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Dynamic Plume Tracking by Cooperative Robots
Jun-Wei Wang, Yi Guo, Muhammad Fahad and Brian Bingham

Abstract—This paper presents cooperative control of au-
tonomous mobile robots to monitor and track dynamic pollutant
plume propagation in m-dimensional space. The dynamics of
the pollutant plume is modeled by an advection-diffusion partial
differential equation (PDE), and the plume front is described by
a level set with a pre-specified threshold value. We solve the prob-
lem of cooperative plume tracking using two cooperating robots
under formation control, one is assigned as the sensing robot and
the other is assigned as the tracking robot, where the sensing
robot estimates the gradient and divergence information of the
entire field based on its current concentration measurement, and
the tracking robot tracks the plume front and patrols on it.
Rigorous convergence analysis is provided using the set stability
concept. Numerical simulations of pollutant plume tracking in
both 2-D and 3-D spaces demonstrate the effectiveness of the
proposed control scheme. This paper extends existing literature
from static level curve tracking to dynamic plume front tracking,
and presents a PDE-observer based plume front tracking control
design. The results are applicable to emerging environmental
monitoring tasks by cooperative robots.

Index Terms—Cooperative control, Mobile robots, Dynamic
pollutant plume, Set stability, Partial differential equation.

I. INTRODUCTION

MARINE pollution is one of the major environment haz-
ards as it not only leads to serious economic losses in

coastal areas but also causes long-term damage to the marine
environment [1]. For oil spill response management, one needs
to effectively track the oil plume boundary to determine the
spatial extent of the spill. This mission poses great challenges
due to the dynamic nature of plume propagation and the
complexity of oceanographical processes. Thanks to recent
advances in sensors, robotics, and control techniques in marine
mechatronic systems [2]–[4], mobile robots equipped with
chemical sensors have been used to monitor pollutant plumes
in marine environments [5], [6], and networks of multiple
robots are ideal candidates for large-scale persistent environ-
mental monitoring (e.g., large forest fires, oil spill, floods [7]–
[9], mine countermeasure [10], and aquatic environment [11]).
We study cooperative plume tracking control in this paper. A
motivating application scenario is shown in Fig. 1, where two
unmanned surface vessels (USVs) cooperatively monitor the
plume propagation while maintaining formation in the sea.
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Fig. 1: Motivating example: Dynamic plume tracking by
USVs. The USVs are assigned to the roles of sensing and
tracking, and they cooperatively monitor the plume front
propagation while maintaining formation.

A. Related Work

Tracking environmental boundaries by a robotic network
has attracted much attention from both controls and robotics
communities over the past decade. A comprehensive survey
of algorithms for boundary estimation and tracking using
collaborating sensors was provided in [12]. Existing methods
on environmental boundary tracking can be classified as the
gradient-free approach and the gradient-based approach. For
the gradient-free approach, research results have been reported
such as mapping-based tracking [13]- [16], bio-inspired track-
ing [17]- [19], bang-bang tracking control [20], [21], and adap-
tive tracking control [22]. Utilizing the gradient information
of the plume from the environmental field, gradient-based
tracking algorithms have been developed in [23]- [30] with
rigorous mathematical analysis. The controllers in [23]- [26]
were developed with direct access to the gradient, but how to
obtain the gradient information was not addressed therein. To
derive the gradient information, a least-squared estimation was
proposed in [27]. In [28] and [29], the gradient information
was obtained from a cooperative filter with the Hessian matrix
derived by a separate cooperative filter via the Frenet-Serret
equation and the least-squared method. It is worth noting
that the aforementioned work deals with static fields only.
However, the environmental fields (e.g. oil plume fields) are
almost never static and often cannot be well approximated by
static fields.
Control methods were reported in [31] for multi-agent

autonomous vehicles to perform the exploration of non-
stationary environments, motivated by the results in [23] and
[24]. In [32], a library of reactive motion control algorithms
was proposed (including a random coverage controller, a col-
lision avoidance controller, and a bang-bang angular velocity
controller) to detect and surround an dynamic perimeter. By
combing the results [21] and [33], a sliding mode guidance and
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control method was presented in [34] for tracking of moving
and deforming environmental level sets of general dynamic
fields. In [35], a cooperative control algorithm was provided
that allows a mobile sensor network to track and distribute
along a stable dynamic boundary of the environment, where
the dynamic boundary is defined by ODEs and assumed stable
in the sense that its parameter vector converges to a constant
vector as time elapses. The aforementioned work does not
take into consideration of specific spatiotemporal evolutional
dynamics of the pollution field in the environment.

Motivated by the fact that the spatiotemporal dynamics of
the pollution plume field can be modeled by distributed param-
eter systems (DPSs) described by partial differential equations
(PDEs) [36]- [43], we propose a PDE-observer design to
estimate a spatiotemporally evolving field for the purpose of
tracking control. PDE-observer based estimation was recently
studied in [44]–[47] for DPSs with a mobile sensor or sen-
sor network. In our group’s earlier conference paper [48],
observer-based cooperative control algorithms were developed
for multi-robots to monitor and track dynamic plume fronts,
where the plume was modeled by a 2-D advection-diffusion
PDE and the extended Luenberger observer was applied to
estimate the plume front dynamics. Since the assumption made
in [48] on the availability of the gradient and the divergence
information may be too strong for real-world applications,
we develop in this paper a Luenberger-type PDE observer to
online estimate the gradient and divergence thus the strong
assumption is removed.

