Pushing the Boundaries with bdrmapIT: Mapping Router
Ownership at Internet Scale

Alexander Marder

University of Pennsylvania
amarder@seas.upenn.edu

Matthew Luckie
University of Waikato
mjl@wand.net.nz

Amogh Dhamdhere
CAIDA / UC San Diego
amogh@caida.org

Bradley Huffaker ke clafty Jonathan M. Smith
CAIDA / UC San Diego CAIDA / UC San Diego University of Pennsylvania
bradley@caida.org kc@caida.org jms@seas.upenn.edu
ABSTRACT routers in traceroute measurements, and then inferring who owns

Two complementary approaches to mapping network boundaries
from traceroute paths recently emerged [27,31]. Both approaches
apply heuristics to inform inferences extracted from traceroute mea-
surement campaigns. bdrmap [27] used targeted traceroutes from a
specific network, alias resolution probing techniques, and AS rela-
tionship inferences, to infer the boundaries of that specific network
and the other networks attached at each boundary. MAPIT [31]
tackled the ambitious challenge of inferring all AS-level network
boundaries in a massive archived collection of traceroutes launched
from many different networks. Both were substantial contribu-
tions to the state-of-the-art, and inspired a collaboration to explore
the potential to combine the approaches. We present and evaluate
bdrmapIT, the result of that exploration, which yielded a more com-
plete, accurate, and general solution to this persistent and central
challenge of Internet topology research. bdrmapIT achieves 91.8%-
98.8% accuracy when mapping AS boundaries in two Internet-wide
traceroute datasets, vastly improving on MAP-IT’s coverage without
sacrificing bdrmap’s ability to map a single network. The bdrmapIT
source code is available at https://git.io/fAsI0.

ACM Reference Format:

Alexander Marder, Matthew Luckie, Amogh Dhamdhere, Bradley Huf-
faker, ke claffy, and Jonathan M. Smith. 2018. Pushing the Boundaries with
bdrmapIT: Mapping Router Ownership at Internet Scale. In 2018 Internet
Measurement Conference (IMC ’18), October 31-November 2, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3278532.
3278538

1 INTRODUCTION

A long-standing challenge of Internet topology research is router-
level topology discovery and ownership inference, which relies on
IP-level measurements that trick routers into revealing network
structure (e.g., traceroute), and heuristics to interpret such measure-
ments. The challenge is most daunting in between autonomously
managed networks. The task of mapping the borders between net-
works at the router level is equivalent to the task of identifying

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5619-0/18/10.

https://doi.org/10.1145/3278532.3278538

56

those routers.

There are fundamental architectural constraints that hinder
router ownership inference: the TCP/IP architecture has no notion
of interdomain boundaries at the network layer, nor any notion
of boundaries around a single router. That is, at the IP layer, there
is no unique router identifier. Router software diversity further
complicates inference: a given router may respond to traceroute
with a source address obtained from the interface it received the
probe packet on, the interface it sends the reply on, or some other
interface. Due to network addressing practices, the IP addresses on
these interfaces may not even belong to the owner of the router.
When constructing an Internet-scale topology, superimposing mea-
surements from multiple vantage points (VPs) can mitigate some of
these risks, but results in topologies where links farther from VPs
are less likely to be observed [24], and those that are observed have
fewer constraints to use in ownership inference. Finally, validat-
ing router-level inferences against ground truth requires tedious
cooperation from operators who have limited incentive or time.

Techniques to accurately map network borders were elusive
until 2016, when two independently conceived approaches [27,
31] achieved accuracy significantly superior to the then state-of-
the-art. Both MAP-IT and bdrmap use heuristics to minimize well-
known errors in interpreting traceroute data, but bdrmap developed
specialized heuristics to analyze a router-level graph it inferred from
one vantage point, while MAP-IT used an iterative graph-refinement
process on an interface-level graph previously gathered from many
vantage points. The different goals, design choices, and assumptions
inspired us to ask: can we leverage the lessons from both efforts to
create a more general-purpose solution? We report the results of
that effort here.

A general solution to the border mapping and router owner-
ship inference problem, operating at Internet scale, will accelerate
progress in a number of research and operational pursuits. For
example, CAIDA has used bdrmap for three years to study interdo-
main congestion, but has restricted itself to links involving the mea-
surement VP’s network; a generalized border mapping tool could
amplify visibility to a much broader set of interdomain links. Other
congestion inference [37] and resilience assessment [14,25,33,36]
research could be extended to identify networks and links expe-
riencing congestion. A new border mapping tool could address
well-known pitfalls with less rigorous approaches to identifying
interdomain links [32,38]. MAP-IT was already instrumental in un-
covering bugs in traceroute implementations [34]—investigation of

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

anomalous MAP-IT inferences revealed that the M-lab traceroutes
used as input were corrupted.

We make the following three contributions:

(1) We developed and implemented bdrmapIT, which uses the
sophisticated bdrmap heuristics as additional input to the MAP-IT
boundary location algorithm. In §2 we discuss how we leverage
the strengths of bdrmap and MAP-IT, §3 gives an overview of the
synthesized approach, and §4, §5, and §6 detail the algorithm.

(2) We demonstrated the superior accuracy and coverage of
bdrmapIT over either previous approach. We validated bdrmapIT
against ground truth from a tier 1, a large access, and two R&E
networks, achieving 91.8%-98.8% accuracy, despite not using tracer-
oute VPs in any of the validating networks. We also demonstrated
that bdrmapIT’s accuracy is independent of the number of vantage
points: the performance is equivalent when we decrease the number
of VPs from 80 to 20 (§7).

(3) We release our implementation and source code to promote
reproducibility, and so that others can use our tool for their own
analyses. We have incorporated bdrmapIT into CAIDA’s ITDK [6]
generation process.

2 RELATED WORK

The canonical approach to convert IP-level traceroute output to an
AS-level path uses the origin AS announcing the longest matching
prefix into the global BGP routing system. The risk of this approach
is that some routers respond to traceroute probes with a source IP
address belonging to a different network. In 2010, Zhang reported
that between 16% and 47% of AS adjacencies inferred using the
canonical longest prefix match approach were likely false [40]. In
2003, Mao’s “AS traceroute” [30] used correlated BGP and tracer-
oute views from the same VP, DNS names, and WHOIS data to
perform IP-AS mappings, later improving them further using dy-
namic programming, although only for a /24 address granular-
ity [29]. Generally, interdomain links use /30 or /31 prefixes to use
address space efficiently, and co-located BGP and traceroute views
are rare. In 2009, Chen et al. proposed a set of heuristics to distill
some missing AS-level links from traceroute data [16]. In 2010, Huf-
faker et al. developed and validated four different router ownership
heuristics using IPv4 alias resolution, inferred AS relationships,
and degree [18] separately from each other; their best-performing
heuristic was correct 71% of the time.

In 2016, two distinct approaches towards inferring router own-
ership were proposed independently: bdrmap [27], and MAP-IT [31].
bdrmap focuses on identifying all interdomain links observable by a
single VP in a hosting AS, and consists of data collection and router
ownership inference components. The data collection component
conducts traceroutes from the VP towards every prefix routed in the
Internet. The data collection phase is reactive, using alias resolution
to infer which interfaces returned by traceroute belong to the same
routers, and additional traceroutes to different addresses within
a single prefix if a prior traceroute might have found an off-path
interface within the target AS.

The inference component of bdrmap uses the collected data to
infer router ownership within the hosting AS and adjacent ASes.
Starting at the VP, bdrmap performs a breadth-first search based
on hop-count from the VP of the traceroute responses to identify

57

A. Marder et al.

§ Step bdrmap MAP-IT
4 Phase 1: Construct the Graph

4.1 Label AS-level Metadata X X
4.2 Assign Link Confidence Labels X

43 Create Origin AS Sets

44 Identify Destination ASes X

5 Phase 2: Annotate Last Hops

5.1 When Dest. AS set is empty X

5.2 When Dest. AS set is not empty X

6 Phase 3: Graph Refinement

6.1 Annotate IRs X X
6.1.1 Apply Link Vote Heuristics X

6.1.2 Correct Reallocated Prefixes

6.1.3 Check for Exceptions

6.1.4 Apply IR Vote Heuristics X
6.1.5 Check for a Hidden AS X

6.2 Annotate Interfaces X
6.3 Refine the Graph X

Table 1: bdrmapIT heuristics adapted from bdrmap and MAP-1IT.

routers internal to the VP network, defined as all routers that appear
prior to an interface address announced by the VP network in the
traceroutes. Subsequent routers are either operated by the VP net-
work, or by a directly connected neighbor. bdrmap uses heuristics to
infer ownership of subsequent routers until all routers immediately
subsequent to the network boundary have been mapped to other
ASes.

bdrmap heuristics correctly infer router ownership when an edge
network operator drops traceroute probes at their border router,
when routers reply using unrouted IP addresses, when routers
respond with an off-path address announced by a third party in
BGP, and uses AS relationships to reason about ownership when
traceroute returns IP paths that are not congruent with BGP policy.

