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ABSTRACT

In the cold dark matter (CDM) picture of structure formation, galaxy mass distribu-
tions are predicted to have a considerable amount of structure on small scales. Strong
gravitational lensing has proven to be a useful tool for studying this small-scale struc-
ture. Much of the attention has been given to detecting individual dark matter subha-
los through lens modeling, but recent work has suggested that the full population of
subhalos could be probed using a power spectrum analysis. In this paper we quantify
the power spectrum of small-scale structure in simulated galaxies, with the goal of
understanding theoretical predictions and setting the stage for using measurements of
the power spectrum to test dark matter models. We use a sample of simulated galaxies
generated from the Galacticus semi-analytic model to determine the power spectrum
distribution first in the CDM paradigm and then in a warm dark matter scenario. We
find that a measurement of the slope and amplitude of the power spectrum on galaxy
strong lensing scales (k ~ 1 kpc™!) could be used to distinguish between CDM and
alternate dark matter models, especially if the most massive subhalos can be directly
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detected via gravitational imaging.
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1 INTRODUCTION

Dark matter is a key component of the standard model of
cosmology, but its fundamental nature remains uncertain.
In the standard Cold Dark Matter (CDM) model of cosmo-
logical evolution, structures form through the accretion and
merging of smaller structures. This bottom-up picture of
structure formation leads to dark matter halos that contain
substructure in the form of smaller, less massive subhalos.
Cosmological simulations make specific predictions about
the mass function and spatial distributions of this dark mat-
ter substructure (e.g., Springel et al. 2008; Boylan-Kolchin
et al. 2009; Fiacconi et al. 2016). These predictions depend
strongly on the type of dark matter particle considered. For
instance, moving from CDM to a warm dark matter (WDM)
model by decreasing the mass of the dark matter particle re-
duces the amount of substructure in galaxies (e.g., Gotz &
Sommer-Larsen 2002; Lovell et al. 2014; Bose et al. 2017).
This difference provides a possible way to learn about the
fundamental nature of dark matter by observing the abun-
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dance of satellite galaxies within the Local Group (see, e.g.,
Anderhalden et al. 2013; Governato et al. 2015; Schneider
2015).

In practice, the actual number of small dwarf galaxies
surrounding the Milky Way depends not only on the dark
matter physics, but also on the star formation efficiency in
small dark matter subhalos (e.g., Bullock et al. 2000; Ben-
son et al. 2002; Somerville et al. 2003; Behroozi et al. 2013;
Garrison-Kimmel et al. 2014; Brooks et al. 2013; Brook et al.
2014; Rodriguez-Puebla et al. 2017). While there are still
considerable uncertainties in the stellar content of small ha-
los, it appears plausible that dark matter halos below a cer-
tain mass threshold may be entirely devoid of stars (see, e.g.,
Dooley et al. 2017; Kim et al. 2017). Therefore, directly ob-
serving the substructure content of the Local Group at the
smallest scales is very challenging, although indirect meth-
ods based on the gravitational influence of small subhalos
on the Milky Way disk (Feldmann & Spolyar 2015), halo
stars (Buschmann et al. 2018), or stellar streams (Ngan &
Carlberg 2014; Erkal et al. 2016; Carlberg 2016; Bovy 2016;
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Bovy et al. 2017; Banik et al. 2018) could potentially shed
light on local small-scale structure.

