Accessible AST-Based Programming for
Visually-Impaired Programmers

Emmanuel Schanzer
Bootstrap / Brown University
schanzer@BootstrapWorld.org

ABSTRACT

Most programmers rely on visual tools (block-based editors, auto-
indentation, bracket matching, syntax highlighting, etc.), which
are inaccessible to visually-impaired programmers. While prior
language-specific, downloadable tools have demonstrated benefits
for the visually-impaired, we lack language-independent, cloud-
based tools, both of which are critically needed.

We present a new toolkit for building fully-accessible, browser-
based programming environments for multiple languages. Given a
parser that meets certain specifications, this toolkit will generate a
block editor familiar to sighted users that also communicates the
structure of a program using spoken descriptions, and allows for
navigation using standard (accessible) keyboard shortcuts.

This paper presents the toolkit and a first evaluation of it. While
the toolkit allows for full editing of code, we chose to focus
strictly on navigation for this evaluation, using the navigation-
only study design of Baker, Milne and Ladner. Visually-impaired
programmers completed several tasks with and without our tool,
and we compared their results and experience. Users had
improved accuracy when completing tasks, were significantly
better able to orient when reading code, and felt better about
completing the tasks when using the tool. Moreover, these
improvements came with no significant change in task completion
time over plain text, even for experienced programmers who
navigate text using screen readers set to high words-per-minutes.

CCS CONCEPTS

* Human-centered computing~Empirical studies in

accessibility * Human-centered computing~Accessibility
technologies * Human-centered computing~Accessibility
systems and tools « Social and professional topics~People with
disabilities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

Sina Bahram
Prime Access Consulting
sina@sinabahram.com

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

KEYWORDS

Accessibility; Visually Impaired/Blind Programmers; Screen
Reader; Code Navigation; Code Structure; Blocks

ACM Reference format:

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287499

1 Introduction

Reading the textual syntax of a program can be non-trivial.
Novice and expert programmers use various visual cues, such as
block languages, auto-indentation, syntax highlighting, bracket-
matching, and more. However, these cues are useless for the
roughly 65,000 blind and visually-impaired students in the US
alone [6], who must rely primarily or solely on the textual syntax
of the language, as spoken aloud by a screen reader or
communicated through a Braille display.

Screen readers are adept at communicating structure, and
conventions for navigating tree-like structures (e.g. mailboxes,
directories, etc.) are well-defined [4]. Unfortunately, screen
readers do not have access to a program’s structure. Tokens are
read one-at-a-time, and the program is broken up into nothing
more than a series of lines. Navigation suffers accordingly, with
programmers forced to use arrow keys to read each line of code.
Losing the visual cues on which sighted programmers rely is a
significant impairment: blind programmers have been shown to
have more difficulties navigating and understanding the structure
of code than their sighted counterparts [5, 9, 10].

Prior work has shown significant gains when screen-readers are
given access to structure rather than the raw text. Smith et al. [5]
created a language-specific tool to allow blind programmers to
navigate the tree structure of files in the Eclipse IDE, and Baker et
al. [2] created the StructJumper plugin for Eclipse that allows
programmers to navigate a Java program’s structure.

However, browser-based programming environments are
becoming increasingly popular in education. Environments such
as Code.org’s AppLab, Bootstrap’s WeScheme, MIT’s Scratch,
and others live in the browser [13]. For schools that have adopted
Chromebooks, desktop applications are not even an option. These

SIGCSE, February, 2019, Minneapolis, MN USA

factors limit the usefulness of prior work, and introduce an
additional engineering constraint.

Our tool, CodeMirror-Blocks (CMB), expands on prior work in
three significant ways. First, it is designed to be extensible to
other languages. When provided with a parser that meets certain
requirements (described in the documentation), CMB will create a
fully-accessible Abstract Syntax Tree (AST) editor for that
language, rendered as blocks. Second, it is designed to run
entirely in a web browser. CMB is built atop the popular
CodeMirror library, which is used by thousands of software tools
worldwide [3]. Any programming environment that uses
CodeMirror can be accessibility-enabled by attaching this tool to
the appropriate parser. Finally, it decouples the textual syntax
from the spoken descriptive label for that text, allowing for plain-
language description of fragments of code.