MAP-IT consists only of an inference component, to identify in-
terdomain links (between ISP networks) in the Internet core. In
contrast to bdrmap, MAP-IT aggregates all available traceroute data
collected by many VPs in many ASes, but does not use any alias
resolution to infer routers. Instead, MAP-IT employs localized rea-
soning on an interface-level graph, drawing inferences from each
interface and its neighbors in isolation. MAP-IT iterates over the set
of interfaces several times, in each iteration identifying the inter-
faces used for interdomain links. The primary inference method is
to find an interface with an address originated by one AS, where
a plurality of either its subsequent or preceding interfaces map
to another AS, indicating a link between the two networks. After
each iteration, MAP-IT refines the graph, enabling more accurate
interdomain inferences in subsequent iterations until an iteration
yields no changes.

Our new technique, implemented in the bdrmapIT tool, leverages
the strengths of bdrmap and MAP-IT for use in a general-purpose
solution. Specifically: (1) bdrmap infers AS owners only for routers
at the first AS boundary and requires a VP in each network of
interest, and (2) MAP-IT lacks heuristics for edge networks and
low-visibility links, such as routers without subsequent hops in

Pushing the Boundaries with bdrmapIT

Traceroutes

IXP
Prefixes

Alias
Resolution

AS Origin g;:sgl;‘t —»{Destination
Prefixes P ASes
Last Hop
Hybrid —— Heuristic AS
Graph §5 Relationships

e }

Annotate (ﬁ
—>| Routers |« Last Hop
Loop §6.1 [Annotations
Until — 71—
Repeated v
State A
nnotate Repeated
Interfaces— State
» §6.2
Figure 1: bdrmapIT’s three phases: ,

, and Annotating IRs and Interfaces.

traceroute due to firewalls, and does not use router alias inferences.
To create bdrmapIT, we adapted bdrmap heuristics to the MAP-IT
graph refinement framework with localized reasoning, yielding a
technique capable of inferring the owner of routers visible from
any number of VPs, in any number of networks. When restricted
to the input for bdrmap or MAP-IT, bdrmapIT is at least as accurate
as the prior techniques. Table 1 gives an overview of bdrmapIT and
the genesis of each heuristic.

We faced technical challenges adapting heuristics into bdrmapIT.

Adapting bdrmap heuristics required removing assumptions made
when mapping a single VP network’s routers to accommodate
MAP-IT’s local reasoning. First, router ownership inferences become
harder with more AS-level diversity around the router, meaning
that mapping router IP interface addresses to the AS who owns
the router requires more sophisticated heuristics. To overcome this
difficulty, bdrmapIT constructs sets of candidate origin ASes (§4.3)
and iteratively narrows the set. Similarly, bdrmap detects third-party
addresses when it sees an unexpected AS in between the VP AS
and an adjacent network. Other traceroute datasets may expose
third party addresses several AS hops removed from the VP. Our
adapted third-party heuristic uses origin AS sets, destination AS
sets (§4.4), and router operator inferences (§6.1); this technique to
identify third-party addresses improves with the graph refinement
(§6) process adapted from MAP-IT. Finally, adapting MAP-IT’s graph
refinement heuristics to router graphs instead of interface graphs
was a significant challenge. Accommodating alias resolution input
data motivated our strategy laid out in §4.2 and §6.1, where we infer
router operators at the router granularity, without first selecting
an AS for each alias.

58

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

- Graph -

IR: Inferred Router

interface: interface used on the IR

subsequent interface: interface that follows an IR interface in a
traceroute

link: inferred connection from IR to subsequent interface

- Origin AS -

interface origin AS: origin AS of interface’s IP address

IR origin AS set: union of IR interfaces’ origin AS sets

L(1r,, ;) (link origin AS set): set of origin ASes observed immedi-
ately previous to the link in a traceroute

DR (destination set): set of origin ASes of destination IPs of
paths crossing IR

AS annotation: AS of inferred operator of IR or interface

Table 2: Glossary of terms

3 OVERVIEW

bdrmapIT has three phases, illustrated in Fig. 1. The first phase
builds a directed graph from the traceroutes and alias resolution
(§4). The second phase infers the operators of routers that appear
only at the end of traceroutes (§5). These mappings are not subject
to refinement, and provide topological context for mappings in the
final phase. The final phase maps routers observed in the middle of
at least one traceroute path to ASes (§6). The last phase is iterative,
visiting routers and interfaces multiple times to make accurate
inferences.

3.1 Constructing Interface Graph (§4)

bdrmapIT creates an inferred router (IR) graph by combining pre-
viously collected traceroutes with inferred IP router aliases data.
Many datasets have few (or no) aliases resolved, and bdrmapIT will
map AS borders without it, but aliases can improve mapping accu-
racy by providing additional router operator constraints and ensur-
ing a consistent inference for interfaces used on the same router.
Links connect IRs to interfaces seen subsequently in a traceroute
(Figure 2). bdrmapIT works with existing datasets, which dictate
the graph, without the opportunity for additional probing. To aid
our analysis, we store significant graph metadata, e.g., for each
interface we store its origin AS, which is the AS announcing the
longest matching prefix for the IP address of that interface. We label
links according to our confidence in their ability to inform accurate
router ownership inference (§4). We also store the origin AS set for
each link, which contains the origin ASes of all IR interfaces seen
prior to the connected interface. We label IRs with their destination
AS set (§5.2), which contains the destination ASes of the traceroutes
in which any IR interface appears.

In addition to static metadata labels, we include dynamic annota-
tions for every IR and interface, which bdrmapIT continually refines
throughout the algorithm. bdrmapIT assigns annotations when in-
ferring the operators of last hop IRs (§5), as well as during the graph
refinement loop (§6). IR annotations indicate the AS operating the
IR, while interface annotations represent the AS connected to the
interface, i.e., the other side of the link (Fig. 3). When annotating
IRs and interfaces we make two assumptions that are generally but
not always true: that routers (IRs) are operated by a single AS; and

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

hops dst hops dst
path1: | .. a; by | b3 | path3:| .. ¢ by | e
path 2: ap by | d

Figure 2: Using paths 1-3, we build IR; 23 (boxes) and the
links between IRs and interfaces (circles).

Figure 3: IR; (box) is annotated with ASg representing its in-
ferred operator, while its interface (circle), with IP address a,
is annotated with AS4 representing that it is inferred to be
connect to a router operated by AS 4.

that interdomain links are point-to-point, except public peering
links at IXPs.

3.2 Annotating Last Hops with Ownership (§5)

When the last interface in a traceroute is not the destination, it could
be on the border router of the network containing the destination.
This occurs when an AS configures its firewall to prevent traceroute
responses to probes from other networks. In this phase we infer
the operator of an IR with no outgoing links to be the destination
AS of the paths on which the IR’s interfaces were observed.

This technique is surprisingly effective, and enables us to accu-
rately infer links to networks that do not respond to traceroute
probes from internal routers. These ASes are especially tricky, since
we often do not see any addresses from their address space in the
traceroutes. Some of the AS-links inferred in this step do not ap-
pear in our BGP paths, thus complementing our BGP-observed AS
connectivity. bdrmapIT also relies on these ownership mappings in
the graph refinement step (§6.1).

3.3 Annotating IRs and Interfaces (§6)

In order to deal with traceroute, routing, and IP space artifacts,
the final phase is an iterative process that first annotates the IRs
(§6.1), then annotates the interfaces (§6.2), and then repeats this
process until completion, indicated by a repeated state. Annota-
tions assigned in each iteration help refine the graph, enabling more

59

A. Marder et al.

accurate annotations in subsequent iterations. Each iteration recon-
siders every annotation assigned based on the current annotations
of neighboring IRs and interfaces. We do not revise the annotations
assigned in the second phase, since those annotations are based
entirely on static metadata.

4 PHASE 1: CONSTRUCT THE GRAPH

The first step is to construct an annotated IR graph from the tracer-
outes, alias resolution data, and external data sources. All subse-
quent refinement on the IR occurs locally, using only the static
metadata labels (from the first phase) or the annotations (which
may change during iterations) of its immediate neighbors. We do
not directly consider remote IRs, but their annotations propagate
across the graph in each iteration. We also extract static graph meta-
data — interface origin ASes and IXP prefixes (§4.1), link confidence
labels (§4.2), origin AS sets (§4.3), and IR destination AS sets (§4.4).

