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Abstract— Humans and mobile robots will be increasingly
cohabiting in the same environments, which has lead to an
increase in studies on human robot interaction (HRI). One
important topic in these studies is the development of robot
navigation algorithms that are socially compliant to humans
navigating in the same space. In this paper, we present a
method to learn human navigation behaviors using maximum
entropy deep inverse reinforcement learning (MEDIRL). We
use a large open dataset of pedestrian trajectories collected
in an uncontrolled environment as the expert demonstrations.
Human navigation behaviors are captured by a nonlinear
reward function through deep neural network (DNN) approxi-
mation. The developed MEDIRL algorithm takes feature inputs
including social affinity map (SAM) that are extracted from
human motion trajectories. We perform simulation experiments
using the learned reward function, and the performance is
evaluated comparing it with the real measured pedestrian
trajectories in the dataset. The evaluation results show that the
proposed method has acceptable prediction accuracy compared
to other state-of-the-art methods, and it can generate pedestrian
trajectories similar to real human trajectories with natural
social navigation behaviors such as collision avoidance, leader-
follower, and split-and-rejoin.

I. INTRODUCTION

Robots have been increasingly used in spaces where they
cohabit with humans, such as museums [1], supermarkets
[2], and offices [3]. An important task that the robot must
perform while coexisting with humans in these environments
is navigation, where the robot must navigate in close prox-
imity to pedestrians. While navigating in such a pedestrian
occupied environment, robots need to be able to comprehend
and comply with typical social norms that pedestrians follow
and maintain a comfortable distance from each other [4]. To
achieve this, we need to model the behavior of pedestrians
navigation in a crowded environment. This model can then be
used by a robot to navigate while conforming to desired char-
acteristics such as comfort, naturalness and sociability [5].
It is important to learn the cooperative pedestrian-pedestrian
interaction and to incorporate this cooperative navigation for
robot motion planning in human environments. In this paper,
we focus on learning how humans navigate in crowds, and
propose a deep inverse reinforcement learning (IRL) method
in order to model pedestrian navigation behaviors.

Traditional  socially compliant robot navigation
can be broadly -categorized into model based and
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machine learning based approaches. Gonzalo et. al.
present a social force model (SFM) [6] based approach for
human aware navigation [7]. An important aspect in the
SFM based approaches is the appropriate selection of SFM
parameters since these parameters need to be tuned for
different environment conditions [8]. Hanheide et. al. adopt
qualitative trajectory calculus (QTC) based approach for the
analysis and representation of spatial behavior governing
the interactions between a pedestrian and a robot [9]. A
dynamic window approach for reactive collision avoidance
for mobile robots is presented by Fox et. al. in [10]. The
main focus of that approach is safety, since it is derived
directly from the motion dynamics of the robots and is
well suited for robots operating at higher speeds. A recent
review of existing approaches can be found in [5]. The main
shortcoming of the model based approaches is sensitivity
to model parameter selection [8] and oscillatory, freezing
and unsafe robot behavior when complexity exceeds certain
degrees [4], [11].

Machine learning based approaches are receiving in-
creased attention recently in robot social navigation research.
A framework for socially adaptive path planing in a dynamic
environment for an autonomous wheel chair was proposed
in [12] using Bayesian IRL, where training data were ob-
tained by using a person to manually drive the wheel chair,
while moving in the desired navigation scenarios. Henrik
et. al. present a maximum entropy IRL based approach in
[4] for predicting pedestrian trajectories inside a controlled
environment with navigation between fixed points. These
works consider limited training data scenarios [4] and linear
reward function structures [4], [12]. Chen et. al. propose
a reinforcement learning based approach for indoctrinating
certain behaviors using careful design of a handcrafted
reward function [13]. Alahi et. al. formulate the problem of
trajectory prediction as a sequence generation task, and adopt
a long short term memory (LSTM) approach to predict the
future trajectory of people based on their past positions [14].
A comparison of the performance of different features used
for robot navigation in the IRL framework was provided by
Vasquez et. al. [15] using pedestrian navigation data obtained
in a simulated environment.