While our tool allows for navigation and editing of code, this first
phase of the evaluation is strictly limited to navigation.

2 Related Work

Difficulties for blind developers to explore code efficiently as
well as lack of access to advanced IDE features were qualitatively
explored by Mealin et al. [5]. Baker et al. provide additional
evidence for the claim that blind developers are forced to read
entire source code files repeatedly and rely on their short-term
memory for complex pieces of information such as a nested
conditional within a loop, while also remembering their current
depth in said code [2].

2.1 Audio-Based Efforts

Stefik et al.'s work on SodBeans [10] provides both speech and
audio cues to notify blind developers of errors, assist in
debugging, and convey scope. It lays out three rules for providing
lists of information about code: lists must be browsable, short, and
place important things first. CMB attempts to strictly follow these
rules. To address the concern that audio cues are hard to
understand [2], CMB uses audio and speech cues, so that users
can learn audio cues over time but are never forced to remember
them. Our hope is that this hybrid approach will be accessible to
novices and useful for experts.

2.2 Purpose-Built Programming Languages

Stefik et al.'s work on the Quorum [12] language shows that
syntactic decisions can have a positive effect on accessibility.
Unfortunately, many programmers (and students) cannot choose
the language they use, and anyway such a language may not be a
good fit for the task in other ways (such as its features or semantic
choices). Many of the observations of that work may be replicable
by custom descriptions in CMB (section 3.4 and 3.5).

2.3 Enhancements to Existing IDEs

Potluri et al. explored enhancing blind developers' efficiency
through their work on CodeTalk [7]. CodeTalk makes extensive
use of audio cues and aims to make improvements in four areas:
Discoverability, Glanceability, Navigability, and Alertability.
CodeTalk is a Visual Studio plugin and, as such, it can achieve
exacting control over sound effects and much tighter control over

Schanzer, Bahram and Krishnamurthi

said sound effects' timing in relation to speech cues. While we do
not evaluate CMB along these four categories, we agree that they
are appropriate for blind developers. Evaluation along these lines
is an area for future work.

2.4 Structural Information

Screen readers use hierarchical language to convey heading level,
and therefore position, in many contexts. Several already-
discussed works [2, 5, 7, 10] include this feature. CMB also
prioritizes structural information for the blind, and goes further to
provide context beyond simple location (see section 3.4).

3 Design and Implementation

CMB had several design and implementation constraints:

1. It should not be tied to any one programming language. The
editor should be flexible enough to work with different
languages (assuming they can satisfy the parser constraints).

2. It should be easy to integrate into existing cloud-based
editing environments. The editor should not require any
browser plugins or extra programs to be installed, and should
not require any server-side processing.

3. It should communicate structure. As with StructJumper, the
structure of code should be navigable via keyboard,
announcing relevant information via a screen reader.

4. It should describe code, instead of reading syntax. This
addresses the same problem as Quorum, in a different way.

5. It should be performant. The tool should be responsive and
memory-efficient enough to run on tablets, underpowered
laptops, etc.

Our editor is built around a continuously-updated AST. The editor
has an internal definition of an AST structure, as well as various
ASTNode types (such as literals, function applications,
conditionals, etc.), which can be rendered as text or as a DOM
tree in the browser.

3.1 Language Flexibility

The first constraint is addressed through the AST interface. An
ASTNode includes from and to positions (implemented as line-
character pairs), as well as a type field that declares whether the
node represents a conditional, a literal, etc. To use our accessible
editor, a language designer must provide a parser that generates
the appropriate AST nodes. Additionally, language designers can
provide new ASTNode types in order to express semantic
elements not defined within the library itself.

3.2 Browser-Only Implementation

To address the second constraint, our editor is implemented
entirely in JavaScript, as a wrapper for the widely-used
CodeMirror library [3]. By implementing much of the same API
as CodeMirror, any project that uses CodeMirror can integrate our
editor with minimal effort beyond parsing (which it presumably
already has, or must anyway build).

