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Thermal transport due to a liquid water jet impinging an isoflux superhydrophobic surface with isotropic
slip was modeled analytically. An integral analysis of the transport equations resulting in a system of
ordinary differential equations was solved numerically. Impingement on superhydrophobic surfaces
greatly reduces the heat transfer that occurs relative to a smooth surface due to gas trapped in cavities
on the surface. This results in an apparent slip velocity and temperature jump at the surface. Local and
average Nusselt numbers are presented as a function of radial position (0 to 45 jet radii), jet Reynolds
number (3� 103 to 1:5� 104), liquid Prandtl number (2 to 11), normalized slip length (0 to 0.2), and nor-
malized temperature jump length (0 to 0.2). All results are compared to classical (no-slip, no temperature
jump) behavior on a smooth surface. Although local Nusselt numbers for the isoflux scenario are greater
than the corresponding isothermal case, the difference in Nusselt number between these two heating
conditions becomes negligible as the temperature jump length increases to quantities realizable on
superhydrophobic surfaces. These results may be utilized to explore heat transfer degradation in appli-
cations where smooth surfaces are replaced by superhydrophobic surfaces to avoid fouling.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

A common scenario for cooling in single phase heat transfer
applications is liquid jet impingement on a heated surface. This
yields some of the highest heat transfer coefficients encountered
in single phase convection applications [1]. The schematic illustra-
tion in Fig. 1 shows a radial cross section of a liquid jet with veloc-
ity V, temperature Tj, and radius a impinging on a horizontal
surface. A coordinate system is fixed at the impingement point
with radial coordinate, r, and axial coordinate z, which increases
moving upward from the impinged surface. The film thickness, h,
the hydrodynamic boundary layer thickness, d, and the thermal
boundary layer thickness, dT , are shown developing outward from
the stagnation point. In general, the wall may have an arbitrary
wall heating condition. The present analysis considers the case of
a uniform wall heat flux, q00

w, which is relevant for cooling applica-
tions such as thermal management of electronics and materials
processing.

Prior investigators have considered liquid jet impingement on
an isoflux surface for a classical surface [2–5,1]. These studies have
considered heat transfer both in the stagnation and radial flow
regions. An axisymmetric integral analysis of the mass, momen-
tum, and energy equations with assumed polynomial velocity
and temperature profiles allows solution of the boundary layer
thicknesses and local Nusselt number [2,3,5]. Excellent agreement
with experimental results was demonstrated [2,3]. These studies
find that the heat transfer of the impinging liquid jet is determined
by the jet Reynolds number, Re ¼ Q=ma, and the Prandtl number,
Pr ¼ m=a. Q is the jet flow rate, a is the jet radius, m is the kinematic
viscosity, and a is the thermal diffusivity. For Pr > 1 (the case of
interest here), d > dT , and the following flow regions (indicated in
Fig. 1 panels (a) and (b)) are encountered as the jet spreads: (I)
the stagnation region where the flow turns and d and dT are con-
stant with respect to position, (II) a region where d and dT grow,
(III) a region where dT grows and d equals h, and, if 1 � Pr � 5,
(IV) a region where d and dT equal h (panel (a)). As shown by Liu
and Lienhard, if Pr > 5, the thermal boundary layer no longer
grows to the size of the film and this is denoted in panel (b) [2].

Impinging jets on superhydrophobic (SH) surfaces yield altered
hydrodynamics and thermal transport [6–9]. It is of interest to
study thermal transport on these surfaces to determine how it is
influenced when SH surfaces are utilized for their desirable proper-
ties of drag reduction [10–13] and self-cleaning [14–17]. SH sur-
faces are created by combining micro/nano-roughness with
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Nomenclature

a jet radius
c liquid specific heat
h liquid film height
ĥ normalized film height ĥ ¼ h=a
ĥ0 normalized liquid film height at the end of region II
ĥ1 normalized film height at the end of region III
H control volume height
k liquid thermal conductivity
_m mass flow rate leaving the top control volume surface
Nu Nusselt number Nu ¼ q00wap= k Tw � Tj

� �� �
NuT isothermal Nusselt number
NuF isoflux Nusselt number
Nu radially-averaged Nusselt number
Nu0 average Nusselt number for no-slip and no temperature

jump case
Pr Prandtl number Pr ¼ m=a
Q jet volumetric flow rate
q00w wall heat flux
r radial coordinate
r̂ normalized radial coordinate r̂ ¼ r=a
r̂s normalized radial coordinate at end of region I
r̂0 normalized radial coordinate at end of region II
r̂1 normalized radial coordinate at end of region III
Re Reynolds number Re ¼ Q= amð Þ
T local liquid temperature
Tfs free surface temperature
Tj initial jet temperature
Tw wall temperature
u radial velocity
û normalized velocity û ¼ u=V

Ufs free surface velocity
Ûfs normalized free surface velocity Ûfs ¼ Ufs=V
V jet velocity
z axial coordinate
ẑ normalized axial coordinate ẑ ¼ z=a

Greek Symbols
a thermal diffusivity
d hydrodynamic boundary layer thickness
d̂ normalized hydrodynamic boundary layer thickness

d̂ ¼ d=a
d̂s normalized hydrodynamic boundary layer thickness in

region I
dT thermal boundary layer thickness
d̂T normalized thermal boundary layer thickness d̂T ¼ dT=a
d̂Ts normalized thermal boundary layer thickness in region I
d̂T0 normalized thermal boundary layer thickness at the end

of region II
Dr control volume radial thickness
DT temperature jump DT ¼ Tw � T r; z ¼ 0ð Þ
h non-dimensional temperature h ¼ k T � Tj

� �
= q00wa
� �

hfs non-dimensional free surface temperature
hfs ¼ k Tfs � Tj

� �
= q00wa
� �

k hydrodynamic slip length
k̂ normalized hydrodynamic slip length k̂ ¼ k=a
kT temperature jump length
k̂T normalized temperature jump length k̂T ¼ kT=a
m kinematic viscosity
q fluid density

M. Searle et al. / International Journal of Heat and Mass Transfer 140 (2019) 518–532 519
hydrophobic chemistry. This combination leads to static solid-
liquid contact angles greater than 150� [18].

Superhydrophobic surfaces are of interest to the heat transfer
community because they have anti-fouling properties. Fouling of
heat transfer surfaces can add resistance, which dramatically
decreases thermal transport. It is important to model how these
surfaces inhibit heat transfer so that cost-benefit analyses of
exchanging superhydrophobic surfaces for conventional surfaces
may be performed. The decrease in heat transfer at a clean SH sur-
face impinged by a liquid jet may be less than the decrease in heat
transfer at a fouled, conventional surface experiencing the same
flow.

Drag reduction and self-cleaning behavior are the result of the
composite boundary condition present on these surfaces. Due to
surface roughness and material hydrophobicity, liquid water is
prevented from penetrating the cavities between microfeatures
when the liquid pressure is sufficiently small. Instead, the cavities
remain filled with air and/or water vapor and a meniscus spans
each cavity.