Since it is sensitive to the total projected mass dis-
tribution along the line of sight between the high-redshift
source and the observer, gravitational lensing provides a
means for detecting dark matter subhalos even if they do
not contain any stars or gas. While the technique could in
principle be applied to our local neighborhood (see, e.g.,
Erickcek & Law 2011; Van Tilburg et al. 2018), gravita-
tional lensing is the only way to detect dark substructure
in cosmologically distant galaxies. In observed gravitational
lenses, substructure appears as localized perturbations to
an otherwise “smooth” mass model responsible for setting
the broad structure of the lensed images. These perturba-
tions are usually detected through anomalies in the lensing
observables that cannot be easily reabsorbed by a change
to the smooth lens model (Keeton et al. 2003, 2005; Koop-
mans 2005; Vegetti & Koopmans 2009; Hezaveh et al. 2013).
In some cases, these anomalies can be well fit by the inclu-
sion of a mass clump in the model. This is often interpreted
as evidence of the ability to detect individual dark matter
subhalos with gravitational lensing (Mao & Schneider 1998;
Metcalf & Madau 2001; Vegetti et al. 2010a,b, 2012; Nieren-
berg et al. 2014; Vegetti et al. 2014; Hezaveh et al. 2016b).
We note, though, that translating a substructure detection
to the actual physical properties of a dark matter subhalo
has important subtleties (Minor et al. 2017; Daylan et al.
2018). Also, some of these anomalies could be caused by
baryonic substructure, although it is statistically unlikely
that all of the observed anomalies are caused by baryons
(Hsueh et al. 2016, 2017, 2018; Gilman et al. 2018).

CDM theory predicts the existence of abundant small-
scale structure and so it would be convenient to build in-
ference models that are able to capture the collective effect
of this substructure. There has been work done to this end
that has incorporated a population of subhalos within lens
models in a statistical way (Dalal & Kochanek 2002; Fadely
& Keeton 2012; Birrer et al. 2017). Work has also been done
to calculate what effect a population of subhalos can have
on the image positions and relative time delay of multiply-
imaged quasars (Cyr-Racine et al. 2016).

Another way to capture the statistical properties of the
small-scale structure within lens galaxies is with a power
spectrum analysis. It has previously been shown that mea-
suring the power spectrum of projected density fluctuations
with current observations of strongly-lensed images is likely
feasible (Hezaveh et al. 2016a; Chatterjee & Koopmans 2018;
Bayer et al. 2018; Cyr-Racine et al. 2018). Moreover, theo-
retical predictions for the shape and amplitude of the sub-
structure convergence power spectrum from realistic pop-
ulations of subhalos has recently been presented in Diaz
Rivero et al. (2017). There, it was shown that the substruc-
ture power spectrum contains important information about
the abundance, masses, and density profiles of the subhalos
inhabiting the lens galaxy.

Substructure lensing is moving towards analyses that
include a power spectrum piece that accounts for small-scale
structure of the kind predicted by current dark matter the-
ories. In order for measurements of the power spectrum to
be useful for weighing competing theories of dark matter
we must first determine what these theories look like in the
language of power spectra. In this work we move beyond
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Figure 1. The total mass in subhalos log,y Msup,tot vS. number
of subhalos Ngp, for 9160 subhalo populations. CDM populations
are shown in blue and WDM populations in orange. Side panels
show 1D histograms for log;y Mgub,tot and Neyp-

theoretical estimates to directly quantify the lensing con-
vergence power spectrum in simulated galaxies with an eye
towards informing future lensing measurements and with
the hope that the power spectrum formalism becomes the
new standard for analyzing the substructure content of lens
galaxies.

This paper is organized as follows. In Section 2 we de-
scribe our subhalo populations and outline the method for
calculating the substructure power spectrum. In Section 3
we present the results of our calculation of the power spec-
trum distribution for our CDM populations and show how
it is affected by removing massive subhalos. We also test the
validity of using multiple projections of individual subhalo
populations as a proxy for having independent populations.
Finally, in Section 4 we compare our CDM and WDM sub-
halo populations in terms of their power spectrum distribu-
tions.