CodeMirror runs on all major browsers, and provides text-
handling features like syntax-highlighting, bracket-matching,
auto-indenting, and more. While it provides a compelling

Accessible AST-Based Editing for Visually-
Impaired Programmers

experience for sighted programmers, it is completely opaque to
users who rely on screen readers. Sadly, the best web-based
experience for programmers who use screen readers is essentially
an unformatted textarea. Fortunately, CodeMirror has a notion
of widgets, which are arbitrary DOM nodes that can replace a
range of text. We exploit this mechanism in CMB, leveraging
CodeMirror’s robust support for undo/redo, cursor tracking,
scrolling, etc.

3.3 Relationship to ARIA

ARIA [1] is a set of attributes designed to enhance accessibility,
typically by providing semantic information about content. After
parsing the contents of a CodeMirror editor into an AST, we
render each root node as a DOM tree, embed a great deal of
information via ARIA attributes, and use those trees as widgets to
replace the corresponding text range in CodeMirror. These DOM
trees allow us to replicate the functionality of StructJumper,
expressing the underlying structure of the code entirely in the
browser. When navigating a tree, a blind user orients in terms of
label (“what am I looking at?”), level (“how deep am [?7), size of
the set (“how many are there at this level?”), and set locus
(“where am [at this level?”). CMB represents each of these — for
every AST node — using aria-label, aria-level,
aria-setsize and aria-posinset, respectively.

3.4 Describing Structure

One of the key insights of StructJumper was the recognition that a
program can be thought of either as a list of tokens (after lexing)
or as a tree structure (after parsing). Their paper demonstrates that
visually-impaired programmers benefit from navigating the
structure of the code, rather than hearing the tokens read aloud.
CMB does exactly this.

Consider the following simple program:

(define (add a b) (+ a b)
(define (factorial n)
(if (n < 2) 1 (* n (factorial (- n 1))))

A CMB user would see the first function rendered as a block:

define ([add))

define (add a b.

Figure 1 — Function definition block (collapsed and expanded)

When the block is focused, a V.I. user would hear “add: a
function definition with two arguments: a
and b. Level 1. 1 of 2.” Immediately, they are given a
useful, descriptive label, the level, the ordinality and the size.
Repeatedly hitting down-arrow will read the rest of the
function, one part at a time:

add

two arguments: a and b
a

b

SIGCSE, February, 2019, Minneapolis, MN USA

plus expression, two inputs
plus

a

b

Alternately, they can collapse the function definition (left-
arrow), and move on to the next top-level expression. Shift-
left-arrow collapses all nodes, allowing the user to quickly
skim even very large programs, expanding only the nodes they are
interested in.

At any time, the user can also convert a node into its syntax, and
navigate it using normal text controls. This dual-syntax
functionality allows for a “syntax when you need it, structure
when you don’t” approach for both sighted and V.I. users. Prior
work has shown this modality to be effective [15].

CMB provides search functionality, allowing the user to search
for a term and page through all the matches in the document.
Instead of jumping from line to line in the document, however, the
user jumps from matching node to matching node. A sighted user,
after jumping to a random cursor location, will quickly scan the
adjacent code to see where they are. For a blind user, however,
hearing a line and column number is not a useful way to orient.
CMB provides a keyboard shortcut that will read the labels of the
ancestors of the active node. For example, instead of hearing “line
812, column 97, they hear “inside multiply
expression, 3 inputs; inside if-expression,
inside foo: a value definition.”

3.5 Describing Code

When parsing a program to generate an ASTNode, the parser may
also specify a label for that node, which is rendered to the DOM
using the aria-label attribute. This effectively separates the
way a node is written in the syntax from how it is described.
Descriptions can be pedagogical in nature (“foo: a
function definition that is public, static
and produces a double”), and can be tailored for age-
level or even spoken language (“foo: una definicién de
funcidén que es publica, estatica y produce
un doble”). There are many interesting implications of this
feature, but space limits our ability to discuss it here.

While CMB will automatically provide location information for
all nodes in the tree, it is up to the parser to provide good labels
for those nodes. In short, any use of CMB is only as good as the
parser with which it is used.

3.6 Performance

By relying on CodeMirror, we achieve performance essentially
for free: our widgets are only rendered when they are visible. The
DOM nodes rendered and tracked are proportional to the size of
the visible content instead of the size of the program, resulting in
limited memory use and computation. Using the Chrome Task
Manager, we found that displaying a large program used only
277MB using this approach, and that even-larger programs never
used more than 290MB to display.