B. Main Contribution

In this paper, we study cooperative plume front tracking of
dynamic pollutant dispersion in an m-dimensional space (m-
D space) by two autonomous robots, where the dynamics of
a pollutant plume is described by an m-D advection-diffusion
PDE, and the plume front is described by a level set with a
pre-specified value. We propose a cooperative plume tracking
scheme, where two robots are assigned the roles of sensing
and tracking, respectively. A distributed-parameter Luenberger
observer is developed on the sensing robot to estimate the
concentration field over the entire spatial domain, and a motion
control law is constructed on the tracking robot to drive the
robot to the plume front utilizing the estimated concentration
information from the sensing robot. Meanwhile, the sensing
robot is regulated to form a desired formation with the tracking
robot. Rigorous convergence analysis is provided using set
stability concepts of DPSs. The developed algorithm is tested
in simulations for pollutant plume tracking in both 2-D and
3-D spaces, which show satisfactory performances.

The contributions of the paper are twofold. First, we develop
a distributed-parameter Luenberger observer to estimate the
concentration field based on point-wise sensor measurements,
which is used to obtain the gradient and divergence informa-
tion consequently for plume front tracking control of robots.
Second, we extend the dynamic plume estimation and tracking
from the 2-D space to the m-D space.

Comparing to existing work, we consider dynamic pollutant
plume tracking where the plume spreads along time, while

many other work (e.g., [28]–[30]) discusses static level curve
tracking. Different from existing work on boundary tracking of
dynamic environmental fields (e.g., [34]), where the dynamics
of environmental fields is not taken into account, we utilize an
advection-diffusion PDE model and estimate the spatiotempo-
ral evolution of the concentration field. While the recent work
[46] uses similar advection-diffusion PDE to model dynamic
pollutant dispersion, it focuses on sensing and estimation
without tracking, and the results are limited to the 2-D space.
Comparing to our own conference publication [48], we remove
the impractical assumption that both gradient and divergence
information are available for tracking control, propose a new
distributed-parameter Luenberger observer design, and extend
the result to the general m-D space.

C. Organization and Notations

The rest of the paper is organized as follows. Section
II introduces system models, definitions of set stability and
problem formulation. Section III presents two-robot coopera-
tive plume front tracking control design. Extensive numerical
simulation results are provided in Section IV to show the ef-
fectiveness of the proposed control algorithm. Finally, Section
V offers brief concluding remarks and future work.
R and Rn denote the set of all real numbers and n-D

Euclidean space with the norm ∥ · ∥, respectively. For a vector
a ∈ Rn, a⊥ denotes an orthogonal vector of a, i.e., aT a⊥ = 0.
Hn , L2(Ω;R

n) is a separable Hilbert space of n-D vector
functions that is equipped with the inner product ⟨·, ·⟩ and
induced norm ∥ · ∥2 ,

√
⟨·, ·⟩, where Ω is a bounded and

convex spatial domain in Rm. | · |2 ,
√

⟨·, ·⟩ is the norm of
the separable Hilbert space H , L2(Ω;R) of scalar functions.
Wk,2(Ω;R) is a Sobolev space of absolutely continuous scalar
functions with square integrable derivatives of the order k > 1.
∇· is the divergence of a continuously differentiable vector
field υ(x, t) with respect to x, i.e.,∇· υ(x, t) =

∑m
i=1

∂υi(x,t)
∂xi

.
diag{a1 a2 · · · an} is a diagonal matrix with elements
ai ∈ R, i ∈ {1, 2, · · · , n}. For a scalar variable θ ∈ R
and any subinterval Ω0 containing zero in R, δ(θ) is a
Dirac delta function [49] defined as δ(θ) = ∞ if θ = 0,
otherwise δ(θ) = 0, and

∫
Ω0

δ(θ)dθ = 1. For a vector variable
α , [α1 α2 · · · αn]

T ∈ Rn, δ(α) = δ(α1)δ(α2) · · · δ(αn).

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we present the plume and the robot model,
definitions for the set stability and set tracking, and formulate
the control problem addressed in this paper.

A. Dynamic Plume Model of Pollutant Dispersion

The dynamic plume of pollutant dispersion is in general
modeled by the following advection-diffusion PDE system in
an m-D space with a state-space description of the following
form [48]:

∂C(x, t)
∂t

+ υT (x, t)∇C(x, t) = ∇ · (D∇C(x, t))

t ≥ t0, x ∈ Ω (1)
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subject to the Dirichlet boundary conditions

C(x, t)|x∈∂Ω = 0, t ≥ t0, (2)

and the initial condition

C(x, t0) = C0(x), x ∈ Ω, (3)

where 0 ≤ C(·, t) ∈ H is the pollutant concentration at the
time t and the position x , [x1 x2 · · · xm]T ∈ Ω ⊂ Rm, Ω is
the given region under consideration for pollutant dispersion,
e.g., a rectangle in ℜ2 and a cube in ℜ3; ∂C(x,t)

∂t is the
partial derivative of C(x, t) with respective to the time t,
υ(x, t) , [υ1(x, t) υ2(x, t) · · · υm(x, t)]T ∈ Rm is the
velocity field of the medium (e.g., the water for under-
water chemical pollutant or the air for gaseous pollution),

∇C(x, t) ,
[
∂C(x,t)
∂x1

∂C(x,t)
∂x2

· · · ∂C(x,t)
∂xm

]T
∈ Rm is the

spatial gradient of C(x, t), D , diag{d1 d2 · · · dm} > 0
is the eddy diffusion coefficient matrix, ∇ · (D∇C(x, t)) =∑m

i=1 di
∂2C(x,t)

∂x2
i

is the divergence of D∇C(x, t), and t0 > 0

is the time when the pollutant dispersion occurs. The term
υT (x, t)∇C(x, t) models the advection of the plume caused
by the medium flow (e.g., the water flow or the air flow).
The term ∇ · (D∇C(x, t)) describes the eddy diffusion of the
pollutant plume in the medium, which describes the motion
from higher concentration area to the lower concentration area.
The term ∂Ω denotes the boundary of the spatial domain Ω,
and C0(x), x ∈ Ω, is the pollutant concentration value in the
spatial domain Ω at the time t0. Note that the value of m for
the pollutant plume in real-world settings is chosen from the
set {2, 3}, i.e., m ∈ {2, 3}.