In this paper, we use maximum entropy deep inverse
reinforcement learning (MEDIRL) to learn the reward func-
tion that captures the behaviors exhibited by a pedestrian
while navigating between its initial and goal positions. We
adopt this approach since the pedestrian navigation behavior
draws from many complex experiences, thus it is challenging
to manually craft a reward function that captures all the



behaviors exhibited by a pedestrian as done in [13]. We use
the concept of social affinity that formalizes the interaction
of a pedestrian with its neighboring pedestrians, and propose
a deep neural network structure to approximate a nonlinear
function representation of input feature vectors. We use an
open pedestrian dataset collected in an uncontrolled mall
environment for training the reward function network [16].
This dataset offers diverse data with varying pedestrian
density conditions and various interaction scenarios, which
aids in generalizing the learned reward functions. We show in
the performance evaluation section that the learned reward
function captures complex pedestrian interaction behaviors
and reliably recreates pedestrian trajectories. This learned
reward function can be used to control a robot to navigate
in a pedestrian occupied environment in a socially complaint
manner, which is in the scope of our future research.

The rest of the paper is organized as follows. Section II
provides the formal problem formulation. The proposed so-
lution algorithm, i.e., the deep IRL approach, is presented in
Section III. The experiments for training our reward network
are detailed in Section IV. Section V provides performance
evaluation capturing pedestrian behaviors and replicating
measured trajectories, which is followed by conclusions and
future work in Section VL.

II. PROBLEM FORMULATION

In this section, we first review the Markov Decision
Process (MDP) and IRL, and then, we define our pedestrian
motion modeling problem in an IRL framework.

A. Markov Decision Process (MDP)

An MDP is a probabilistic sequential decision making pro-
cess. Each decision, more formally action, in an MDP setting
depends only on the current state and is thus memoryless.
A finite state MDP can be defined as a tuple (5,A,7,y,R),
where S = {s1,...,s0} denotes a finite set of O states called
the state space. A = {a1,...,ar,} denotes a finite set of L
possible actions called the action space. 1" denotes a set of
state transition probabilities, describing the evolution of
a previous state s;_; to a new one s;, when executing a
given action a;_1. v € [0,1) denotes the discount factor.
R denotes the reward function that depends on state and
actions.

In the MDP framework, the objective of reinforcement
learning is to find the policy 7, defined as a mapping m:
S — A, which gives the optimal action for each state
that should be executed to maximize the expected reward.
While the reinforcement learning method uses a given reward
function on an MDP model to generate an optimal policy
mapping from system observations to actions, IRL deals
with the inverse problem of finding the reward from either
an existing policy, an action-state sequence, or demonstrated
state sequences.

B. Pedestrian Motion Model

In this work, we model the pedestrian as an agent whose
decision making process, follows an MDP while navigating

in a crowded environment. The pedestrian is assumed to
navigate in a discretized grid based workspace as illustrated
in Fig. 1. At any time instant, from its initial state s, the
pedestrian can choose to take an action from the set of
possible actions {ag,a1,as,...,as}, and end up in any of
the adjoining states {nsi,nsa,...,nsg} as shown in Fig. 1.
Thus the complete trajectory of the pedestrian from its initial
state s1 to its goal state sx is a sequence of state and action
pairs represented by ¢ = {(s1, a1),(s2,a2),. . ..(sk,ax)}. We
assume the pedestrian to be a deterministic MDP agent,
necessitating any action a from state s will result in the
agent reaching the next state s’ with probability one. The
selected action depends on the reward function R.
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Fig. 1: Pedestrian motion model in a grid based workspace
with adjoining states nsj,nss,...,nss and corresponding
actions aq, as, ..., ag to reach those states.

In typical MDP problems, reward function R is hand
crafted to indoctrinate the desired behaviors in an agent.
In the pedestrian modeling problem studied in this work,
the reward is influenced by factors such as the pedestrian’s
neighbors, static obstacles and the intended goal position.
Due to the complexity caused by these influences, hand
crafting the reward function to capture different desired
behaviors is very difficult. The main goal of this work is
to learn the reward function that best captures the pedestrian
decision making process when navigating in a crowd. Next,
we formally define our pedestrian modeling problem as an
IRL problem.

