
30 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 P
H

O
T

O
 B

Y
 E

V
G

E
N

Y
 K

A
R

A
N

D
A

E
V

curriculum design, but with worrisome

consequences. One can, for instance,

obtain massive scale with a very sim-

plistic curriculum (of which we see a

good deal of evidence right now), with a

focus on “engagement” but little to no

rigor. A few high schools already have

very rigorous computing curricula (stu-

dents take several years of computing,

reaching material well beyond the first

year of college), but these are extremely

difficult to scale. Elective classes can

be very rigorous, but can easily lose

equity: self-selection easily creates a

vicious cycle that reinforces existing

biases. Expensive curricula (especially

C
O M P U T I N G E D U C A T I O N I S

suddenly everywhere. Nu-

merous U.S. states and many

countries around the world

are creating requirements

and implementing programs to bring

computing to their students. Tech in-

novators have jumped in, too, some-

times to “disrupt” the educational

system. Opinion pieces create paren-

tal anxiety that their children are not

being trained properly for the future;

products claim to mollify these anxiet-

ies (while perhaps simultaneously am-

plifying them). Academics, looking to

address the Broader Impact criteria of

funding agencies, are eager to burnish

their credentials by giving guest lec-

tures at local schools. In certain neigh-

borhoods, toystores feel compelled to

stock a few products that claim to en-

hance “computational thinking.”3

Unfortunately, a lot of current dis-

cussion about curricula is caught up

in channels (including in-school versus

after-school courses), media (such as

blended versus online learning), and

content (for example, Java versus Py-

thon). As computer scientists, we should

recognize this phenomenon: a focus

on implementation before specification.

Instead, in sober moments, we should

step back and ask what the end goals

are for this flurry of activity. Is a little

exposure good for everyone? How many

Hours of Code will prepare a child for a

digital future? If a few requirements are

good, are more requirements better? In

short: What does it mean for computing

education to succeed?

Specification: Three Worthy Goals

Every program would benefit first

from a clear articulation of its goals.

These goals should be as close as pos-

sible to concrete and measurable (and

hence go significantly beyond anodyne

phrases). We believe a truly ambitious

project would have the trio of goals de-

picted in the figure in this column.

Readers might wonder if this is a

“pick two” situation (or even a “pick

one”). Indeed, dropping one or more

of these demands greatly simplifies

Education
What Does It Mean for a Computing
Curriculum to Succeed?
Examining the expansion, proliferation, and integration
of computing education everywhere.

DOI:10.1145/3319081 Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler

• Mark Guzdial, Column Editor

MAY 2019 | VOL. 62 | NO. 5 | COMMUNICATIONS OF THE ACM 31

viewpoints

involving physical devices—such as

fancy robots and sensors—that must

be bought and repaired) are very dif-

ficult to scale. Trying to pair teachers

with working computing profession-

als may work fabulously in large cities

with a big tech population, but would

not scale to most rural areas.

Clearly, the outcomes of compro-

mising are undesirable. Not compro-

mising is, indeed, an intellectual and

moral imperative:
 • Equity is severely lacking in com-

puting. Large-scale curricula with mas-

sive investment that ignore equity can

only make the problem much worse.
 • Rigor is critical to impart content

of value. In its absence, we get the light

entertainment that passes for many

computing curricula today.
 • Scale is essential to get computing

into the hands of all of today’s students

who might be tomorrow’s users, cre-

ators, or even victims of it.

Rather than lay out how their im-

plementation will address Equity,

Rigor, and Scale (or other equally wor-

thy goals), many of the players in this

space are quick to use the rhetoric of

“disruption” to gloss over the challeng-

es outlined in this column. This is not

altogether surprising, as many of them

share a cultural heritage with (and of-

ten financial backing from) a tech in-

dustry that is infatuated with the term.

Without question, some form of “dis-

ruption” is sorely needed—we do, after

all, want a much larger and vastly more

diverse population to learn rigorous

computing—but the question remains

which implementation mechanisms

will best achieve it. Let’s evaluate how

two existing avenues fare.

Mechanism 1: Stand-Alone

Computing Courses

The most obvious solution seems to

be: add computing courses to every

curriculum. This runs into some nat-

ural roadblocks:
 • Schools must find funding to pay

for all those new computing teachers.
 • Those teachers need to be quali-

fied, or else rigor will suffer; in a terrific

job market, they are extremely difficult

to find. (In fact, some great teachers we

know have left for industry. Paradoxical-

ly, the time when people pay most atten-

tion to a field may be the time it is most

difficult find enough teachers for it.)

