viewpoints

DOI:10.1145/3319081

Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler

» Mark Guzdial, Column Editor

Education

What Does It Mean for a Computing

Curriculum to Succeed?

Examining the expansion, proliferation, and integration

of computing education everywhere.

OMPUTING EDUCATION IS
suddenly everywhere. Nu-
merous U.S. states and many
countries around the world
are creating requirements
and implementing programs to bring
computing to their students. Tech in-
novators have jumped in, too, some-
times to “disrupt” the educational
system. Opinion pieces create paren-
tal anxiety that their children are not
being trained properly for the future;
products claim to mollify these anxiet-
ies (while perhaps simultaneously am-
plifying them). Academics, looking to
address the Broader Impact criteria of
funding agencies, are eager to burnish
their credentials by giving guest lec-
tures at local schools. In certain neigh-
borhoods, toystores feel compelled to
stock a few products that claim to en-
hance “computational thinking.”?
Unfortunately, a lot of current dis-
cussion about curricula is caught up
in channels (including in-school versus
after-school courses), media (such as
blended versus online learning), and
content (for example, Java versus Py-
thon). As computer scientists, we should
recognize this phenomenon: a focus
on implementation before specification.
Instead, in sober moments, we should
step back and ask what the end goals
are for this flurry of activity. Is a little
exposure good for everyone? How many
Hours of Code will prepare a child for a
digital future? If a few requirements are
good, are more requirements better? In

short: What does it mean for computing
education to succeed?

Specification: Three Worthy Goals
Every program would benefit first
from a clear articulation of its goals.
These goals should be as close as pos-
sible to concrete and measurable (and
hence go significantly beyond anodyne
phrases). We believe a truly ambitious
project would have the trio of goals de-
picted in the figure in this column.
Readers might wonder if this is a
“pick two” situation (or even a “pick
one”). Indeed, dropping one or more
of these demands greatly simplifies

30 COMMUNICATIONS OF THE ACM | MAY 2018 | VOL.62 | NO.5

curriculum design, but with worrisome
consequences. One can, for instance,
obtain massive scale with a very sim-
plistic curriculum (of which we see a
good deal of evidence right now), with a
focus on “engagement” but little to no
rigor. A few high schools already have
very rigorous computing curricula (stu-
dents take several years of computing,
reaching material well beyond the first
year of college), but these are extremely
difficult to scale. Elective classes can
be very rigorous, but can easily lose
equity: self-selection easily creates a
vicious cycle that reinforces existing
biases. Expensive curricula (especially

IMAGE BY ANDRIJ BORYS ASSOCIATES, USING PHOTO BY EVGENY KARANDAEV

involving physical devices—such as
fancy robots and sensors—that must
be bought and repaired) are very dif-
ficult to scale. Trying to pair teachers
with working computing profession-
als may work fabulously in large cities
with a big tech population, but would
not scale to most rural areas.

Clearly, the outcomes of compro-
mising are undesirable. Not compro-
mising is, indeed, an intellectual and
moral imperative:

» Equity is severely lacking in com-
puting. Large-scale curricula with mas-
sive investment that ignore equity can
only make the problem much worse.

» Rigor is critical to impart content
of value. In its absence, we get the light
entertainment that passes for many
computing curricula today.

» Scale is essential to get computing
into the hands of all of today’s students
who might be tomorrow’s users, cre-
ators, or even victims of it.

Rather than lay out how their im-
plementation will address Equity,
Rigor, and Scale (or other equally wor-
thy goals), many of the players in this
space are quick to use the rhetoric of
“disruption” to gloss over the challeng-
es outlined in this column. This is not
altogether surprising, as many of them
share a cultural heritage with (and of-
ten financial backing from) a tech in-
dustry that is infatuated with the term.
Without question, some form of “dis-
ruption” is sorely needed—we do, after
all, want a much larger and vastly more
diverse population to learn rigorous
computing—but the question remains
which implementation mechanisms
will best achieve it. Let’s evaluate how
two existing avenues fare.

Mechanism 1: Stand-Alone
Computing Courses
The most obvious solution seems to
be: add computing courses to every
curriculum. This runs into some nat-
ural roadblocks:

» Schools must find funding to pay
for all those new computing teachers.

» Those teachers need to be quali-
fied, or else rigor will suffer; in a terrific
job market, they are extremely difficult
to find. (In fact, some great teachers we
know have left for industry. Paradoxical-
ly, the time when people pay most atten-
tion to a field may be the time it is most
difficult find enough teachers for it.)

Three worthy goals.