The relevant boundary conditions for modeling fluid flow over
these surfaces are a no-slip condition at the top of each microfea-
ture and a free shear condition at each gas-liquid meniscus. An
aggregate, single macroscale boundary condition can instead be
introduced at the wall as an apparent slip velocity (us), which is
proportional to the wall shear (sw), such that us ¼ swk=l[13,19].
Here l is the dynamic viscosity and k is the slip length, which
may be physically interpreted as the distance into the wall that
the apparent velocity profile must be extrapolated to reach the
no-slip condition. A slip velocity at the wall leads to a decrease
in wall shear stress and an overall drag reduction. Another effect
of the menisci over the cavities is a decrease in aggregate surface
energy for liquid water droplets, resulting in increased contact
angle and droplet rolling behavior. This dynamic allows easy
removal of contaminants from SH surfaces by rolling droplets [17].

A discussion of slip hydrodynamics is incomplete without refer-
ence to molecular slip in the field of high Knudsen number gas
flow. Although the physical mechanism of slip is different (rarefied
gas flow vs. apparent slip due to alternating no-slip wall and shear-
free meniscus), the Navier slip hypothesis may be applied to both.
Relevant to the developing flow in the present jet impingement
model are prior works presenting analytical models for slip flow
in the hydrodynamic entrance region of microchannels [20,21].

For completeness, we also reference research which has
addressed maintaining non-wetted cavities, an essential condition
for the results of this paper, through a variety of techniques includ-
ing surface heating and re-entrant cavities [22,23].

Thermal boundary conditions on SH surfaces are also altered.
Metallic microfeatures have thermal conductivities three orders
of magnitude higher than that of the air/water vapor mixture
which fills the cavities. Thus, it is appropriate to model the gas-
liquid interface as adiabatic and match the temperature at the
solid-liquid interface. Numerical studies have demonstrated the
validity of this approximation [24]. Again, these alternating bound-
ary conditions may be modeled with an aggregate boundary condi-
tion, where the apparent wall temperature jump may be expressed
as DTw ¼ q00

wkT=k, where q00
w is the wall heat flux [25–27]. Here, k is

the thermal conductivity of the liquid and the temperature jump
length, kT , is the thermal analog of k.

The first region shown in Fig. 1 is the stagnation region, where
the liquid impinges normally on the substrate and the flow accel-
erates in the radial direction. In a classical stagnation flow, a uni-
form flow normal to the surface impinges a substrate and this



Fig. 1. An impinging liquid jet is illustrated schematically with a radial cross
section spanning from the jet centerline (left) to beyond the hydraulic jump (right).
The jet initially has a uniform velocity, V, and temperature, Tj . The liquid impinges
on a horizontal surface which is heated with an isoflux boundary condition
maintaining a uniform heat flux, q00

w . The hydrodynamic boundary layer thickness, d,
thermal boundary layer thickness, dT , and film height, h, are shown. The flow of the
spreading jet is subdivided into four regions, numbered I–IV. All four regions are
present in panel (a) (1 6 Pr 6 5). In panel (b) Pr > 5 and region IV is absent since dT
is always smaller than h.
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provides a good estimate of the dynamics near the impingement
point in liquid jets. The SH boundary conditions of slip and temper-
ature jump have previously been considered for classical stagna-
tion flow from an analytical perspective. Here similarity solutions
have been obtained for axisymmetric and planar flows stagnating
on a surface with isotropic and anisotropic slip length and both sta-
tionary and moving plates have been considered [28–30]. Heat
transfer from isothermal surfaces has been modeled under condi-
tions of isotropic slip and temperature jump [29] and these prior
solutions are utilized in the present work to approximate the heat
transfer within the stagnation region of the impinging jet (Sec-
tion 2.3). These prior results indicate heat transfer increases with
increasing slip length and decreases with increasing temperature
jump length.

Within the radial flow region, the hydrodynamics of jet
impingement on a SH surface with isotropic and anisotropic slip
have been modeled analytically [6–8]. Common microstructures
of SH surfaces are posts and ribs. The conditions of isotropic slip
may be achieved with post micropatterning and anisotropic slip
with rib micropatterning. For both of these scenarios, the slip
length was held constant moving radially away from the impinge-
ment point. These studies found that increasing the hydrodynamic
slip length yields a similar effect as increasing the jet Reynolds
number. Specifically, the thickness of the spreading film decreased
and the location of a hydraulic jump (or film breakup with dro-
plets) moved outward as the slip length increased. Model predic-
tions for the location of the hydraulic jump and/or breakup
agreed well with companion experiments, suggesting that assum-
ing constant slip length in the flow direction (radial) provides a
good model for this scenario.

Only a single study has explored the scenario of a jet impinging
on a heated SH surface. Specifically, the constant wall temperature
condition surface with isotropic slip was considered [9]. This study
showed that the Nusselt number drops dramatically as the slip
length and temperature jump length increased. Additionally, the
dependence of thermal transport on flow conditions (Reynolds
number and Prandtl number) vanished as temperature jump
length increased and variations in the temperature jump length
yield much stronger influence on the transport than equivalent
changes in the hydrodynamic slip length.

In the present study, we consider a jet impinging at a SH surface
with isotropic slip length and temperature jump length where a
uniform heat flux is applied to the surface (isoflux condition). Both
the stagnation and radial flow regions are considered, with the
stagnation region modeled by a prior solution [29] and the radial
flow region modeled by an integral analysis defined here. This sce-
nario has not been previously considered and is valuable, as men-
tioned earlier, for cooling applications such as thermal
management of electronics and materials processing. In the follow-
ing sections, the analytical methodology is presented and the
results are benchmarked with prior work. Local and average Nus-
selt numbers are presented for varying radial coordinate, Reynolds
number, Prandtl number, slip length, and temperature jump
length. These results are discussed and conclusions from the work
are summarized.
2. Analysis

2.1. Model description

The scenario of a cool liquid jet impinging on a SHPo surface
may be modeled by performing an integral analysis of each of
the four regions described earlier and applying slip and tempera-
ture jump boundary conditions at the wall. The hydrodynamic
solution now depends on k as well as Re and the thermal transport
solution depends on kT and Pr.

The surface type considered in this study is one with constant
isotropic slip length and temperature jump length and is character-
istic of post patterned micro-features. It has been shown by several
investigators that in laminar internal flow the slip length is a con-
stant value (independent of flow direction) [31,32]. This is true
regardless of Reynolds number. Similar analysis has been per-
formed for thermal transport [33,34] with a similar conclusion
regarding temperature jump length. While the present work is a
boundary layer flow as opposed to a fully-developed internal flow,
the analysis is constrained to a laminar flow. In a boundary layer
flow, the wall shear stress generally decreases along the stream-
wise direction, which is analogous to an internal flow with a vary-
ing Reynolds number. Thus if the slip length is independent of
Reynolds number in a fully-developed internal flow, this should
also be the case in a boundary layer flow.

