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ABSTRACT

Flawed problem comprehension leads students to produce flawed

implementations. However, testing alone is inadequate for checking

comprehension: if a student develops both their tests and imple-

mentation with the same misunderstanding, running their tests

against their implementation will not reveal the issue. As a solution,

some pedagogies encourage the creation of inputśoutput exam-

ples independent of testingÐbut seldom provide students with any

mechanism to check that their examples are correct and thorough.

We propose a mechanism that provides students with instant

feedback on their examples, independent of their implementation

progress. We assess the impact of such an interface on an introduc-

tory programming course and find several positive impacts, some

more neutral outcomes, and no identified negative effects.
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1 INTRODUCTION

In early algebra lessons, it is commonplace to challenge students to

complete inputśoutput tables that correspond to function specifica-

tions [18, 27]. In exploring these inputśoutput examples, students

check that their understanding of a function matches its actual

behavior [18]. Software testsÐwhich are usually also articulated as

inputśoutput pairsÐplay a similar role in computing. However, soft-

ware testing is inadequate for checking problem comprehension: if

a student develops both their tests and implementation with the

same misunderstanding of a problem, running those tests against

their implementation will not reveal their misunderstanding.

Flawed implementations often stem from underlying misunder-

standings (section 2.1) and some pedagogies (section 2.2) attempt

to address this by encouraging students to develop examples in the
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form of inputśoutput assertions, independent of testing their imple-

mentations. However, without an implementation to run assertions

against, examples are impotent and do not provide feedback. Con-

sequently, students may be inclined to begin their implementations

prematurely (a process whose ample feedbackmaymask underlying

misunderstandings and instill a false sense of progress [26]).

Educators stressing the development of examples must therefore

provide students with some mechanism to assess their understand-

ing. In this work, we present such a mechanism. Examplar is a tool

that provides students with instant feedback on whether they have

correctly and thoroughly explored a problem independent of their

implementation progress. In the presence of this interface, we ask:

Did students in an accelerated introductory course...

rq 1: . . . choose to use Examplar?

rq 2: . . . ultimately submit more or better test cases?

rq 3: . . . ultimately submit more correct implementations?

2 THEORETICAL BASIS

2.1 Failures of Comprehension

Although comprehension is ubiquitously recognized as an indis-

posable component of problem solving, the computing education

literature is rife with studies in which student participants inadver-

tently make significant progress solving the łwrongž problems:

Whalley and Kasto (ITiCSE '14) [33]:

Interestingly, [three students] retrieved the ‘counting in-

tegers’ schema. The students did not recognize that their

program would not work and did not attempt to verify the

correctness of their solutions. All three students were redi-

rected by the interviewer who asked them if they thought

they should do anything to check that their solution was

correct.

Loksa and Ko (ICER '16) [21]:

Of all 37 participants, only 15 verbalized about reinterpreting

the prompt. This lack of reinterpretation was consistent

across both experience groups: [CS1 and CS2].

Participants often began coding without fully understand-

ing the problem, leaving them with knowledge gaps in the

problem requirements and causing them to later stop imple-

mentation to address the gaps.

Prather et al. (ICER '18) [26]:

The most frequent issue these students encountered was a

failure to build a correct conceptual model of the problem.

The feedback from Athene seems to have given [several par-

ticipants] a false sense of progression through the problem.

Futhermore, there are no measures between viewing the

problem and submitting source code to ensure that the stu-

dent understands what they’re being asked to do.
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(1) From Problem Analysis to Data Definitions

Identify what must be represented and how it is represented.

(2) Signature, Purpose Statement, Header

State what kind of data the function consumes and produces.

(3) InputśOutput Examples

Work through examples that illustrate the function’s purpose.

(4) Function Template

Translate the data definitions into an outline of the function.

(5) Function Definition

Fill in the gaps in the function template.

(6) Testing

Ensure your implementation conforms to your examples.