2 METHODS
2.1 Subhalo Populations

We wuse the semi-analytic galaxy-formation model
Galacticus (Benson 2012) to generate the galactic
dark matter halos used in our analysis. Galacticus as-
sumes that the host halo and subhalos are spherical and
that the subhalo population is statistically isotropic. Our
Galacticus simulations are the same set used for the mass
function analysis by Pullen et al. (2014). In their paper
they show that results from Galacticus agree broadly with
those from N-body simulations; specifically, they compare
the differential subhalo abundance and the cumulative
subhalo abundance with the Aquarius simulations and the
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Via Lactea II simulation, respectively. The simulations we
use contain only dark matter and include the effects of tidal
heating, tidal stripping, and dynamical friction. We have
two sets of 9160 halos: one uses the standard CDM model
of dark matter physics and the other is a WDM model
with a dark matter particle mass of 1.5 keV. While this
choice of mass is technically ruled out by observations of
the Lyman-« forest (Yéche et al. 2017; IrSic et al. 2017) and
the abundance of local satellite dwarf galaxies (Schneider
2015; Escudero et al. 2018), it does provide us with a
model that is significantly different than CDM, hence
making it easier to highlight the differences between the
two dark matter candidates. Main halo masses range from
1 — 3 x 10'*My and the mass resolution of the simulation
is Myes = 5 x 10" M. The main halo is removed from the
mass model (hence leaving only the subhalo population)
before computing the substructure power spectrum. Here
we focus exclusively on the subhalo contribution to the
power spectrum, and leave to future work the study of its
line-of-sight contribution (see, e.g., Keeton 2003; Despali
et al. 2018; Gilman et al. 2019).

Our simulated halos are on the low end of the mass
range typically probed by galaxy-scale strong lensing. Also,
they have been evolved to redshift z = 0, whereas most lens
galaxies are at redshifts between about 0.2 and 0.8. For both
of these reasons, our simulated halos are likely to have less
substructure than might be expected in typical lens galax-
ies (see Gao et al. 2011). As such, the substructure power
spectra presented in this work should be taken as conserva-
tive lower limits on their possible amplitude. Importantly,
the simulations provide a sample that is large enough to
characterize the statistical variability from one lens to the
next.

Figure 1 shows the distribution of the number of sub-
halos Nsub vs. the total mass in subhalos Mg, for all 9160
subhalo populations. The CDM populations have an average
of (Ncpm) = 257 subhalos and the WDM populations have
an average of (Nwpwm) = 11 subhalos.

Each subhalo is parametrized as a truncated NFW halo
with 3-d density profile

o) = e () 0

- drr(r +71s)2 \r2 +r2

where 7, is the scale radius and r; is the tidal truncation
radius. The lensing properties of truncated NFW halos are
given by Baltz et al. (2009).

2.2 Convergence Maps and Power Spectra

For the single-plane lensing we consider here, the quantity
of interest is the projected surface mass density scaled by
the critical density for lensing. We use a critical density of
Yerit = 1.15 x 1011M@/arcsec2 throughout this work. This
critical density could be realized for a system with lens red-
shift z; = 0.5 and source redshift z; = 1.0. For a lens at
z1 = 0.5, 1 arcsecond corresponds to 6.1 kpc. The maps
we use are 1000 x 1000 pixels corresponding to ~ 1.2 Mpc
on a side. In Figure 2 we show an ensemble average of the
convergence in substructure, <I§sub>, vs. radius r. We can
see that the overall convergence in substructure is relatively
uniform in the inner ~ 100 kpc and has a typical value of
<K/sub> ~ 6 X 1074.
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Figure 2. Mean convergence profile for CDM, after taking both
an ensemble average and a circular average.

Figure 3 shows example of individual convergence maps
for CDM. For each map, we compute the 2-d Fourier trans-
form and square it to get a map of the power. We then take
a circular average to obtain the 1-d power spectrum. Exam-
ples of individual power spectra are shown in Figure 3.

These power spectra have four characteristic features:
a normalization, an upturn at low-k, a turnover scale, and
a high-k slope. The physical origin of these features are dis-
cussed by Diaz Rivero et al. (2017). Briefly, the normaliza-
tion is determined by the overall convergence in substruc-
ture: P o< (Keub)(M?)/({M)Zerit) where (M) is the average
subhalo mass, (M?) is the second moment of the subhalo
mass function, and the remaining proportionality factor in-
volves the internal structure of the subhalos. A simple esti-
mate of the normalization can be made if we approximate
the subhalos as point masses:

1 N
_ z : 2
Pptmass — Z — m (2)

where m = M /Xyt is a normalized mass that has dimen-
sions of area, and A is the area of the convergence map.
Figure 3 includes the point mass power estimate as dashed
lines.