We make an assumption for the velocity field υ(x, t).
Assumption 1: In the spatial domain Ω, the velocity field

υ(x, t) is known and its divergence ∇ · υ(x, t) is zero, i.e.,
∇ · υ(x, t) = 0 for all t ≥ t0 and x ∈ Ω.

The flow field υ(x, t) in a given spatial domain Ω can
be obtained from sensors or sustained observation data of
the spatial domain. For example, robot mounted acoustic
Doppler current profilers (ADCPS) provide accurate velocity
profiles in real-time, or use NASA’s ocean and climate datasets
[50] available to get certain areas’ current flow information.
The constraint ∇ · υ(x, t) = 0 is naturally fulfilled for an
incompressible flow field υ(x, t), as the pressure constrains
the flow so that the volume of fluid elements is a constant,
i.e., the isochoric flow resulting in a solenoidal velocity field
with ∇ · υ(x, t) = 0 [51]. This flow field υ(x, t) is in general
modeled by the incompressible Navier-Stokes equations [51]
and [52]. In general, for most applications in the ocean and
many in the atmosphere, one can assume that the fluid medium
is approximately incompressible.

B. Mobile Robot Model

To facilitate the control algorithm development, we assume
that the robot’s kinematic model is described by a fully
actuated single integrator equation

ẋr = ur, t ≥ td, xr(td) = xr0, (4)

where xr ∈ Rm and ur ∈ Rm are the state and control input
of the robot in an m-D workspace, respectively, and td >

0 (td ≥ t0) is the time when the robot is deployed to the
pollutant plume field C(x, t) at the position xr0 of Ω. Note
that the kinematic model of unmanned surface vehicles [53]
can be transformed to the above single-integrator model [48].

C. Set Stability

Level sets have been commonly used to describe contours of
a field (e.g., the concentration field, the temperature field, and
the flow field) or environmental boundaries ( [20], [21], [23]-
[29], [34], [48]). For a dynamic concentration field C(x, t),
define the set

LS(C,CL) , {xL ∈ Rm | C(xL, t) = CL}, (5)

where CL is the constant value of the level of interest. Clearly,
due to the space distribution of the field C(x, t), this set is an
infinite-dimensional set for m ≥ 2, i.e., this set contains an
infinite number of elements xL. Moreover, the set LS(C,CL)
is bounded and closed. Since the Hilbert space H is separable,
it can be easily verified that the level set LS(C,CL) is compact
(Lemma 1 of [54]).
In what follows, we introduce rigorous mathematical defini-

tions of set stability and set tracking. The “distance” between
the robot and the contour described by the set LS(C,CL) is
defined as

∥xr∥LS(C,CL) , |C(xr, t)− CL|. (6)

where C(xr, t) is the concentration value at the robot’s posi-
tion xr and time t.
The following two definitions are given that will be used

later for convergence analysis.
Definition 1: The robot is set stable with respect to

LS(C,CL) if for any time td and any scalar ε > 0, there
exists a scalar ν(ε, td) > 0 such that

∥xr0∥LS(C,CL) < ν(ε, td) ⇒ ∥xr∥LS(C,CL) < ε, ∀ t ≥ td.
(7)

Moreover, if ν in (7) is independent of td, the robot is said to
be uniformly set stable with respect to LS(C,CL).
Definition 2: The set tracking with respect to LS(C,CL)

for the robot is achieved if

lim
t→+∞

∥xr∥LS(C,CL) = 0 (8)

for any initial conditions xr0 and C(xr0, td).
Remark 1: The concept of set stability has previously been

introduced in [55] to discuss the coordination problem of
multi-agent systems, including the target aggregation to a
convex set and the state agreement. The definition of set
tracking has also been defined to address the problem of
connectivity and set tracking of multi-agent systems with
multiple moving leaders [56]. Different from the definitions
of set stability [55] and set tracking [56], which are defined
for a finite-dimensional set (i.e., a set contains a finite number
of elements), Definitions 1 and 2 here are provided for an
infinite-dimensional set which involves an infinite number of
elements.
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D. Problem Formulation

Based on the above models and definitions, we present
our control problem of cooperative plume tracking addressed
in this paper. Here we consider the problem of two-robot
cooperative plume front tracking. For these two robots, we
assign one as the tracking robot that is equipped an onboard
sensor to measure the concentration value for tracking and
patrolling the plume front, and the other as the sensing robot
that has an onboard sensor to measure the concentration value
and can estimate the gradient and the divergence information
of the field. We assume bi-directional communication between
the two robots, that is, the robots can both send and receive
information from each other.

Let us define xr ∈ Rm, ur ∈ Rm, xs ∈ Rm, and
us ∈ Rm as the state and control input for the tracking robot
and the sensing robot, respectively. The tracking robot has the
kinematic model (4), and the sensing robot is modeled by the
following fully actuated single integrator equation

ẋs = us, t ≥ td, xs(td) = xs0, (9)

where td > 0 (td ≥ t0) is the time when the sensing robot is
deployed to the pollutant plume field C(x, t) at the position
xs0 of Ω.