C. Problem Statement

We define the pedestrian motion modeling problem in this
section. Given an MDP with an unknown reward function
R*, formally denoted as MDP\R, a set of expert demonstra-
tions D = {(1,(a,-..,(n} generated by an agent following
the demonstration policy 7wp, and corresponding feature
vectors ¢ for each demonstration, find the unknown reward
function R*, which can closely replicate the behaviors ex-
hibited in D.

III. DEEP IRL APPROACH

In this section, we present our deep IRL solution to
the problem formalized above. We first present the neural
network structure used to approximate the reward function
and then provide the feature vector input we use in this work.

A. Maximum Entropy Deep Inverse Reinforcement Learning
(MEDIRL)

The problem stated in Section II-C can be solved using
the IRL framework. The main aim of IRL is to learn R* that



drives the agent’s action preferences. Specifically, it captures
the reward structure that underlies specific agent behaviors.
In this problem, IRL faces two main challenges namely
suboptimal demonstrations, as no pedestrian will always act
optimally and the ambiguity in the reward function itself, as
numerous rewards can explain the same behavior. MEDIRL
addresses these problems by modeling the demonstration
behavior as a probability distribution over the demonstrated
trajectories [17], [18] and then constrain it to the highest en-
tropy [19]. MEDIRL also extends IRL to include non-linear
reward functions. Due to the complex pedestrian decision
making process in crowded environments, we assume that
the reward function is a non-linear function of the feature
vector ¢ = {¢1,02,...,¢n}. The reward function R* can
be calculated using a Deep Neural Network (DNN) and can
be defined as,

R*:g(¢701702793a"'76j)5 (1)

= g1(92(. .. (95(9,05),...),02),01), (2)

where 6=[01,05,...,0;] are the DNN weights, and gj() are
nonlinear functions. DNNs are used due to their ability to
represent highly nonlinear functions through the composition
and reuse of the results of many nonlinearities in the layered
structure and are regarded as universal approximator [17],
[20]. The DNN structure used in this work is shown in Fig. 2.
It consists of one input layer, two fully connected hidden
layers and one output layer. The input to this structure is the
feature vector ¢ and the output is the reward value R*.
The problem of training the DNN can be framed in the
context of Bayesian inference as MAP estimation, maxi-
mizing the joint posterior distribution of observing expert
demonstrations D and the DNN parameters 6,

L(6) = log P(D,0|R*) = log P(D|R*) + log P(8), (3)
—_————  ——
Lp Lo

which allows this joint log likelihood to be differentiated with
respect to the parameters of the neural network, 6, making
it possible to apply gradient descent to this problem [21].
The objective function is given in the data term Lp of (3)
and differentiable with respect to the reward function R*,
enabling back-propagation of the objective gradients to the
neural network parameters . The final gradient is given as
the sum of the gradient of the data term L£p and the model
term Ly with respect to the network parameters 6

0L OLp 0L

20 09 a0 -

The gradient of the data term Lp can then be written
in terms of the derivative of the expert demonstration with

respect to reward R* and the derivative of the reward
function with respect to 6
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Fig. 2: DNN for reward function approximation based on the
feature space represented by ¢ = [¢1, P2, D3, ..., O]
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where R* = g(¢, ). The gradient of Lp with respect to R*
is equal to the difference in the exhibited state visitation fre-
quency pp by D and the expected visitation counts E[u] for
the learned systems trajectory distribution, which depends on
the reward approximation given the corresponding optimal
policy [19].