The upturn visible at low-k, especially in the first two
power spectra of Figure 3, primarily comes from the nonuni-
form spatial distribution of subhalos. This feature is im-
printed on the subhalo population by the host halo and
is called the 2-subhalo term, Pssn(k). We plot Pagn(k) for
the individual populations as red points in Figure 3. The 2-
subhalo term is only important at the smallest k and rapidly
becomes subdominant compared to the 1-subhalo contribu-
tion as the wavenumber is increased.

Finally, the turnover at k& = 0.1 kpc™' is related to
the truncation radii of the subhalos, and the high-k slope is
determined by the choice of density profile.
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Top: Convergence maps for CDM substructure populations chosen to reflect the range of low-k power present in our

simulations. The grayscale indicates the convergence kK = ¥/X¢it. Each bright spot is a dark matter subhalo. The full box size is 1.2 x 1.2
Mpc2. The blue squares measure 60 x 60 kpc2 and mark the smaller boxes used in Section 3. Bottom: 1-d power spectra corresponding
to the maps in the top panels. Each panel includes a label indicating the number of subhalos in the population, Ng,}, and their total
mass, Mgup,tot- The dashed lines show estimates of the power treating all subhalos as point masses, using eq. (2). The red points show

the 2-subhalo term, Pagp, (k).

3 RESULTS FOR CDM
3.1 Full Subhalo Population

We repeat the procedure outlined in Section 2.2 for our 9160
CDM subhalo populations.

The resulting power spectrum distribution is shown in
the left panel of Figure 4. The overall shape of the full dis-
tribution is the same as the individual power spectra shown
in Figure 3. There is approximately an order of magnitude
scatter that reflects the map-to-map variations. The point
with error bars to the left of the distribution shows the me-
dian, 68%, and 95% confidence intervals of the point mass
power (Eq. 2). The fact that the variance in point mass
power closely matches the spread in the power spectrum
distribution at low-k indicates that the scatter in our distri-
bution is mainly due to differences in the subhalo abundance
between populations.

At high-k the scatter is reduced due to the similarity of
our maps at small spatial scales. This is because the subhalos
in our populations have a fixed density profile. The right
panel of Figure 4 shows that the distribution of power at
fixed k is approximately log-normal at both low and high
values of k.

3.2 Impact of Most Massive Subhalos

We now seek to understand the physical origin of the large
scatter in Figure 4. We note that massive subhalos have large
contributions to the power but are statistically rare (com-
pare the different panels in Figure 3), so they may not be
suitable for a power spectrum treatment. Furthermore, their
effects on lensed images may be non-perturbative, so they

might have to be explicitly incorporated into lens models.
Motivated by these ideas we introduce a mass threshold and
remove subhalos above Mg before computing the power
spectrum. Figure 5 shows how removing the most massive
subhalos affects the power spectrum distribution for CDM.

With Myigh = 10'° Mg only the 1-2 most massive sub-
halos are removed on average. It is not surprising that re-
moving these subhalos reduces the overall power, but it is
striking how much it decreases the variance in the power
spectrum distribution. A large portion of the variance ap-
parently arises from the most massive subhalos because they
are rare, and statistical variations lead to large difference in
the overall power.

Decreasing the largest subhalo mass included in the
power spectrum analysis to Myigh = 10°Mg removes an
average of ~ 10 subhalos. Both the power and the vari-
ance are reduced further, but the decrease in variance from
changing the highest included mass from Mhyign = 10*° Mg
to Mhigh = 109M® is not as dramatic as introducing an
upper mass limit in the first place. Removing the 1-2 most
massive subhalos reduces the variance more than removing
the next ~ 10.