4.1 Label AS-level Metadata

This phase labels the initial graph with additional metadata to
enable subsequent inferences: origin ASes, IXP prefixes, and AS
relationships.

Determining Origin ASes: We assume that one AS among the
origin ASes for interface IP addresses on an IR is more likely than
the others to be the operator of the IR. We derive interface origin
ASes using BGP announcements collected by Routeviews [13] and
RIPE RIS [12]. For each prefix we determine the origin AS as the
last AS in the AS path. To determine the origin AS for an interface,
we use the longest matching prefix from the route announcements.
We then initialize the graph by annotating each interface with the
origin AS of the corresponding IP address and create the IR origin
AS set as the union of the IR’s interface AS mappings.

Not every prefix is visible in BGP announcements, so we sup-
plement this data with RIR delegations [2-4,7,11], using the AS
identifiers in the extended delegation files to match IP prefixes with
ASes. RIR delegations can be stale, since ASes can reassign prefixes,
so we only use the prefixes from RIR delegations not already cov-
ered by a BGP prefix. Of the addresses seen in our experiments,
99.95% have a matching prefix in either BGP announcements, RIR
delegations, or IXP prefixes.

Collecting IXP Addresses: bdrmapIT considers IXP prefixes spe-
cially, since some ASes originate IXP prefixes in BGP, which could
cause unrelated ASes to be included in an origin AS set for an IR. We
therefore compile a list of IXP prefixes using data volunteered by
ISPs and IXPs to PeeringDB [10], Packet Clearing House (PCH) [9],
and EurolX [5], and do not consider BGP origin ASes for addresses
covered by these prefixes when building origin AS sets.

Inferring AS Relationships: AS relationships constrain the set
of possible paths, so we use them to constrain the set of ASes
used for IR labeling. We rely on Luckie et al.’s technique [28] to
determine whether two adjacent ASes in BGP paths are in a transit
relationship. This technique also infers the customer cone for an
AS, i.e., ASes reachable by customer links [28].

4.2 Assign Link Confidence Labels

The likelihood that an interface-to-interface link is a point-to-point
link depends on the type of ICMP response used to infer the link. We

Pushing the Boundaries with bdrmapIT

Label Priority | Description
N
IR; «— j 1 Same origin AS or hop-distance of 1,
where j does not respond with ICMP Echo
Reply.
E
IR; <> j 2 Hop-distance of 1. j responds with ICMP
Echo Reply.
M
IR; «—j 3 Hop-distance > 1. i and j have different
origin ASes.

Table 3: Link type confidence labels: Nexthop (N), Echo (E),
and Multihop (M).

use this dependence to label links with indicators of confidence in
their existence, as follows. For each traceroute, we create a link from
each IR to the first interface seen subsequently in that traceroute.
When we encounter adjacent hops i and j, possibly separated by
private addresses or unresponsive hops, we create a link between
i’s IR (IR;) and j. We label the link with one of three labels in Tab. 3,
determined by the distance between the hops, and the ICMP type of
Jj’s reply. If a link receives multiple labels, bdrmapIT uses the highest
confidence one.

The highest confidence links, IR; & J, provide the most reli-
able information; they also account for 96.4% of links seen in our
traceroute datasets. A link receives this label in two cases. Both
require that j responds with ICMP Time Exceeded or Destination
Unreachable, which typically indicates that the traceroute probe
arrived at interface j on the responding router, or that the router
responded using j. In the first case, i and j have the same origin AS.
We are not concerned with the hop-distance between them since
that same origin AS likely operates them. In the second case, they
have different origin ASes, but i and j have a hop-distance of one.
We consider links derived from adjacent traceroute hops as reliable
as hops with the same origin AS, since AS; indicates that j’s router
is operated by ASj, IR; is operated by AS;, or both.

When j responds with ICMP Echo Reply, we label the link IR; &
Jj. Unlike other response types, Echo Replies do not indicate that j
was the ingress or egress interface, but rather that j was an interface
on the responding router. As long as i and j are adjacent, we indicate

E
this distinction with the label IR; «— j. Of the IRs in our datasets
E
with links to at least one subsequent interface, 2.8% have «— links

N
but no « links.

Lastly, we use label i X Jj when i and j are separated by unre-
sponsive hops or private addresses, and AS; # AS;. In such cases
we cannot assume that i and j are on routers operated by the same
AS, and there could be one or more AS-hops between R; and R;.

M
We use «— links only when no other link types are available.
Fig. 4 illustrates the process of assigning labels to links. We label

N
the first link IRy «— b since the hops are adjacent and IR, responds
M
with Time Exceeded. The next two links are labeled IRy «— ¢ and

N
IRy «— cy respectively. In the third link c; and c; have the same
origin ASes, leading us to presume the missing hops are operated
by AS., while we are unable to draw the same inference in the

60

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Hop: 1 2 4 7 8
IPs: a b A e R o) d
Origin AS: AS A ASB ASC ASC ASD
_ 'I'I'(_L expired TLL expired TI.L expired < echo reply

Figure 4: Deriving link labels from a traceroute: Nexthop,
Echo, and Multihop.

aj
(_AS,
a IR,
ASp
L C L(IR1'b2)={ASA,ASC}

AS¢

Figure 5: Using the paths from figure 2, path segment a; —
by crosses link (IRy,b1), so the AS set Lg, 5,) contains ASy,
while segments a; — by and ¢ — by both cross link (IRy, by), so
the AS set L1, 5,) contains AS4 and ASc.

second link. Finally, we label IRy & d since IRg responds with an
Echo Reply, whose source address in this case happened to be an
off-path address, i.e., an interface not used to receive the incoming
traceroute probe packets.

4.3 Assign Origin AS Sets to IRs

When we create a link, IR; < j, where i and j have different origin
ASes, it is not immediately clear if IR; is operated by AS; or AS;.
Making that inference often requires analyzing the AS relationship
between AS; and ASj, so we add the origin AS of interface i to
the link’s origin AS set, LR, j. Each origin AS set is specific to a
link between an IR, in this case the IR containing the interface i,
and a subsequent interface j. Keeping the origin AS set specific to
link IR; < j, instead of creating a single origin AS set for j, helps
prevent incorrect inferences in the event j ever appears as a third-
party address. At the completion of this phase, Lyg,, j contains all
origin ASes of the IR;’s interfaces seen immediately prior to jin a
traceroute. In figure 5, L(jg, p,) contains AS, since segment a; — by
crosses AS4. while Lrg, 5,) contains both AS4 and ASc since those
ASes are crossed by the path segments ap — by and ¢ — b.

We use the origin AS set to reason about all of the potential AS
relationships between an IR and a subsequent interface’s origin AS.
For example, if an origin AS set contains {AS4, ASg}, and ¢ has
origin AS ASc, then we expect at least one of {AS4, ASp} to have a
relationship with ASc, or that a hidden AS exists between the ASes
in the origin AS set and ASc.

Origin AS sets illustrate a primary challenge of synthesizing
the bdrmap and MAP-IT approaches. Specifically, neither previous
approach had to worry about choosing among multiple origin ASes

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

N\ Ve Ve
ap ay b c

[src ASy —> ASy IR IRz]—P ASc IR}]‘
7 (. C

Figure 6: Traceroute with source address a; and destination
address d. ASp is the destination AS and c’s IR3 only appears
at the end of our traceroutes. We can use ASp to help deter-
mine IR3’s operating AS.

for a given router in the graph; MAP-IT did not even consider routers,
and bdrmap only mapped the borders of a single, known origin AS.

4.4 Assign Destination ASes to IRs

To correctly label routers found only at the end of traceroute (§6.1.1),
we build a destination AS set for each IR. This destination AS set
contains the origin ASes of the traceroute destination addresses
that resulted in a reply from at least one of the IR’s interfaces.

We first compile destination AS sets for each interface. In Fig. 6,
we add ASp to the destination AS sets for ay, b, and c. The lone
exception is when a traceroute ends in an Echo Reply, in which
case we do not record the destination AS for the last IR. In this case
the destination AS adds no value, since it is always the same as the
interface’s origin AS, owing to the fact that the source address of
an echo reply is simply the destination address probed.

