 0/9;. With this
notion of an inner product it is possible to show that:

Lemma B.2. The space P, is a direct sum of the form

P= Hm 2] |X|2Hm72 2] |X|4Hm74 O---D |X‘2aHm72on

where « is a positive integer such that m = 2« if m is even, or m + 1 = 2a if m is odd.

Since the dimension of P,, is given by d,, = ("+2_1), it follows from lemma B.2 that the
dlm(Hm) — (n+m71) _ (n+m73)'

.om . m—2
The following notation,

2 [P it m <2k
"\ Hy @ X Hps @ - @ [xPEDH, gy if m > 2k

is used in the next lemma.
Lemma B.3. The operator A* P, — P,_, is onto with kernel Hmk
Proof. The result is trivially true if m < 2k. For the case m > 2k suppose the result does

not hold, so that there exist a g(x) € P,,_y such that (A*p, q) = 0 for all p(x) € P,,. Take
p(x) = |x|*¢(x) and notice that

0 = (Akp,q) = (q. A'*p) = q(D)A'p = A*q(D)p = (p.p).

Since (-,-) is an inner product, it follows that p(x) =0 and as a consequence the map
AF:P,, — P,,_o is onto.

Now, let r(x) = |x|*¢(x) for some g(x) € P,,_a, and take p(x) € P, such that (r,p) = 0.
This last equality holds if and only if

(r.p) = r(D)p = q(D)A*p = (g, A'p) = 0.

That is, if and only if p(x) € Ker A*. Therefore, P,, = Ker (A¥) @ |x|*P,,—_, and by lemma
B.2 we must have
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Ker (A%) = H,, & [ Hy—2 @ - - @ [x]**VH,, 51
= Hmk-

: m . g2m,
We are now ready to state the Fredholm properties of A™ : M W_Zm(]Rd ) — LY (R9).

LemmaB.4. Giveny €R, o, € NJ{0}, m,n € Z*, and p € (1,0) the operator

M (RY) —  L2(RY)

u — A"y
is
e Fredholm for « + n/p < v < —f — n/p + 2m with kernel and cokernel given by

B o
Ker = U H;x Coker = U Hiks

=0 j=0
e and it is not Fredholm for values of v € {j+n/p : j € Z}.

Proof. From the results in [McO79], it is straight forward to see that the operator is Fred-
holm. The span of the kernel and cokernel follows from lemma B.3, while the range of values

for «y can be found by determining when the subspace P; is contained in € Lg_Zm(]Rd ), or in

L (RY). O

B.3. Fredholm properties of radial derivatives

In what follows, v € R and p,q € (1, 00) are conjugate exponents. We also use the notation
=0+

Lemma B.5. Lety € R and p € (1,00). Then the operator

1Lp(TR2 2
WioR) —  Lp (R
u —  Ou-+ %u —u

is an invertible operator.

Proof. We show that the inverse operator
2 P (TR2
L7 (R?) — WD (R?)
f) = uln) = [ e (s)s ds

is a bounded operator using the following inequality

ullr ey < lulliz s,y + Nullr @g,)

where Bj is the unit ball in R2. First, given f € C5° a simple calculation shows that u(r) has
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the same type of singularity as rf(r) near the origin. Since C§°(R) is dense in LZ(R?), the
result also holds for any f € L?(R?) and consequently,

H”||L£(B,) < C“fHLg(RZ),

as well as

lu(r) /]

) S Cllfllee we)-

On the other hand, because (r)"(s)~" < (r — s)!"'holds for any € R we obtain
> 1 " r—

Hu||£’$(R2\B]) = /1 ‘r / el =f (s)s ds

9]
o] r P
</ ‘/ e (r — )P TVPf (5) (s) P ds| - dr,
1 0o

p
(rY"r dr

from which we deduce using Young’s inequality that [[ul|.r 2\5,) < C(7)|f]|L2ge). It is then
straightforward to see that ||0yu||r (r2) < [|f|22 (), since Ou = u — Ju —f. O

The next propositions states the Fredholm properties for 9, and its adjoint 9, + 1/r.

Proposition B.6. Given p € (1,00) the operator 8, : M*"

b (R?) = LE(R?) is a Fred-

holm operator and
e for v > 1 — 2/pitis invertible, whereas
o for v < 1 —2/p it is surjective with Ker = {1}.
On the other hand, the operator does not have closed range for v =1 —2/p.

Similarly,

Proposition B.7. Given p € (1,00), the operator O, + 1 :Mf”f{_](Rz) — Ll (R?) is a

Fredholm operator and

e for v > 2 — 2/p itis injective with Coker = {1}, whereas
e fory < 2 —2/pitis invertible.

On the other hand, the operator does not have closed range for v =2 — 2 /p.

The proof of the above propositions follows from the next lemmas and duality.

LemmaB.8. Giveny > 1—2/pandp € (1,0), the operator 0, : Mrl”gfl

2 2
(R*) — LﬁW(R )
is invertible.