Algorithm 1 Maximum Entropy Deep Inverse Reinforce-
ment Learning (MEDIRL)

Input p3,0,S,A,T,y
Output Optimal weights 6*

1: 6 = initialize_weights()
2: form = 1:Mdo
3 R*m = g(q/)’em)
MDP solution with current reward function
4: 7™ = approx_value_iteration(R™,S,A,T,y)
5. E[u™] = propagate_policy(7™,S,A,T)
Maximum entropy loss calculation and gradients
L L =log(r™)xif
7 gl = ppElpm]
Compute network gradients

o m
8: Wg’i = nn_backprop(¢, 0™, ggﬁ’n)

9. gmtl = update,weights(@m,%
D
10: end for

The overall MEDIRL framework is detailed in Algo-
rithm 1. The algorithm assumes access to a set of expert
training samples which are used to calculate pp. The feature
vector ¢ for each training sample is also available. It also
assumes the possible state values S and action value A are
known. The state transition probabilities denoted by T, are
assumed to be one for our case as we consider the pedestrian
motion agent to be a deterministic system. The discount
factor v is a positive constant between O and 1, and is
selected empirically.

The training procedure begins with randomly initializing
the neural network weights 6. The initial network weights
0 are then used to generate reward values R* using the
feature vectors ¢ for each training episode. The reward
values R* are then used to generate policies m for each



training episode of the current iteration m. The policies
7 are then used to calculate the expected state visitation
frequencies E[u] for each training episode. The difference
in the visitation frequencies from the policies m and the
demonstrations are used to calculate the gradient g}g‘j, used
to update the network weights 6 by backpropogation. This
process is repeated for M iterations. In the next section we
present the features used for reward function calculation for

this problem.

B. Feature Vector

In this section we present details of the features used as the
input to the proposed MEDIRL algorithm. We define the state
of the pedestrian ¢ to be its spatial location s; = [z, y] . The
feature vectors can be generated using the spatial location
of the pedestrian. The spatial location and velocity of its
neighbors is also required. The features then extracted from
these known values (from demonstration trajectories) include
the following.

Fig. 3: The SAM feature represented by spatial location bin
disks around the pedestrian of interest (i.e., the center). The
pedestrian location is shown by the red cross and its motion
direction is shown by the red arrow.

1) Social Affinity Map Feature (SAM): There is adequate
evidence showing that people in large crowds are bound
together by social affinity. Social affinity, which is defined
as motion affinity of neighboring individuals [22]. Since
pedestrians’ movement is influenced by others in their neigh-
borhood, the SAM feature clusters the spatial position of the
pedestrian’s neighbors in spatial bins [22]. The area around
the pedestrian under consideration (the center), is divided
into two concentric circles of radii r (e.g., 5 m) and r’ (e.g.,
3 m), as visualized in Fig. 3. The inner circle is subdivided
into four equivalent bins. The outer ring between the two
circles is first subdivided into four equal sections. Then
the bins that are directly left and right of the pedestrian
are further subdivided into two equal sections each. The
pedestrian motion direction is shown by the red arrow. The
presence of a pedestrian in each spatial bin is captured
using a binary feature vector consisting of ten elements
corresponding to the ten bins. This ten value feature vector
is represented as ¢s = [¢s1, P52, - -»@s10]- The binary value
of the corresponding element in the feature vector is set to
one if there is a pedestrian present in that bin and vice versa.

We further extend the SAM feature from its earlier ap-
plication in [22], to capture the velocity of the pedestrian’s
neighbors. This feature vector for each bin is represented as
¢SV = [(bol’ ¢o2s¢o3,¢vl ,¢v2 7¢1)3]' For each bin, we calculate

TABLE I: SAM: Velocity feature thresholds.

Feature Thresholds
o1 a € (-%T,%Tﬂ]
b2 | @ €[ZE)ULEE T
03 o€ ('%s%]
dv1 [ €10,0.5) m/s
Pv2 1 €10.5,1.0) m/s
$u3 1 € [1.0,00) m/s

the average velocity (speed ! and heading «) of all the
neighbors in that bin and set the binary values of the six
feature vector for each bin according to the thresholds listed
in Table I. The complete feature vector for all ten bins is
thus represented as ¢sc = [Psvi, PsV2s - PsV10]-

Combing the two sets of vectors ¢s and ¢s. discussed
above, the complete SAM feature vector is given by ¢gsans
= [¢s.9sc].

