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Abstract—Pedestrian flow in densely populated or congested
areas usually presents irregular or turbulent motion state due
to competitive behaviors of individual pedestrians, which reduces
flow efficiency and raises the risk of crowd accidents. Effective
pedestrian flow regulation strategies are highly valuable for flow
optimization. Existing studies seek for optimal design of indoor
architectural features and spatial placement of pedestrian facilities
for the purpose of flow optimization. However, once placed, the
stationary facilities are not adaptive to real-time flow changes. In
this paper, we investigate the problem of regulating two merging
pedestrian flows in a bottleneck area using a mobile robot moving
among the pedestrian flows. The pedestrian flows are regulated
through dynamic human-robot interaction (HRI) during their col-
lectivemotion.Weadopt anadaptive dynamicprogramming (ADP)
method to learn the optimal motion parameters of the robot in real
time, and the resulting outflow through the bottleneck ismaximized
with the crowd pressure reduced to avoid potential crowd disasters.
The proposed algorithm is a data-driven approach that only uses
camera observation of pedestrian flows without explicit models of
pedestrian dynamics and HRI. Extensive simulation studies are
performed in both MATLAB and a robotic simulator to verify the
proposed approach and evaluate the performances.

Index Terms—Pedestrian flow regulation, human-robot inter-
action, learning-based optimal control, and pedestrian crowd
pressure.

I. INTRODUCTION

MODELING and control of pedestrian collective motion
behavior have received considerable research interest

due to the increasing demand of effective pedestrian flow regu-
lation and evacuation in public areas such as stadiums, shopping
malls, and train stations. Without appropriate guidance and
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regulation, crowd disorder such as blocking [1], and irregular
and turbulent pedestrian flow [2], [3] arises when pedestrians
aggregate gradually. Particularly, crowd disorder may evolve
into crowd accident such as stampedes under emergency circum-
stances due to competitive behavior of individual pedestrians.
Therefore, investigations onpedestrianflowregulation strategies
are of great importance for public crowd safety. The focuses
of the existing work are primarily on either optimal evacuation
planning [1], [4] or optimal architecture design and spatial place-
ment of facilities [5]–[9] based on self-organization behavior
of pedestrian collective motion. For instance, the study in [5]
suggested that properly placing obstacles in front of an exit could
mitigate crowd congestion and thus improves outflow efficiency.
However, the optimal design of stationary facilities’ geometry
parameters vary with the changes of pedestrian flows [10]. As a
result, stationary facilities are not adaptive to real-time changes
of pedestrian flows as theymay not be easily reconfigurable once
being placed.
Most recently, the studies on human-robot interaction (HRI)

has received remarkable attention in the applications of social
robots such as human-aware navigation [11]–[14] and guidance-
providing [15]–[17], where the robots are able to interact with
pedestrians. Motivated by the shepherding behavior observed
in animal flocks, where the collective motion of a group of
agents is controlled by a limited number of external agents
through repulsive or attractive interacting force [18], [19], mo-
bile robots have been used to control or guide human groups
[20]–[24]. The focuses of these work are on explicit guidance
of robots without particular consideration of HRI. Previous
studies have also suggested that mobile robots can influence
the motion of a pedestrian crowd in a manner that no ex-
plicit guidance is required [25]–[28]. The pedestrian flows are
implicitly controlled through the dynamic interaction between
pedestrians and robots deployed in the pedestrian flows. These
work have enlightened the development of new methods for
pedestrian flow regulation and optimization, which use assistive
mobile robots in place of stationary facilities. Our earlier work
[29], [30] investigated the pedestrian flow regulation problem
in a uni-directional exit corridor using a mobile robot, which
learns passive human-robot interaction in real time and ad-
justs its motion accordingly to attain desired collective flow
performance.
In this paper, we study a complex environment based on

the real-world scenario presented in [3], [31], where pedestrian
flows from two perpendicular directions merge together and
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move through a bottleneck. Our goal is to regulate the merging
pedestrian flows to achieve efficient pedestrian outflow through
the bottleneck. In addition, this work also takes into account the
crowd pressure [3], the quantity that measures the critical crowd
condition that may evolve into crowd accidents. To regulate the
merging pedestrian flows and achieve optimal flowperformance,
we propose a robot-assisted pedestrian regulation scheme that
utilizes dynamicHRI and design a customized adaptive dynamic
programming (ADP) learning control to tune the robot motion
parameters in real time. Simulations have been conducted in
Matlab and in a robotic simulator to validate our algorithm,
and the results show successful flow regulation with significant
outflow improvement, compared with the results without robot
assistance.
The contributions of the paper are twofold. First, we propose

to use a dynamically interacting robot to reduce crowd pressure
build-up and to maximize merging pedestrian outflow through a
bottleneck. Second, we design learning-based feedback control
for the robot and optimize robot motion parameters online.
Comparing existing work, the results presented in [25], [26]
explored possible ways of deploying mobile robots to control
pedestrian flows. As the preliminary attempts to solve pedestrian
regulation problem using robots, these work didn’t provide sys-
tematic methods for optimal control of robot motion. The work
in [27], [28] analyzed the characteristics of HRI in the scenario
of crossing pedestrian flows, and developed a robot motion
control approach to regulate the flows for congestion reduction.
However, the robot motion control approach developed therein
requires knowledge of HRI characteristics under different robot
motion frequencies, which makes their approach not applicable
when such knowledge is not known a priori. In contrast to the ap-
proaches in [27], [28], our algorithm learns the optimal robotmo-
tion control parameter through the online learning of ADP that
uses the observation of pedestrian flow only. Thus, our approach
can be applied to online regulation without prior knowledge of
pedestrian flow conditions and HRI characteristics. Compared
with the simple scenario of uni-directional corridor presented in
our previous papers [29], [30], the problem studied here is more
challenging as the outflow at the bottleneck is the combined
result of the behavior of merging flows and the capacity of the
bottleneck. Crowd disasters are much more likely to occur in
merging flow situations rather than in a uni-directional corridor
environment. Compared with our recent work [32] where deep
reinforcement learning was presented for end-to-end control
of pedestrian flows, the ADP method proposed in this paper
has much better real time online learning capability and avoids
extensive offline training used by deep neural networks. Some
preliminary results of this paper appeared in a conference paper
[33], and substantial extensions are added in this paper including
Sections II, III, VII, and the supplementary materials.
The rest of the paper is organized as follows: Section II

reviews related work on robot-assisted evacuation and flow
control approaches. Section III introduces the environmental
setup and themotivation of the selected environment. Section IV
describes the problem formulation of the merging pedestrian
flow regulation with robot assistance. Section V presents the
design of the ADP-based learning algorithm for real-time robot

motion control. In Section VI and VII, we present the simulation
results in both Matlab and PedSim platforms, respectively. We
conclude our work in Section VIII.