Additionally, the assumption of constant slip length (indepen-
dent of Reynolds number) is necessary for analytical tractability.
The full jet impingement problem could not be resolved numeri-
cally, unlike fully-developed channel flow, since all post-cavity
modules would need to be modeled as opposed to a single post-
cavity module with periodic boundary conditions [33,34].
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In this analysis, the surface tension is assumed to be constant.
Marangoni convection was shown previously to be negligible for
high-speed shear flows at superhydrophobic surfaces [24]. Further,
the meniscus spanning the microcavities is approximated as being
a planar, shear-free region. Physically, the meniscus will have cur-
vature and the curvature will likely vary with radial location due to
flow inertia. However, the influence of meniscus curvature on the
hydrodynamics of flow over superhydrophobic surfaces has been
considered previously by several investigators and it has been
demonstrated that for a first-order model it is reasonable to
approximate the meniscus as a planar, shear-free region
[19,26,32].

The values of constant k and kT are determined by analysis of
the diffusion-dominated flow near the wall. The present analysis
intends that microscale analyses be applied to determine k and
kT for a certain microstructure. The appropriate macroscale solu-
tion of the impinging jet is presently obtained for a range of k
and kT . Calculation of k is well-defined [19,13]. More recent studies
have performed diffusion-dominated thermal analyses to deter-
mine kT for a variety of microfeature geometries [25–27,35]. These
have been accompanied by computational simulations where kT
has been calculated from the flow field [33,34]. These studies indi-
cate that the ratio of kT to k is on the order of 1. In the subsequent
analysis, we assume that the ratio is 1 or, equivalently, k ¼ kT . The
equations developed here may easily be implemented to solve for
any ratio kT /k as illustrated in Section 3.4.

All regions were solved for varying Re (3� 103 to 1:5� 104), Pr
(2 to 11), k̂ (0 to 0.2), and k̂T (0 to 0.2) for r̂ varying from 0 to 45
where the hat indicates normalization with respect to a. All lengths
in this study are normalized in this manner. The differential equa-
tion solver utilized was an explicit eighth-order Runge-Kutta
method as implemented in the numerical solver software Mathe-
matica�. The resulting numerical error in determining the local
Nusselt number is at most �1� 10�4.

2.2. Fundamental equations

Integral forms of conservation (mass and energy) are applied to
annular control volumes of radius r, thickness Dr, and height H (see
Fig. 1) yielding

_m ¼ �2pq @

@r
r
Z H

0
u r; zð Þdz

� �
Dr ð1Þ

and

� _mcT r;Hð Þ þ q00
w 2prð ÞDr � 2pqc @

@r
r
Z H

0
u r; zð ÞT r; zð Þdz

� �
Dr ¼ 0

ð2Þ
where _m is the mass flow rate through the top surface of the control
volume, u is the local liquid radial velocity, T is the local liquid tem-
perature, q is the liquid density, and c is the liquid specific heat. The
hydrodynamic solution for this scenario was obtained previously
and results for the velocity field are included as needed [6].

2.3. Region I: Stagnation region

The stagnation region is modeled using a similarity solution
obtained previously for axisymmetric stagnation flow on a non-
moving surface with isotropic slip velocity and temperature jump
[29]. The solution satisfies the differential boundary layer equa-
tions for mass, momentum (axial and radial directions), and
energy. At the wall, the slip velocity and temperature jump bound-
ary conditions are applied. The slip length and temperature jump
length parameters in the solution (kW and b) are related to the slip
length and temperature jump length utilized in the present work
(k and kT) by

kW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRe=p

p
k ð3Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRe=p

p
kT ð4Þ

The stagnation Nusselt number as defined in the present paper
may be obtained from the prior results [29] as

Nu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p C Re

p @hs
@g

����
g¼0

ð5Þ

C is a dimensionless constant which is related to the radial velocity
gradient and was obtained previously to be 0.458 for an impinging
jet [4]. hs and g are similarity variables from the prior results which
indicate respectively, the temperature profile and the wall normal
coordinate. Definitions for hs;g; kW , and b and details concerning
the solution may be obtained from the prior work [29]. To avoid
confusion with the temperature profile, h, defined with this work,
these similarity variables are not listed in the nomenclature.

Although the above similarity solution was obtained for an
isothermal surface, within the stagnation region, isoflux and
isothermal Nusselt numbers will be the same since the boundary
layer thicknesses are uniform [1].

ds and dTs, the constant hydrodynamic and thermal boundary
layer thicknesses, are used as the initial conditions at the end of
the stagnation region, r̂s ¼ 0:9, for the subsequent region. These
boundary layer thicknesses are calculated from the similarity solu-
tion in the classical manner by numerically solving for the location
at which the velocity and temperature profiles have reached 99% of
their respective freestream values, g ¼ g99% and gT ¼ gT99%, respec-
tively, with the equations being solved expressed as

@f
@g

����
g¼g99%

¼ 0:99 ð6Þ

and

h gT99%

� � ¼ 0:01 ð7Þ
g99% and gT ¼ gT99% are then substituted into

d̂s ¼ g99%

ffiffiffiffiffiffiffiffi
p
CRe

r
ð8Þ

d̂Ts ¼ gT99%

ffiffiffiffiffiffiffiffi
p
CRe

r
ð9Þ

yielding d̂s and d̂Ts.
The end of the stagnation region is defined following the prior

work of Liu et al. [4], in which an analytical model including sur-
face tension for the inviscid region of the impinging jet was pre-
sented. The model found that true stagnation flow (characterized
by a linear rise in the free stream velocity) extended to r̂ ¼ 0:7
and that modeling the flow in this manner was a reasonable
approximation to r̂ ¼ 1:5. The value of r̂ ¼ 0:9 was selected
because it was within this range, near r̂ ¼ 0:7, and minimized the
discontinuity between results for the stagnation flow and radial
flow models.