SIGCSE, February, 2019, Minneapolis, MN USA

4 Study Design

To evaluate CMB, thirteen blind programmers completed three
tasks using two browser-based environments: CMB as the
experiment and a browser textarea element as the control.
Readers may point out that more sophisticated methods of
browser-based text delivery exist (using contentEditable on
a styled element, for example), but their support for screen-
readers is so poor as to be nearly unusable. We wanted to compare
our tool to the most accessible web-based option available. After
participants had completed the tasks, we asked them questions
about their experience.

We are aware of the challenges faced by those looking to
generalize from this sample. Similar studies (including
StructJumper) with single-digit sample sizes are common in this
space, highlighting the urgency of making programming
accessible to more users.

4.1 Participants

Using mailing lists, social media posts, and personal contacts, we
recruited 13 participants with an offer of a stipend of USD 150 in
exchange for two hours of their time. The number of participants
compares favorably to the sizes of other similar studies: the
SIGCHI paper on StructJumper, for instance, had only seven. In
addition, the community of visually-impaired programmers is
small — which highlights the need for work like ours.

Of the 13, three were “novice programmers” (1-5 years of
experience), seven had “moderate experience” (5-10 years), and
three more were “experienced” (10 or more years). One self-
reported as being “somewhat comfortable” with screen-readers,
and all others as being “very comfortable”. 12 participants were
totally blind, while one had profound visual impairment.

4.2 Configuration

Following the format of the StructJumper study, we conducted
interviews remotely using screen-sharing in Skype to watch and
record as the participants worked through the tasks. Participants
used either NVDA or JAWS (latest version as of May 2018) with
a current version of Chrome (as a preferred platform) or Firefox
(as a fallback). Participants used their preferred screen-reader
settings for talking speed and verbosity.

Blind programmers are comfortable hearing the syntax of their
preferred language(s) spoken aloud, and typically have their
speech settings turned up to several hundred words per minute
(one of this paper’s authors, who is blind, listens at well over
750wpm!). Programmers who can parse Java syntax into ASTs in
their heads at hundreds of words per minute will mask the effects
of a tool designed to communicate AST information. To mitigate
this effect, we specifically chose a language, Racket, with which
few of the participants were familiar.

4.3 Procedure

Participants were asked to provide information about their visual
impairment, programming experience, and screen reader use
before the interviews were conducted. As with StructJumper, the
study was divided into three parts:

Schanzer, Bahram and Krishnamurthi

1. A short “training session” in which participants learned to
use CMB.

2. A series of tasks with and without our tool, using two
different code bases.

3. A short, post-session interview.

In the training session, participants explored a small, “training”
code base and learned the various key commands and shortcuts
needed to navigate it. Once they felt familiar with CMB,
participants were asked to follow a series of directions to check if
they knew each of the key commands. After this period, the
experimental portion of the study began.

Participants were given two sample programs (Space Invaders and
Aliens vs. Cows), each of which had similar levels of structural
complexity (maximum nesting depth ~10 levels) and length (~250
lines of code). Both programs represent interactive animations,
similar to those use in the widely-used Bootstrap: Algebra [8]
curriculum, representing a real-world test case for CMB. Both
make use of data structures, recursion, multiple function and
variable definitions, switch-like condition statements and
deeply-nested i f-expressions. Before completing the tasks, users
were given up to 15 minutes to familiarize themselves with the
program. To minimize interaction effects, we counterbalanced
which program was used with which tool, and which code base
was encountered first.

After 15 minutes, the participants were given three tasks modeled
on those used by Baker, Milne and Ladner [2]. The first two
involved navigating the code to answer questions. These questions
were non-trivial, requiring substantial program comprehension
and testing the capabilities of the tool as a navigation aid. One
was designed to be easier if the user relied on search (the With
Search task), and the other forced the user to manually-scan the
entire program (the Without Search task). As with Baker et al., our
goal was to determine whether search is an effective modality in
the context of a structured code-reader. The third task, Conditions,
asked the user to indicate which conditions would have to be true
in order for a particular line of code to execute. In both programs,
this line of code was nested within multiple if-expressions,
buried within a function definition.