» Finding qualified teachers can be
even more difficult in poor and rural
schools than in cities (as we are finding
in practice).

» Schools must make time in the
day and space in the building to
teach another subject. What will
they displace? The humanities? Art?
Physics? Statistics?

Some places that are following this
route are currently funded generously by
the tech industry (usually in return for
offering only their chosen curriculum).
Since it is unlikely the funding will flow
endlessly, what happens when budgets
are cut or the largesse dries up? Odds are
those courses will be the first to be cut in
all but the wealthiest districts, and com-
puting will suffer the same fate as music
and art in the USA. Furthermore, because
planning interdependent courses is hard,
these courses will likely run in a vacuum,
making it even simpler to cut them when
it becomes convenient to do so.

One growing response is to mandate
computing courses throughout some
geographic region. This automatically
achieves equity and scale. However, it
comes with its own subtle problems. The
problems of funding and qualified teach-
ers do not go away; if anything, they are
exacerbated because of the significantly
greater demand imposed by a mandate.
But there are also subtle problems: if a
class is mandatory, there is a perverse
incentive to lower the rigor of the course.
After all, who wants to see a student held
back or lose a scholarship simply be-
cause they struggle in their Python class?

Ironically enough, there is not even
anything “disruptive” about this mod-
el! It more closely resembles an enter-
prise business deal or a top-down dik-
tat than the kind of organic, bottom-up
groundswell the fans of disruption
preach. The funding model chosen by
disruptive companies turns out to be

MAY 2019 | VOL.62 | NO.5 |

viewpaoints

Calendar
of Events

May 4-9
CHI ‘19: CHI Conference

on Human Factors in
Computing Systems,

Glasgow, Scotland, UK,
Sponsored: ACM/SIG,

Contact: Geraldine Fitzpatrick,
Email:
geraldine.fitzpatrick@tuwien.
ac.at

May 5-6

Expressive ‘19: Joint Symposium
on Computational Aesthetics
and Sketch Based Interfaces
and Modeling and
Non-Photorealistic Animation
and Rendering,

Genoa, Italy,

Sponsored: ACM/SIG,
Contact: Joaquim Jorge,
Email: joaquim.jorge@gmail.
com

May 9-11

GLSVLSI ‘19: Great Lakes
Symposium on VLSI 2019,
Tysons Corner, VA,
Sponsored: ACM/SIG,
Contact: Baris Taskin,

Email: taskin@coe.drexel.edu

May 13-15

HotOS ‘19: Workshop on Hot
Topics in Operating Systems,
Bertinoro, Italy,

Sponsored: ACM/SIG,
Contact: Mirco Marchetti,
Email: mirco.marchetti@
unimore.it

May 15-17

WiSec ‘19: 12 ACM Conference
on Security and Privacy in
Wireless and Mobile Networks,
Miami, FL,

Sponsored: ACM/SIG,

Contact: A. Selcuk Uluagac,
Email: suluagac@fiu.edu

May 17-19
CompEd: ACM 2019

Global Computing

Education Conference,
Chengdu, China,

Sponsored: ACM/SIG,

Contact: Ming Zhang,

Email: mzhang_cs@pku.edu.cn

May 21-23

13D ‘19: Symposium on Interactive
3D Graphics and Games,
Montreal, QC, Canada,
Sponsored: ACM/SIG,

Contact: Sheldon Andrews,
Email: sheldon.andrews@
gmail.com

COMMUNICATIONS OF THE AcM 31

viewpoints

the very model they eschewed on their
path to success.

Mechanism 2: Integrated Computing
Let’s instead consider an alternative
model of computing education. It rec-
ognizes computing is a new creative
medium and vehicle for exploring
myriad subjects, ranging from math-
ematics, biology, and physics to social
studies. Why not, then, integrate com-
puting into each of these subjects?

Presumably, most people do not
believe all other disciplines are go-
ing to collapse and be replaced by
computing; rather, computing will
enrich and enhance those subjects.
Therefore, those subjects should start
modifying their presentation to show
the impact computing will have. In
social studies, for instance, there are
already well-established means of ask-
ing and answering questions (surveys,
ethnographic studies, literature re-
views, and so forth). Computing does
not displace these but rather supple-
ments them, providing a new and rich
way to pose questions: a program is a
way of posing a question of a dataset. In
turn, not every student is enamored
of computing, either, and a generic
introduction to computing is unlikely
to sway them. In contrast, a contextual
introduction in a subject that already
interests them is far more likely to get
them to see the value of computing.