2.4. Region II: Developing boundary layers

Upon leaving the stagnation region, the flow is primarily in the
radial direction and d̂ and d̂T increase as the radial coordinate
increases. Since Pr > 1; d grows more quickly than dT . We note that
a free surface is now present and creates a shear free boundary
condition at the height of the liquid film, h. Since this replaces
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the condition of uniform, wall-directed flow in region I, that
region’s similarity solution is no longer valid in region II and
beyond. Region II concludes when d merges with h. The height of
the control volume in Region II is set to H ¼ dT where the local tem-
perature is equal to the jet temperature, T r; z ¼ dTð Þ ¼ Tj. This con-
trol volume is displayed in panels (a) and (b) of Fig. 1. Substituting
Eq. (1) into Eq. (2) yields the following equation for region II

q00
w ¼ qc

r
@

@r
r
Z dT

0
u T r; zð Þ � Tj
� �

dz
� �

ð10Þ

The velocity profile was previously obtained for this region to
be

u ¼ V
2
3 dþ k

kþ z� z3

3d2

� 	
ð11Þ

A cubic temperature profile is assumed

T ¼ aþ bzþ cz2 þ dz3 ð12Þ
To which the following boundary conditions are applied

�k
@T
@z

����
z¼0

¼ q00
w ð13Þ

T r; z ¼ dTð Þ ¼ Tj ð14Þ

@T
@z

����
z¼dT

¼ 0 ð15Þ

@2T
@z2

�����
z¼0

¼ 0 ð16Þ

The choice of a third-order polynomial is necessary since the
hydrodynamic boundary layer is a third-order profile [6] and this
allows d to equal dT when Pr ¼ 1. Applying these boundary condi-
tions to Eq. (12) and solving for coefficients a–d yields

T � Tj ¼ q00
w

3k
2dT � 3zþ z3

d2T

 !
ð17Þ

The assumed velocity (Eq. (11)) and temperature (Eq. (17)) pro-
files are substituted into Eq. (10). The resulting relationship is

pr̂
RePr

¼ @

@r̂

r̂d̂2T 2d̂3T þ 7d̂2

 �

4d̂T þ 15k̂

 �

140d̂2 2d̂þ 3k̂

 � ð18Þ

Prior hydrodynamic solutions to the integral mass and momen-
tum equations gives the following equations [6]

ĥ ¼ 1
2r̂

þ d̂2

4 2
3 d̂þ k̂

 � ð19Þ

and

pr̂
Re

¼ 2
3
d̂þ k̂

� �
d
dr̂

r̂d̂2
13
210

d̂þ 1
4
k̂

� �
2
3
d̂þ k̂

� ��2
" #

ð20Þ

d̂ and d̂T are obtained as functions of r̂ by numerically solving the
system of differential equations defined by Eqs. (18) and (20) sub-

ject to the initial conditions d̂ r̂ ¼ r̂sð Þ ¼ d̂s and d̂T r̂ ¼ r̂sð Þ ¼ d̂Ts. ĥ is
found by substituting the results for d̂ into Eq. (19). The endpoint

of region II is found by numerically finding r̂ where d̂ equals ĥ. This

radius is labeled r̂0 and the values of d̂T and ĥ at this point are

labeled d̂T0 and ĥ0, respectively.
We seek to obtain the local Nusselt number, Nu, which is

defined in the normal manner as
Nu ¼ q00
wap= k Tw rð Þ � Tj

� �� � ð21Þ
Recalling that there is a temperature jump at the wall, we can

obtain a relationship which is valid in any region between the wall
temperature, Tw rð Þ, and the temperature given by a profile at
T r; z ¼ 0ð Þ, the difference of which is the temperature jump,
DTw ¼ Tw � T r; z ¼ 0ð Þ. The temperature jump is proportional to
the heat flux, DTw ¼ q00

wkT
� �

=k[26]. Combining these two results
yields

Tw rð Þ ¼ q00
wkT=kþ T r; z ¼ 0ð Þ ð22Þ

which is valid in all regions. Nu may be obtained for region II by
substituting for Tw rð Þ � Tj in Eq. (21). Eq. (17) is evaluated at the
wall yielding

T r; z ¼ 0ð Þ � Tj ¼ 2q00
wdT
3k

ð23Þ

Tj is subtracted from both sides of Eqs. (22) and (23) is substituted
yielding

Tw rð Þ � Tj ¼ q00
wkT
k

þ 2q00
wdT
3k

ð24Þ

Finally, this result is substituted into Eq. (21) resulting in Nu as
a function of d̂T

Nu ¼ p
k̂T þ 2

3 d̂T
ð25Þ

2.5. Region III: Further developing thermal boundary layer

After region II, dT continues to grow until it to merges with h.
The energy equation (Eq. (10)) and temperature profiles (Eq.
(17)) remain the same as those in region II but will be applied to
the control volume shown in region III of Fig. 1 panels (a) and
(b). The velocity profile must be modified since the top boundary
is a shear free condition instead of matched velocity. The velocity
at the top surface, Ufs, becomes a function of r such that the veloc-
ity profile is

û ¼
bUfs

2
3 ĥþ k̂

k̂þ ẑ� ẑ3

3ĥ2

� 	
ð26Þ

where the hats on u and Ufs indicate normalization by V and all

velocities are normalized in this manner. bUfs was obtained previ-
ously [6] by applying conservation of mass (Eq. (1)) as

bUfs ¼
2
3 ĥþ k̂

2ĥr̂ 5
12 ĥþ k̂

 � ð27Þ

Eqs. (27), (26) and (17) are substituted into the energy equation
(Eq. (10)) yielding

pr̂
RePr

¼ @

@r̂

d̂2T 2d̂3T þ 7ĥ2 4d̂T þ 15k̂

 �
 �

70ĥ3 5ĥþ 12k̂

 � ð28Þ

The momentum equation for this region was obtained previ-
ously [6] as

� 2p
Re

¼ ĥ
5
12

ĥþ k̂

� �
d
dr̂

r̂�1ĥ�1 68
315

ĥ2 þ 5
6
ĥk̂þ k̂2

� �
5
12

ĥþ k̂

� ��2
" #

ð29Þ
The system of differential equations defined by Eqs. (28) and

(29) is solved numerically to obtain ĥ and d̂T as functions of r̂ sub-

ject to the initial conditions ĥ r̂ ¼ r̂0ð Þ ¼ ĥ0 and d̂T r̂ ¼ r̂0ð Þ ¼ d̂T0. d̂T
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and ĥ were solved through 45 jet radii (well beyond the intersec-

tion point between d̂T and ĥ, if it occurs). Nu is determined by
the same equation obtained for region II (Eq. (25)). As discussed

earlier in Section 2.1, it is possible for d̂T to not intersect ĥ. A
numerical root finding routine was applied to determine if this
intersection did occur. If so, the radius was labeled r̂1 and the value

of ĥ obtained at this point was labeled ĥ1. These values were used
as the initial conditions for the differential equations defined in

region IV. Region IV was not solved if d̂T did not reach ĥ.