II. RELATED WORK

According to different ways that robots assist human crowds,
existing work can be categorized into two types, robot-assisted
evacuation and robot-assisted flow control. We discuss each of
the two types of work in this section.

A. Robot-Assisted Evacuation

In this category, robots perform as mobile guiding agents
which are able to access the global information of the egress
location and the optimal evacuation route, and propagate them
among evacuees. In [34], a team of autonomous mobile robots
equipped with directional audio beacon was dynamically de-
ployed in an office building in emergency situations. Each robot
in the team served as a signal beacon which was activated
after it reached the desired location. The deployment of audio
beacon using multiple robots was formulated as an optimal
task assignment problem and the evacuation algorithm was
developed based on multi-robot task allocation. The work in
[35] proposed an evacuation route discovery method, in which
the robots deployed a network of sensor nodes while exploring
the evacuation area. The evacuation routes were planned on the
fly using distributed route discovery and existing exploration
algorithms combined. However, the work primarily aims to find
the shortest evacuation route, the crowd congestion issue in
realistic evacuation process was not taken into consideration
from a macroscopic perspective.
In [4], a robot guided evacuation scheme was proposed, in

which the robot redirected a group of evacuees from congested
exits to a less occupied one so as to accelerate the evacuation pro-
cess. The environment wasmodelled as Cellular Automata (CA)
workspace with an embedded dynamic potential field where
exits and robots were considered as attractive sources. Simu-
lations on crowd evacuation with and without robot intervention
were conducted offline, the results ofwhich provide guidance for
robot trajectory planning in real-world evacuation experiment.
In [36], a crowd panic model that governs the panic propagation
among evacuees was developed and combined with an existing
social force model to simulate realistic human behavior during
evacuation. Then, a robot-assisted evacuation planning scheme
was designed to improve evacuation efficiency. Specifically,
evacuees were provided by the robot with evacuation guidance
which was determined by an exit selection algorithm that fuses
global information of evacuee flows to select an optimal exit
with minimum escape time.
The focuses of aforementionedwork are evacuation planning,

where explicit robot guidance is provided to evacuees. However,
little attention was paid to the effect of HRI in those work. Also,
the work on egress route planning and exit selection considers
the pedestrian crowd from a macroscopic model perspective,
local crowd self-organization phenomena such as the clogging
effect at exits were not particularly considered in evacuation
planning.
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B. Robot-Assisted Flow Control

It is known that modification of pedestrian facilities can in-
crease efficiency and safety [5]. For example, adding “obstacles”
can stabilize flow patterns and make the flow more fluid; adding
zigzag-shaped geometries and columns can reduce pressure
in panicked crowds [5]. However, modification of infrastruc-
ture is often expensive and not easily re-configurable in real
time. Inspired by these studies of pedestrian flow control using
stationary architecture facilities, attempts have been made to
explore how pedestrian motion can be controlled by introducing
autonomousmobile robot in pedestrian flows [30], taking advan-
tage of human-robot interactions. Instead of placing stationary
architecture facilities in the environment, these studies aim to
design appropriate robot motion to optimize pedestrian flows.
In [25], the interaction between a robot and the human was

modeled as a cohesive social force imposed on an individual
person, which is embedded in the existing social force model to
describe human motion dynamics. Two types of robot motion
behaviors that could change pedestrian flow behavior were
investigated, i.e., a group of robots maneuvered to move in
different designate patterns or remain stationary with designate
formation, and a group of robots with mutual social attraction
movingwithin the pedestrian flow. The effect of themobile robot
on the average flow velocity was evaluated in two scenarios,
and the results showed that desired pedestrian motion behavior
can be obtained by HRI. The follow-up work in [26] presents
the optimization of robot motion and the parameters of the
HRI model using a genetic algorithm to improve pedestrian
flow efficiency. The performance with optimized HRI model
parameters was evaluated in a corridor scenario therein.
The work in [28] presents a new approach of controlling

crossing pedestrian flows using mobile robot guides that move
within the pedestrian flows to solve the flow congestion problem
at intersections. The pedestrian dynamics was modeled by the
continuum fluid model proposed in [27]. Taking advantage of
the dynamic interaction between the robot and pedestrians,
the robot in pedestrian flows helps to create diagonal stripe
pattern in the crossing flows as pedestrians adjust their path to
avoid collision with the robot. The swarm behavior of varying
pedestrian flows were controlled by adjusting the frequency of
robot motion to maximize the average flow velocity. However,
the continuum fluid model-based method used therein does not
consider the heterogeneity of individual pedestrian dynamics
that may cause clogging and pressure build-up, and the robot
control was designed offline based on different open-loop con-
trol performances.
In our earlier work [29], [30], the pedestrian flowoptimization

based on passive HRI was studied. The slow-down effect of the
passive HRI on the pedestrian flows was utilized to regulate the
flow velocity, and was verified in simulated experiments using
social forcemodels. Rigorous theoretical proof was provided for
the convergence analysis of ADP-based control [30]. Our recent
work [37] reported the empirical study of the effect of passive
HRI in a uni-directional exit corridor, where both individual
and collective motion of the pedestrians under the influence of
robot motion was analyzed. The results of the empirical study

are qualitatively consistent with the simulated pedestrianmotion
behavior in [30], and justify the passive HRI and its applicability
in robot-assisted pedestrian regulation.
Motivated by the studies of real-world crowd accidents, our

work aims to exploit amobile robot in pedestrian flow regulation
in a complex scenario with merging pedestrian flows where the
crowd pressure may build up to cause crowd disasters. Unlike
existing work on robot-assisted evacuation via explicit robot
guidance, our approach utilizes passive HRI for the optimization
of pedestrian outflow through the bottleneck and the avoidance
of crowd pressure build-up. The passive HRI in our problem
setup means that the robot moves in a controlled motion, and
the pedestrians around the robot adapt their motions to avoid
potential collisions with the robot. The collision avoidance
behavior of pedestrians is a passive reaction to an approaching
robot. In such a way, the robot motion affects the collective
pedestrian flows throughHRI.We propose to use theADP-based
method to learn HRI and tune robot motion control parameters
online. Our proposed control method only takes the real-time
measurement of pedestrian flows as feedback to adjust the robot
motion. In the next section, we present the problem formulation
of our robot-assisted merging pedestrian flow regulation.