We aggregate the destination AS sets for each interface on an
IR into a single destination AS set for that IR. The possibility of
prefix reallocation by ISPs [23] complicates this aggregation process.
To detect likely reallocated prefixes, we look for interfaces with
exactly two destination ASes, where one of the ASes matches the
interface’s origin AS, and the other AS has a customer cone of at
most five ASes. This restriction on the customer cone size ensures
we capture ASes who are small enough to likely receive reallocated
prefixes from their provider. When these two ASes have no BGP-
observable relationship, we assume that the relationship between
them is missing due to prefix aggregation, which occurs when
the provider aggregates the reallocated prefix into its own BGP
announcements. If so, we remove the destination AS with the largest
customer cone, which we infer to be the reallocating provider. After
removing reallocated provider ASes, the IR destination AS set is
simply the union of its interface destination AS sets.

5 PHASE 2: ANNOTATE LAST HOPS

In many datasets, the vast majority of IRs (~ 98% in CAIDA’s Feb-
ruary 2018 ITDK [6]) have no outgoing links, caused by several
factors: the IR was the destination or last reachable hop on a path
probed by traceroute; or intermediate nodes rate-limited, blocked,
or dropped ICMP responses. Phase 2 uses the destination AS sets
compiled in the previous phase to annotate each IR, without out-
going links, with their operating AS regardless of the reason. The
intuition behind this phase is to find a single AS with a known AS
relationship with the IR’s other origin ASes. The following heuris-
tics first derive a list of acceptable candidates, then infer the best
among them.

61

A. Marder et al.

ap
(\ ASa
a IR,
ASp

ASc

dst{ASp,ASE}

Figure 7: Using paths from Figure 2, IR, was seen by paths
going to ASp so its destination AS set is {ASg}. Since ASp
matches the origin AS of interface b;, IR; is annotated with
ASp. IR3 was seen by paths going to both ASp and ASg so its
destination set includes both. ASp has a relationship with
ASp so IR3 is annotated with ASp.

5.1 When the Destination AS Set is empty

Since we do not use echo replies to build the destination AS set
(§4.4), when all interfaces on an IR are only seen in echo replies,
the destination AS set will be empty. We have only the origin AS
set to reason about the IR. In the February 2018 ITDK, 73.3% of
last hop IRs have an empty destination AS set. We do not know of
any techniques for improving the mappings for these IRs without
additional probing.

If one or more ASes in the origin AS set has a relationship with
all other ASes in the set, we select that AS. In the event of a tie, we
select the AS with the smallest customer cone, inferring that AS
to be a customer of the other ASes. Otherwise, we look for an AS
not in the origin AS set that has a relationship to all ASes in the
set, and infer that AS to be connected to the other ASes. Finally,
we select the AS with the most interface AS mappings in the set,
breaking ties by selecting the AS that has the smallest customer
cone.

5.2 When the Destination AS Set is not empty

Destination ASes for an IR enable greater accuracy than relying
on the IR’s interfaces alone, because destination ASes can provide
topological constraints that inform router ownership. The order in
which we describe the different cases is both the order in which
they appear in the algorithm (Alg. 1), and their frequency order in
our datasets.

Algorithm 1 Annotating Last Hop Router, ir

1: D < DESTINATIONASES[ir]

: O« {i€ir|i.aAsn}

: if |O N D| = 1 then return the single AS

: Dye; < {d € D| 3o € O : HASRELATIONSHIP(d, 0) }
: if |D, ;| > 0 then

return max |cusTOMERCONE[d] N D|
de€Dye;

W N

NS N

7: @ < min_ CONESIZE[asn]
asneD

8: C « customers of any 0 € O
9: if |PROVIDERs[a] N C| = 1 then return the single AS

10: return a

Pushing the Boundaries with bdrmapIT

Overlapping ASes (line 3): As we visit each IR, we first select
the ASes in common between the origin and destination AS sets.
When there is only one overlapping AS, we infer that AS to operate
the router. In case there are multiple overlapping ASes, we select
the AS with the smallest customer cone, assuming this AS is using
a reallocated prefix from the larger AS.

Relationship Between Origins and Destinations (lines 4-6):
If there are no overlapping ASes, we next look for destination ASes
that have a relationship with any of the origin ASes. If there is only
a single AS, we use it as the AS annotation. If there are multiple, we
use the AS with the largest customer cone, inferring it is a transit
provider for the others. In fig 7, the relationship between interface
by’s ASp and ASp in IR3’s destination justifies annotating IR3 with
ASp.

No Relationship ASes (lines 7-10): The final case is when there
is no AS relationship between any destination and origin ASes.
Initially, we look for an AS between the origins and destinations,
specifically looking for ASes that are both a provider to at least one
destination AS, and also a customer of at least one origin AS. If we
find exactly one such AS, we annotate the IR with it. Otherwise,
we select the destination AS with the smallest customer cone.

6 PHASE 3: GRAPH REFINEMENT

The graph refinement loop has two steps. The first step iterates
over the IRs, using their outgoing links to annotate IRs with their
operating AS (§6.1). The second step relies on IR annotations to
update the AS annotation of each interface with the interconnecting
AS (the other side of the link) (§6.2).

Prior to entering the graph refinement loop, bdrmapIT initial-
izes all interface annotations with the origin AS of the interface.
Throughout iterations of the graph refinement loop, annotations
propagate across the graph, enabling bdrmapIT to refine the anno-
tations, improving its accuracy (§6.3). We iterate until we reach a
repeated state, i.e., when all of the annotations at the end of one
iterations are the same as the annotations at the end of a previous
iteration.

6.1 Annotate IRs

The first phase of refinement is to annotate all IRs with an AS
(Alg. 2). Intuitively, we use the current AS annotations of the IRs
and interfaces to determine the most frequently appearing AS for an
IR’s set of subsequent interfaces, similar to MAP-IT’s approach. We
also leverage adapted bdrmap heuristics and framing assumptions
to apply exceptions and tiebreakers.

First, we sum the votes of subsequent interfaces (§6.1.1). We
assume that typically, the AS with the most votes, representing the
largest number of links from an IR, is the IR operator. Next, we
change votes if we encounter a reallocated prefix (§6.1.2). We then
check if the votes match one of our exception conditions (§6.1.3) that
violate the assumptions of our majority-vote annotation technique.
If the votes do not match any exception condition, we give each
IR interface a vote, using its origin AS, and select the AS with the
highest number of votes, breaking ties if necessary (§6.1.4). Finally,
we check for a hidden AS in §6.1.5, possibly replacing the selected
AS with a hidden AS. bdrmapIT uses the final AS selection as the
IR’s AS annotation.

62

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Algorithm 2 Annotating IR, ir

1: V: counter for AS votes

2: M: map of ir origin ASes to subsequent ASes
3. for all interface j € SUBSEQUENT[ir] do

4 a « IRLINKHEURISTICS(ir, J) > §6.1.1
5 if a != NULL then

6

INCREMENT(V [a])
7: Vo € Sir,j : add o to M[a]

8: Fix reallocated prefixes
9: for all i € ir.INTERFACES do INCREMENT(V[i.AsS])

> §6.1.2

10: Look for exception cases
11: R « ir.orIGINS U {v € V | Jo € M[v] : REL(0,)}
12: if R != ir.oRIGINS then return ma})zc V]v]

veE

> §6.1.3

> §6.1.4

13: a <« max V[v]
veV

14: return Look for hidden AS between M[a] and a

> §6.1.4

6.1.1 Apply Link Vote Heuristics. The first step is to count the link
votes based on three heuristics represented in Alg. 3. As explained
in §4.2, when computing the link votes for an IR, we only use the

& links, relying on & and & links only when they are the only
links available. This step begins by checking for the three cases
(line 2-8, detailed next) in which we do not use the AS annotation
on the interface as the vote. Usually, none of these cases apply, and
we rely on the interface’s annotation (line 9).

Algorithm 3 IRLINKHEURISTICS(iT, j)

1: if j.As € Ljr,j then return j.as

2. if j € IXP addresses then return IIiaX CONESIZE|[a]
a€Lir ;

3: ASj < ANNOTATION];.IR]

4: if AS; is unannounced then return NULL

5. if j is unannounced then return AS;

6: if j.ASN # ASj A Ja € L;r j : HASREL(a, AS;j) then
7: D « the set of destination ASes for link E; j
8: if j.AsN ¢ D then return AS;

9: return ANNOTATION[/]

IXP Address (line 2): When ir’s subsequent interface j is an IXP
public peering address, we instead use the AS in L;; j (the origin
AS set for interfaces on ir seen prior to j in a traceroute) with
the largest customer cone; this AS is likely the top of the transit
hierarchy. This choice reflects conventional assumptions [17] that
in general AS paths are valley-free, contain at most one peering
link, and that networks do not forward packets from a provider to
a peer. Since we have a strong indication that i is used for a public
peering link, we try to identify the likely transit provider AS among
the origin ASes of the ir interfaces.