2.6. Region IV: Both boundary layers merged

In region IV, dT has merged with h and the control volume
height is set to H ¼ h with _m ¼ 0. This control volume is shown
in Fig. 1 panel (a) region IV. Substituting these results into the
energy equation Eq. (2) yields

q00
w ¼ qc

r
@

@r
r
Z h

0
uT dz

 !
ð30Þ

The velocity profile remains the same as that derived in region
III (Eq. (26)) but new boundary conditions must be applied to the
temperature profile so that the top boundary condition is now adi-
abatic (assuming negligible evaporation) instead of a fixed temper-
ature. Consequently, the free surface temperature, Tfs, varies with r.
To satisfy these new conditions, the second and third boundary
conditions defined for the temperature profile in region III (Eqs.
(14) and (15)) are replaced with the following boundary conditions

T r; z ¼ hð Þ ¼ Tfs rð Þ ð31Þ

@T
@z

����
z¼h

¼ 0 ð32Þ

Applying these boundary conditions, the temperature profile for
region IV is obtained as

T r; zð Þ ¼ Tfs þ q00
w

3k
2h� 3zþ z3

h2

� �
ð33Þ

Substituting bUfs (Eq. (27)) into the velocity profile (Eq. (26)) and
this result and the temperature profile (Eq. (33)) into the energy
equation (Eq. (30)) yields
Fig. 2. The present solution for the local Nusselt number for the no-slip and no temperat
function of r̂. Previous solutions by Ma [1] and Liu [2] are included for comparison.
pr̂
RePr

¼ @

@r̂
hfs
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þ ĥ
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� 71ĥ2

280 5ĥþ 12k̂

 �

0@ 1A ð34Þ

where hfs ¼ k Tfs � Tj
� �

= q00
wa

� �
is the normalized free surface temper-

ature. The system of differential equations defined by Eqs. (29) and

(34) is solved numerically for ĥ and hfs as functions of r̂ subject to

the initial conditions ĥ r̂ ¼ r̂1ð Þ ¼ ĥ1 and hfs r̂ ¼ r̂1ð Þ ¼ 0.
Nu may be determined by substituting for Tw rð Þ � Tj in Eq. (21).

To find this, first Eq. (33) is evaluated at ẑ ¼ 0 yielding

T z ¼ 0ð Þ ¼ Tfs þ 2q00
wh

3k
ð35Þ

Then Eq. (35) is substituted into Eq. (22) and Tj is subtracted
from both sides

Tw rð Þ � Tj ¼ q00
wkT
k

þ 2q00
wh

3k
þ Tfs � Tj ð36Þ

Finally, Eq. (36) is substituted into Eq. (21) yielding

Nu ¼ p
k̂T þ 2

3 ĥþ hfs
ð37Þ
3. Results

The results section proceeds as follows: results obtained here
for the no-slip scenario are compared with prior results. Then,
the influence of temperature jump length on the thermal boundary
layer thickness, Nusselt number, and local temperature distribu-
tions are explored. It is shown that the Nusselt number results
for both the isothermal and isoflux wall scenarios merge together
as the temperature jump length increases. Finally, results are pre-
sented for the average Nusselt number.

3.1. Comparison with previous results

Local Nusselt number is shown as a function of r̂ in Fig. 2 for the
no-slip and no-temperature jump scenario at Pr ¼ 5 and at
Re ¼ 3� 103;9� 103, and 1:5� 104. Excellent agreement is shown
with prior analytical solutions obtained by Ma [5] and Liu [2]. Sim-
ilarly good agreement was also demonstrated at Pr ¼ 2 and
Pr ¼ 11, although these results are not shown here. The goodness
ure jump scenario at Pr ¼ 5 and Re varying from 3� 103 to 1:5� 104 is plotted as a
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of the agreement with prior results for the no-slip case provide a
benchmarking of our modeling approach.
3.2. Local behavior: Influence of slip velocity and temperature jump,
Reynolds number, and Prandtl number

This section of the paper explores the influence of slip and tem-
perature jump on local features in the thermal boundary layer.

Shown in Fig. 3 are ĥ and d̂T as functions of r̂. Results are shown
in three panels, with k̂T ;Re, and Pr respectively varying in each
panel, while the other parameters remain fixed. The transitions
in the thermal boundary layer from region I to II, region II to III,
and region III to IV are marked with an asterisk, plus sign, and
diagonal cross mark, respectively. These transition locations
Fig. 3. The normalized local thermal boundary layer thickness and film height as
functions of r̂. In panel (a), Pr = 5 and Re ¼ 9� 103, with k̂T increasing from 0 to 0.2.
In panel (b), Pr ¼ 5 and k̂T ¼ 0:1, with Re varying from 3� 103 to 1:5� 104. In panel
(c), Re ¼ 9� 103 and k̂T ¼ 0:1, with Pr varying from 2 to 11. The region I to II
transition, region II to III transition, and region III to IV transition are marked with
an asterisk, plus sign, and diagonal cross mark, respectively. Some transition marks
are omitted for clarity in panel (a).
correspond to radial locations rs; r0, and r1. In panel (a), k̂T varies
from 0 to 0.2 (Pr = 5, Re ¼ 9� 103) and the results reveal that an
increase in k̂ (accompanied by an equivalent increase in k̂T) results
in a notable decrease in d̂T .

This decrease is expected from hydrodynamic considerations,
since an increase in k̂ increases the momentum in the boundary
layer and leads to a thinning of the layer to satisfy continuity. Note

that d̂T never merges with the height of the thin film, ĥ, for the
k̂T ¼ 0 scenario, and thus region IV does not exist for this case.

However, as k̂T increases, d̂T merges with ĥ at r̂1 (indicated by a
diagonal cross mark) and region IV does exist. Increasing k̂T results
in merging of the boundary layer thickness with the film height at
smaller r̂1.

Shown in panel (b) of Fig. 3 are results with Pr ¼ 5; k̂T ¼ 0:1,
and Re varying from 3� 103 to 1:5� 104. The d̂T variation with r̂

for this k̂T exhibits classical behavior as Re is increased (decreasing
d̂T due to the decreasing hydrodynamic boundary layer thickness).

k̂T ¼ 0:1 is sufficiently large that d̂T merges with ĥ for each Re
shown. The influence of variation in Pr is demonstrated in panel
(c), where Re ¼ 9� 104; k̂T ¼ 0:1, and Pr varies from 2 to 11. The
Pr ¼ 5 case (indicated by an open, vertical diamond) is identical
to the case shown with a solid triangle in panel (a). d̂T decreases
as Pr increases and r̂1 (indicated by a diagonal cross mark)
increases as well. This occurs since the thermal diffusivity
decreases relative to the kinematic viscosity as Pr increases. At
Pr ¼ 11; Pr has become sufficiently large such that d̂T no longer

merges with ĥ, even at large r̂.
Next we explore the influence of superhydrophobicity (k̂T ) on

the non-dimensional temperature profile, h. h ¼ k T � Tj
� �

= q00að Þ is
shown as a function of the normalized vertical coordinate, ẑ, in
Fig. 4 for several scenarios. In each panel of the figure, h is plotted

as a function of the ẑ-coordinate from ẑ ¼ 0 to ẑ ¼ ĥ (the height of
the film). In the left three panels (a, c, e), the radial coordinate is
fixed at r̂ ¼ 10 and, in the right three panels (b, d, f), r̂ ¼ 30. The
top panels (a,b) provide profiles at Re ¼ 9� 103 and Pr ¼ 5 with
k̂T varying from 0 to 0.2. The second row of panels provides profiles
at Pr ¼ 5 and k̂T ¼ 0:1, and Re varying from 3� 103 to 1:5� 104. In
the bottom row (e, f), Re ¼ 9� 103 and k̂T ¼ 0:1 and Pr varies from
2 to 11.