Figure 1: The Design Recipe, adapted from htdp [11].

2.2 Systematic Problem Solving

A potential way to improve students’ development of problem

comprehension is to train them in a methodology that explicitly

scaffolds the process. Our pedagogical context is the Design Recipe

from How to Design Programs (htdp) [11], a six-step process (sum-

marized in fig. 1) for producing an implementation from a spec-

ification, grounded in multiple theoretical foundations. The first

three of these steps specifically scaffold the development of problem

comprehension, and its last step prompts students to confirm that

their understanding matches their implementation.

At a high level, its steps provide a form of scaffolding [3] to

lead a student from a prose-based problem statement to a working

program. The scaffolding steps ask students to produce interme-

diate artifacts (signature/purpose, examples, code template) that

capture the problem at multiple levels of detail and abstraction. The

progression from data definitions to examples to code move the

student through different representations of the problem, providing

a form of concreteness fading [16] as students progress towards a

symbolic-form solution to a problem.

Completed sequences of design-recipe steps form worked exam-

ples [32] that students can leveragewhen considering new problems.

A student might refer to a design recipe example when writing a

new program on an already-studied datatype: this would focus on

the examples, templates, and code features of the example. When

asked to work with a new datatype, the recipe suggests higher-level

steps that a student can follow to make progress on the problem.

Several papers have begun to explore the positive impact of the

htdp recipe on students in different contexts. Fisler and colleagues

on multiple projects [13, 15] showed that htdp-trained students

made fewer programming errors than students trained in more

conventional curricula. Schanzer et al. [29, 30] have found improve-

ments in middle- and high-school students’ abilities to solve algebra

word problems after working with a version of the design recipe.

However, students trained to follow htdpmay not formulate any

examples or test their programs, and consequently struggle [14].

Furthermore, htdp does not include any inherent mechanism for

students to assess their own examples; examples are completely

impotent until the student completes their implementation (step

5), at which point they become the basis of a test suite (step 6).

Students may begin their implementations prematurely (at the

expense of problem comprehension) because the implementation

phase of problem solving provides feedback to a degree which

comprehension development does not [26]. A mechanism to assess

examples would enable students to check their comprehension

(thus supporting a type of self-regulation [21]) and might prevent

the tendency to implement prematurely.

3 ASSESSING TESTS & EXAMPLES

Inputśoutput examples, like test cases, can be articulated as asser-

tions of the inputśoutput behavior of functions. To assess whether

examples are valid and thorough explorations of a problem, we

adapt the classifier perspective of assessing test suites [2, 24]. This

view is appropriate for assignments consisting solely of determin-

istic, computable functions for which correctness is a well-defined

binary property. We discuss how these expectations limit Exam-

plar’s applicability in section 9. In this method, we assess suites

of assertions along two axes: validity and thoroughness. However,

unlike test cases, the intent of examples is not to test one’s imple-

mentation, but rather one’s understanding of the problem; we adapt

our assessment of thoroughness to reflect this difference.

3.1 Validity

A suite is valid if it accepts (i.e., its assertions pass) all correct

implementations. A suite may be invalid for a variety of reasons;

particularly, it may have:

(1) asserted incorrect behavior (e.g., sorting in the wrong direc-

tion),

(2) asserted underspecified behavior (e.g., asserting that a sort-

ing implementation is stable, if that was not specified),

(3) simply have failed to compile or run altogether.

We assess whether a suite is valid by running it against a particular,

representative correct implementation.
However, if the problem specification leaves any behavior un-

derspecified, it is necessary to run suites against multiple correct
implementations in order to accurately identify invalidity [35]. For
instance, consider a problem specification that reads:

Write a function, median, that consumes a list of numbers

and produces the arithmetic median.