Unannounced Addresses (line 5): After ensuring the subse-
quent interface address does not match a prefix in our IXP dataset,
we check if the address fails to match any prefix in BGP announce-
ments or RIR delegations, which we call unannounced addresses.
In the datasets used in §7, this occurs for 0.1% of the interface

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Figure 8: Annotating IRs with unannounced interface ad-
dresses. IRy was annotated by the last hop heuristic. In the
first iteration of the graph refinement loop IRy and IR3 are
annotated with ASx, enabling the annotation of IR;.

Lricy={ASA}

c IR,

ASp) ASs ASc /ASg

Figure 9: Interface c is potentially a third-party address be-
cause its origin ASc, its IR’s annotation ASg, and the ASes
{AS4} in LR, . are all different.

addresses. While the empty origin AS for the subsequent inter-
face provides no value, we can instead give a vote to its IR’s AS
annotation.

There are two ways that IRs with unannounced interface ad-
dresses receive annotations, either using destination ASes in §5 or
using subsequent ASes in this step. In this heuristic, we are con-
cerned with IRs that have a link to a subsequent interface with an
unannounced address, in which case we give a vote to the IR’s AS
annotation. Due to the iterative nature of the graph refinement loop,
using the AS annotation of the subsequent interface’s IR enables us
to annotate IRs with links to unannounced addresses, even when
they are several hops removed from an interface with an address in
our IP-AS mappings, or an IR annotated in §5. As shown in Fig. 8,
by the second iteration of the graph refinement loop we used the
AS annotation for IRy to correctly annotate IR; with ASx, even
though IR; only has links to unannounced addresses.

Third-Party Addresses (lines 6-8): At this point, we know that
the subsequent interface address is not in our IXP dataset, and has
a matching prefix in either BGP announcements or RIR delegations.
The goal in this step is to assess whether we should use the origin
AS as a constraint, which we do unless we believe the router used
a third party address to reply.

Third-party addresses typically result from asymmetric routing,
when the interface used to respond to a traceroute probe (egress)
is different from that which received the probe (ingress) [19,26].
When the ingress and egress interfaces use the same AS address
space, or the router puts the ingress address in the reply source
field, asymmetric routing presents no problems in IR annotation.
Difficulties arise when the egress and ingress interfaces come from
different AS address spaces, and the router uses the egress interface
address as the source address of the reply.

63

A. Marder et al.

x.x.x.1\ IRy
A
P Sp /ASc
ASp
IR] C
ASc ASc
P2 \
ASp x.x.x.5\ IRy
ASp /ASc

Figure 10: When ASc is a customer of ASp we annotate IR
with ASc.

Any interface with an origin AS that is both not in the link’s
origin AS set, and differs from its IR’s annotation, is a potential third-
party address (Fig. 9). bdrmapIT uses a two-step test to infer whether
c is a third-party address. First, there must be an AS relationship
between at least one AS in Lyg, . and ASg. This AS relationship
indicates that the traceroute probe could get to ASp from the origin
AS without going through ASc. Second, AS¢ must not appear in the
destination ASes specific to IR; and c. This test indicates that probes
transmitted from IR; to ¢ were never destined to ASc. While not
exhaustive, this test gives a reasonably strong indication that c is
likely a third-party address, so we should not include its annotation
in the voting. Instead, we include a vote for IRy’s annotation, in this
case ASg. If ¢’s IR does not yet have an annotation, only possible
in the first iteration of the graph refinement loop, we skip the
third-party tests entirely.

6.1.2 Correct Reallocated Prefixes. In the previous step we deter-
mined the vote for each subsequent interface independently, but in
this step we evaluate all of the subsequent interfaces together. As
in §4.4, we try to identify situations where a provider reallocated
some of its address space to a customer (Fig. 10), but continues
to announce a containing prefix into BGP. To prevent incorrect
annotations of a provider router with a customer AS, we take a
conservative approach. Our test first looks at all of IR;’s subsequent
interfaces that map to an AS seen in its origin AS set, in this case
x.x.x.1and x.x.x.5. Then this step collects the IR annotations for
those interfaces, along with the /24 prefix for their addresses. If all
of the annotations are the same, the single annotation is a customer
of an IR origin AS, and all of the addresses have the same /24 prefix,
we conclude that the prefix was reallocated. In this case, all of the
matching subsequent interfaces have the prefix x.x.x/24, and their
IRs are annotated with AS¢, so we change their votes from ASp to
the customer ASc.

To avoid mistakenly annotating an IR with a customer AS, we re-
quire a single prefix for all subsequent interfaces, as well as multiple
links. Often, the unannounced reallocated prefixes are smaller than
/24, but matching against a /24 catches smaller prefixes without
incurring too much risk of matching too large a prefix.

6.1.3 Check for Exceptions. From developing and using MAP-IT we
learned that, in general, the AS that receives the highest number of
votes operates the IR. Adapting bdrmap heuristics for more general
use in bdrmapIT led us to consider two exceptions to this general
rule.

Pushing the Boundaries with bdrmapIT

P1
ASp
IRl C
! ? ASc
P2
ASp

Figure 11: A multihomed customer can present an exception
to majority voting, as when AS¢ is a multihomed customer
of ASp, selecting the most frequent AS results in IR inferred
to be owned by ASp instead of ASc.

Multihomed to a Provider: The most common exception is for
links between transit providers and customer ASes, where select-
ing the AS with the most votes results in an incorrect choice. In
accordance with industry convention, transit link interfaces usually
use addresses from the provider’s address space. The result is that
border IRs operated by a customer AS often have more interfaces
with addresses from their providers’ address space than links to
subsequent interfaces with addresses from the customer’s address
space.

When the customer is a large ISP the IR voting system usually
does not make false inferences, but when the IR belongs to a stub AS,
our voting system can make false inferences. When a customer IR is
multihomed to a transit provider, the IR will have multiple interfaces
each with an address from the provider; if traceroute paths observe
fewer links to IRs with addresses in the customer network, as in
Fig. 11, a pure voting system will make a false inference.

We identify and account for these exceptional cases. When there
is only a single subsequent AS;, we check to see if AS; is a customer
of any IR origin AS. Returning to the example in Fig. 11 we check
if ASc is a customer of ASp, and annotate IR; with AS, if it is.

We do not use the single subsequent AS exception when there is
no relationship between it and any origin AS, instead relying on
votes (§6.1.4) or looking for a hidden AS (§6.1.5). We choose not
to select an AS yet since BGP AS paths typically contain the vast
majority of transit relationships.

Multiple Peers/Providers: The second exception is when the IR
interfaces all have the same origin AS, there are multiple subsequent
ASes, and all of the subsequent ASes are either peers or providers
of that AS. In this case, we expect that the origin AS is the AS that
operates the IR, since it is the common denominator between the
subsequent ASes. Conversely, when the IR has multiple interface
origin ASes, and there is a single subsequent AS that is a peer or
provider of every origin AS, we select the subsequent AS for the
same reason. We annotate the IR with the selected AS provided
that it has at least half as many votes as the AS with the most votes.
If it has less than half the votes, it suggests that it is not actually
the operating AS, so we do not apply the exception.

6.1.4 Apply IR Vote Heuristics. After determining the subsequent
interface votes, adjusting reallocated prefixes, and checking for
exception conditions, we use the votes to determine the AS an-
notation for the IR. As long as at least one subsequent AS has an
observed relationship with an IR origin AS, then the election is held
between the IR origin ASes and any subsequent ASes that have a

64

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

C1
ASc

ASy, —> IR

ASy ASc
2

ASp ASc

Figure 12: Hidden ASes occur when traceroutes traverse an
IR in ASp, but traceroute never observes any IP addresses
from ASp on it or any IR adjacent, suggesting an AS path of
A-C, instead of A-B-C

relationship with an IR origin AS. This constraint helps ensure that
the selected AS will have a relationship with at least one IR origin
AS. If the new restricted set only contains IR origin ASes, then we
revert to using all of the ASes with a vote, but check for a hidden
AS (§6.1.5) following this step.

We use the selected AS, which has the most votes, as the annota-
tion for the IR. Our justification follows from the observation that
an interface address in AS4 indicates that its IR, the IRs connected
to it, or both, are operated by AS4, since interdomain link inter-
faces use the address space of only one of the two networks. Viewed
through this lens, every interface on, and subsequent to, the IR is
circumstantial evidence of the operating AS. Selecting the AS with
the most votes also selects the AS with the most circumstantial
evidence.