As defined, h approaches zero as the local temperature
approaches the incoming jet temperature. For all h profiles shown
in Fig. 4 at r̂ ¼ 10 (panels a, c, and e), the radial location corre-
sponds to region III of the thin film. Recall that in region III, the
hydrodynamic boundary layer has merged with the height of the
thin film, while the thermal boundary layer has not. Thus, the pro-
files shown all level off at zero at sufficiently large ẑ, with the wall-
normal location where this occurs being the thermal boundary
layer thickness. h thus remains zero through the rest of the thin

film up to ẑ ¼ ĥ. The results of panel (a) show that at fixed Re
and Pr, the magnitude of the h profiles decrease with increasing
k̂T . It is beneficial to recall that here we have assumed that k̂

increases concomitant with k̂T . With increasing k̂, the flow is ener-
gized and the momentum near the wall increases relative to the
classical scenario. In the classical boundary layer, this would lead
to a decrease in thermal resistance, corresponding to a thinner
boundary layer. Increasing Re leads to a similar decrease in h,
resulting from similar dynamics (thinner boundary layer). Increas-
ing Pr also leads to a decrease in h because as Pr increases, the ratio
of the diffusion rate of momentum normal to the wall to the ther-
mal diffusion rate increases. Thus, the thermal boundary layer



Fig. 4. Non-dimensional temperature profiles as a function of ẑ. r̂ ¼ 10 in the left three panels (a, c, and e) and r̂ ¼ 30 for the right three panels (b, d, and f). In the top two
panels (a,b), Re ¼ 9� 103 and Pr ¼ 5, with k̂T varying from 0 to 0.2. In the middle row of panels (c,d), Pr ¼ 5 and k̂T ¼ 0:1, with Re varying from 3� 103 to 1:5� 104. In the
bottom two panels (e,f), Re ¼ 9� 103 and k̂T ¼ 0:1, with Pr varying from 2 to 11.
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becomes thinner relative to the hydrodynamic boundary layer,
decreasing thermal resistance at the wall. The above behaviors
are illustrated in panels a, c, and e of Fig. 4.

Of course, the magnitude of h increases with r̂ as illustrated by
comparing the profiles at r̂ ¼ 10 (left panels) to the profiles at
r̂ ¼ 30 (right panels). The profiles at r̂ ¼ 30 correspond to region IV
of the thin film. Here h decreases as ẑ increases but does not reach

zero when ẑ ¼ ĥ because thermal effects have propagated through
the entire film. Now hfs increases with increasing r̂, concomitant
with an increasing temperature at the top of the film (due to
increased thermal transport moving radially outward). Note that
in this region the h profiles are essentially linear in shape. The vari-
ation in the line lengths for eachof theprofiles showncorresponds to
the differences in film thickness for each scenario. At this larger
radial location, the spread between the h profiles for the various k̂T
has increased dramatically. This results because the distance over
which k̂ and k̂T have influenced the flow has increased.

Attention is now turned to the local Nusselt number, which is
presented as a function of r̂ in Figs. 5 and 6. The Nusselt number
definition for the isothermal and isoflux cases is identical, where
Nu ¼ q00

wap= k Tw rð Þ � Tj
� �� �

as given earlier in Eq. (21). Fig. 5

includes three panels where Re is varied from 3� 103 to
1:5� 104, with Pr held constant at Pr ¼ 5. Fig. 6 shows two panels
at Re ¼ 9� 103 and with Pr ¼ 2 (top) and 11 (bottom). Here we
focus on the influence of k̂T and results are shown in both Figs. 5
and 6 for k̂T varying from 0 to 0.2. In both figures, Nu results are
shown for the isoflux boundary condition corresponding to the
current analysis and for the isothermal boundary condition sce-
nario as reported previously [9].

Several important observations may be made concerning the
results shown in Figs. 5 and 6. First, Nu decreases as r̂ increases.
Second, for all k̂T ; Nu increases with increasing Re and Pr. These
two observations are consistent with classical jet impingement
behavior and are not discussed further.

We now turn our attention to the influence of k̂T and the type of
thermal boundary condition (isoflux or isothermal) on the magni-
tude and variation of Nu. For fixed values of Re and Pr; Nu

decreases dramatically as k̂T increases over the stagnation and ini-
tial radial flow region, while a modest increase is observed at larger
r̂. These results are expected based on the prior study that consid-
ered jet impingement on an isothermal superhydrophobic surface
[9]. Note that r̂ at which the transition from decreasing Nu to
increasing Nu occurs depends on Re; Pr, and k̂T . For example, the
Re dependence is apparent by comparing panels (a)–(c). We recall
that Pr ¼ 5 for these results and consider the k̂T ¼ 0:1 case. The
radii marking the transition are r̂ = 17, 24, and 31 at Re =
3� 103; 9� 103, and 1:5� 104, respectively. The increase in Nu
at large r̂ is caused by a decrease in the wall temperature relative
to the no-temperature jump scenario. This increase in Nu is small
but appears in the average isoflux results discussed in Section 3.3.



Fig. 5. Local Nusselt number, Nu, as a function of r̂ at Pr ¼ 5 and Re ¼ 3� 103(top), 9� 103 (middle), and 1:5� 104 (bottom). k̂T varies from 0 to 0.2 in each panel. The region I
to II transition, region II to III transition, and region III to IV transition are marked with an asterisk, a plus sign, and a diagonal cross mark, respectively.
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For the isoflux case, Nu decreases with increasing k̂T due to the
increased temperature difference (caused by the temperature
jump) between the local wall temperature and the temperature
of the impinging jet. For the isothermal case, this occurs because
the local heat flux decreases (caused by the increased resistance
of the air-filled cavities).

The data of Figs. 5 and 6 reveal that the decrease in Nu with
increasing k̂T is greatest at small r̂ (in the stagnation zone). To
explain this result, consider the expression for the local Nusselt
number given by Eq. (25), which has the same form regardless of
the thermal boundary condition. When k̂T ¼ 0;Nu is simply inver-
sely proportional to d̂T . In the stagnation zone, d̂T has a relatively
small value but then increases as r̂ increases, leading to the classi-
cal decrease in Nu. When k̂T > 0, the denominator of Eq. (25) is
increased by the magnitude of k̂T and, in the stagnation zone,
where d̂T is a small value, this yields an incremental decrease in
Nu. Recall that k̂T ¼ 0:2 is approaching the upper limit for realiz-
able normalized temperature jump lengths and, for this value,
the Nusselt number in the stagnation zone decreases by more than
an order of magnitude.