Integrated materials can achieve all
three of the goals we have described
in this column. By embedding into al-
ready-required courses (such as math),
they achieve the same diversity and
scale as required computing courses
do, without the same constraints. Rigor
follows much more directly because of
the existing rigor of subjects it embeds
into: teachers in those subjects would
not accept a curriculum that does not
seem to make a meaningful contribu-
tion to how they teach their discipline.
All this can be done at far lower cost,
because it does not require entire new
cadres of teachers to be hired or new
classes to be added; the burden shifts
to training the teachers already in the
system or those entering it.

Curiously, integrated computing ad-
heres far more closely to the model of dis-
ruption so beloved in our industry. It is
lightweight: it does not require large out-
lays of time, space, and money. It has few

32 COMMUNICATIONS OF THE ACM MAY 2019

ey
But integrated
computing is
imperative for
another reason, too:
computing should

not fall victim to the
same peril that befell
mathematics.

dependencies, so it is easy to parallelize.
It usually follows from bottom-up, grass-
roots interest. It is “sticky”: it is unlikely
to disappear when a generous donor’s
priorities change. And it lends itself to
strong network effects in multiple ways:
teachers within a discipline reinforce
and improve the computing integration
for their discipline, while teachers within
a school support and reinforce student
computing education for each other.

This, of course, is the good news. The
bad news is that integrating computing
is far more difficult than delivering it as
a stand-alone subject. Teachers in other
disciplines need to be convinced that
computing has anything to offer. Airy
promises of the power of “computational
thinking” are met with appropriate skep-
ticism from teachers in other disciplines,
because more than 100 years of quality
education research shows the difficulties
of achieving transfer across disciplines.'
Validated research is much more com-
pelling, and this takes time and effort.
Also, teachers feel pressure to choose
between doing more of their own disci-
pline, or sacrificing some content they
know and love to make room for com-
puting. Thus, an injection of computing
must be judicious, focusing on content
that is meaningful in the host discipline;
it must also “pay its own way,” providing
large value for small investments of time.
Achieving all this is difficult.

Difficult, but not impossible. Programs
like AgentSheets,® Project GUTS,"
agent-based modeling,” and Bootstrap®

a See http://www.agentsheets.com/
b See http://www.projectguts.com/
¢ See https://www.bootstrapworld.org/

VOL. 62 | NO.5

are existence proofs that we are
making substantial progress toward
our stated goals. Thus, we believe
integration is a strategy well worth
pursuing, in parallel to stand-alone,
required computing.

Mathematics: A Cautionary Tale

In short, integrated computing can
achieve all three criteria we have de-
scribed, which stand-alone approach-
es struggle to meet. But integrated
computing is imperative for another
reason, too: computing should not
fall victim to the same peril that befell
mathematics. While math dramati-
cally impacts numerous disciplines,
it is routinely siloed into stand-alone
classes; as a result, the connections
between math and other disciplines
are often invisible to K-12 students.
(In contrast, some institutions have
tried to institute “writing across the
curriculum,” to help students improve
their writing in a context meaningful
to them.) Computing has a chance to
avoid this fate, and the evidence so
far is that we can succeed at integra-
tion. Moreover, stand-alone courses
would be much richer if their intake
consisted of students already versed
in computing from other disciplines.
Thus, with the right models of curricu-
lar design, integration strategies, and
funding, we can achieve sustainable
Equity, Rigor, and Scale.

References

1. Bransford, J.D. and Schwartz, D. Rethinking transfer: A
simple proposal with multiple implications. In Review
of Research in Education, 24. American Educational
Research Association, 1999, 61-100.

2. Wilensky, U. and Rand, W. An Introduction to Agent-
based Modeling: Modeling Natural, Engineered, and
Social Complex Systems with NetLogo. MIT Press,
Cambridge, MA, 2015.

3. Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33-35.

Emmanuel Schanzer (schanzer@bootstrapworld.

org) works at Brown University, Providence, RI, USA.
He is a co-Director and founder of Bootstrap. A former
public high school teacher in Boston, MA, USA, he
designed Bootstrap:Algebra as a curriculum for his own
students after being exposed to the Program by Design
methodology in college.

Shriram Krishnamurthi (sk@cs.brown.edu) is a Professor
of Computer Science at Brown University, Providence, RI,
USA, and a co-Director of Bootstrap. He co-founded the
Program by Design project, which inspired Bootstrap.

Kathi Fisler (kathi@bootstrapworld.org) is a Research
Professor of Computer Science at Brown University,
Providence, RI, USA, and a co-Director of Bootstrap.

Copyright held by authors.