Proof. We define the inverse operator

_ L,
ar ! : Lr’i’)’(RZ) - 1‘4r,'1;71(IK2

)
f(r) —u(r) = [ f(s) ds

and show, using the following inequality
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||u||L571(R2) < ||”||L§71(Bl + H””U’ [(R2\By)>

where Bj is the unit ball in R?, that luller w2y < Iflle o)

First, the result ||u|| L (B) S < [Iflze (Bl) is a consequence of the Sobolev embeddings and
the fact that (r) is a bounded function on B;.

To show that ||u|| L (R\B) S < |IfIl 17, (R2\y) consider the following scaling variables

r=1In(r), rell,oo), w(r)=u(e)e’", g(r)=f()ethr

and notice that w(t) satisfies O, (w-e~?7) = e~77g(7), hence w(r) = [ e”("=9g(s) ds.
Then, letting 0 = v — 1 4+ 2/p > 0 and using Young’s inequality we arrive at

lullzs_, @) = [Wllrpo) < *||g||w too) < ClIfllesrevg))- O
Lemma B.9. Given v>2-2/p and p € (1,00), the operator
O+ 1M (R?) — LP. (R?) is Fredholm index i = —I with Coker = {1},

Proof. Since for v > 2 —2/p the function 1 is in the dual of L? (R?) and it defines a
bounded linear functional. Therefore, the space

Ly = lee @) | [ urar=o)
0

is a closed subspace. Moreover, given u € C5° C Mlp I 1ntegrat10n by parts shows that

Ou+ Lu G L? | .Then, because vy > 2 — 2/p and C§° is dense in M _ ; the same is true for

rey,L®
any u 6 Mr "y—1- The results of the lemma then follow if one shows that the inverse operator
Lf Y.L - M rl,'py (Rz)

fir) — u(r):%f;of(s)mds

is bounded. The proof of this last statement follows a similar arguments as in lemmas B.5 and
B.8, and we therefore omit it. O

To complete the proof of propositions B.6 and B.7 we need to define the extended operators
O L _|(R*) = M7"P(R?)and O, + 1 : L. _|(R*) — M,'*(R?) defined via

ry—1 ry—1

Opu(v) = (. (0,)"v)) = (. (0, + 1/r)v)),  VuelL]

2 1, 2
roy— I(R ),VV € Mr,z'y(]R )
where the double brackets ((u, v)) denote the paring between an element v € X and a linear
functional u € X*. Notice as well that the definition for these operators is a natural extension

of 0, : M,”_ | (R?) — L (R?),and 8, + 1 : Mrlv’zfl(Rz) — L?_(R?) since by duality

rey—1
Au(v) = (u, (8,)V) = (u, (0, + 1/r)v), vueMj;P (R, Wy e MM (R?)

rd—x

Lemma B.10. Les p € (1,00), then the operator 9, : LY _ | (R?*) — M, *(R?) is

rey—1

e injective fory > 1 —2/p.
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e Fredholm with Ker = {1} and index i = 1 fory <1 —2/p.

Proof. To show it is injective for 7 > 1 — 2/p, suppose there is a u € L?__,(R?) such that

O,u = 0. Then using a sequence {u,} € C5°(R?) such that u,, — u in L,’fvfl(Rz) we find that
forallv € M},’ZW(RZ)
0= 0u= (u (0,)"v) = lim (Oyu,,v).
n—oo
It follows that ,u, — 0in Lf,. Since v > 1 — 2/p we must have u = 0.

The result for v < 1 —2/p follows from the definition 0,u(v) = {u, (9, + 1/r)v)), and
lemma B.9. O

Similar arguments as in the above lemma show that

Lemma B.11.  Given p € (1,00), the operator 9, + 5 : L |

2 —1p(R2) ;
(R?) = M7 (R?) is
e injective for vy < 2 —2/p.

e Fredholm with Coker = {1} and index i = —1 fory > 2 —2/p.

LemmaB.12. Giveny =1 —2/p, the operator 0, : M'r

a1 (R?) — LP_(R?) does not have

a closed range.

Proof. Let 9 (r) € C5°(R?) be a radial function with suppi)(r) € By and ¢ (r) = 1 for
r < 1/2. Define u,(r) = 1(r/n)/||¢(r/n)||L> _ for n €N and notice that d,u, — 0 in
L7 (R?) yet forl v =1 —2/p the sequence {u,} does not converge in Lfvfl(Rz). It follows
then that 9, : M,” | (R*) — L7, (R?) does not have closed range. O

Lemma B.13. Given~y = 1 —2/p, the operator 0, + 1 : M'r

F_ (R?) = LE (R?) does not

have a closed range.

Proof. The proof is similar to that of lemma B.12 only we use the following sequence
instead: Let 1(r) € C5°(R?) be a radial function with suppy(r) € B, and +(r) = 1/r for
1 < r<3/2,and ¢(r) = 0 for r < 1/2. Then define u,(r) = w(r/n)/”w(r/n)||erv7_](Rz). O
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