This specification, as worded, leaves the behavior of median on

empty inputs underspecified; it may be just as correct for an imple-

mentation to produce an error as to return 0. In order for a suite to

be valid for all implementations of median, it must not include any

assertions involving empty input lists. We can accurately identify

such assertions as invalid by checking them against two correct

implementations (henceforth wheats [24]):

(1) one that produces an error on empty inputs,

(2) another that produces some answer (say 0) on empty inputs.

If a student asserts that implementations should produce an error on

empty inputs, their suite will reject the wheat that produces 0 (and

visa versa). Provided that the set of wheats completely exercises the

space of underspecified behaviors permitted by the specification,

accepting all wheats guarantees that a suite is valid and will accept

all correct implementations.
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3.2 Thoroughness

A suite is thorough if it rejects (i.e., its assertions do not pass) buggy

implementations. We assess the thoroughness of a suite by run-

ning it against a curated set of buggy implementations (henceforth

chaffs [24]). The thoroughness of a suite is measured as the pro-

portion of chaffs it rejects. To assess test suites, the set of chaffs

should include subtly buggy implementations. To assess examples,

we take a different perspective: the set of chaffs should exercise

logical misunderstandings that students are likely to make. For

instance, to assess the thoroughness of examples for median, the

set of chaffs could include implementations of mean and mode.

4 EXAMPLAR

Examplar (pictured in fig. 2) provides a specialized version of the

usual Pyret [5] editing environment1 tuned for writing examples

as inputśoutput assertions. Students write their assertions just as

they would in Pyret’s usual editor. However, Examplar replaces the

usual editor’s Run button with a Run Tests button, which assesses

the student’s suite for validity and thoroughness against instructor-

authored implementations (in the manner described in section 3).

Consequently, students can use Examplar to develop and assess

their examples independent of their implementation progress.

Pyret’s usual development environment provides extensive in-

formation in its presentation of errors and testing results2 [34].

For instance, if a test fails because the two halves of an equality

assertion are not equal, Pyret displays the values that each half eval-

uated to. This is undesirable in Examplar, as a student may be overly

tempted to intentionally write failing assertions to discover what

the behavior of wheats is, rather than closely read the assignment

specification to determine the behavior on their own. Our intention

is that Examplar supplementsÐbut does not replaceÐthe assign-

ment specification. Examplar therefore removes the interaction

pane and suppresses nearly all forms of program output. Examplar

only displays errors that prevent assertions from running.

5 RELATEDWORK

Prior work has attempted to incentivize software testing with on-

demand feedback. Stephen Edwards has conducted extensive re-

search on the classroom integration of test-driven development

(tdd) since 2003, specifically involving the automatic assessment

tool Web-CAT [8]. While we fundamentally share Edwards’s view

that testing can move developers from łfrom trial-and-error to

reflection-in-actionž [7], our approach differs in key ways. Web-

CAT’s pedagogical context is tdd, in which the developer strictly

interleaves testing with implementation. This may tempt students

to write minimal tests in order to begin coding [10].

In Edwards’s work, the feedback which students receive on the

quality of their tests is typically in terms of code coverage [6, 20].

The coverage of a test suite is ostensibly a measure of how effective

the suite is at catching bugs. This measure is attractive because it

reflects professional software engineering practice [22] and is not

labor-intensive [6]. However, coverage is at best an indirectmeasure,

since it does not involve observing whether a test suite actually

catches bugs. Additionally, a growing body of evidence (including

1https://code.pyret.org/editor
2https://github.com/brownplt/pyret-lang/wiki/Error-Reporting,-July-2016

recent work from Edwards [4, 9]) challenges the assumption that

coverage correlates with the thoroughness of a test suite [1, 19]. Ex-

amplar directly measures the quality of test suites by running them

against actual buggy implementations (as described in section 3).