Occasionally, multiple ASes will tie for the highest vote. We
break the tie by selecting the most likely customer AS from the
group, by choosing the AS with the smallest customer cone. Since
transit link interfaces are usually addressed from the provider’s
address space, and we expect that most interdomain links seen in
traceroute are transit links, we try to select the customer AS.

6.1.5 Check for a Hidden AS. Finally, we check to see if our selec-
tion has a relationship to any member of the IR’s origin AS set. If
so, we use this selection for the IR annotation. Otherwise, we look
for the possibility of a hidden AS. Occasionally, despite a traceroute
traversing an AS, it reports no IP addresses from that AS (Fig. 12).
We most often encounter hidden ASes when a transit link between
a small ISP and its customer uses the customer’s address space.
To avoid an incorrect annotation, we attempt to find an AS that
bridges between the selected AS and subsequent ASes by finding
an AS that is a customer of the selected AS, and a provider of a
subsequent AS. When there is a single such AS, we change our
selection to that AS. Otherwise, we leave our selection unmodified.

6.2 Annotate Interfaces

Following the router annotation step, we update the interface AS
annotations to align the interface AS annotations with the router it
connects to. As long as the interface address is not an IXP address,
we assume the interface connects to one router, and therefore one

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

aj IR2
a ASp) AS
a IR, £54 IR, \ b \ IR
AS A ASA jdl ASA ASB
A SB a /

()

by \ IR,

ASp) ASg

b, \ IR; 2 b\ IR
ASp) ASg » ASp) ASp
IRy

b3
ASp / ASp

(©)

Figure 13: (a) If the interface’s origin AS is different than the
IR’s annotation, we annotate with the interface’s origin AS.
(b,c) If they are the same, we annotate with a single AS from
the connected IRs.

AS. However, the operator of the connected router might be ob-
scured, either due to mistakes in the router annotations, or as a
result of it appearing as a third-party address. This step selects a
single AS annotation for the interface.

An interface origin AS will either come from the AS operating
its router, or from a different AS directly connected to the interface
that provides the interface address for interconnection. Thus, if
the origin AS for an interface differs from the AS annotation for
the interface’s IR, we use the interface address’ origin AS as the
interface AS annotation, since that AS operates the connected IR.
That is, if the interface address does not come from the AS operating
the router it is on, it must come from the AS operating the router it
connects to. In Fig. 13a, we previously inferred that IR; is operated
by ASp, leading us to conclude that a connects to a router operated
by AS4, so we annotate a with its origin AS4.

When the interface origin AS is the same as the current AS
annotation for IR; (Fig. 13b and Fig. 13c), we select one of the
ASes from the IRs connected by links in our graph. Similar to §6.1,
we use a voting system, but in this step we give each connected
IR a vote for each of its interfaces seen prior to interface b in a
traceroute. In Fig. 13b, AS4 receives three votes and AS¢, which
might be an errant annotation, receives one vote. To determine the
AS annotation of the interface, we select the AS with the most votes,
breaking ties using the tied AS with the largest customer cone that
also has a BGP-observed relationship to the interface origin AS. If
no tied AS has a relationship to the interface AS, then we use the
interface address’ origin AS as the annotation to avoid negatively
impacting the IR annotations with an incorrect inference.

Finally, so far we have focused on potential interdomain links.
It is possible, as in Fig. 13c, that the interface origin AS and IR AS

65

A. Marder et al.

ASA ASB

ASA

(a) Iteration 1: IR Annotation

(b) Iteration 1: Interface Annotation

IR, b IR,
AS) > ASy JASp

(c) Iteration 2: IR Annotation

Figure 14: bdrmapIT refines the graph as it progresses from
the first iteration to the second. The annotation for IR; is
corrected from ASg (a) to AS4 (c).

annotations are the same, because the same AS operates its router
and the connected router. In these cases we annotate b with its
origin AS.

6.3 Refine the Graph

bdrmapIT repeatedly updates IR annotations (§6.1) and interface
annotations (§6.2) until no modifications are made in an iteration.
Fig. 14a illustrates the approach. During the IR annotation stage
of the first iteration, IR has only a single link to the subsequent
interface b, with AS annotation ASg. If ASg is either a customer of
AS 4, or a peer with a smaller customer cone, we might incorrectly
annotate IR; with ASg. Fortunately, in the interface annotation
stage (Fig. 14b), b has links to two IRs. Since IR3 has two interfaces,
AS 4 receives the most votes, changing b’s annotation from its origin
AS to AS 4. When we return to IR annotations in the second iteration
of the graph refinement loop (Fig. 14c), IR; uses the new annotation
for b, which corrects the annotation for IR; to AS4.

7 EVALUATION

We validate our approach against ground truth from four networks:
a Tier-1 network, a large access network, and two research and
education (R&E) networks. Except for one R&E network, we reused
the 2016 ground truth acquired for the bdrmap evaluation, which
was gathered by first running bdrmap from a VP in each network. We
created the 2018 ground truth dataset by first running bdrmapIT on
traceroutes initially collected by bdrmap. In both cases, the resulting
inferences were sent to the network operators for each VP network
to obtain a validation dataset. We did not ask them to validate
missing inferences due to the burden on the network operator,
although a small number of interdomain links appear in our ground
truth that bdrmap did not identify. The remaining R&E network,
labeled R&E 1, provided us with router configurations of its primary
AS, which includes internal and interdomain links involving its
backbone.

Pushing the Boundaries with bdrmapIT

Single In-Network VP

1.0-
0.9 -
oy
g
El
3
<t
BN bdrmapIT
|| bdrmap
2016 2016 2016 2018
Tier 1 R&E 2 L Access Tier 1
2688 105 179 2556

Figure 15: (all data) bdrmapIT is more accurate than bdrmap for the 4 ground
truth networks. Bottom number reports links visible in the paths.

To evaluate bdrmapIT, we ran three separate experiments us-
ing datasets from the spring of 2016 and spring of 2018. We used
validation data from the same time period as the dataset.

(1) We regression tested against bdrmap to ensure that the adapted
heuristics in bdrmapIT perform at least as well as the original
bdrmap heuristics (§7.1);

(2) We demonstrated the power of our new approach on Internet-
wide datasets with no VPs in our validation networks, show-
ing that bdrmapIT has high accuracy and vastly outperforms
MAP-IT (§7.2);

(3) We show that our accuracy does not diminish when datasets
have fewer traceroute VPs than a full ITDK (§7.3).

7.1 bdrmapIT Validation on bdrmap Data

The first experiments compare mappings generated by bdrmapIT to
inferences drawn by bdrmap, ensuring that our adaptations of the
bdrmap heuristics do not adversely affect their accuracy. bdrmap
has been running in several networks since 2016; we feed the
traceroutes and alias resolution from those bdrmap runs as input
to bdrmapIT. We used the data that bdrmap gathered as an existing
dataset, ensuring that bdrmapIT and bdrmap base their mappings on
identical traceroute data.

Our validations (Fig. 15) confirm that bdrmapIT performs at least
as accurately as bdrmap in its limited problem domain, which is
mapping the border of a single network using traceroutes from a
single VP in that network. In fact, bdrmapIT performs slightly more
accurately than bdrmap, primarily due to mapping past the VP AS
border, enabling better hidden AS and third party identification.
While these results verify that adapting the bdrmap heuristics to the
MAP-IT framework did not weaken their ability to map the border
of the VP network, they do not demonstrate the true benefits of
bdrmapIT’s combined heuristics. The primary goal in the creation of
bdrmapIT is accurate border mapping for all ASes in Internet-wide
traceroute datasets, which is shown in the next set of experiments.

7.2 bdrmapIT Validation on ITDK Data

The second set of experiments demonstrate the benefit of bdrmapIT’s
adapted heuristics to mapping network borders in Internet-wide
datasets. To highlight the differences between bdrmapIT and bdrmap,
we used traceroute datasets without VPs in any of the validation

66

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

g: No In-Network VP: Correctness

=1

3 I

DN I

&~

<

,

&~

‘: B bdrmapIT

5 - MAP- IT

S

&

. No In-Network VP: Coverage

= 1.0-

= 0.9-

+ 0.8-

A 0.7-

&~ 06-

~ 0 5 -

& 04-

| BN bdrmapIT

E - MAP-IT

Q

g
2016 2016 2016 2016 2018 2018
Tier1 R&E1 R&E 2 L Access Tier 1 R&E 1
2516 174 51 146 2477 190

Figure 16: (no in-net VPs) bdrmapIT has far better coverage than MAP-IT. We
do not use in-network VPs. Under the network label is the number of links
visible in the paths.

networks. We compare bdrmapIT’s results to MAP-IT, which was also
designed for Internet-wide border mapping.