III. THE ENVIRONMENT AND SYSTEM SETUP

The environment selection of this paper is inspired by the
crowd stampede incident occurred in Mina/Makkah on January
12, 2006 [38],where tens of thousands of pilgrimsmoved toward
the Jamarat Bridge to perform the stoning ritual. The stampede
incident started at the entrance of the Jamarat Bridge where
pilgrim pedestrians from different directions merge together. At
least 345 pilgrims were killed and around 1000 were injured in
the deadly stampede. The large casualties in such crowd accident
have drawn considerable attention on crowd safety improvement
from researchers who hope to investigate the underlying mecha-
nism and possible solutions [3], [31], [39]. Specifically, Helbing,
et al. [3] and Johansson, et al. [39] presented empirical studies
on this particular crowd stampede. To quantitatively explain
how critical crowd conditions originated and evolved into a
crowd disaster in this incident, the authors analyzed the local
crowd density, speeds and flows from the video recording of the
accident site using the pedestrian tracking algorithm they de-
veloped. They observed the transition from a smooth pedestrian
flow to a turbulent flow prior to the occurrence of the stampede.
Following thework [3], Yu and Johansson [31] proposed a social
force-basedmodel to simulate the turbulent crowdmovement for
a crowd going through a bottleneck, and verified that the model
can reproduce observed empirical features characterizing crowd
turbulence during the annual Muslim pilgrimage.
In this paper, we select the environment shown in Fig. 1,

which is obtained by down-scaling the environment presented
in [31] to study the real-world crowd disaster mentioned above.
The environment represents a typical structure where complex
pedestrian motion behaviors take place due to merging flows
and the bottleneck. We conduct numerical simulations using
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Fig. 1. The schematic diagram of merging pedestrian flows at the bottleneck
area. Pedestrian outflow through the bottleneck is observed by the surveillance
camera pre-installed in the environment.

Fig. 2. Clogging effect observed in merging flows without regulation at a
bottleneck area. The blue and red circles represent two pedestrian flows.

Fig. 3. The fundamental diagram of merging flows at the bottleneck area:
(a) average velocity vs. density; (b) flow vs. density. The solid parabolic curve
represents the fitting curve to the data.

the social force model (described in Section I of the supple-
mentary material with flow variables defined in Section II of
the supplementary material) in order to plot the fundamental
diagrams of the uncontrolled merging flows. The time sequence
of snapshots, as shown in Fig. 2, illustrate the process of two
pedestrian flows merging and moving through a bottleneck.
One can see that, as pedestrians aggregate in the bottleneck
area, the crowd clogging starts at t = 72 s and evolves into
a turbulent flow at t = 78 s. We analyze the relationships of
the velocity-density and flow-density, and plot the fundamental
diagram of the pedestrian flow in Fig. 3. Fig. 3a shows that the
average flow velocity decreases monotonically from the free
flow velocity as the flow density increases. Fig. 3b shows a
parabolic flow-density curve, where the flowgrows initiallywith
the increase of density until the flow reaches the maximum
value, i.e., 4 (m·s)−1, at the density around 3.5 m−2. Then
crowd congestion takes place and the flow decreases drastically
when the density is higher than 3.5 m−2. Note that Figs. 2
and 3 are plotted using our simulated data, which is consistent

Fig. 4. The environmental setup. The dashed rectangle indicates the HRI
region and the vertical dashed line indicates the observation region where
pedestrian outflow is measured.

to the existing literature, e.g., the Greenshield’s model in [40]
which describes a linear relationship between traffic density and
velocity, and a parabolic relationship between traffic density and
flow.
Considering the importance of pedestrian flow regulation in

the scenario discussed above, we choose such an environment
for our proposed robot-assisted pedestrian regulation problem,
and explore robot motion control in merging pedestrian flow
regulation in order to maximize outflow and prevent potential
crowd disasters.

IV. PROBLEM FORMULATION

The environment shown in Fig. 4 is 8 m by 8 m with a
bottleneck width w = 4 m. The amount of inflow discharging
into the environment is denoted as q1(t) for flow A and q2(t)
for flow B, respectively. We define the HRI region as the dashed
rectangle, and the observation line as the vertical dashed line
where the pedestrian outflow q(t) (i.e., the number of pedestrians
passed the line per meter per second) is measured by the pre-
installed surveillance cameras. The left side of the observation
line is the merging area of two pedestrian flows. A single
interacting mobile robot is deployed in the HRI region, which
moves in a pre-designated trajectory to dynamically interactwith
the pedestrian flow. The robot’s velocity is determined by the
proposed learning-based controller that takes observed real-time
pedestrian outflow as feedback. The flow B is regulated through
the effect of passive HRI.
As mentioned in Section II, we utilize passive HRI to regulate

merging pedestrian flows, where the robot moves in a controlled
motion, and the pedestrians around the robot adapt their motion
to avoid potential collisions with the robot. Thus, the motion of
the robot affects the collective pedestrian flows through passive
HRI. Note that the effect of passive HRI on pedestrian flows
was originally proposed in [27], [28] by Yamamoto and Okada,
and then studied in our work [29], [30], [37]. In particular, real
HRI experiments were conducted in [37] to validate the passive
HRI effect on pedestrian flows and to show the consistency with
simulations using social force models.
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A. Robot Motion Dynamics

The robot state is defined as xr = [xx
r , x

y
r ]

T ∈ R2, where xx
r

and xy
r represent the two-dimensional robot positions in the

directions x and y, respectively. To focus on the higher-level
robotmotion planning problem, a single integratormodel is used
to describe the simplified robot motion model, that is,

ẋr = ur (1)

where ur = [ux
r , u

y
r ]

T is the control input of the robot in the
directions x and y, respectively.
The robot trajectory is pre-designed to be perpendicular to

the moving direction of pedestrian flow B such that the robot
behaves to mimic a “virtual gate” effect due to the repulsive
effect between robot and pedestrians [30]. We consider flow A
as the main flow. The branch flow (flow B) is regulated by the
robot in order to avoid overcrowding that causes congestion at
the bottleneck area. The robot movement helps to maximize
the pedestrian outflow and meanwhile prevent crowd pressure
build-up. The faster the robot moves, less people from flow B
getting through and merging into the bottleneck area.
The robot velocity is set to zero in direction y, and the robot

velocity is set to be sinusoidal in direction x, that is,

ux
r (t) = A0Ωsin (Ωt) (2a)

uy
r(t) = 0 (2b)

where A0 is the maximum displacement of robot position from
the center of the branch corridor along direction x, Ω is the
piecewise constant robot motion frequency that can be adjusted
online.