 • Finding qualified teachers can be

even more difficult in poor and rural

schools than in cities (as we are finding

in practice).
 • Schools must make time in the

day and space in the building to

teach another subject. What will

they displace? The humanities? Art?

Physics? Statistics?

Some places that are following this

route are currently funded generously by

the tech industry (usually in return for

offering only their chosen curriculum).

Since it is unlikely the funding will flow

endlessly, what happens when budgets

are cut or the largesse dries up? Odds are

those courses will be the first to be cut in

all but the wealthiest districts, and com-

puting will suffer the same fate as music

and art in the USA. Furthermore, because

planning interdependent courses is hard,

these courses will likely run in a vacuum,

making it even simpler to cut them when

it becomes convenient to do so.

One growing response is to mandate

computing courses throughout some

geographic region. This automatically

achieves equity and scale. However, it

comes with its own subtle problems. The

problems of funding and qualified teach-

ers do not go away; if anything, they are

exacerbated because of the significantly

greater demand imposed by a mandate.

But there are also subtle problems: if a

class is mandatory, there is a perverse

incentive to lower the rigor of the course.

After all, who wants to see a student held

back or lose a scholarship simply be-

cause they struggle in their Python class?

Ironically enough, there is not even

anything “disruptive” about this mod-

el! It more closely resembles an enter-

prise business deal or a top-down dik-

tat than the kind of organic, bottom-up

groundswell the fans of disruption

preach. The funding model chosen by

disruptive companies turns out to be

Three worthy goals.

Equity

Scale Rigor

Calendar

of Events
May 4–9
CHI ‘19: CHI Conference
on Human Factors in
Computing Systems,
Glasgow, Scotland, UK,
Sponsored: ACM/SIG,
Contact: Geraldine Fitzpatrick,
Email:
geraldine.fitzpatrick@tuwien.
ac.at

May 5–6
Expressive ‘19: Joint Symposium
on Computational Aesthetics
and Sketch Based Interfaces
and Modeling and
Non-Photorealistic Animation
and Rendering,
Genoa, Italy,
Sponsored: ACM/SIG,
Contact: Joaquim Jorge,
Email: joaquim.jorge@gmail.
com

May 9–11
GLSVLSI ‘19: Great Lakes
Symposium on VLSI 2019,
Tysons Corner, VA,
Sponsored: ACM/SIG,
Contact: Baris Taskin,
Email: taskin@coe.drexel.edu

May 13–15
HotOS ‘19: Workshop on Hot
Topics in Operating Systems,
Bertinoro, Italy,
Sponsored: ACM/SIG,
Contact: Mirco Marchetti,
Email: mirco.marchetti@
unimore.it

May 15–17
WiSec ‘19: 12th ACM Conference
on Security and Privacy in
Wireless and Mobile Networks,
Miami, FL,
Sponsored: ACM/SIG,
Contact: A. Selcuk Uluagac,
Email: suluagac@fiu.edu

May 17–19
CompEd: ACM 2019
Global Computing
Education Conference,
Chengdu, China,
Sponsored: ACM/SIG,
Contact: Ming Zhang,
Email: mzhang_cs@pku.edu.cn

May 21–23
I3D ‘19: Symposium on Interactive
3D Graphics and Games,
Montreal, QC, Canada,
Sponsored: ACM/SIG,
Contact: Sheldon Andrews,
Email: sheldon.andrews@
gmail.com

32 COMMUNICATIONS OF THE ACM | MAY 2019 | VOL. 62 | NO. 5

viewpoints

are existence proofs that we are

making substantial progress toward

our stated goals. Thus, we believe

integration is a strategy well worth

pursuing, in parallel to stand-alone,

required computing.

Mathematics: A Cautionary Tale

In short, integrated computing can

achieve all three criteria we have de-

scribed, which stand-alone approach-

es struggle to meet. But integrated

computing is imperative for another

reason, too: computing should not

fall victim to the same peril that befell

mathematics. While math dramati-

cally impacts numerous disciplines,

it is routinely siloed into stand-alone

classes; as a result, the connections

between math and other disciplines

are often invisible to K–12 students.

(In contrast, some institutions have

tried to institute “writing across the

curriculum,” to help students improve

their writing in a context meaningful

to them.) Computing has a chance to

avoid this fate, and the evidence so

far is that we can succeed at integra-

tion. Moreover, stand-alone courses

would be much richer if their intake

consisted of students already versed

in computing from other disciplines.