We assume both the sensing and the tracking robots have
point-wise sensor concentration measurements. The concen-
tration measurements are denoted as

ys(xs, t) =
∫
Ω

δ(x− xs)C(x, t)dx = C(xs, t), (10)

yr(xr, t) =
∫
Ω

δ(x− xr)C(x, t)dx = C(xr, t), (11)

where ys(xs, t) is the sensing robot measurement, and yr(xr, t)
is the tracking robot measurement.

Let the set LS(C,Cf ) , {xf ∈ Rm|C(xf , t) = Cf} be
the plume front, where Cf > 0 is the threshold concentration.
The control task is to drive the tracking robot to reach the
plume front LS(C,Cf ) and patrol on this plume front, based
on the concentration measurements ys(xs, t) and yr(xr, t)
defined above. Meanwhile, the two robots maintain a desired
formation. This control task is formally stated as follows.

Cooperative Plume Tracking Problem: For the dynamic
pollutant plume modeled by (1)-(3) satisfying Assumption 1,
we will develop a cooperative control algorithm for two coop-
erating robots with the concentration measurements ys(xs, t)
in (10) and yr(xr, t) in (11), such that the tracking robot
reaches the plume front LS(C,Cf ) as the time elapses, and
patrols on this plume front with a desired speed υdc. Mean-
while, two cooperating robots maintain a desired formation.

III. COOPERATIVE PLUME TRACKING CONTROL DESIGN

This section focuses on the development of the observer-
based control framework for cooperative plume front tracking.

The following Luenberger-type PDE observer for the esti-
mation of dynamic concentration field C(x, t) is constructed
by using the concentration measurement ys(xs, t) as

∂Ĉ(x, t)
∂t

+ υT (x, t)∇Ĉ(x, t) = ∇ · (D∇Ĉ(x, t))

+ Lδ(x− xs)(ys(xs, t)− ŷs(xs, t)),

Ĉ(x, t)
∣∣∣
x∈∂Ω

= 0, Ĉ(x, td) = Ĉtd(x) ̸= 0,

ŷs(xs, t) =
∫
Ω

δ(x− xs)Ĉ(x, t)dx = Ĉ(xs, t), (12)

where Ĉ(x, t) is the estimated concentration field over the
spatial domain Ω, L > 0 is a constant observer gain, and
Ĉtd(x) is the estimated concentration field information in the
spatial domain Ω when the sensing robot is initially deployed
to the field.
Let C̃(x, t) , C(x, t) − Ĉ(x, t) be the observer error. It is

then governed by the following error system:

∂C̃(x, t)
∂t

+ υT (x, t)∇C̃(x, t) = ∇ · (D∇C̃(x, t))

− Lδ(x− xs)C̃(xs, t),

C̃(x, t)
∣∣∣
x∈∂Ω

= 0, C̃(x, td) = C̃td(x), (13)

where C̃td(x) , C(x, td)− Ĉtd(x).
Note that as the observer (12) on the sensing robot estimates

the concentration value of the whole field, the gradient and
divergence information at the tracking robot’s position can be
obtained, which will be used next for the control design of the
tracking robot.
Based on the dynamic equation of the Luenberger observer

(12), we propose the following control law for the tracking
robot:

ur =
f̂(xr)∇Ĉ(xr, t)
∥∇Ĉ(xr, t)∥2

+
υdc∇⊥Ĉ(xr, t)
∥∇⊥Ĉ(xr, t)∥

, (14)

where vdc is the desired patrolling speed of the tracking robot
along the plume front, and

f̂(xr) , −k1eyr (xr, t)−∇ · (D∇Ĉ(xr, t))
+ υT (xr, t)∇Ĉ(xr, t), (15)

in which eyr (xr, t) is the error of the concentration measure-
ment yr(xr, t) at the robot’s position xr and the one at the
plume front LS(C,Cf ), that is,

eyr (xr, t) , yr(xr, t)− Cf . (16)

It is seen that the control law (14) consists of two parts:
f̂(xr)∇Ĉ(xr,t)
∥∇Ĉ(xr,t)∥2

and υdc∇⊥Ĉ(xr,t)
∥∇⊥Ĉ(xr,t)∥

. The first one ensures the track-
ing robot achieving the basic control objective — reaching
the plume front LS(C,Cf ), and the second one guarantees
the tracking robot achieving the second control objective
— patrolling on the plume front with a desired speed υdc.
Obviously, the control law (14) requires ∥∇Ĉ(xr, t)∥ ̸= 0 and
∥∇⊥Ĉ(xr, t)∥ ̸= 0, t > td. To do this, the initial value Ĉtd(x)
in the observer (12) is chosen such that ∇Ĉtd(x) ̸= 0.
Next, we will construct a control law for the sensing robot

by using formation control techniques and the control law (14).
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Define ed be a formation error of the tracking robot and the
sensing one, i.e.,

ed , xs − xr + σd, (17)

where σd ̸= 0 is a desired formation specification.
Using formation control techniques, the control law (14),

and (17), the control law for the sensing robot is given as

us = ur − k2ed − σ̇d (18)

where k2 > 0 is a given constant and ur is the control law
given in (14). Note that the desired formation, σd, is chosen
based on the application. As the tracking robot patrols on the
plume front, we may choose σd , −d ∇Ĉ(xr,t)

∥∇Ĉ(xr,t)∥
to describe

a desired side-by-side formation with the sensing robot placed
inside of the plume, where d > 0 is the Euclidean distance
between the sensing robot and the tracking robot.