B. Flow Optimization Problem

To formulate the robot-assisted flow optimization problem,
the following assumptions are made for the environment and
the robot:
Environment: Surveillance cameras are installed in the en-

vironment, which are used to observe the real-time pedestrian
flow passing through the observation line. Thanks to the advance
of computer vision and wireless sensor network techniques,
real-time pedestrian crowdmonitoring and analysis are available
as reported in the literature such as [41], [42].
Mobile Robot:Themobile robot is able to access the real-time

crowd information obtained from the surveillance cameras.
The merging pedestrian flow optimization problem is formu-

lated as finding a sequence of robot motion frequency Ω(t) that
minimize the value function

minimize
Ω(t)

J =

∫ ∞

t0

(q(t)− q∗)2 dt (3)

subject to the robot motion dynamics described in (1), where
q∗ is the bottleneck flow capacity (that can be pre-determined
based on the infrastructure such as the width of the bottleneck).
Minimizing J indicates that the outflow through the bottleneck
ismaximized over time. In the next section,we present ourADP-
based learning control that solves this optimization problem.

Fig. 5. The overall diagram of the robot-assisted pedestrian flow optimization.
The ADP control block uses the measured camera data as inputs, observes the
utility function r(t) accordingly, and outputs robot motion frequency Ω(t) in
real time. The solid lines represent signal flow, and the dashed line are the paths
for parameter tuning.

V. ADP-BASED LEARNING CONTROL DESIGN

In this section, we first present the overview of the robot-
assisted pedestrian regulation system, and then introduce the
design of the proposed ADP-based learning algorithm for robot
motion control, which is followed by discussions on online
implementation.

A. Overall Structure of Proposed Approach

The overall system diagram is depicted in Fig. 5, which is
composed of the robot dynamics, the pedestrian dynamics and
HRI, the surveillance cameras, and the ADP control. The model
of the robot dynamics is defined in (1). The surveillance cameras
measure the pedestrian outflow in the observation region and the
measured data is fed into the ADP learning control module to
control the robot motion. As this proposed control method is
a data-driven approach, the pedestrian dynamics and HRI are
considered as a black box that is unknown to the control design.
Instead, only the observed pedestrian flow information is used
as input for the ADP control algorithm. Note that, unlike our
previous work [30] where the HRI region and the observation
region are the same, in this paper the two regions are different
without overlap.Thismakes the problemmore challenging as the
observed pedestrian flow is the result of both HRI and merging
flow effects.
To solve the robot-assisted flow optimization problem, we

design a dedicated ADP-based learning controller using mea-
surement of pedestrian flow as feedback. As shown in Fig. 5,
the ADP control module consists of two networks, i.e., a critic
network and an action network. The critic network is used to
approximate the value function J , and the action network is used
to generate the robot motion frequency Ω(t). Both networks are
implemented with multi-layer perceptron neural networks [43].
Due to the dynamic nature of pedestrian motion, the instanta-
neous observations of pedestrian outflow are very fluctuant. To
reduce the effect of the fluctuation for the robot control design,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

the average ofnmost recentmeasurements of pedestrian outflow
in time history

q̄(t) =
1

n

n−1∑
k=0

q(t− k) (4)

is used to calculate the utility function. The time history
of outflow difference, i.e., qhist − q∗ = [q(t)− q∗, q(t− 1)−
q∗, ..., q(t− (n− 1))− q∗], is fed into the critic network and
the action network as inputs. The critic network also uses the
robot motion frequency as input in addition to the time history
of outflow difference.

B. Design of the Utility and Objective Functions

In our ADP-based learning control design, the utility function
is chosen as

r(t) = (q̄(t)− q∗)2 (5)

where q̄(t) is the averagednmost recentmeasurement of outflow
defined in (4).
The summation of the utility function r(t) from current time

instance t to the infinite future is defined as

R(t) = r(t) + r(t+ 1) + r(t+ 2) + · · · (6)

The role of the critic network in the ADP design is to estimate
the total future cost R(t). The optimal point of R(t) is exactly
the same as the value function J in (3) if t = t0. Thus, the goal of
thisADPmodule is to seek a sequence of robotmotion frequency
Ω(t) to minimize the value function J as

J∗(t) = min
u∈Ω

{r(t) + γJ∗(t+ 1)} (7)

where γ is a discount factor for the future cost function, and
the J function is regarded as the summation of discounted cost
from the current time to the infinite horizon future. The discount
factor γ, which is usually in the range of [0, 1], indicates that
when we map any future cost to the current time instance, it
should be discounted.
According to the ADP approximation error of Bellman’s

equation, the error function of the critic network is defined
as the temporal-difference (TD) error, ec(t) = γJ(t)−
[J(t− 1)− r(t)], and the corresponding objective function is
Ec =

1
2e

2
c(t). For the action network, the error function is

defined as ea(t) = J(t)− Uc, and the corresponding objective
function is Ea = 1

2e
2
a(t). Once the outflow measurement is

available, the ADP learning control module is executed to
calculate the value function J(t) and the robot frequency
control Ω(t) by the critic network and the action network with
initial weights, respectively. Then the weights in both networks
are updated using the gradient descent (back-propagation)
algorithm to minimize the objective function Ec(t) and Ea(t)
till the maximum iteration or the error threshold is reached.
Then the robot motion frequency Ω(t) is calculated with
updated weights and returned to the robot control module. The
steps to update the neural network weight parameters in each
network follow the same process as reported in [43]–[45]. The
details of the ADP learning control algorithm is presented in
Section III of the supplementary material.