2) Density Feature: The density feature ¢, represents the
number of neighbors in all the SAM bins [12], [15]. This
feature consists of a three binary element vector represented
by ¢gq = [ba1, Pa2, ®q3]. Each element of the vector cor-
responds to a certain range of neighbors within the SAM
circle of radius r. If the number of neighbors falls within
the range corresponding to an element, that element is set to
one and the other two are set to zero. If there are two or less
neighbors in the SAM bins, ¢4; is set to one, otherwise it
is zero. If there are greater than two but less than five other
neighbors, @42 is set to one, otherwise it is set to zero. If
there are five or more, ¢43 is set to one otherwise it is set
to zero.

3) Distance Feature: It captures the distance between the
pedestrian’s current location to its goal position. This feature
is represented as ¢4;s and ensures the pedestrian moves
towards its goal position.

4) Default Cost Features: This feature serves to balance
the density, social affinity and the distance features as used
in [12], [15], [23], [24]. It is denoted by ¢g4cy and always
set to 1.

The complete feature vector is thus obtained by concate-
nating the four feature presented above thus written as

¢ = [bd, PsAM Ddiss Pdef)-

In the next section, we present implementation details of
the approach developed in this section and the evaluation
procedure.

IV. EXPERT DATASETS AND EVALUATION EXPERIMENTS

In this section, we present the details of the expert dataset
used, the implementation details of the proposed deep IRL
approach, and the procedure to evaluate the performance of
the generated reward function.

A. Expert Dataset

The expert dataset used in this work, is open pedestrian
trajectory data' collected in the “ATC” business center in Os-
aka, Japan [16]. A map of this environment has been shown

Thttp://www.irc.atr.jp/crest2010_HRI/ATC _dataset/



in Fig. 4 where the white objects show the static obstacle.
The open pedestrian dataset was developed in [16] using the
tracking system that consists of 49 range sensors installed
above human head height to cover an area of about 900 m?.
The complete dataset consists of tracking data collected
for approximately 3.25 million pedestrians, over a period
of 92 days. The overall length of the trajectory of all the
pedestrians in the dataset is 128,692 kms. The measurement
frequency of the recorded data is approximately 25 Hz.

Fig. 4: The map of the mall with pedestrian trajectory
data shown in green. Static obstacles are shown in white
color. The red box denotes the area from which pedestrian
trajectories were selected for learning R*.

We processed the data using Python and OpenCV to
visualize the trajectories on the map shown in Fig. 4. The
green tracks mark the trajectories followed by the pedestrians
in the environment. The trajectories in this figure show
five minutes of pedestrian tracking data. Since the focus of
this paper is to model pedestrian-pedestrian interactions, a
smaller section of the tracking environment was selected,
where the interaction of the pedestrian with static obstacles
is minimal. That section is marked by the red rectangle in
Fig. 4. Only pedestrians within this bounded region were
used in the training process. The provided dataset includes
a pedestrian ID, its spatial location, and its velocity at each
measurement instance.

B. Implementation Details for Algorithm I

The expert dataset was processed to extract training
episodes for learning the reward function R*. We designate a
pedestrian’s state at k-th time instance as Sy, feature vector
as ¢, the action vector ai, that it executes to reach its
future state Siy1 as a training episode designated by ey.
This vector can be formally written as ex=[Sk,ax,Pk,Sk+11,
and generated using the expert dataset. A series of these
training episodes is referred to as a training epoch, which
can be formally written as D;=[eq,e2,. . .,ey ], where the total
episodes are W = 10 million. Here it is important to note that
the training episodes in D; were not sequentially selected
for the same pedestrian rather they were randomized after
selection to reduce correlation in sequential training episodes
and ensure generalization of the trained DNN [25].

The overall implementation of the dataset preprocessing,
feature calculations and visualization are done using Python.
The DNN and its training is implemented using TensorFlow.
As a first step, the training episodes are extracted and stored.