Prather et al. [25] ask students, before they begin their implemen-

tation, to correctly predict the output of the specified function for a

given input. As with Examplar, this intervention provides an oppor-

tunity for students to verify that their understanding of the problem

matches the prompt. However, Examplar differs from Prather et al.’s

work in several key ways. Examplar requires that students develop

their own input data for examples. Second, in addition to being valid,

Examplar-assessed examples must also be thorough explorations of

the problem’s interesting facets. Third, our students were welcome

to use Examplar at any point in their development process (or not

at all); Prather et al.’s intervention was strictly situated between

reading the problem prompt and developing a solution.

6 METHOD

We deployed Examplar in fall 2018 in an accelerated introduction to

computer science course offered at a selective, private U.S. univer-

sity. The course instructs students on the design recipe, algorithm

and data structure design, and algorithm (big-O) analysis.

Course Structure. The primary course activity was programming

projects. The 2018 offering of the course featured fourteen program-

ming projects. For all of these projects, students were given a prose

specification and were required to submit an implementation con-

sistent with that specification. For twelve of these projects, students

additionally submitted a test suite. We provided Examplar on the

ten projects that met the expectations outlined in section 3. The

projects included constructing a recommendation engine, modeling

a filesystem [12], deriving Huet zippers [17], and seam carving [31].

Demographics. Sixty-seven students completed the course. Most

were first-year students, approximately 18 years old, with some

prior programming experience (though not typically with prior

testing experience). About 1/6 identified as female. Admittance

to the course required successful completion of four assignments

roughly corresponding to the first fifth of htdp.

Pedagogy. The instructor asked students to follow the entirety

of the design recipe while completing all programming projects.

However, in requiring the submission of only a final implementation

and a test suite, the course essentially enforced only the last two

steps of the design recipe.

Previous iterations of the course attempted to apply the idea

of a łsweepž [23]: graded examples due several days before the

final submission deadline. The fast pacing of programming projects

precluded this requirement for most assignments, but it was hoped

the habit of early example-writing would stick. However, from the

guilty admissions of former students,3 we believed that for projects

lacking this early deadline, students authored most (if not all) of

their assertions after developing their implementation. We hoped

Examplar would be an effective alternative to strict early deadlines.

3In particular, the former students who were hired to be 2018’s TA staff!
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Table 1: The position and duration of the comparable assign-

ments in each year.

2017 2018

Assignment Ordinal Days Ordinal Days

DocDiff 1 3 1 3

Nile 2 4 2 5

DataScripting 4 3 4 2

Filesystem 7 4 6 2

Updater 8 7 7 7

JoinLists 10 7 9 7

MapReduce 11 7 10 7

to judge whether final test suite quality improved. This subset of

assignments is comprised of 320 final test suite submissions for

2017, and 269 final test suite submissions for 2018. We assess the

quality of these submissions using identical wheats and chaffs. We

consider the size, validity and thoroughness of test suites on these

assignments in turn:

rq 2.1: Does test suite size increase? To determine whether final

test suite size increased, we contrast the number of tests in suites

from each year. We hypothesized that, by gamifying the testing

experience, Examplar would induce students to write more tests.

We perform a two-sample t-test to determine if the average number

of test cases significantly differs between years.

rq 2.2: Does validity improve? We hypothesized that, in aggre-

gate, the validity of final test suites would improve significantly

from 2017 to 2018. Examplar’s feedback on validity is complete; i.e.,

if a test suite accepts all of the wheats in Examplar, it will accept all

of the wheats in the autograder used for final submissions. We sort

the implementations for each year into the dichotomous categories

of valid and invalid (section 3.1), and perform a χ2 test to determine

if the proportion of valid test suites differ significantly.

rq 2.3: Does thoroughness decline? The chaffs used to assess final

test suites included both mistakes of logic and implementation er-

rors. However, Examplar only included chaffs targeting the former,

so it is conceivable that students could misinterpret catching all

chaffs within Examplar as having łfinishedž their test suite. We

therefore must check whether the thoroughness of students’ test

suites declined. We compute the thoroughness of each final test

suite (section 3.2) and, conditioned on observing a decrease in the

proportion of chaffs caught between years, perform a χ2 test to

determine if the difference is significant.

rq 3: Do implementations change? We hypothesized that the direct

aid provided by Examplar for test development would indirectly

benefit students’ implementations. All seven of the comparable

assignments required the submission of implementations. This set

of assignments is comprised of 622 implementations from 2017,

and 522 from 2018. We sort the implementations for each year

into the dichotomous categories of correct and buggy using an

instructor-authored test suite, and perform a χ2 test to determine

if the proportion of correct implementations significantly differ.