Remark 1: The fundamental principle of the ADPmethod in
this paper is based on the action-dependent heuristic dynamic
programming (ADHDP) design presented in [46], and it shares
similar actor-critic architecture with other actor-critic reinforce-
ment learning algorithms (e.g., [47], [48]). Applying the general
actor-critic framework to particular application problems will
lead to various actor-critic algorithms with specific designs. Our
ADP method is one type of actor-critic implementation in the
sense that the critic estimates the action-value function and the
one-step backup TD learning is used for policy evaluation.

Remark 2: The ADP method provides a general framework
solving optimal control problems forward in time using only
system data measured online, and its adaptive learning ca-
pability makes it efficient to solve our formulated pedestrian
flow optimization problem. With the actor-critic architecture,
applying the general learning control framework within the
problem domain is non-trivial. A variety of issues are crucial
to the success of our proposed ADP method, including: 1)
appropriately formulating the problem, particularly the choice of
state measurement as the input of the critic and action networks;
2) defining the utility function that captures the optimality of
the problem domain; 3) designing the training strategies and
parameters; 4) designing the neural network structure for the
critic and actor implementation. Overall, this paper provides
an innovative design of an ADP method targeting on emerging
robotic applications, and demonstrates a success development
of computational intelligence methodology that efficiently inte-
grates the problem domain knowledge.

C. The Algorithm and Online Implementation

The robot motion control algorithm is summarized in
Algorithm 1. The robot’s motion parameters are initialized as
Ω(0) = 0 and A0 is a given constant. If the pedestrian flow
measurement q(t) is available at time t, the ADP Learning
Control module is executed to update robot motion frequency
Ω(t), otherwise the robot motion frequency remains unchanged.
Then, the current robot velocity control ur(t) is updated using
(2). Note that in general, the updating frequency of the robot
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motion control is faster than the availability of the measurement
data from the camera due to complexity in pedestrian tracking
and image processing.
To apply the proposed ADP control algorithm online, we

randomly initialize the parameters of the ADP networks, that is,
theweight parameters of the action/critic networks are randomly
initialized. The ADP controller needs some time to learn the
mapping between the measurement of outflow and the robot
motion by adjusting the weight parameters, and then the weight
parameters converge to the optimal values with the control goal
met. As demonstrated in the performance evaluation in the next
section, the convergence time of the learning algorithm is fast
and satisfies the practical requirement. Also, our simulation
results (presented in the next section) show that the algorithm
adapts to the changing flow conditions (such as different ratios
of the two merging flows), and converges to different optimal
control outputs.

VI. SIMULATION AND PERFORMANCE EVALUATION

In this section, we verify the proposed robot-assisted pedes-
trian flow regulation approach and the ADP-based learning
control in Matlab simulations. We first describe the simulation
setup and parameters, and then present the results of open-loop
pedestrian regulation to provide HRI characteristics. We then
validate and evaluate the ADP-based learning algorithm for
pedestrian flow optimization in extensive case studies.

A. Simulation Setup

The simulation environment is chosen as shown in Fig. 4.
The initial speeds of the pedestrians in both flows are set to be
Gaussian distributed with mean μ = 2 m/s and standard devi-
ation σ = 0.3 m/s, denoted as N (μ, σ2). The robot is initially
placed at (xx

r , x
y
r) = (0.5, 2.5) m with zero initial speed. We

set the robot control parameter as A0 = 1.5 m so that the robot
can regulate pedestrians across the entire corridor width without
colliding with the boundaries. The robot initial position in x
direction is xx

r = 0.5 m. Note that the robot initial position only
affects the transient period of the control process. The algorithm
will converge to the optimum regardless of the choice of robot
initial position. The sum of instantaneous inflow A, q1, and
inflow B, q2, is set to be constant, i.e., q1 + q2 = 5 (m·s)−1. We
vary the ratio of the two inflows to create two case studies, i.e.,
Case 1 where the ratio of two inflows is q1/q2 = 3/2 and Case 2
where the ratio of two inflows is q1/q2 = 2/3. The two cases of
inflow ratio represent different pedestrian flow conditions that
inflow A is greater than inflow B, and inflow A is less than
inflow B, respectively. The desired flow is set as q∗ = 4 (m·s)−1

according to the bottleneck capacity, and is also consistent with
the simulation result shown in Fig. 3b. The duration of each
simulation run is set as Tf = 200 s. The size of the time history
of pedestrian outflow measurement is set as n = 5.
The pedestrians’ motion is simulated using the social force

models reported in [5], [31] with the embedded HRI term used
in [29], [30], [49]. The details of the social force model is
presented in Section I of the supplementary material, in which
the parameters are summarized in Table I. Note that it was

reported in [31] that the empirical features characterizing crowd
turbulence are reproducedwell by this simulatedmodel and such
a model demonstrates the crowd pressure build-up leading to
crowd disasters.
The critic and action networks in the ADP-based control

algorithm are both three-layer networks. The parameters used
in the ADP-based control algorithm are summarized in Table II
of the supplementary material.

B. Open-Loop Robot Control for HRI Characteristics

Before validating our ADP-based learning control algorithm,
we first conduct open-loop robot control simulations to char-
acterize the effect of HRI on the pedestrian outflow at the
bottleneck. In the open-loop simulation, the robot is controlled to
move at a set of constant motion frequencies, Ω, ranging from
0.1 rad/s to 1.5 rad/s with an increment of 0.1 rad/s, given a
constant ratio of pedestrian inflows q1 and q2. We then plot the
pedestrian outflow, q(t), for each robot motion frequency Ω.
The temporal sequences of the open-loop simulations are

shown in Fig. 6. Fig. 7 shows the outflow, q(t), vs. robot motion
frequency, Ω, of the two cases, where the ratio of the two flows
varies as defined in Section VI-A. One can see from the results
that for each case amaximumof average outflow can be obtained
when the robot moves at a unique optimal motion frequency,
Ωopt. The optimal frequency Ωopt is 0.4 rad/s and 0.7 rad/s
for Case 1 and Case 2, respectively. Correspondingly, when the
branch flow q2 (flow B) is smaller in Case 1, the robot moves
slower; and if q2 grows bigger in Case 2, the robot moves faster
to have less people merge into the bottleneck for efficient traffic
control.
The simulation results of open-loop robot control present

the quantitative HRI characteristics for merging pedestrian flow
regulation. The results will be used as the “ground truth” of the
optimization goal to validate whether our proposed ADP-based
learning control algorithm can adjust the robot’s motion fre-
quency to the optimal value by learning from HRI online. In the
next subsection, the optimal robot motion frequency for the two
cases obtained in Fig. 7 will be compared with the frequency
generated online from the ADP learning control.