The three tasks for Space Invaders were:

1. Locate With Search: Find the location in the code where a
cow is removed from the list of cows.

2. Locate Without Search: Find the location in the code where a
cow’s direction is updated because it hit a wall.

3. Conditions: What conditions have to be true in order for the
UFO to be moved left?

The three tasks for Aliens vs Cows were:

1. Locate With Search: Find the location in the code where
ALIEN-SIZE is used to determine if an alien hits a bullet.

2. Locate Without Search: Find the location in the code that is
evaluated when the mouse button is down.

3. Conditions: In what situation is the input parameter w
returned unchanged from the mouse-handler?

Participants were timed as they completed each task, and their
answers and duration of the task were recorded. Following the

Accessible AST-Based Editing for Visually-
Impaired Programmers

StructJumper protocol, the specific timing of each task’s start and
end were based on the moment the interviewer finished reading
the question and the moment the participant stated their answer
after looking at the code. Due to timing restrictions, we deviated
from the StructJumper study in one significant way: participants
were given a limit of 5 minutes to complete each task.

Answers were rating on a scale from 0-3 points. For the Locate
tasks, 3 points were awarded if they found the precise location of
the desired expression, 2 points for finding the location of a
similar or related expression, 1 point for a loosely-related section
of code, and no points if their answer was unrelated to the desired
expression. For the Conditions tasks, 3 points were awarded for
finding the precise conditions necessary for the desired expression
to be evaluated, and a point was subtracted for every extraneous
or missing condition (until reaching zero). If a participant did not
provide an answer in the allotted time, they received a score of 0.

After completing all three tasks for the first code base,
participants were asked to provide three ratings of their
experience on the Likert scale established by Baker et al. The
difficulty and frustration of task completion were rated 1 (not at
all) to 5 (very). How well they knew where they were in the code
while completing the tasks were rated 1 (no idea) to 5 (always
knew where they were in the code).

Once participants completed all three tasks with one program and
rated their experience, participants repeated the process with the
second program. If they used CMB for the first program they were
given a textarea for the second, and vice versa. After
completing both sets of tasks and reflections, participants were
asked to share their thoughts on the process, both with and
without CMB.

4.4 Analysis

StructJumper’s use of a desktop environment and the context of a
single, fixed language make direct comparisons to CMB
impossible. However, the similarities in research question allow
us to borrow heavily from their analysis.

The two factors at work in our design are the program participants
encountered first (4liens v. Cows and Space Invaders) and
whether or not they used CMB first. We used a 2x2 mixed
factorial design, allowing us to model both within-subject and
between subject variables. Participants completed a total of 6
tasks, for a total of 78 tasks completed altogether. When analyzing
task completion time, we used a mixed-effects model ANOVA
with Tool and Participant as model variables. For the semantically
anchored scale, we used the descriptive statistics to identify the
impact of the Tool. Differences between groups with and without
the tool were assessed for significance using two-tailed t-tests.

5 Evaluation Results

We measured the impact of CMB using multiple dimensions,
including time-to-complete, accuracy-of-answer, and the
semantically-anchored self-reported scales for perceived
difficulty, frustration, and orientation. For participants who did
not finish the task in the time allotted, we capped their completion
time at Sm and gave them an accuracy score of 0.

SIGCSE, February, 2019, Minneapolis, MN USA

While the tool is intended for novice users, the difficulty in
recruiting novice V.I. users led to most participants being “expert
users” with years of experience reading code-as-text. As such, we
might expect to see an increase in task time for this population.

While not significant, we found that average task completion time
was slightly slower when using CMB, but also more accurate. In
addition, participants’ perception of task difficulty and sense of
frustration when completing the task were all better when using
CMB, and their sense of orientation within the code was
significantly improved.

5.1 Task Completion Time

Participants were more successful completing the tasks in the Sm
allotted when using CMB. If participants had not been capped at
5m, the average completion time would be greater for every
unfinished task. This impact would be disproportionally greater
for tasks done without CMB, of which far more were left
unfinished (10) than with CMB (3).