Making an even more restrictive cut at Mpign = 105 Mg
removes an average of ~ 70 subhalos. While the power is
again reduced, the variance of the Myigh = 10° and Myign =
10° power spectrum distributions are similar. It appears that
the statistical scatter in the power spectrum stabilizes at a
mass scale of 108-10° M,

MNRAS 000, 1-9 (0000)
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Figure 4. Left: The convergence power spectrum distribution for CDM. The solid line is the median and the shaded bands show the
68% and 95% confidence regions. The vertical lines indicate the k values used in the right panel. The point with error bars to the left
of the distribution shows the median, 68%, and 95% confidence intervals of the point mass power distribution. Right: Slices of log,y(P)
at k = 0.01 kpc—! and k = 1.0 kpc—!. The dashed lines are Gaussians with the same mean and standard deviation as the distributions
(u = —6.8 and o = 0.2 for the black curve, and = —4.0 and o = 1.0 for the red curve).
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Figure 5. Comparison of the CDM power spectrum distribution
for populations with different choices of highest subhalo mass.
Colors correspond to different values of Myjgn. Again, the solid
lines are the median values and the bands are 68% and 95% con-
fidence. The full populations contain an average of 257 subhalos.
The sub-populations contain averages of 255, 246, and 186 subha-
los for highest mass of 101° Mg, 10° Mg, and 108 M, respectively.

MNRAS 000, 1-9 (0000)

3.3 Projections vs. Independent Maps

To this point we have used each independent population in
only one projection while building up the power spectrum
distribution. When generating populations is computation-
ally expensive, as with numerical simulations, many projec-
tions have been used to estimate the statistical variations
(e.g., Fiacconi et al. 2016). We can use our set of subhalo
populations to test the reliability of using multiple projec-
tions of a single population as a proxy for having many in-
dependent populations.

From this point onward, we focus our analysis on the
central 60 x 60 kpc?® of the convergence maps (indicated by
the blue squares in Figure 3). Using 500 x 500 pixel maps in
these regions allows us to reach wavenumbers in the range
0.1-10 kpc~! that can be probed using strong lensing mea-
surements of the power (Cyr-Racine et al. 2018).

In Figure 6 we compare the power spectrum distribu-
tion from 1000 independent maps with the distribution from
projecting three individual maps 1000 times each (without
a mass cut). Projecting a single map multiple times under-
estimates the variance compared to having an equal number
of independent maps. The differences can be understood in
terms of effects from massive subhalos. If a population lacks
massive subhalos, the power will be low for all projections
(as in the left panel of Figure 6). If there is a massive sub-
halo near the center of the halo, it will appear in the small,
central map for most projections, leading to a high power
with low variance (as in the middle panel). If there is a mas-
sive subhalo at some modest distance from the center, it will
sometimes be projected inside the central box within which
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Figure 7. Similar to Figure 6, but for populations with subhalos more massive than 10° Mg removed.

we compute the power and other times be projected outside
the box, leading to a larger variance in the power (as in the
right panel of the figure). We note that the assumption of
spherical symmetry leads to a reduction in the variance of
the power spectrum distribution for different viewing angles
compared with a triaxial mass distribution.

The difference between multiple projections and multi-
ple populations is less dramatic when we remove the most
massive subhalos, as shown in Figure 7. An upper mass limit
of Mysgn = 10° Mg reduces the scatter among different pop-
ulations. While the scatter from multiple projections is still
somewhat smaller, it is closer to the scatter from multiple
populations. We conclude that, apart from the rare massive
subhalos, the statistical properties of independent subhalo
populations can be approximated by examining many pro-
jections of a few populations.

4 COMPARING CDM AND WDM

We are now ready to compare CDM and WDM scenarios
using the power spectrum language. Individual WDM maps
and their corresponding power spectra are shown in Figure
8. As a reminder, the WDM particle mass is 1.5 keV. Com-
paring Figures 3 with 8, it is immediately apparent that
WDM leads to a reduction in the abundance of subhalos,
particularly at the low-mass end.