The DNN used in the implementation consists of one input
layer, two hidden layers and one output layer. The two
hidden layers consist of 4096 and 2048 fully connected nodes
respectively. The environment around the pedestrian was
discretized into a grid world following the implementation in
[26]. Following the steps in Algorithm 1, the reward values
are calculated using features corresponding to each training
episode. These reward values are used in approximate value
iteration to generate the optimal policy for the current step
using line 4 in Algorithm 1. The state visitation error pup —
E[u] is back-propagated to update the DNN using gradient
descent with learning rate set to 0.001. Typical MEDIRL
problems are formulated for static environments which is not
the case here. To tackle this problem, we re-plan after every
time step of each episode. The solution is no longer optimal
but it is considered to be a good approximation [15]. The
training was performed on a dual NVIDIA GeForce GTX
1080Ti workstation with dual Xeon E5-2630v4 processors
and takes approximately 20 hours.

Algorithm 2 Trajectory Evaluation
Input R*,0,S,A,T,¢,y
Output Motion policy 7

1: Load DNN parameters 6, that were trained by Algo-
rithm 1
Vy=-00
repeat
Vi, =ViiVi,,=0
Qs,a = R;a""y Zs/es TG,a,s’Vs’
Vs = softmaz,Qs q
until mazs(Vs — Vi, )<e
7*(als) = eQaa=Vs

A i

C. Evaluation Experiments

Using the learned reward function R* from the previous
step, feature vectors, possibles states and actions, and dis-
count factor, the pedestrian navigation problem is solved as
an MDP sequential decision making process using approxi-
mate value iteration algorithm detailed in Algorithm 2. Here
Vs is the optimal value for each state and @ is the ()-value.

In the next section, we present performance evaluation
results of the proposed method.

V. PERFORMANCE EVALUATION

The performance of the learned reward function to capture
pedestrian behavior (both in terms of fidelity to the generated
path and exhibited behaviors) is evaluated in this section.
We first present the accuracy metrics for the generated
trajectories, and then present the learned behaviors.

A. Episode Performance Evaluation

The episode performance evaluation step is performed by
checking the predicted action sequence using the learned R*
and value iteration in Algorithm 2 and calculating the state
visitation error pp — E[u] for a single episode. We extract
0.5 million episodes following the same method used for



the training step and calculate the correct action prediction
accuracy to be 96.6 %.

B. Trajectory Performance Evaluation

The complete trajectory performance evaluation is per-
formed for individual pedestrians using their initial position,
final position, and the number of steps taken by the pedes-
trians to reach the final position. The simulated trajectory is
the one generated by Algorithm 2 to evaluate the learned
reward function R* using the proposed MEDIRL approach,
and the measured trajectory is the actual trajectory from the
dataset. The complete trajectory is then compared with the
measured trajectory of the pedestrian using the performance
metrics detailed below.

" Average Non-Linear Displ t Errdr T
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Fig. 5: Box plot of the errors between the simulated and
measured pedestrian trajectories. The mean error value for
each metric is shown by a red circle and the mean value is
shown in the label along y-axis.

o Average displacement error is the mean square error
(MSE) between the simulated trajectory and the mea-
sured trajectory [14], [27].

o Final displacement error is the distance between the
pedestrian’s measured final position and the simulated
final position [14], [27].

o Average non-linear displacement error is the MSE in
the non-linear sections of the pedestrian trajectory.
Since pedestrians may turn when they interact with
other pedestrians, this metric is important. We select the
portions of the trajectory where the pedestrian changes
its direction and check the error in those sections [14],
[27].

These performance metrics were calculated for 1500 ran-
domly selected pedestrian’s trajectories from their initial to
goal positions with their complete trajectories. The average
length of trajectories is 16.3 m. The average duration of each
trajectory is 16.03 secs. The simulated trajectories are then
compared with the measured trajectories of the pedestrians.
The displacement errors, final displacement errors and non-
linear displacement errors are then calculated. The resulting
error box plot is shown in Fig. 5. The figure also shows the
mean error value with a red circle. The average displacement
error is 0.40 m, the average final displacement error is 0.81 m
and the average non-linear displacement error is 0.41 m.