The functional dependence of Nu on k̂T and d̂T shown in Eq. (25)
explains other important behaviors that are demonstrated in Figs. 5
and 6. As k̂T increases, the resistance to thermal transport at the
wall increases. Thus, depending on the magniude of k̂T , it can exer-
cise much greater influence than d̂T on the magnitude of Nu. Con-
sequently, as k̂T increases, the Nu profiles show less dependence on
r̂. This is true for both thermal boundary conditions, where the data
level off, showing less dependence on r̂. Further, as k̂T increases, the
influence of Re and Pr on the value of Nu also diminish. Recall that



Fig. 6. Local Nusselt number, Nu, as a function of r̂ at Re ¼ 9� 103 and Pr ¼ 2 (top) and Pr ¼ 11 (bottom). Results are shown for both the isoflux (current analysis) and
isothermal boundary conditions [9] with k̂T varying from 0 to 0.2. Pr ¼ 2 in panel (a) and Pr ¼ 11 in panel (b). The region I to II transition, region II to III transition, and region
III to IV transition are marked with an asterisk, a plus sign, and a diagonal cross mark, respectively.
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variations in Re and Pr give rise to variations in the thermal bound-
ary layer development and growth. Thus, when k̂T is large com-
pared to d̂T , the influence of Re and Pr vanishes.

As a final point, we note that isothermal and isoflux results
merge together as the temperature jump length increases. The
Nusselt number for the isothermal case is always less than the iso-
flux case, consistent with classical behavior [36]. However, the pre-
sent results demonstrate that increasing k̂T decreases and,
ultimately eliminates, the influence of the heating condition (iso-
flux or isothermal) for similar reasoning as described above. When
k̂T ¼ 0; Nu for the two conditions are equal in the stagnation zone,
but begin deviating immediately as r̂ increases. When k̂T > 0, the
radial location where the two values of Nu deviate moves outward.
At Re ¼ 1:5� 104, the two Nu profiles deviate from each other at
r̂ � 1, 12, 25, and 36 for the k̂T = 0, 0.05, 0.1, and 0.2 scenarios,
respectively. This point of departure depends on both Re and Pr,
since these parameters dictate the growth of d̂T .

Further insight into this behavior is obtained when considering
the relative (percentage) difference between the isoflux and
isothermal Nusselt numbers. This is expressed as 1� NuT=NuF ,
where NuT is the local isothermal Nusselt number and NuF is the
local isoflux Nusselt number. Fig. 7 presents the results of Fig. 5
using this relative difference.

Of course, the relative difference between the isoflux and
isothermal Nusselt number is zero within the stagnation region,
since the thermal transport here is identical [1]. Upon entering
the radial flow region, the relative difference increases with
increasing radius. This occurs because of the two terms in the
denominator of Eq. (25). Moving outward with r̂ results in an
increased boundary layer thickness and, since the layers grow at
different rates for the two thermal boundary conditions, the rela-
tive difference in Nu increases. The temperature jump length exer-
cises the same influence on Nu for both thermal boundary
conditions. Thus, as k̂T is increased, the relative difference in Nu
values increases more slowly with increasing r̂. The results of
Fig. 7 allow estimation of the radial extent over which the local
Nu values are the same for a range of parameters. Increasing Re
yields a decrease in the relative difference as well. In general, as
Re increases, the size of the boundary layer thickness decreases
as well and so in Eq. (25), the d̂T term exercises less influence.
Although not shown here, variations in Pr yield similar behavior.

3.3. Average results

In this section, we consider the radially averaged Nusselt num-
ber. Following standard approaches [1], for isothermal scenarios,
the average Nusselt number is obtained as

Nu ¼
R
A Nu Tw � Tj

� �
dAR

A Tw � Tj
� �

dA
¼
R
A NudAR
A dA

ð38Þ

and, for isoflux scenarios, the average Nusselt number is obtained as

Nu ¼
R
A q

00
wdAR

A
q00w
NudA

¼
R
A dAR

A
1
NudA

ð39Þ

Fig. 8 presents the average Nusselt number for the classical no-
slip and no-temperature jump scenario so that comparisons may
be made with the slip and temperature jump solutions. Nu is
shown for both thermal boundary conditions as a function of r̂

for scenarios where k̂ and k̂T equal zero and the Nusselt number



Fig. 7. The relative (percent) difference between the isoflux, NuF , and isothermal,
NuT , local Nusselt numbers relative to the isoflux case is plotted as a function of r̂.
Pr ¼ 5 and Re varies from 3� 103 to 1:5� 104. k̂T varies from 0 to 0.2 in each panel.

ig. 8. Average Nusselt number (for no-slip and no temperature jump scenarios),
u0, as a function of r̂. Isoflux (solid line) and isothermal (dashed line) results are
own for comparison. Panel (a) displays solutions at Pr ¼ 5 with Re varying
etween 3� 103 and 1:5� 104. Panel (b) displays solutions at Re ¼ 9� 103 with Pr
arying between 2 and 11.
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for this scenario is written with the subscript ‘‘0” (Nu0). In panel
(a), Pr ¼ 5 and Re varies from 3� 103 to 1:5� 104 and, in panel
(b), Re ¼ 9� 103 and Pr varies from 2 to 11.

As has been well established previously, Nu0 increases with Re
and with Pr because increasing either of these parameters
decreases the thickness of the thermal boundary layer. Also,
isothermal Nu0 is lower than isoflux Nu0 for small r̂ but becomes
greater at large r̂. This is a result of averaging the local Nusselt
number using the standard approach, where the local Nusselt
number is weighted by the temperature difference between the
wall and the jet, Tw � Tj, and radius (due to the circular area), as
shown in Eqs. (38) and (39). For the isothermal case, Tw � Tj is con-
stant so Nu is equally weighted due to temperature difference as r̂
varies. For the isoflux case, Tw � Tj increases with r̂ and, conse-
quently, Nu at large r̂ receives more weighting and, since these
Nu are smaller, Nu0 decreases. We display these classical results
F
N
sh
b
v

for completeness and to provide a basis of comparison for the slip
and temperature jump scenarios below.

The relative decrease (percentage basis) in Nu is shown in Fig. 9
for k̂T varying from 0 to 0.2. Pr ¼ 5 and Re varies from 3� 103 to
1:5� 104 for both thermal boundary conditions. In each panel,
the relative decrease is shown as a function of r̂ at k̂T ¼ 0:1 and
k̂T ¼ 0:2.

For all scenarios, the relative decrease in Nu becomes smaller
with increasing radius. This occurs because the influence of the
temperature jump length is greatest near the impingement point
and, as the averaging radius increases, the area over which temper-
ature jump length plays a negligible role increases. Thus, the
impact of the temperature jump yielding a decreased Nu near the
impingement point is rapidly overcome. Additionally, as expected,
the percentage decrease in Nu is greater at higher k̂T because there
is more thermal resistance at the wall, leading to either a decrease
in heat flux for the isothermal case or an increase in wall temper-
ature for the isoflux scenario.