Remark 2: As defined in the subsection II-D, we assume
bi-directional communication between the tracking and sens-
ing robots. Specifically, the tracking robot sends its current
position xr and control input ur to the sensing robot for
cooperative formation, and the sensing robot sends the tracking
robot information including the estimates of the gradient
and divergence at the tracking robot’s current position (i.e.,
∇Ĉ(xr, t) and ∇· (D∇Ĉ(xr, t))) based on the observer result
running onboard of the sensing robot.

The following theorem states our main result on the coop-
erative tracking control scheme.

Theorem 1: Consider the dynamic pollutant plume described
by (1)-(3) with Assumption 1, and the two cooperating robots,
the tracking robot and the sensing robot, are driven by the
control laws (14) and (18), respectively. For any given constant
control gains k1 > 0, k2 > 0, and the observer gain L > 0,
we can obtain:

a). The observer error system (13) is exponentially sta-
ble in the sense of |·|2, i.e., |C̃(·, t)|2 → 0 as t → ∞.

b). The control law (18) drives the sensing robot to
maintain a desired formation σd with the tracking
robot, i.e., ∥ed∥2 → 0 as t → ∞.

c). The control law (14) drives the tracking robot to
achieve the set tracking with respect to the set
LS(C,Cf ) and patrol on the plume front LS(C,Cf )

with a desired speed υdc in the sense of (∇⊥Ĉ(xr,t))T

∥∇⊥Ĉ(xr,t)∥
ẋr = υdc.

That is, the tracking robot and sensing robot driven by the
control laws (14) and (18) with observer (12), respectively,
solve the Cooperative Plume Tracking Problem.

Proof: See the Appendix.
Remark 3: Note that the Dirac delta function δ(·) is used in

our observer (12). This function was similarly used in [46] to
solve concentration estimation of a moving gaseous source in a
2-D space using a sensing aerial vehicle, and in [57] to address
adaptive output feedback control of a 2-D linear diffusion PDE
system with spatially collocated mobile actuator/sensor pairs.
It was pointed out in [49] that the explicit form of δ(·) can be
given by

δ(x) =

{
0 otherwise
limε→0 ε

−1 if x ∈ (−0.5ε, 0.5ε).

For numerical implementation, one can use the following
approximation [45], [49]

δ(x) ≈ δε(x) (19)

where ε is a small positive constant given in advance and

δε(x) ,
{

0 otherwise
ε−1 if x ∈ (−0.5ε, 0.5ε).

Remark 4: In our group’s early work [48], a model-based
control algorithm was developed for the problem of single
robot dynamic plume tracking under the strong assumption
that both the gradient and the divergence information at the
robot position are available. In this paper, we remove the
strong assumption on the availability of the gradient and di-
vergence, construct a Luenberger-type PDE observer from the
concentration measurement of the sensing robot to estimate the
concentration of the dynamic field, and propose an observer-
based tracking control design (i.e., Theorem 1) for the tracking
robot to track the dynamic plume front.
Remark 5: In our proposed cooperative plume tracking

algorithm, the motion of the sensing robot is guided by the
formation control, which achieves a pre-designated desired
formation with the tracking robot. Hence, the motion control
of the sensing robot is independent of the observer design,
and a distributed parameter observer is constructed without
considering the motion of the sensing robot. When implement-
ing the algorithm, we may choose the desired formation to
facilitate sensing. For example, as the tracking robot patrols
on the plume front, we may choose a desired side-by-side
formation with the sensing robot placed inside of the plume.
However, it should be noted that the formation control does
not guarantee best sensing performances in general, as the
estimation performance of the observer is indeed affected by
the guidance control law of the sensing robot due to the
dependence of the concentration measurement ys(xs, t) on the
sensing robot’s position xs. The problem of integrated design
of observers and motion guidance for state estimation of DPSs
is out of the scope of the current paper.

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulation results
on dynamic plume tracking for point-wise source chemical
pollutant introduced into the water, and the effectiveness of the
proposed cooperative tracking control scheme is demonstrated.
Cooperative tracking in both 2-D and 3-D cases are shown.

A. Environment Simulation

We simulate both 2-D and 3-D ocean environments for
chemical plume dispersion. The simulation of the environment
includes the simulator of a flow field υ(x, t) and the simulator
of the concentration field C(x, t).
Flow Field Generation: In 2-D space, the flow field is

generated numerically by solving the incompressible Navier-
Stokes equation in the domain Ω with prescribed velocities
along the boundary using the program reported in [52]. The
flow field in 2-D space is visualized in Fig. 2, where the
strength and direction of the flow at various positions are
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Fig. 2: The flow velocity field υ(x, t) considered in this sim-
ulation, where the pseudo-color and the black arrow indicate
the strength and the direction of the flow velocity, respectively.

shown. In 3-D space, for simplicity, the flow velocity field
υ(x, t) in the spatial domain Ω is set to be time-invariant
and space-invariant, i.e., υ(x, t) = υ0 where υ0 is a constant
vector, which is chosen as υ(x, t) = [2 2 2]T in our simulation.

Concentration Field Generation: Two chemical sources
with different constant concentration values are set at different
locations of the domain Ω. The propagation of the chemical in
the flow field results in a dynamic concentration field, which
is generated by solving the advection-diffusion PDE system
(1)-(3) with the zero initial condition (i.e., C0(x) = 0) and the
appropriate diffusion coefficient D.