A comparison of the results produced by our method
with the results presented in [14] on these three metrics are
detailed in Table. II. The randomly select 1500 pedestrians’

TABLE II: Performance comparison.

Our al- . .
Performance Metrics gorithm Algorithms in [14]

Average Minimum | Average
Average Displacement Error | 0.12m gg,?ﬁ()o_ g.;%ﬁ()Socml—
Final Displacement Error 0.27m 0.43m(IGP)| 0.6m(SFM)
Average Non-Linear Dis- 0.11m 0.06m(O- 0.15m(Social-
placement Error ! LSTM) LSTM)

trajectory are truncated to the duration of 4.8 secs, to be
the same as the duration of predictions in [14] for fair
comparison. The average length of trajectories for this case is
6.2 m. We generate these pedestrian’s simulated trajectories
and calculate the three errors described earlier and are listed
in Table II.

The authors in [14] measure performance of several differ-
ent algorithms with five datasets. We present the minimum
and the average best case results across different datasets in
Table II. The minimum average displacement error for any
dataset is produced by the occupancy map-LSTM (O-LSTM)
algorithm (0.09 m) and the minimum average error across
all datasets is exhibited by Social-LSTM (0.27 m). The
minimum final displacement error for any dataset is produced
by the iterative Gaussian process (IGP) algorithm (0.43 m)
while the minimum average error across all datasets is
exhibited by the SFM (0.60 m). Finally the minimum average
non-linear displacement error for any dataset is produced by
the O-LSTM algorithm (0.06 m) while the minimum average
non-linear displacement error across all datasets is exhibited
by the Social-LSTM algorithm (0.15 m). It is important to
emphasize here that since the performance in their case and
our case is evaluated using different datasets, we cannot
claim the superiority of one method over the other for any
metric. The only aim of this comparison is to show that the
performance of our method is numerically similar to other
state of the art algorithms.

C. Individual Pedestrian Trajectory Analysis

In this section we analyze the complete trajectory of a
pedestrian from its initial position to its goal position, des-
ignated as pedestrian C. Pedestrian C’s measured trajectory
is shown by the green line in Fig. 6. The initial position
of the pedestrian C is marked with a yellow square and its
goal position is marked with marked with a pink square.
The trajectory generated using the learned reward function
is shown in red. The neighboring pedestrians are marked
with turquoise disks. The SAM feature circle is partially
visible and shown in red and its center designates the location
of pedestrian C. The static obstacles are shown in white
color. There are certain interesting interactions of pedestrian
C with its neighboring pedestrians, namely, leader follower
behavior, and collision avoidance behavior, that we would
like to discuss next. These interactions highlight the ability
of our trained network to capture some well known behaviors
exhibited by pedestrians.

1) Leader Follower Behavior: The leader-follower behav-
ior refers to the case where a pedestrian follows another
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Fig. 6: The measured and simulated trajectory of the pedes-
trian C shown in green and red respectively. The initial
position, goal position and SAM feature bins are also shown.
Neighboring pedestrians are shown by turquoise disks.

pedestrian to mimic the behavior and adjust his/her motion
in order to achieve smooth navigation [28]. The neighboring
pedestrian thus becomes its leader. This behavior is exhibited
when fast pedestrians pass slower ones in dense crowd situ-
ations. The follower behavior is exhibited by the pedestrian
C. At t = 1.32 sec, another pedestrian appears in the tracking
data marked in brown color in Fig. 7. The location of both
pedestrians at every second are marked by red and brown
disks respectively. Once the two approach the corridor at
about 4 sec, they move closer to each other and form a leader-
follower style formation. The pedestrian C assumes the role
of the follower in this case. After t = 11 secs, the leader
pedestrian speeds up, and moves away from the follower
pedestrian. This separation of the two pedestrians highlights
that they were navigating in a leader-follower formation
under the influence of social affinity and not personal affinity,
such as the affinity experienced by couples or people who
know each other.
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Fig. 7: Visualization of the leader-follower behavior that
the pedestrian exhibits. The leader’s measured trajectory, the
follower’s measured and simulated trajectories are shown in
brown, green and red, respectively. The figure shows the
simulated follower trajectory (in red) matches the measured
follower trajectory (in green), thus validates our proposed
algorithm.