In Figure 9 we compare the CDM and WDM power
spectrum distributions now computed for the small boxes
shown by the blue squares in Figure 8, in order to fo-
cus on the range of k-values relevant for strong lensing
measurements of power). There is considerable overlap be-
tween the distributions, and the median values of power
are quite similar (especially at k-values smaller than shown
in the figure). Recall that the amplitude scales roughly as
P o {Keub)(M?)/({M)Zeris). Looking at Figure 1, we see
that WDM has fewer subhalos but a similar total mass, in-
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Figure 9. Convergence power spectrum distributions for CDM
(blue) and 1.5 keV WDM (orange).

dicating that the average subhalo mass is higher. In the ex-
pression for total power, (ksup) is decreased but (M?) /(M)
is increased (relative to CDM), leading to a similar overall
amplitude for the power spectrum at low k. We also note
that the WDM power spectrum distribution has a larger
scatter that extends to lower power, which is due to Poisson
fluctuations in the small number of subhalos in the WDM
populations.

Since WDM suppresses the formation of low-mass struc-

MNRAS 000, 1-9 (0000)

tures, we expect the differences between CDM and WDM
populations to be most apparent at large k-values. At these
wavenumbers, where data is likely to display greater sen-
sitivity to the substructure power spectrum (see, e.g., Fig-
ure 1 of Cyr-Racine et al. 2018), CDM indeed displays sig-
nificantly more power than WDM in Figure 9, even after
accounting for the halo-to-halo scatter. The steeper slope
around k£ ~ 1 kpc™! in the WDM case might provide a
way to distinguish it (and other related models displaying
a suppressed abundance of small-scale structure) from the
standard CDM case.

Differences between CDM and WDM can be clarified by
excluding the most massive subhalos from the power spec-
trum calculation (and treating them explicitly in the lens
mass model instead). In Figure 10 we compare CDM and
WDM power spectrum distributions for populations with
a highest allowed mass of Myigh = 109M@. We see that
the power spectra look quite different on all scales in this
case. In WDM, including only subhalos with mass below
10° M removes a higher fraction of the total number of sub-
halos, and thus more of the total power, compared to CDM.
The differences in amplitude and slope at k ~ 1 kpc™! are
again the most striking features of these power spectra. The
wavenumber range 0.1-2 kpc™! relevant for strong lensing
probes subhalo masses in the ~ 10°-10'°M¢, range, which
provides sensitivity to WDM particle masses of ~1-3 keV.
Our results therefore indicate that strong lensing measure-
ments of small-scale power could constrain WDM particle
masses in the range of a few keV (also see Gilman et al.
2018, 2019).

5 CONCLUSIONS

We have computed the convergence power spectrum of dark
matter substructure using semi-analytic subhalo popula-
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Figure 10. Same as Figure 9 for populations with halos above
109 M removed.

tions in both cold and warm dark matter scenarios. The
power spectrum distributions for CDM and WDM have sim-
ilar shapes and overall levels of power at low wavenumbers,
but the scatter appears larger for WDM. The scatter in the
power spectrum distribution is driven by the few most mas-
sive subhalos. Those subhalos could potentially be individu-
ally detected and directly included in the main lens model,
so they can be excluded from the power spectrum analysis.
When that is done, the resulting power spectrum distribu-
tions are statistically robust and show clear differences be-
tween CDM and WDM predictions on scales k > 0.1 kpc™*.
This result is promising in connection with recent work
on using galaxy-scale strong lensing to measure small-scale
power. Cyr-Racine et al. (2018) recently developed a com-
prehensive likelihood-based formalism and used it to demon-
strate that measuring power on scales of k ~ 0.1-10 kpc ™!
with lensing is likely feasible with deep, high-resolution ob-
servations. Our analysis indicates that even a few high-
quality power spectrum measurements in this k£ range could
be sufficient to measure potential deviations from the CDM
predictions for dark matter substructure within galaxies.
The simulations used here contain only dark matter,
but a similar analysis could be used to study the effects
of baryons on the small-scale power spectrum. While full
N-body simulations with baryons are computationally chal-
lenging, semi-analytic modeling offers a useful alternative
due to the relative ease of including baryonic structures like
disks and bulges. Such structures would likely contribute
power at intermediate scales where CDM and WDM power
spectra begin to differ, so it will be important to understand
how baryons affect the power spectrum in the k& ~ 0.1-10
kpc_1 range if we want to use strong lensing measurements
of the power spectrum to distinguish dark matter models.
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