Table 2: Did you use Examplar to write examples or tests Be-

fore, During, and After completing your implementation?

(Higher percentages are shaded darker.)

Usage Before During After

Rarely, or not at all 4.3% 4.3% 0.0%

A few times 21.7% 13.0% 13.0%

About half of the time 39.1% 17.4% 17.4%

Most of the time 21.7% 26.1% 17.4%

Almost always, or always 13.0% 39.1% 52.2%

Unsure 0.0% 0.0% 0.0%

7 RESULTS

We present our findings for each of the research questions stated

in section 6.

7.1 rq 1: Did students use Examplar?

Students used Examplar extensively on all assignments, clicking

Run Tests a total of 26,211 times. Figure 3 illustrates the distribution

of Examplar submissions per-student for each of the assignments

where Examplar was provided.

rq 1.1: ...when it was not required? Yes. Students used Examplar

extensively even after the requirement to use it was dropped. The

median Examplar-submissions-per-student for DocDiff of 22 (the

first and only assignment for which Examplar use was required)

was less than that of any other assignment.4 Only a small number

of students elected to not use Examplar thereafter: 4 students on

DataScripting, 3 on FileSystem, and 1 on Updater, MapReduce,

TourGuide, and FluidImages.

rq 1.2: ...when no final test suite was required? Yes. Figure 4 il-

lustrates the distribution of the number of Examplar submissions

per-student for each of DataScripting’s parts. Of 67 students who

submitted an implementation for at least one part, 64 used it for at

least one part and 48 used it for every part for which they submitted

an implementation. Examplar usage for this assignment is particu-

larly notable as students were given only two days to complete its

seven parts. Interpreted as a whole, Examplar usage for this assign-

ment was on par with that for the other assignments; the median

student submitted 33 suites to Examplar for DataScripting.

rq 1.3: ...throughout their development process? Probably. Twenty-

three students (approximately a third of the students enrolled in the

course) provided feedback on their Examplar usage in the volun-

tary course feedback survey. When asked, łDid you use Examplar

{before, during, after} developing your implementation?ž, a majority

of students indicated they used Examplar at least łabout half the

timež at all stages. Self-reported Examplar usage (table 2) increased

as implementation development progressed. Of course, students’

self appraisal of their own testing diligence should be regarded with

some skepticism, especially on a non-anonymous survey distributed

a month after the course ended.

4The individual parts of DataScripting received fewer submissions-per-student than
DocDiff, but each was a significantly smaller problem than any other in the course.
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(2) If a suite fails all of the wheats because one or more asser-

tions rejected the wheats, it may be that the student tested

either underspecified behavior or incorrect behavior. Final

test suites in 2017 were 6.1 times more likely to have this

form of invalidity than suites in 2018.

(3) A suite may fail to compile or run any of its assertions. This is

often indicative of the student failing to follow the template

for test suite submission (e.g., they tweaked the imports).

Final test suites in 2017 were 1.3 times more likely to have

this form of invalidity than suites in 2018.

Table 4 details the number of final test suites of each form of inva-

lidity for the comparable assignments in 2017 and 2018.

rq 2.3: Did thoroughness decline? No. Test suites in 2018 were

no less thorough (table 5). We can therefore be confident that the

aforementioned gains in validity did not come at the expense of

thoroughness. As we do not observe any decrease in thoroughness,

we do not perform a χ2 test.

rq 3: Did implementation quality improve? Inconclusive. Our χ2-

square test with Yates’ continuity correction revealed that the over-

all proportion of correct implementations (table 6) did not strongly

significantly differ by year (χ2(1,N = 1144) = 2.94, p = 0.086,

ϕ = 0.053, the odds ratio is 0.8).