In 2-D space, a rectangular spatial domain Ω is set to be
Ω , [0 20] × [0 30]. Two chemical sources, denoted as S1
and S2, are set at the locations [13 4]T and [7 7]T , where the
concentration values of S1 and S2 are 3 and 2, respectively.
The concentration value of the plume front is set as Cf =
0.3. The diffusion coefficient D is set as D = diag{0.5 0.5}
[48]. In 3-D space, a cubic spatial domain Ω is set to be
Ω , [0 12]× [0 12]× [0 12]. Two chemical sources, denoted
as S1 and S2, are set at the positions [3 2 1]T and [1 2 1]T

with the fixed concentration values 8 and 7, respectively. The
concentration value of the plume front is set as Cf = 0.1. The
diffusion coefficient D is set as D = diag{0.5 0.5 0.1}.

B. Cooperative Plume Tracking

We present in this subsection simulations of the cooperative
plume front tracking, and verify Theorem 1 for both 2-D and
3-D cases.

In 2-D Space: Here we verify the cooperative plume
front tracking algorithm for the two cooperating USVs,
i.e., Theorem 1 for 2-D space case. In the simulation, set

∇⊥Ĉ(xr, t) =

[
0 1
−1 0

]
∇Ĉ(xr, t), σd = − ∇Ĉ(xr,t)

∥∇Ĉ(xr,t)∥
,

υdc = 1, k1 = 10, k2 = 10 and L = 30. The initial value
for the Luenberger-type PDE observer of the form (12) is set
to be Ĉtd(x) = 20(x1/20)

3(1−x1/20)
3(x2/30)

3(1−x2/30)
3,

which satisfies ∇Ĉtd(x) ̸= 0. At td = 1s, i.e., one second after
the sources start propagation at time t0 = 0s, the tracking
robot and the sensing robot are deployed to the field at the
positions [8 9]T and [7 11]T .
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Fig. 3: Cooperative plume front tracking in 2-D space. (a)
Trajectories of the robots and the plume propagation. Green
curves: plume front contour; Black curves: tracking robot’s
trajectory; Red curve: sensing robot’s trajectory; Blue squares:
tracking robot’s positions at various times; Red circles: sensing
robot’s positions at various times. (b) The trajectories of ob-
server error, |C̃(·, t)|22, tracking error, eyr (xr, t), and formation
error, ∥ed∥. (c) Snapshots of the robot movements.
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Fig. 3 shows the simulation results. As shown in Fig. 3 (a),
the robots’ trajectories (marked as red and black solid curves)
move towards the plume front (marked as green dotted curves)
as time elapses, and meantime, the sensing robot (in red) and
the tracking robot (in black) form a side-by-side formation
with the sensing robot placed inside the plume. Specifically,
when the robots are initially deployed, the observer error is
big, so the robots move away from the plume. As the observer
error gets smaller along the time, both of the sensing and
tracking robots move on the plume front after t = 8s. As
shown in Fig. 3 (b), the plume front tracking error, eyr (xr, t),
reduces to zero as time elapses. We define the formation error,
∥ed∥, to be the Euclidean distance between the two robots. It
can be seen in Fig. 3 (b), the formation error approaches to
its desired formation, σd, i.e., ∥ed∥ → 0 as t → ∞. Note
that two peaks appear at around t = 16.6s and t = 81.2s
in the tracking error, and three small peaks appear at around
t = 16.3s, t = 56.5s and t = 81s in the formation error in
Fig. 3 (b) when the robots travel across the lower left and right
tip of the plume front curve where the geometric shape of the
plume front curve changes sharply, and the concentration at the
lower left tip changes sharply. Fig. 3 (c) shows the snapshots
of the robots’ motion and the plume propagation at various
times.

In 3-D Space: Now we show the performance of our
cooperative plume front tracking given in Theorem 1 in 3-

D space. Set ∇⊥Ĉ(xr, t) =

 0 −1 −1
1 0 −1
1 1 0

∇Ĉ(xr, t),

υdc = 3, k1 = 10, σd = [2 0 0]T , k2 = 4, and L = 10.
The initial value for the Luenberger-type PDE observer (12)
is set to be Ĉtd(x) = 1000(x1/12)

3(1−x1/12)
3(x2/12)

3(1−
x2/12)

3(x3/12)
3(1− x3/12)

3, which satisfies ∇Ĉtd(x) ̸= 0.
Here the robots are deployed to the positions [4 4 6]T and

[3 3 6]T at time td = 1s, while the chemical sources start
propagation at time t0 = 0s. Fig. 4 (a) presents the simulation
results, where the trajectories of the tracking and the sensing
robots are shown together with the plume front propagation.
We can see from Fig. 4 (a) that as time elapses, the sensing
robot (in red) and the tracking robot (in black) converge to the
plume front (marked as the pink contour) and form a side-by-
side formation. Similar to the simulation results in Fig. 3 for
2-D space, when the robots are initially deployed, the observer
error makes the robots move away from the plume, see Fig.
4 (a). As time elapses, the observer error reduces to zero and
the robots move on the plume front after t = 5s. The tracking
error and the formation error are shown in Fig. 4 (b). It can
be seen that as the time elapses, the control law (14) drives
the tracking robot to reach the plume front and patrol on it.
Meanwhile, the control law (18) guides the sensing robot form
a desired formation with the tracking robot.