Without CMB With CMB
Mean SD Mean SD
Task 1 - Time 2m?29s 2m3s 2m39s 1m44s
Task 2 - Time 1m55s 1m28s 2m27s 1m18s
Task 3 — Time 2m56s 1m20s 2m40s 1m30s
Avg. Time 2m28s 1m38s 2m35s 1m19s

As expected, this population was slightly (though not
significantly) slower with CMB than without it. Participants
completed the Locate with Search an average of 10 seconds
slower with CMB, and Locate without Search wan average of 32
seconds slower. However, the Conditions task — the most
cognitively demanding of the three - was actually completed an
average of 16 seconds faster with CMB than without it.

5.2 Task Score

Without CMB With CMB
Mean SD Mean SD
Task 1 — Score 2.31 1.11 2.62 0.51
Task 2 — Score 2.39 1.12 2.53 0.88
Task 3 — Score 1.85 1.34 2.23 1.17
Avg. Score 2.18 1.19 2.46 0.88

When using CMB, participants scored higher — and more
consistently so — on every task. The largest difference in task
score was found on the cognitively-demanding Conditions task.
When using CMB, 9 (out of 39) tasks lost points due to inaccurate
answers, compared to 6 without it. However, CMB resulted in less
than one-third the number of incomplete tasks (10) than
traditional text (3).

Participants lost points in the Locate tasks because they found a
related part of the code but not the precise location. These specific
mistakes involved participants searching for a particular term,
finding it, and then reporting it as the answer without checking to
see if this term was being used in the right place.

SIGCSE, February, 2019, Minneapolis, MN USA

More participants lost points on the Conditions task than any other
task. Of the 13 participants in the study, 8 received the full score
when using CMB, compared to only 6 without. Of those who lost
points but still managed to complete the task, every point lost was
due to participants failing to consider the impact of nested i £-
statements.

5.3 Participant Experience

Tool

B e
. Blocks

Orientation
o

Task

Figure 2 — Orientation was significantly improved

When describing their ability to orient themselves while
completing the tasks, users felt that CMB was significantly better
than reading raw text (p < 0.005). Scores of 3 or above were more
far more frequent with the tool (38) than without it (29).

Without CMB With CMB
Mean SD Mean SD
Difficulty 1.34 1.03 1.31 0.98
[Frustration 1.31 1.28 0.77 1.09
Orientation** 3.18 1.07 3.85 1.07

Users also reported lower levels of frustration when completing
tasks - as well as the perception that tasks were less difficult —
when using the tool. These differences were not significant.

5.4 Qualitative Results

After completing the tasks, participants were asked a series of
open-ended questions about their experiences, to get a sense for
what ways (if any) they found the tool helpful, frustrating, or
useful. Several common themes emerged.

5.4.1 Orienting Better. Nearly every participant commented that
CMB helped them orient themselves when reading code. Some
participants attributed this to the fact that browsing with CMB
naturally enforced an understanding of structure (“everything is
arranged so you hear the structure just by going to the next
node”). Other participants made ample use of “orientation
shortcuts” in CMB, which would read all of the ancestors of a
particular node. Several pointed out that “location” in a text editor
is often defined in terms of line and column numbers, and said
they preferred CMB’s orientation within the AST:

“It’s way more useful to hear that what I'm looking at is inside an
if-expression, which is inside the definition of the hitting-wall
function, rather than just hearing that I'm on line 215.”

Schanzer, Bahram and Krishnamurthi

5.4.2 Focus on Structure, not Syntax. Reading the structure of a
program is a different task than reading the syntax, and many
participants remarked on how freeing it was to be able to focus on
the structure: e.g., that “The TreeView was really nice. I didn't
have to think about indentation to form a tree on my own” or “I
wish I had this tool for when I'm exploring new languages! I liked
that it always gave me a consistent view of the code...I'm ofien a
little distracted if I get different indentation, or if there are a lack
of spaces I get funny line wrapping with my braille display.”

This effect may have been enhanced by the fact that virtually none
of the participants were familiar with the syntax of the language.
One might expect, for example, that the syntax burden would be
less of an issue for Java programmers reading Java code; on the
other hand, it better reflects the experience of a novice. Indeed,
allowing students to focus on structure instead of syntax is one of
the goals of block languages like Scratch. Replicating that effect
in in a way that is accessible for visually-impaired users is an
important goal for this study.