For these experiments we used the publicly available CAIDA
ITDK datasets for March 2016 [1] and February 2018 [6], which
include traceroutes run over 15 days and alias resolution for some
interfaces seen in the traceroutes. From each ITDK we removed
traceroutes from a VP in one of our ground truth networks, ensuring
that no traceroutes originated in any network we validated against.
This left us with traceroutes from 109 of 111 VPs in the 2016 ITDK,
and from 141 of 146 VPs in the 2018 ITDK. All the traceroutes used
ICMP Paris traceroute [15,39], which controls the IP and transport
headers to reduce load balancing, and a combination of iffinder [21]
and MIDAR [22] for alias resolution.

Similar to MAP-IT’s validation [31], we present the precision and
recall of our inferences. Precision in this context is the fraction
of inferred interdomain links that are correct, i.e., they are not
internal to a network, and we correctly identified the connected
networks. Recall is the number of correctly identified interdomain
links that appear in the dataset. When computing the recall, we
exclude interfaces which only appeared as Echo Replies. Unlike in
the previous experiments, which only validate correctness, since
we obtained the ground truth based on bdrmap’s inferences, these
experiments test bdrmapIT’s ability to find interdomain links in a
dataset.

Fig. 16 shows that bdrmapIT clearly outperforms MAP-IT, with
better precision for all of the ground truth networks except the
large access network, and vastly better recall, demonstrating the
benefit of the adapted bdrmap heuristics. Overall, bdrmapIT achieved
91.8%-98.8% precision, and 93.2%-97.1% recall.

All the adapted heuristics play a role in bdrmapIT’s higher accu-
racy, but the largest improvement comes from the use of destination

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

5: No In-Network VP (No Last Hop): Correctness

&1

3 I I

a,

&

—

N

=

Ig I bdrmapIT

& - MAP- IT

£

[aly

s No In-Network VP (No Last Hop): Coverage

Z 1.0-

~ 0.9-

L 03

S 06-

—

N

&~

| I bdrmapIT

G B MAP-IT

& — —_—
2016 2016 2016 2016 2018 2018
Tier 1 R&E1 R&E 2 L Access Tier 1 R&E 1
1566 171 34 139 853 186

Figure 17: (no in-net VPs and no last hops) bdrmapIT has bet-
ter coverage of interdomain links seen in the middle of the
paths. Under the network label is the number of links.

ASes in the last hop heuristic (§5). MAP-IT does not use destina-
tion information, so it is unable to identify those links. Another
prominent reason is that bdrmapIT’s enhanced ability to leverage
AS relationships, specifically in the third party heuristic (§6.1.1) and
the multihomed customer exception (§6.1.3), improves on MAP-IT’s
coverage of low visibility links at the Internet edge. Links between
an ISP and an edge AS are especially problematic for MAP-IT, since
traceroute often reveals more interfaces from the provider’s address
space on a border router than customer addresses past the border,
if an address from the operating AS even appears in a traceroute.
Finally, Fig. 17 shows the difference in coverage when we exclude
the interdomain links which only appear as the last hop in the
traceroute dataset. bdrmapIT still substantially outperforms MAP-
IT, indicating that the adapted heuristics, and our overall more
aggressive inference strategy, leads to significantly better results.

7.3 Effect of Decreasing VPs

The next set of experiments evaluated whether bdrmapIT’s perfor-
mance was reliant on the number of VPs included in the ITDK
datasets. We validated bdrmapIT’s performance using groups of 20,
40, 60, and 80 VPs, running five experiments in each group using
five randomly chosen sets of VPs. For all experiments we excluded
the VPs in our ground truth networks.

The results are shown in Fig 18. Each graph shows the average
of the five sets of VPs for each group, along with the standard error.
Surprisingly, bdrmapIT’s accuracy does not diminish as the number
of VPs decreases. In the groups with 20 VPs, the precision ranges
from 92.4%-99.6% and the recall is between 95.4%-98.6%. Similarly,
when we increase the number of VPs to 80, the precision (93.1%—
98.5%) and recall (94.0%-97.2%) remain roughly equivalent, with the
means falling within a standard deviation of each other. Although

67

A. Marder et al.

Varying Number of VPs: Correctness

1.0-
0.9-
o
2
[al)
Varying Number of VPs: Coverage
1.0-
0.9-
= BN Ticr 12016 MMM R&E 2
. R&E 12016 B L Access
R I B R
20 40 60 80

Number of VPs

Figure 18: bdrmapIT performance is does not diminish as the
number of VPs is reduced. The bars show the average for the
precision and recall, along with the standard error between
the five groups.

Varying Number of
VPs: Visible Links

Iy
o
|

0.9-

e
(2 e}
[]

I Tier 1 2016
B R&E 12016
B R&E 2 2016
I L Access 2016

- —
80

Fraction of Visible Links

60
Number of VPs

Figure 19: The number of visible links (seen in traceroutes)
increases with the number of VPs. The bars show the num-
ber of interdomain links visible in the dataset using only the
VPs in the set, along with the standard error.

the number of interdomain links visible in the dataset drops with
the reduction in VPs (Fig 19), bdrmapIT’s ability to correctly identify
those that appear does not diminish. This is an important result, as
researchers might have only a few VPs at their disposal.

7.4 Importance of Alias Resolution

Finally, we investigate the impact of alias resolution on bdrmapIT’s
accuracy. First, we investigate the impact of using a different alias
resolution technique on the same set of traceroutes. Specifically,
we use kapar [20] along with midar and iffinder, while the results

Pushing the Boundaries with bdrmapIT

Multiple Alias IRs: Accuracy

1 0 -
0 8 -
> 0.7-
£06-
§ 0.5 -
< 04-
0.3 - .
09- midar
0.1- kapar
0.0 -
2016 2016 2016 2016 2018 2018
Tierl R&E1 R&E 2 L Access Tier 1 R&E 1

Figure 20: Comparison between alias resolution with and

without kapar, excluding all IRs without multiple aliases.

The decreased alias group precision using kapar decreases
the bdrmapIT’s accuracy for the ITDK datasets, compared to
using midar and iffinder alone.

presented in §7.2 use only the midar and iffinder techniques to
infer router aliases. Second, we show that bdrmapIT performs nearly
equivalently with the midar and iffinder alias resolution as it does
without any alias resolution.

kapar Alias Resolution: Along with the alias resolution datasets
we used in §7.2, the CAIDA ITDK includes a second alias resolution
dataset that includes kapar. Unlike midar, which produces highly
precise alias groups, kapar attempts to increase the number of
grouped aliases, which can result in less precise groupings [8]. To
determine the impact of less accurate, but larger alias groups on
bdrmapIT’s inferences, we ran experiments for both the 2016 and
2018 ITDKs using the alias resolution which includes kapar.

The results, shown in Fig 20, clearly demonstrate that the less
precise IRs generated by kapar decrease the accuracy of bdrmapIT’s
inferences. To highlight the differences between the alias group-
ings, in Fig 20 we only include IRs with multiple aliases. In our
ground truth datasets, kapar has a tendency to mistakenly group
interfaces into a single IR, when in actuality they are used on dif-
ferent physical routers. Since bdrmapIT ensures that each router
receives a single AS annotation, and then uses that information to
determine interdomain links, imprecise alias resolution results in
inaccurate inferences.

No Alias Resolution: Our final experiment aims to determine
the impact of using midar and iffinder alias resolution as com-
pared to not using any alias resolution. To do so, we ran bdrmapIT
on the ITDK datasets, but treated each interface as a separate IR.
The results are nearly identical, with less than 0.1% difference in
accuracy between using alias resolution with midar and iffinder,
and using an interface graph with no alias resolution.

Interestingly, the aggregation resulting from alias resolution
can impact the results both positively and negatively. Occasionally,
the additional IR links enable bdrmapIT to more accurately deter-
mine the IR operator, when one or more IR interface would not
have sufficient constraints for bdrmapIT to make a correct infer-
ence. Conversely, reallocated addresses and third party addresses
seen subsequent to a single interface can add confusion, causing
bdrmapIT to infer the incorrect operator for an IR group, while with-
out alias resolution the mistake would be limited to part of the IR. In

68

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

our experiments, the negative impacts of alias resolution occurred
exclusively at the edge of the Tier 1 network, where reallocated pre-
fixes are common. Further investigation is necessary to determine
when bdrmapIT with alias resolution performs better than using an
interface graph.

8 CONCLUSION

We addressed the surprisingly challenging problem of mapping the
borders of IP networks, which currently hampers both research
and regulatory efforts. In addressing this challenge, we presented
bdrmapIT, a traceroute analysis technique designed to infer the
operating AS for routers and identify links between Internet net-
works. Our method synthesizes two previous approaches, bdrmap
and MAP-IT, leveraging the strengths of each technique to create a
general-purpose solution.