C. ADP Control Performance

We have conducted extensive Matlab simulations to validate
our developed algorithm and to evaluate the performances. Due
to space limitation, we show a few representative cases in this
subsection.Wefirst present the case studieswith fixed pedestrian
flows, i.e., Cases 1 and 2 defined in Section VI-A. We then
evaluate the online learning capability when the pedestrian flow
condition changes fromCase 2 to Case 1. After that, we evaluate
the crowd pressure with and without robot to demonstrate that
our developed algorithm is able to reduce the crowd pressure
to avoid potential crowd diasters. Last, we show the statistical
results of the online learning-based control.
1) Fixed Flow Case Studies: We implemented Algorithm 1

and performed simulations for Cases 1 and 2 where the pedes-
trian inflow ratio is set to be 3/2 and 2/3, respectively. The
simulation results of our ADP control are shown in Fig. 8 and
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Fig. 6. Snapshots of the open-loop simulation. The blue and red circles represent pedestrian flow A and flow B, respectively, and the pink star represents the
robot. The dashed rectangle indicates the HRI region and the vertical dashed line indicates the bottleneck where outflow is measured.

Fig. 7. The results of open-loop control under different pedestrian flow
conditions.

Fig. 8. Case 1 for pedestrian inflow q1/q2 = 3/2: (a) instantaneous pedestrian

outflow q(t), and accumulated pedestrian outflow
∫ t

t0
q(τ)dτ ; (b) time history

of robot motion frequencyΩ(t), robot control ux
r (t), and robot position x

x
r (t).

The red dotted line in (b) denotes the optimal frequency.

Fig. 9 for Cases 1 and 2, respectively. Note that we want to
confirm that our ADP control algorithm returns the optimal
motion frequency for the robot, which is 0.4 rad/s for Case 1,
and 0.7 rad/s for Case 2, as demonstrated by the open-loop robot
control simulation in Fig. 7.
In Case 1, as shown in the first sub-figure of Fig. 8b, the robot

gradually learns from the observation of pedestrian outflow,
and the motion frequency converges after approximately 75 s
around the optimal value, Ωopt = 0.4 rad/s, as indicated by the
red dashed line in the figure. The second sub-figure of Fig. 8b
shows the time history of robot control signal, and the third
sub-figure shows the time history of robot position in directionx.
Correspondingly, one can see from the first sub-figure of Fig. 8a

Fig. 9. Case 2 for pedestrian inflow q1/q2 = 2/3: (a) instantaneous pedestrian

outflow q(t), and accumulated pedestrian outflow
∫ t

t0
q(τ)dτ ; (b) time history

of robot motion frequencyΩ(t), robot control ux
r (t), and robot position x

x
r (t).

The red dotted line in (b) denotes the optimal frequency.

that the instantaneous outflow, q(t), approaches the maximum
bottleneck capacity, q∗ = 4 (m·s)−1, with robot-assisted regula-
tion (shown as the black curve), while the instantaneous outflow
is much less without robot-assisted regulation (shown as the red
curve). In addition, without robot, the flow drops significantly
due to the clogging effect when pedestrian flows aggregate in
the merging area, and the robot running our control algorithm
can keep the flow smooth. The time history of the accumulated
pedestrian outflow,

∫ t

t0
q(τ)dτ , is shown in the second sub-figure

of Fig. 8a . Comparing the accumulated outflow results with
robot (black curve) and without robot (red curve), we can see
that the accumulated outflow is 656 people/meter without robot-
assisted regulation and 741 people/meter with robot-assisted
regulation at time t = 200 s, which shows that the accumulated
outflow is improved by 12.9% with robot-assisted regulation.
Similarly, as shown in the first sub-figure of Fig. 9b for

Case 2, the robot motion frequency is gradually learned from
the observation of pedestrian outflow, and converges around
the optimal value, Ωopt = 0.7 rad/s, after approximately 80 s.
The second sub-figure in Fig. 9b shows the time history of
robot control signal. The first sub-figure of Fig. 9a shows the
time history of instantaneous outflow, q(t), with and without
robot-assisted regulation. One can observe the sharp declines
of instantaneous outflow without robot in Fig. 9a . It can be
seen from the second sub-figure of Fig. 9a that the accumulated
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Fig. 10. Comparison of our proposed ADP control with ad-hoc robot behaviors: 1) robot moving at a fixed frequency Ω = 1.2, shown in blue curves; 2) robot
staying at the fixed position (3, 3.5), shown in green; and 3) without robot regulation, shown in red. Three different inflow conditions are shown as: (a) q1/q2 = 3/2;
(b) q1/q2 = 2/3; (c) q1/q2 = 4/1.

outflow,
∫ t

t0
q(τ)dτ , is 655 people/meter without robot-assisted

regulation and 730 people/meter with robot-assisted regulation
at time t = 200 s, which shows an improvement of 11.5% with
robot-assisted regulation.
The above simulations verify that our ADP control algorithm

converges to the optimal robot motion frequencies for both
Cases 1 and 2. The performance shows that the robot can
regulate the pedestrian flow smoothly and avoid significant
declines of the pedestrian outflow after the merging area. The
convergence time is below 100 s, which meets the practical re-
quirement of pedestrian evacuation.Accordingly, the temporally
accumulated flow is increased about 10% after 200 s.
2) Performance Comparison With Ad-hoc Robot Behaviors:

We further compare the accumulate outflow with 1) our ADP
algorithm, 2) robot moving at a fixed frequency 1.2 rad/s,
3) robot staying at a fixed position (3, 3.5) m, and 4) no
robot. Note that the fixed position and fixed motion frequency
are randomly selected to represent ad-hoc robot behaviors for
comparison purposes. The accumulate outflow results of three
inflow ratios, q1/q2 = 3/2, q1/q2 = 2/3, and q1/q2 = 4/1, are
plotted in Fig. 10. Comparing the performance of our proposed
ADP control with other ad-hoc robot behaviors, we can see that
1) our algorithm achieves best performances under different
inflowconditions; 2) the performances of ad-hoc robot behaviors
vary under different inflow conditions. For example, compared
with the no-robot case, adding a robot moving at a fixed fre-
quency improves the pedestrian flows in all three different flow
condition cases, although the degree of improvement varies in
different cases as shown in the figure. On the other hand, adding
a robot at a fixed position improves accumulated flow in one
case (b), but does not help at all in the other two cases (a) and
(c), which is understandable in the sense that an inappropriately
placed obstacle may impede and harm the flow traffic. From
this figure, it clearly shows the advantage of our proposed ADP
control, which can find the best motion frequency in different
flow conditions. Using a pre-determined robotmotion frequency
or a fixed robot position may not improve pedestrian flows when
the flow condition changes. To further demonstrate the dynamic
reconfigurability of our proposed algorithm, we show the online
learning capability with changing flows in the next subsection.

Fig. 11. Changing pedestrian inflow, where pedestrian inflow q1/q2 = 2/3
changes to q1/q2 = 3/2 at t = 100 s: (a) instantaneous pedestrian outflow

q(t), and accumulated pedestrian outflow
∫ t

t0
q(τ)dτ ; (b) time history of robot

motion frequency Ω(t), robot control ux
r (t), and robot position x

x
r (t). The red

dotted line in (b) denotes the optimal frequency.

3) Online Learning With Changing Pedestrian Flows: To
further demonstrate the online learning capability, we show the
performance of the ADP-based learning control with changing
pedestrian inflow conditions, that is, the inflow ratio of flow A
and flow B is initially set to be Case 2 with q1/q2 = 2/3, then
it changes to be Case 1 with q1/q2 = 3/2 at t = 100 s. This
case represents the scenario where the main inflow (i.e., flow
A) is initially less than the branch inflow (i.e., flow B), and
then it gets more than the branch inflow as time goes by. The
robot is expected to adjust its motion accordingly to maximize
the outflow at the bottleneck regardless of the changes of two
inflows.
The simulation results for the changing flow case is shown

in Fig. 11. One can see from the first sub-figure in Fig. 11b
that the robot motion frequency settles aroundΩopt1 = 0.7 rad/s
after about 65 s. When the inflows changes at 100 s, the robot
adjusts its motion frequency again, which converges around
Ωopt2 = 0.4 rad/s after about 160 s. Fig. 11a shows the time his-
tory of instantaneous outflowand accumulated outflow. From the
first sub-figure of Fig. 11a, one can observe the sharp declines of
instantaneous outflow due to congestion without robot-assisted
regulation. In comparison, the instantaneous outflowwith robot-
assisted regulation is smoother. The second sub-figure of
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Fig. 12. Comparison of the heat map of crowd pressure in the merging area with and without robot-assisted regulation, which indicates that the crowd pressure
is reduced to alleviate the risk of crowd accidents. The color bar indicates the scale of crowd pressure P (x, t) in the unit of (s−2).

Fig. 11a shows that at time t = 200 s, the accumulated outflow
is 646 people/meter without robot-assisted regulation, while the
accumulated outflow is 735 people/meter with robot-assisted
regulation. The accumulated outflow is improved by 13.8%with
robot-assisted regulation.
4) Crowd Pressure inMerging Flows: The “crowd pressure”

was proposed in [3] to measure the degree of congestion in
pedestrian flows, and it is defined in (II.5) of the supplementary
material as the product of flow density and velocity variance.
Crowd pressure is a key quantity indicating the risk of crowd
stampede as congestion builds up. As the crowd pressure is
correlated to the smoothness of merging flow at the bottleneck
area, improving the overall outflow efficiency by using a robot
also helps to avoid crowd pressure accumulation at the same
time. We compare the simulation results of the crowd pressure
with and without robot in this subsection.
We plot the crowd pressure, P (x, t), as defined in (II.6) of

the supplementary material, for the rectangular area with the
x-coordinate from 1 m to 5 m, and the y-coordinate from 3 m
to 8 m that covers the merging flow area. Fig. 12 show the
spatial distribution of local crowd pressure calculated by (II.6)
at the time t = 86 s, t = 118 s and t = 170 s for the case with
and without robot, respectively. One can see that, in the case
without robot, the local crowdpressure builds up and can reaches

Fig. 13. Temporal evolution of spatially averaged crowd pressure in the
merging area, P (t).

up to 0.088 s−2 at the red-colored locations where the most
turbulent pedestrian motion is observed due to congestion. On
the contrary, in the case with robot, the local crowd pressure
stays at low levels and thus the motion of pedestrian flow is
smoother at the bottleneck area.
Fig. 13 shows the time history of the spatially averaged

crowd pressure, P (t), defined in (II.5) of the supplementary
material, for Case 1 of the simulation. One can see that the
crowd pressure without robot is higher than that with robot on
average. Particularly, without robot, the crowd pressure reaches
peak values at times, e.g., t = 86 s, t = 118 s and t = 170 s,
which indicates potential crowd disasters. With robot-assisted
regulation, the peak values are significantly reduced by 26.5%
from 0.079 s−2 to 0.058 s−2.
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Fig. 14. Statistical results of Case 1 and Case 2 over 50 runs: (a) average
convergence time; (b) average accumulated outflow. The error bars indicate the
standard deviation.

5) Statistical Results: In this subsection, we provide statisti-
cal results of ourADPcontrol algorithm. In our simulations, each
pedestrian’s initial position and velocity are randomly assigned
from Gaussian distributions and the ADP weights are randomly
initialized between [−0.5,0.5]. We present the statistical results
of 50 runs for Case 1 and Case 2, respectively. Extensive
simulations are performed to obtain the statistical results. We
present the results of 50 simulated experiments as they are
representative to demonstrate the performance of our algorithm.
The duration of each simulation run is set as 200 s. We consider
a run successful if the output of the ADP function, i.e. robot
motion frequency Ω(t), converges to the optimal value Ωopt

within 200 s in the sense that the average error between Ω(t)
and Ωopt over the most recent 50 s is smaller than 0.01, i.e.,∑

t[|Ω(t)− Ωopt|2]/50 < 0.01, for t ∈ (150, 200]. The success
rates for Case 1 and Case 2 are 80% and 78%, respectively. The
statistical results are presented in Fig. 14. As shown in Fig. 14a,
it takes on average 83 s forCase 1 and 86 s forCase 2 to converge,
respectively. The standard deviation of convergence time is
12.6 for Case 1, and 12.1 for Case 2. One can see from Fig. 14b
that the average accumulated outflow in 200 s is 739 people
per meter for Case 1 and 727 people per meter for Case 2. The
standard deviation of accumulated outflow is 7.81 for Case 1,
and 9.58 for Case 2. It can be concluded from the results
that the proposed ADP-based learning method is effective with
acceptable successful rate.