C. Robustness Discussion

Notice that the model-based cooperative control scheme in
Theorem 1 is developed under the assumption that the plume
propagation model is known and the robots can obtain the
concentration measurements timely and accurately. However,

in practices, there are uncertainties in the plume model, and the
concentration measurements may not be accurate due to the
existence of sensor noises. Furthermore, the communication
between the sensing and the tracking robots may not be
perfect, and packet loss may exist due to communication
constraints.
We demonstrate the simulation results of the proposed

cooperative control scheme in the presence of plume model
uncertainties, imperfect measurements, and packet loss in
communications, and discuss the robustness of the suggested
cooperative control scheme. To this end, we set the plume
model (1) be subject to the model uncertainties, i.e., adding
the perturbation 0.01D in the coefficient matrix D, and adding
the external disturbance 0.3 cos(πt) exp(−0.1t) in model (1).
The concentration measurements yr(xr, t) and ys(xs, t) in (10)
and (11) are added pseudo-random noises drawn from the
standard uniform distribution on the open intervals (0, 0.07)
and (0, 0.05). We also add the packet loss that is modeled by
a Bernoulli distribution [58] with the probability of success
rate 0.95. Fig. 5 shows the trajectory of the observer error,
|C̃(·, t)|22, the tracking error, eyr (xr, t), and the formation
error, ∥ed∥, in 2-D space and 3-D space, where we can see that
the tracking and formation errors converge but are less smooth
and have more oscillations comparing to performances shown
in Figs. 3 (b) and 4 (b) due to the effect of uncertainties.
It can be seen that the proposed cooperative tracking control
algorithm is applicable to plume tracking in the presence of
the aforementioned uncertainties, although the performance is
degraded comparing to the cases without uncertainties.

V. CONCLUSIONS AND FUTURE WORK

We presented robot plume front tracking of dynamic pollu-
tant dispersion in them-D space in this paper by two cooperat-
ing robots. An observer-based control algorithm was proposed
to solve the cooperative plume tracking. The suggested control
strategy guarantees the tracking robot reaching the plume
front, patrolling on it, and forming a desired formation with
the sensing robot. To obtain the gradient and divergence
information through point-wise sensor concentration measure-
ment only, a distributed-parameter Luenberger observer was
designed to estimate the concentration field over the entire
spatial domain. Rigorous convergence analysis was given in
light of set stability concepts of DPSs. Extensive numerical
simulations are shown for pollutant plume tracking in both
2-D and 3-D spaces, which demonstrated the effectiveness of
the proposed cooperative control scheme.
The paper presents an estimation and control framework

for environmental monitoring tasks applicable to ocean plume
front tracking by USVs. The proposed scheme can be extended
both theoretically and practically. In the future work, we are
interested in extending the proposed observer-based control to
the case of multiple robot plume front tracking and patrolling,
where communication graphs are defined among N robots,
and boundary and follower robot controllers are constructed
separately. Our previous work [48] shows some preliminary
results with this idea. We are also interested in extending the
proposed observer-based tracking control design to the source
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Fig. 4: Cooperative plume front tracking in 3-D space. (a) Trajectories of the tracking and the sensing robots. Pink contours:
plume propagation; Black curves: tracking robot’s trajectory; Red curves: sensing robot’s trajectory; Blue squares: tracking
robot’s positions at various times; Red circles: sensing robot’s positions at various times. (b) The trajectories of observer error,
|C̃(·, t)|22, tracking error, eyr (xr, t), and formation error, ∥ed∥.
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Fig. 5: Cooperative plume front tracking in the presence of plume model uncertainties, imperfect concentration measurements,
and packet loss: The trajectories of observer error, |C̃(·, t)|22, tracking error, eyr (xr, t), and formation error, ∥ed∥, in: (a) 2-D
space, and (b) 3-D space.

seeking problem ( [59]) to identify the location of the plume
source. Furthermore, extending the 3D tracking control to
heterogenous robot platforms with authentic vehicle dynamics,
such as USVs and unmanned underwater vehicles (UUVs), is
important from a practical point of view. Other interesting
future work includes optimal guidance control for the sensing
robot and integrated design of observers and motion guidance
for state estimation of DPSs as mentioned in Remark 5 of the
paper.

APPENDIX
PROOF OF THEOREM 1

Proof: In the proof, using Lyapunov’s stability based
methods, we construct Lyapunov functions to analyze stabil-
ities of: 1) the observer error system, 2) the formation error
system, and 3) the tracking error system.
1). Stability analysis of observer error system (13):
Consider the following Lyapunov functional candidate for
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exponential stability analysis of the observer error system (13):

V1(t) = 0.5

∫
Ω

C̃2(x, t)dx. (20)

The time derivative of the Lyapunov functional V1(t) along
the solution to the observer error system (13) is presented as

V̇1(t) =

∫
Ω

C̃(x, t)∇ · (D∇C̃(x, t))dx

−
∫
Ω

C̃(x, t)υT (x, t)∇C̃(x, t)dx

− L

∫
Ω

δ(x− xs)C̃(x, t)dxC̃(xs, t)

= −
∫
Ω

∇T C̃(x, t)D∇C̃(x, t)dx

− 0.5

∫
Ω

∇ · υ(x, t)C̃2(x, t)dx− LC̃2(xs, t). (21)

Note that the second equal sign holds because of the following
equations and the sifting property for the Dirac delta function
δ(x) [49]:∫
Ω

C̃(x, t)∇·(D∇C̃(x, t))dx = −
∫
Ω

∇T C̃(x, t)D∇C̃(x, t)dx,

and∫
Ω

C̃(x, t)υT (x, t)∇C̃(x, t)dx = −1

2

∫
Ω

∇·υ(x, t)C̃2(x, t)dx,

which are derived by using Green formula and taking into
account of the boundary conditions of (13).