To evaluate bdrmapIT, we performed experiments from in-network
and out-of-network VPs, validating the accuracy of our technique
and demonstrating that bdrmapIT outperforms its predecessors. We
performed additional experiments demonstrating that bdrmapIT’s
performance does not diminish as we reduce the number of VPs. Our
results suggest that bdrmapIT can form the foundation upon which
to address other network diagnostic challenges, including conges-
tion measurement [32,38], resilience assessment [14,25,33,36], and
traffic estimation [35]. We publicly release our source code.

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

REFERENCES

(1]

[16

[17]

(18]

[19]

[20

[21]
[22]

[23

[24]

[25

[26]

[27

[28]

[29

[30]

(31

[32]

[33

[34

[35

2016. Internet Topology Data Kit - March 2016. http://www.caida.org/data/
internet-topology-data-Kkit/.

2018. AFRINIC Extended Allocation and Assignment Reports. ftp://ftp.afrinic.
net/pub/stats/afrinic.

2018. APNIC Extended Allocation and Assignment Reports. ftp://ftp.apnic.net/
pub/stats/apnic.

2018. ARIN Extended Allocation and Assignment Reports. ftp.arin.net/pub/stats/
arin.

2018. Euro-IX IXP Directory. https://www.euro-ix.net/tools/ixp-directory.
2018. Internet Topology Data Kit - February 2018. http://www.caida.org/data/
internet-topology-data-Kkit/.

2018. LACNIC Extended Allocation and Assignment Reports. ftp.lacnic.net/pub/
stats/lacnic.

2018. Macroscopic Internet Topology Data Kit (ITDK). http://www.caida.org/
data/internet-topology-data-Kkit/.

2018. Packet Clearing House: Internet Exchange Directory. https://prefix.pch.
net/applications/ixpdir/menu_download.php.

2018. PeeringDB. https://peeringdb.com/api.

2018. RIPE Extended Allocation and Assignment Reports. ftp://ftp.ripe.net/pub/
stats/ripencc.

2018. RIPE RIS Raw Data. https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data.

2018. University of Oregon Route Views Project. http://www.routeviews.org/.
Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabasi. 2000. Error and attack
tolerance of complex networks. Nature 406 (June 2000).

Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Fried-
man, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. 2006. Avoiding
Traceroute Anomalies with Paris Traceroute. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference (IMC).

Kai Chen, David R. Choffnes, Rahul Potharaju, Yan Chen, Fabian E. Bustamante,
Dan Pei, and Yao Zhao. 2009. Where the Sidewalk Ends: Extending the Internet
As Graph Using Traceroutes from P2P Users. In Proceedings of ACM CoNEXT.
Lixin Gao. 2001. On Inferring Autonomous System Relationships in the Internet.
IEEE/ACM ToN 9, 6 (2001), 733-745.

B. Huffaker, A. Dhamdhere, M. Fomenkov, and k. claffy. 2010. Toward Topology
Dualism: Improving the Accuracy of AS Annotations for Routers. In Proceedings
of the Passive and Active Measurement Conference (PAM).

Y. Hyun, A. Broido, and k. claffy. 2003. On Third-party Addresses in Traceroute
Paths. In PAM. San Diego, CA.

Ken Keys. 2010. Internet-scale IP alias resolution techniques. ACM SIGCOMM
CCR 40, 1 (2010), 50-55.

Ken Keys. 2018. iffinder. https://www.caida.org/tools/measurement/iffinder/.
K. Keys, Y. Hyun, M. Luckie, and k. claffy. 2013. Internet-Scale IPv4 Alias Resolu-
tion with MIDAR. IEEE/ACM ToN 21, 2 (Apr 2013), 383-399.

Thomas Krenc and Anja Feldmann. 2016. BGP Prefix Delegations: A Deep Dive.
In Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC).
Anukool Lakhina, John W. Byers, Mark Crovella, and Peng Xie. 2003. Sampling
Biases in IP Topology Measurements. In Proceedings of IEEE INFOCOM.
Matthew Luckie and Robert Beverly. 2017. The Impact of Router Outages on the
AS-level Internet. In Proceedings of ACM SIGCOMM.

Matthew Luckie and ke claffy. 2014. A Second Look at Detecting Third-Party
Addresses in Traceroute Traces with the IP Timestamp Option. In PAM. 46-55.
Matthew Luckie, Amogh Dhamdhere, Bradley Huffaker, David Clark, and kc
claffy. 2016. bdrmap: Inference of Borders Between IP Networks. In Proceedings
of the ACM SIGCOMM Internet Measurement Conference (IMC).

Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere, Vasileios Giotsas, and
ke claffy. 2013. AS Relationships, Customer Cones, and Validation. In Proceedings
of the ACM SIGCOMM Internet Measurement Conference (IMC).

Z Morley Mao, David Johnson, Jennifer Rexford, Jia Wang, and Randy Katz. 2004.
Scalable and Accurate Identification of AS-Level Forwarding Paths. In Proceedings
of IEEE INFOCOM.

Zhuoging Morley Mao, Jennifer Rexford, Jia Wang, and Randy H Katz. 2003. To-
wards an Accurate AS-Level Traceroute Tool. In Proceedings of ACM SIGCOMM.
Alexander Marder and Jonathan M Smith. 2016. MAP-IT: Multipass Accurate
Passive Inferences From Traceroute. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference (IMC).

Measurement Lab Consortium. 2014. ISP Interconnection and its Impact on
Consumer Internet Performance - A Measurement Lab Consortium Technical
Report. http://www.measurementlab.net/publications/.

Lin Quan, John Heidemann, and Yuri Pradkin. 2013. Trinocular: Understanding
Internet Reliability Through Adaptive Probing. In Proceedings of ACM SIGCOMM.
Chris Ritzo. 2018. Paris Traceroute has a bug, and it causes some bad data.
https://www.measurementlab.net/blog/pt-bug/.

Mario Sanchez, Fabian Bustamante, Balachander Krishnamurthy, Walter Will-
inger, Georgios Smaragdakis, and Jeffrey Erman. 2014. Inter-Domain Traffic

69

[36

[37

[38

[40

]

A. Marder et al.

Estimation for the Outsider. In Proceedings of the ACM SIGCOMM Internet Mea-
surement Conference (IMC).

Aaron Schulman and Neil Spring. 2011. Pingin’ in the rain. In Proceedings of the
ACM SIGCOMM Internet Measurement Conference (IMC).

S. Sundaresan, A. Dhamdhere, M. Allman, and k. claffy. 2017. TCP Congestion
Signatures. In Proceedings of the ACM SIGCOMM Internet Measurement Conference
(IMC).

Srikanth Sundaresan, Danny Lee, Xiaohong Deng, Yun Feng, and Amogh Dhamd-
here. 2017. Challenges in Inferring Internet Congestion Using Throughput Mea-
surements. In Proceedings of the ACM SIGCOMM Internet Measurement Conference
(IMC).

Fabien Viger, Brice Augustin, Xavier Cuvellier, Clémence Magnien, Matthieu
Latapy, Timur Friedman, and Renata Teixeira. 2008. Detection, Understanding,
and Prevention of Traceroute Measurement Artifacts. Computer Networks 52, 5
(2008), 998-1018.

Yu Zhang, Ricardo Oliveira, Hongli Zhang, and Lixia Zhang. 2010. Quantifying
the Pitfalls of Traceroute in AS Connectivity Inference. In Proceedings of the
Passive and Active Measurement Conference (PAM).

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Constructing Interface Graph (sec:datapreparation)
	3.2 Annotating Last Hops with Ownership (sec:lasthop)
	3.3 Annotating IRs and Interfaces (sec:graphrefinementloop)

	4 Phase 1: Construct the Graph
	4.1 Label AS-level Metadata
	4.2 Assign Link Confidence Labels
	4.3 Assign Origin AS Sets to IRs
	4.4 Assign Destination ASes to IRs

	5 Phase 2: Annotate Last Hops
	5.1 When the Destination AS Set is empty
	5.2 When the Destination AS Set is not empty

	6 Phase 3: Graph Refinement
	6.1 Annotate IRs
	6.2 Annotate Interfaces
	6.3 Refine the Graph

	7 Evaluation
	7.1 bdrmapIT Validation on bdrmap Data
	7.2 bdrmapIT Validation on ITDK Data
	7.3 Effect of Decreasing VPs
	7.4 Importance of Alias Resolution

	8 Conclusion
	References