VII. ROBOTIC EVALUATION RESULTS

In this section,wepresent robotic simulation results to demon-
strate that the developed ADP control algorithm applies to
real robot platforms and the performances are independent of
pedestrian simulators. For this purpose, we use the open source
pedestrian simulator PedSim in Robot Operating System (ROS)
to simulate the pedestrian populated environment [50]. PedSim
is a microscopic pedestrian crowd simulator that implements the
social force model and renders interface for 3D visualization
to emulate realistic pedestrian crowds in real-world scenarios.
We also implemented our ADP algorithm and the robot motion
control in a ROS program which can be readily transferred on a
real robot to conduct real-world experiments. The ROS package
of the PedSim simulator is available in [51].

A. Robotic Simulation Platforms

The experimental platform includes ROS Indigo with the 3D
visualization tool Rviz and the ROS implementation of PedSim
simulator. The PedSim simulator simulates the motion of the
pedestrians and the robot with embedded motion models. The
ROS program that implements our ADP algorithm takes as input
the observation of current outflow from the PedSim simulator,
and calculates the robot velocity control in real time. The robot
control signals are then fed into the PedSim simulator to control
the robot’smotion. The visualization of the simulation is done by
Rviz. The data exchange among different modules are managed
by the ROS communication mechanism. The experiments were
conducted on a desktop computer with an Intel CoreTM i7-6700
3.40 GHz CPU and 16 GB RAM in Ubuntu 14.04 operating
system.
The motion of the pedestrians in the simulator is governed by

the social force model presented in the supplementary material,
and we further tune the parameters of the social force model
to acquire more realistic pedestrian motion behaviors. The pa-
rameters modified in Table I are as follows: maximum pedes-
trian interaction strength Aij = 8; pedestrian radius ri = 0.3;
effective range of HRI Bir = 0.6. Note that due to different
implementation mechanisms (such as solving the differential
equations of pedestrian dynamics) in the PedSim and Matlab
environments, the pedestrian behaviors are slightly different
even with similar social force models.
In the next subsection and Section IV in the supplementary

material, we present two different intersection environments and
validate our proposed algorithm in these environments.

B. Case Study

In this case, the merging flow scenario in the environment
shown in Fig. 4 was created. The number of pedestrians in flow
A and flowB are set to be 600 each. The pedestrians in two flows
were randomly initialized in the entry regions with initial speed
following a Gaussian distribution of N (2, 0.32). The inflow of
flow A and flow B that discharge into the environment are both
about 1.25 (m·s)−1. The robot was initialized at (2.6, 2.5) m
with zero initial speed.
We have performed similar case studies as presented in

Section VI, and obtained consistent results as in the Matlab
simulations. We only present one case with pedestrian inflow
ratio q1/q2 = 1 due to space limitation.
The snapshots ofmerging pedestrianflowswith robot-assisted

regulation are shown in Fig. 15. Fig. 16 shows the numerical
results of the performance in PedSim. From the time history
of robot motion frequency Ω(t) shown in the first sub-figure
in Fig. 16b , one can see that the robot motion frequency
converges around 0.78 rad/s after about 60 s. The second and
third sub-figures in Fig. 16b show the time history of robot
velocity and position in direction x, respectively. It can be seen
from thefirst sub-figure inFig. 16a that the instantaneous outflow
with robot-assisted regulation is improved, compared with the
result without robot-assisted regulation. The second sub-figure
in Fig. 16a shows that at t = 120 s, the accumulated outflow
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Fig. 15. Snapshots of robotic experimental case study with robot-assisted regulation.

Fig. 16. Robotic experiment results for environment case study 1: (a) instanta-

neous pedestrian outflow q(t), and accumulated pedestrian outflow
∫ t

t0
q(τ)dτ ;

(b) time history of robot motion frequencyΩ(t), robot control ux
r (t), and robot

position xx
r (t). The red dotted line in (b) denotes the converged frequency.

with robot is 273 people/meter, while the accumulated outflow
without robot is 252 people/meter. The improvement is 8.3%
after 120 s.
To verify the generalizability of our approach in different

intersection environments, we further study another merging
flow scenario and the results are presented in the supplementary
material. The two environment case studies demonstrate that the
algorithm applies to different merging flow situations. In gen-
eral, the proposed method is scalable to multiple merging flows
as long as there exists optimal solutions to robot motion control
achieving maximum pedestrian outflow using a single robot.
Indeed, our proposed method does not rely on any modeling
methods of merging flow dynamics and the environment, but
uses the observed outflow measurement to adjust the robot mo-
tion speed through online learning that is facilitated by the critic
and action neural networks in the proposed ADP architecture.
Computational time: We also calculate the computational

time spent by the ADP learning control module to output the
control parameters after receiving the flow measurement data in
one execution, denoted as Ci. The average computational time
over 100 executions, i.e., (

∑100
i=1 Ci)/100, is 6.8 ms.

VIII. CONCLUSION

In this paper, we investigated the merging pedestrian flow
regulation problem in a bottleneck environment. We proposed

to use a mobile robot that dynamically interacts with the pedes-
trian flow, and designed an ADP-based learning method for
robot motion control. The pedestrian regulation problem was
formulated as an optimal control problem, and a customized
ADP approach was designed to solve the formulated optimal
control that adjusts robot motion parameters online. Simulation
results in both Matlab and the robotic simulator demonstrated
that our approach can regulate pedestrian flows to optimize
outflow by online learning from the real-time observation of
the pedestrian flow, and the critical crowd pressure is reduced to
prevent potential crowd disasters.
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