Thus, with the right models of curricu-

lar design, integration strategies, and

funding, we can achieve sustainable

Equity, Rigor, and Scale.

References
1. Bransford, J.D. and Schwartz, D. Rethinking transfer: A

simple proposal with multiple implications. In Review
of Research in Education, 24. American Educational
Research Association, 1999, 61–100.

2. Wilensky, U. and Rand, W. An Introduction to Agent-
based Modeling: Modeling Natural, Engineered, and
Social Complex Systems with NetLogo. MIT Press,
Cambridge, MA, 2015.

3. Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33–35.

Emmanuel Schanzer (schanzer@bootstrapworld.
org) works at Brown University, Providence, RI, USA.
He is a co-Director and founder of Bootstrap. A former
public high school teacher in Boston, MA, USA, he
designed Bootstrap:Algebra as a curriculum for his own
students after being exposed to the Program by Design
methodology in college.

Shriram Krishnamurthi (sk@cs.brown.edu) is a Professor
of Computer Science at Brown University, Providence, RI,
USA, and a co-Director of Bootstrap. He co-founded the
Program by Design project, which inspired Bootstrap.

Kathi Fisler (kathi@bootstrapworld.org) is a Research
Professor of Computer Science at Brown University,
Providence, RI, USA, and a co-Director of Bootstrap.

Copyright held by authors.

the very model they eschewed on their

path to success.

Mechanism 2: Integrated Computing

Let’s instead consider an alternative

model of computing education. It rec-

ognizes computing is a new creative

medium and vehicle for exploring

myriad subjects, ranging from math-

ematics, biology, and physics to social

studies. Why not, then, integrate com-

puting into each of these subjects?

Presumably, most people do not

believe all other disciplines are go-

ing to collapse and be replaced by

computing; rather, computing will

enrich and enhance those subjects.

Therefore, those subjects should start

modifying their presentation to show

the impact computing will have. In

social studies, for instance, there are

already well-established means of ask-

ing and answering questions (surveys,

ethnographic studies, literature re-

views, and so forth). Computing does

not displace these but rather supple-

ments them, providing a new and rich

way to pose questions: a program is a

way of posing a question of a dataset. In

turn, not every student is enamored

of computing, either, and a generic

introduction to computing is unlikely

to sway them. In contrast, a contextual

introduction in a subject that already

interests them is far more likely to get

them to see the value of computing.

Integrated materials can achieve all

three of the goals we have described

in this column. By embedding into al-

ready-required courses (such as math),

they achieve the same diversity and

scale as required computing courses

do, without the same constraints. Rigor

follows much more directly because of

the existing rigor of subjects it embeds

into: teachers in those subjects would

not accept a curriculum that does not

seem to make a meaningful contribu-

tion to how they teach their discipline.

All this can be done at far lower cost,

because it does not require entire new

cadres of teachers to be hired or new

classes to be added; the burden shifts

to training the teachers already in the

system or those entering it.
Curiously, integrated computing ad-

heres far more closely to the model of dis-

ruption so beloved in our industry. It is

lightweight: it does not require large out-

lays of time, space, and money. It has few

dependencies, so it is easy to parallelize.

It usually follows from bottom-up, grass-

roots interest. It is “sticky”: it is unlikely

to disappear when a generous donor’s

priorities change. And it lends itself to

strong network effects in multiple ways:

teachers within a discipline reinforce

and improve the computing integration

for their discipline, while teachers within

a school support and reinforce student

computing education for each other.

This, of course, is the good news. The

bad news is that integrating computing

is far more difficult than delivering it as

a stand-alone subject. Teachers in other

disciplines need to be convinced that

computing has anything to offer. Airy

promises of the power of “computational

thinking” are met with appropriate skep-

ticism from teachers in other disciplines,

because more than 100 years of quality

education research shows the difficulties

of achieving transfer across disciplines.1

Validated research is much more com-

pelling, and this takes time and effort.

Also, teachers feel pressure to choose

between doing more of their own disci-

pline, or sacrificing some content they

know and love to make room for com-

puting. Thus, an injection of computing

must be judicious, focusing on content

that is meaningful in the host discipline;

it must also “pay its own way,” providing

large value for small investments of time.

Achieving all this is difficult.

Difficult, but not impossible. Programs

like AgentSheets,a Project GUTS,b

agent-based modeling,2 and Bootstrapc

a See http://www.agentsheets.com/

b See http://www.projectguts.com/

c See https://www.bootstrapworld.org/

But integrated
computing is
imperative for
another reason, too:
computing should
not fall victim to the
same peril that befell
mathematics.