5.4.3 Perceived Speed. Many participants indicated that things
“felt faster” when using CMB. In particular, they liked the ability
to collapse blocks and “skim”: “Loved the collapsed-all! Really
handy to skip over to skip over stuff I don't care about. Very
quickly, I knew that the then clause of the if-expression was
something I could skip. Being able to just collapse it was
awesome.”

6 Future Work

While this evaluation focused exclusively on using CMB to
navigate code, future user studies will focus on the editing
functionality. And given CMB’s ability to let users manage their
cognitive load (choosing when to work directly with syntax and
when to avoid it), it would be useful to evaluate the tool when
examining languages with which the users are already familiar.

The user studies described here also provided extensive feedback
about areas for future development. The simple search
functionality implemented for this study was clearly a limitation,
and multiple users communicated that a more robust search
feature would have been helpful when completing these tasks.
Additionally, several users asked for a “glances” stack, which
would allow them to hit a key and have their current position
saved. After further exploration, they could hit a different key a
quickly return to the location at the top of the stack.

Finally, it would be valuable to explore the impact of using CMB
as an IDE for sighted users. Having the computer read a
description of a block in an age-appropriate language, or different
natural language, could have major implications for all learners —
not just those with visual impairments.

ACKNOWLEDGMENTS

We are grateful to AccessCSforAll for their enormous efforts to
recruit participants, and to the participants themselves for their
time and feedback. We also thank Vint Cerf, the ESA Foundation
and the US National Science Foundation for supporting this work.

Accessible AST-Based Editing for Visually-
Impaired Programmers

REFERENCES

[1] World Wide Web Consortium. Accessible Rich Internet Applications (WAI-
ARIA) 1.1 W3C Recommendation 14 December 2017. Retrieved August 29",
2018 from https://www.w3.org/TR/wai-aria-1.1/

[2] Catherine M. Baker., Lauren R. Milne., and Richard E. Ladner. 2015.
Structjumper: A Tool to Help Blind Programmers Navigate and Understand the
Structure of Code. In Conference on Human Factors in Computing Systems.

[3] CodeMirror. Retrieved August 29", 2018 from https://codemirror.net/

[4] Becky Gibson. 2007. Enabling an Accessible Web 2.0. In International Cross-
Disciplinary Conference on Web Accessibility.

[5] Sean Mealin, Emerson Murphy-Hill. 2012. An Exploratory Study of Blind
Software Developers. In Visual Languages and Human-Centric Computing.

[6] National Federation for the Blind, Retrieved August 29", 2018 from
https://nfb.org/blindness-statistics

[7] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming
Environment Accessibility for Visually Impaired Developers. In Conference on
Human Factors in Computing Systems.

[8] Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2018. Assessing
Bootstrap: Algebra Students on Scaffolded and Unscaffolded Word Problems.
In Symposium on Computer Science Education.

[9] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar,
and M. Fayezur Rahman. 2003. Nonvisual Tool for Navigating Hierarchical
Structures. In SIGACCESS Accessibility and Computing. no 77-78, (pp. 133-
139). ACM.

[10]JAndreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and
Daniel Garcia. 2009. "Sodbeans." In International Conference on Program
Comprehension. pp. 293-294.

[11] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. 2011. An
empirical investigation into the design of auditory cues to enhance computer
program comprehension. In International Journal of Human-Computer Studies,
no 69 (pp. 820-838).

[12] Andreas Stefik,, Susanna Siebert, Melissa Stefik, and Kim Slattery. 2011. An
empirical comparison of the accuracy rates of novices using the Quorum, Perl,
and Randomo programming languages. In Workshop on Evaluation and
Usability of Programming Languages and Tools (pp. 3-8).

[13] Wilson, C. (2014). Hour of Code: We can solve the diversity problem in
computer science. ACM Inroads, 5(4), 22-22.

[14] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and Sian
Lindley. 2017. Enabling Collaboration in Learning Computer Programing
Inclusive of Children with Vision Impairments. In Proceedings of the 2017
Conference on Designing Interactive Systems (DIS '17). ACM, 739-752.

[15] Weintrop, D., & Holbert, N. (2017). From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education
(pp. 633-638). New York, NY, USA: ACM.

SIGCSE, February, 2019, Minneapolis, MN USA