At small r̂, the percentage decrease for the isothermal and iso-
flux scenarios are nearly identical. The radial location where the
behavior starts to deviate is a function of Re, with increasing Re
yielding a larger radial position where the results for the two
boundary conditions deviate. An unexpected observation is made
at large r̂. Here, the percentage decrease remains positive while
approaching zero as r̂ increases for the isothermal scenario. In con-
trast, for the isoflux scenario, the percentage decrease in Nu
becomes negative under certain conditions. This is more pro-
nounced at smaller Re and indicates that Nu is actually increasing



Fig. 9. The relative decrease (percent) in Nu as a function of r̂. In each panel, the relative decrease is shown for k̂T ¼ 0:1 and k̂T ¼ 0:2 compared to the k̂T ¼ 0 case. Pr ¼ 5 for all
results and Re = 3� 103; 9� 103, and 1:5� 104 in panels (a) through (c).

M. Searle et al. / International Journal of Heat and Mass Transfer 140 (2019) 518–532 529
relative to the no-slip and no temperature jump case at large r̂. The
r̂ location where this occurs is smaller for k̂T ¼ 0:1 than k̂T ¼ 0:2
and decreases as Re and Pr decrease. As noted earlier, the results
with slip and temperature jump for both isoflux and isothermal
scenarios become modestly larger than their no-slip and no tem-
perature jump counterparts at large r̂. For the isoflux results, this
difference receives greater weighting when isoflux Nu is averaged
than when isothermal Nu is averaged. Consequently, the modest
increase in Nu at large r̂ with increasing k̂T affects Nu for the isoflux
results and not the isothermal results. We note that the magnitude
of Nu is small at large r̂ and, consequently, the actual increase in Nu
is also very small.

Fig. 10 presents Nu as a function of k̂T . Both isoflux and isother-
mal results are shown with panel (a) displaying results at
Re ¼ 3� 103 and, in panel (b), Re ¼ 1:5� 104. Results are shown
where Nu is averaged over 10, 20, and 30 radii.

As noted previously, Nu decreases as k̂T increases. For the isoflux
case, this occurs because the difference between the average wall
temperature and the jet temperature increases and, for the isother-
mal case, the average heat flux decreases. At small k̂T ; �Nu is most
sensitive to changes in averaging distance because the local Nu
has not yet attained the more uniform profile achieved at larger
k̂T . Similar to observations made concerning the average results
for the no-slip scenario, Nu decreases as the averaging radius
increases since the area with smaller Nu exercises greater influ-
ence. As Re increases Nu increases for all cases because the thermal
boundary layer thickness becomes thinner. However, as illustrated
in panel (b), at large k̂T , the results become independent of the



Fig. 10. Nu as a function of k̂T at Pr ¼ 5 for r̂ varying from 10 to 30. In panel (a), Re ¼ 3� 103 and, in panel (b), Re ¼ 1:5� 104.

Fig. 11. Nu (Nu averaged over 15 jet radii) as a function of k̂T . Solutions for both isoflux and isothermal results are shown. Panel (a) presents results at Pr = 5 and Re varying
from 3� 103 through 1:5� 104. Panel (b) presents results at Re ¼ 9� 103 for Pr varying from 2 through 11.
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Fig. 12. Nu as a function of k̂ and/or k̂T . Three scenarios are considered k̂ ¼ 0 and k̂T – 0; k̂T ¼ 0 and k̂ – 0, and k̂T ¼ k̂. Pr ¼ 5 and Re ¼ 9� 103 for all cases.
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averaging distance due to the uniform behavior of Nu at large k̂T .
Lastly, the difference in Nu between the isoflux and isothermal
results decreases as k̂T increases. This trend is expected since the
local Nusselt number curves merge together with increasing k̂T .

For completeness, Fig. 11 displays Nu (averaged over 15 jet
radii) as a function of k̂T for both the isoflux and isothermal condi-
tions. Panel (a) displays results at Pr ¼ 5 and Re = 3� 103;9� 103,
and 1:5� 104. Panel (b) displays results at Re ¼ 9� 103 and Pr = 2,
5, and 11. The physical reasoning that has already been given will
not be repeated. These results are an additional compelling illus-
tration that the influence of heating condition (isoflux or isother-
mal) and flow properties (Re and Pr) disappear as k̂T increases.
3.4. Relative importance of slip length and temperature jump length on
the solution

On realizable SHPo surfaces, k̂ and k̂T exist as some ratio of each
other (typically on the order of 1), depending mainly on the surface
microstructure and weakly on the flow conditions [33]. It is bene-
ficial to consider two hypothetical bounding scenarios: one where
k̂T ¼ 0 and k̂– 0 and the other where k̂ ¼ 0 and k̂T – 0. Results cor-
responding to these two conditions provide theoretical limits for
Nu at a SHPo surface. A single scenario at Pr ¼ 5 and Re ¼ 9� 103

is shown in Fig. 12, where Nu (averaged over 15 jet radii) is pre-
sented as a function of k̂ and/or k̂T . Three cases are shown: k̂T ¼ 0
and k̂– 0; k̂ ¼ 0 and k̂T – 0, and k̂ ¼ k̂T . When k̂T and k̂ are equal
and vary together, the curve tends towards the no-slip
(k̂ ¼ 0; k̂T – 0) result where only k̂T varies. This indicates that the
influence of increased thermal resistance resulting from the larger
k̂T is much greater than the enhanced advection due to the slip
boundary condition.

In contrast, when k̂T ¼ 0, much greater Nu is achievable due to
the slip boundary condition enhancing advection in the absence of
temperature jump. Here, the isoflux surface has a larger Nu than
the isothermal surface (nominally 7% relative to the isothermal
surface). However, the k̂T ¼ 0 situation is not physically realizable
since all non-wetted SHPo surfaces will exhibit a temperature
jump due to the presence of air-filled cavities. Thus, this result is
provided solely for illustration.
4. Conclusions

An integral analysis of a liquid jet impinging at an isoflux super-
hydrophobic surface has been performed. This analysis demon-
strates that the introduction of isotropic slip length and
temperature jump length to a surface with an isoflux heating con-
dition has similar impact on the thermal transport as the introduc-
tion of the same conditions to a surface with an isothermal heating
condition.

� The local and average Nusselt numbers are dramatically
reduced.

� Local Nusselt number profiles level out, decreasing most signif-
icantly with increasing temperature jump length at small radii.

� Flow conditions (Reynolds and Prandtl numbers) exert smaller
influence on thermal transport.

We emphasize this work’s novel observation that the thermal
resistance added by increasing the temperature jump length
quickly overcomes the influence of the wall heating condition (iso-
flux or isothermal) on the Nusselt number such that this depen-
dence on heating condition vanishes at large k̂T .
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