Based on Assumption 1, we obtain∫
Ω

∇ · υ(x, t)C̃2(x, t)dx = 0. (22)

Employing the Poincaré inequality [60] and considering D =
diag{d1, d2, · · · , dm} > 0, we have∫

Ω

∇T C̃(x, t)D∇C̃(x, t)dx ≥ µ min
1≤i≤m

{di}
∫
Ω

C̃2(x, t)dx

(23)

where µ > 0 is the Poincaré constant. Substitution of (22) and
(23) into (21) and consider L > 0 and (20), we can give

V̇1(t) ≤ −2µ min
1≤i≤m

{di}V1(t). (24)

One derives from (24) that |C̃(·, t)|22 ≤ |C̃td(·)|22
exp(−2µmin1≤i≤m{di}(t− td)), t > td. That is,

|C̃(·, t)|22 → 0 as t → ∞, (25)

i.e., the observer error system (13) is exponentially stable.
2). Formation performance analysis of the control law (18)

for the sensing robot:
From (4), (9), and (18), the formation error ed defined by

(17) is governed by

ėd = −k2ed. (26)

For the purpose of exponential stability analysis of the system
(26), consider the following Lyapunov function candidate:

V2(t) = 0.5eTd ed. (27)

The time derivative of V2(t) given in (27) along the solution
to the system (26) can be given as

V̇2(t) = eTd ėd = −k2eTd ed = −2k2V2(t). (28)

From (28), we obtain

∥ed∥ = ∥ed0∥ exp(−k2(t− td)), t > td, (29)

where ed0 , xs0 − xr0 + σd0 with σd0 , −d ∇Ĉ(xr0,td)
∥∇Ĉ(xr0,td)∥

,
i.e., ∥ed∥ → 0 as t → ∞. That is, the controller (18) drives
the sensing robot to maintain the desired formation σd with
respect to the tracking one. We can also obtain from (29) that
xr − xs ̸= 0 if xr0 ̸= xs0. According to the definition of δ(·),
we get if xr0 ̸= xs0,

δ(xr − xs) = 0. (30)

3). Tracking performance analysis of the control law (14)
for the tracking robot:
Substituting (14) into (4), we obtain the following closed-

loop system for the tracking robot:

ẋr =
f̂(xr)∇Ĉ(xr, t)
∥∇Ĉ(xr, t)∥2

+
υdc∇⊥Ĉ(xr, t)
∥∇⊥Ĉ(xr, t)∥

. (31)

Using the following two facts:

∇T Ĉ(xr, t)
f̂(xr)∇Ĉ(xr, t)
∥∇Ĉ(xr, t)∥2

= f̂(xr)

and

∇T Ĉ(xr, t)
υdc∇⊥Ĉ(xr, t)
∥∇⊥Ĉ(xr, t)∥

= 0,

and considering (31), we can get

∇T Ĉ(xr, t)ẋr = f̂(xr). (32)

To analyze the tracking performance of the control law (14)
for the tracking robot, define êC(xr, t) be the error of the
estimated concentration value Ĉ(xr, t) at the robot’s position
xr and the one at the plume front LS(C,Cf ), that is,

êC(xr, t) , Ĉ(xr, t)− Cf . (33)

Since Cf > 0 is a constant, applying the chain derivation
rule and using (30), (32), and the observer system (12), the
estimated tracking error êC(xr, t) is governed by

dêC(xr, t)
dt

= −k1êC(xr, t) + k1C̃(xr, t), (34)

where C̃(xr, t) is the value of the observer error C̃(x, t) at the
robot’s position xr.
We construct the following Lyapunov function candidate for

the estimated tracking error system (34):

V3(t) = 0.5ê2C(xr, t). (35)

The time derivative of V3(t) given in (35) along the solutions
to the system (34) is given as

V̇3(t) = −k1ê
2
C(xr, t) + k1êC(xr, t)C̃(xr, t). (36)
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Using the triangle inequality and considering k1 > 0, the
expression (36) is written as

V̇3(t) ≤ −0.5k1ê
2
C(xr, t) + 0.5k1C̃

2(xr, t)
= −k1V3(t) + 0.5k1C̃

2(xr, t). (37)

One can get from (37) that

ê2C(xr, t) ≤ ê2C(xr0, td) exp(−k1(t− td))

+ 0.5k1

∫ t

td

exp(−k1(t− td − s))C̃2(xr, s)ds.

(38)

From (25), we obtain

C̃2(xr, t) → 0 as t → ∞. (39)

It can be derived from (38) and (39) that

ê2C(xr, t) → 0 as t → ∞. (40)

On the other hand, by the definition of eyr (xr, t) in (16), and
(11), one can derive

|eyr (xr, t)|2 = (yr(xr, t)− Cf )
2 = (C(xr, t)− Cf )

2

= |êC(xr, t) + C̃(xr, t)|2

≤ 2|êC(xr, t)|2 + 2|C̃(xr, t)|2. (41)

Using (6), (39), (40), and considering (41), we know
∥xr∥2LS(C,Cf )

= |eyr (xr, t)|2 → 0 as t → ∞ (i.e., C(xr, t) →
Cf as t → ∞). By Definition 2, the set tracking of the tracking
robot with respect to the set LS(C,Cf ) is ensured by the
control law (14).

In a similar way, by using two facts
(∇⊥Ĉ(xr,t))T

∥∇⊥Ĉ(xr,t)∥
f̂(xr)∇Ĉ(xr,t)
∥∇Ĉ(xr,t)∥2

= 0, and
(∇⊥Ĉ(xr,t))T

∥∇⊥Ĉ(xr,t)∥
υdc∇⊥Ĉ(xr,t)
∥∇⊥Ĉ(xr,t)∥

= υdc, and considering (31),

we can get (∇⊥Ĉ(xr,t))T

∥∇⊥Ĉ(xr,t)∥
ẋr = υdc for any t ≥ td, which

implies that the tracking robot driven by the control law (14)
achieves the second control objective: the robot patrols on
the plume front modeled by the set LS(C,Cf ) with a given
desired speed υdc. This completes the proof.
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