2) Collision Avoidance Behavior: In this section, we
analyze a section of pedestrian C’s trajectory, where it avoids
collision with oncoming pedestrians by subtly changing its
trajectory. Fig. 8 shows an instance of pedestrian C on a
collision trajectory with one of two oncoming pedestrian
whose trajectory and location is shown in turquoise. The
pedestrian C begins to move in a slightly upward direction,
to avoid these two pedestrians at t = 7 secs. Once the two
pedestrians pass, the pedestrian C moves downward again
and continues along its original direction at t = 7.64 secs.

D. Group Behavior (Split-and-rejoin)

In this section, we present analysis of the motion of a
group of pedestrians. For pedestrians walking as a group,
for instance a couple [14], our proposed model performs well
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Fig. 8: Collision avoidance behavior of the measured (in
green) and simulated (in red) pedestrian trajectories. The
pedestrians execute maneuvers from 7 secs to 7.64 secs to
avoid collision.
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Fig. 9: Group behavior (Split-and-rejoin) shown by a group
of pedestrians. Two pedestrians passing between the group
are shown in blue in Fig. 9a to Fig. 9b. The group is then
shown to keep formation till 13 secs in Fig. 9c.

in predicting the motion of the individual pedestrians in the
group. The behavior of such a group of pedestrians is shown
in Fig. 9, where it shows the location of each pedestrian
in the group with red disks, the simulated trajectory by
red dotted lines, and measured trajectory of each pedestrian
in green. Two pedestrians that interact with the group are
shown by blue disks in Fig. 9a and Fig. 9b. The initial
position of this group is shown in Fig. 9a. At the same time,
two pedestrians moving in the opposite direction are also
shown by blue disks. The group can be seen splitting in
two subgroups in the middle, with two pedestrians moving
upwards and two moving downwards to make room for the
blue marked pedestrians moving in the opposite direction as
shown in Fig. 9b. The two blue highlighted pedestrians as
shown to have moved passed the group in Fig. 9b and the
two subgroups move closer back to each other. The group
then continues to move leftwards for the next 10.88 secs.
The final location of the pedestrians are shown in Fig. 9c.
It is important to highlight that our proposed model can
capture complex group behaviors without explicitly modeling
them. From the performance evaluation results presented
above, we can see that our proposed deep IRL approach
can successfully predict pedestrian navigation behaviors in



crowds.
VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a deep IRL method to learn
a reward function that captures the navigation behavior
exhibited by pedestrians. We use open pedestrian trajectory
data collected inside a mall as the expert dataset, which
ensures that the learned reward function captures pedestrian
motion behavior when navigating in a crowded environment.
An MEDIRL algorithm was developed to learn the reward
function from expert demonstrations, and feature vectors are
selected utilizing SAM representing social affinity in human
navigation behaviors. Evaluation procedures were developed
to validate the proposed deep IRL method. We presented
comparison of the simulated trajectories with the measured
pedestrian trajectories in the dataset, which shows that the
simulated pedestrian can replicate the measured trajectory
with acceptable accuracy. Further analysis of our simulation
comparison shows that natural human navigation behaviors
can be replicated using our proposed method, which includes
the individual pedestrian navigation behaviors such as colli-
sion avoidance, leader-follower and group behaviors such as
split-and-rejoin.

In the future, we plan to extend this approach to use end-
to-end IRL instead of using hand crafted features presented in
this work. We also plan to incorporate pedestrian interactions
with static obstacles that are not considered in the current
paper. We will extend this method to learn the reward
function for navigation by a robot in a pedestrian occupied
environment. This learned reward function will be used to
verify socially compliant navigation with robots and human
subjects in field experiments. Using human pedestrian data
in real-world would ensure seamless integration of robot
navigating in human occupied environments.
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