Table 3: For each of the comparable assignments and in ag-

gregate: the proportion of the n final test suites which were

invalid.

2017 2018

Assignment Invalid n Invalid n

DocDiff 29.7% 91 9.3% 75

FileSystem 30.3% 76 9.7% 62

Updater 20.0% 75 6.1% 66

JoinLists 17.9% 39 0.0% 33

MapReduce 64.1% 39 3.0% 33

Aggregate 30.3% 320 6.7% 269

Table 4: For each of the comparable assignments and in ag-

gregate: the proportion of final test suites of each form of in-

validity: (1) accepting SomeÐbut not allÐwheats, (2) accept-

ingNone of thewheats because one ormore test cases failed,

and (3) accepting none of the wheats because an Error pre-

vented the suite from running.

2017 2018

Assignment Some None Error Some None Error

DocDiff 8.8% 8.8% 12.1% 0.0% 1.3% 8.0%

Filesystem 23.7% 6.6% 0.0% 4.8% 1.6% 3.2%

Updater 0.0% 16.0% 4.0% 0.0% 3.0% 3.0%

JoinLists 7.7% 7.7% 2.6% 0.0% 0.0% 0.0%

MapReduce 43.6% 20.5% 0.0% 0.0% 3.0% 0.0%

Aggregate 14.4% 11.3% 5.0% 1.1% 1.9% 3.7%

8 THREATS TO VALIDITY

We feel it is reasonable to attribute the differences we observed

between years to Examplar because of the extensive similarities be-

tween the offerings. However, it may be that these different cohorts

of students behaved differently due to an external factor. Ideally,

we would convince ourselves that this is unlikely by considering

submissions from additional years. This has practical difficulties.

First, course changes naturally accumulate; few of the assignments

in 2016 are functionally identical to those of 2018. Second, the pro-

cess of getting into the course changed significantly. In general, it

is problematic to intentionally refrain from changing offerings.

Alternatively, we could have performed a more tightly controlled

AśB study. We could have done this in a controlled lab setting, but

we felt that this would not be an authentic environment and hence

would lack ecological validity. We could have done this on the

course level, but felt would be unethical to essentially withhold

early grade information to half the students. Ultimately, we felt that

a cross-year comparison provided the most study utility, without

compromising our moral imperative to not hurt students.

Table 5: For each of the comparable assignments and in ag-

gregate: the number of chaffs used by Examplar, the Final

number of chaffs used to assess students’ final test suites,

and the proportion of Final chaffs caught, on average, by

students’ final test suites.

Chaffs % Final Rejected

Assignment Examplar Final 2017 2018

DocDiff 4 8 90.7% 99.0%

FileSystem 5 16 89.1% 90.7%

Updater 6 8 85.7% 85.2%

JoinLists 5 17 93.5% 89.3%

MapReduce 6 8 84.0% 89.0%

Aggregate 26 57 89.2% 91.0%

Table 6: For each of the comparable assignments and in ag-

gregate: the proportion of the n final implementation sub-

missions for each year that were correct.

2017 2018

Assignment Correct n Correct n

DocDiff 63.7% 91 74.7% 75

Nile 59.5% 74 68.6% 70

AddingMachine 38.2% 76 54.1% 61

Palindrome 86.8% 76 88.5% 61

SumLargest 84.2% 76 91.8% 61

Filesystem 77.6% 76 62.9% 62

Updater 28.0% 75 36.4% 66

JoinLists 64.1% 39 75.8% 33

MapReduce 69.2% 39 63.6% 33

Aggregate 63.2% 622 68.2% 522
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