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Symplectic embeddings from concave toric domains
Into convex ones

*

Dan Cristofaro-Gardiner

Abstract

Embedded contact homology gives a sequence of obstructions to
four-dimensional symplectic embeddings, called ECH capacities. In
“Symplectic embeddings into four-dimensional concave toric domains”,
the author, Choi, Frenkel, Hutchings and Ramos computed the ECH
capacities of all “concave toric domains”, and showed that these give
sharp obstructions in several interesting cases. We show that these
obstructions are sharp for all symplectic embeddings of concave toric
domains into “convex” ones. In an appendix with Choi, we prove a new
formula for the ECH capacities of convex toric domains, which shows
that they are determined by the ECH capacities of a corresponding
collection of balls.

1 Introduction

1.1 The main theorem

It is an interesting problem to determine when one symplectic manifold
embeds into another. In dimension 4, Hutchings’ “ECH capacities” [14] give
one tool for studying this question. ECH capacities are a certain sequence
of nonnegative (possibly infinite) real numbers

0=cop(X,w) <...<cp(X,w) <o

associated to any symplectic four-manifold (X,w). The key property they
satisfy is the Monotonicity Axiom: if there exists a symplectic embedding

(M1, w1) — (M2, ws),
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then we must have
ck(My) < cp(Ma) (1.1)

for all k. ECH capacities therefore give an obstruction to symplectically
embedding one symplectic 4-manifold into another.

In [3], the author, Choi, Frenkel, Hutchings, and Ramos used ECH ca-
pacities to study symplectic embeddings of “toric domains”. A toric domain
Xq is the preimage of a region < R? in the first quadrant under the map

p:C? - R?, (21, 22) — (7|21 )%, 7| 22]?).

Toric domains generalize ellipsoids

2 2
E(a,b) = {(21,22)|7r|zal| + ”'Zb?' < 1},

where Q is a right triangle with legs on the axes, balls B(c) := E(c,c), and
polydisks

2 2
P(a7b> = {(zlyzQ)’F|zal‘ < 17 7T|?)2| < 1}7

where () is a rectangle whose bottom and left sides are on the axes. The
paper [3] computed the ECH capacities of all “concave” toric domains, and
showed that these give sharp obstructions in several interesting cases, for
example for all ball packings into certain unions of an ellipsoid and a cylin-
der. The aim of the present article is to identify a large and natural class of
embedding problems involving toric domains for which ECH capacities give
a sharp obstruction. It turns out that in these cases, ECH capacities can be
computed purely combinatorially, and so give considerable insight into the
corresponding embedding problem.

To state our main theorem, first recall the “concave toric domains” from
[3]. These were defined as toric domains Xq, where € is a region in the first
quadrant underneath the graph of a convex function f : [0,a] — [0,b], such
that a and b are positive real numbers, f(0) = b, and f(a) = 0. We call such
an Q a concave subset of the first quadrant of R2.

We now define a related concept, see Figure 1.1.

Definition 1.1. A convezx toric domain is a toric domain X¢, where (2 is a
closed region in the first quadrant bounded by the axes and a convex curve
from (a,0) to (0,b), for a and b positive real numbers.

Similarly to above, we call such an €2 a convex subset of the first quadrant.
Note that our definition of convex toric domain differs slightly from the
definition in [15].
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A concave domain A convex domain
Figure 1.1: A concave toric domain and a convex one

If X is a symplectic four-manifold, let c(X,w) denote the k" ECH
capacity of X, reviewed in §5.1. We can now state the main theorem of this

paper:

Theorem 1.2. Let Xq, be a concave toric domain and let Xq, be a convex
toric domain. Then there exists a symplectic embedding

int(Xgl) — int(XQQ)

if and only if
ek (int(Xq,)) < ex(int(Xgq,))

for all nonnegative integers k.

We also remark that when an embedding of a concave toric domain into
a convex one exists, it is unique up to isotopy, see Proposition 1.5. This is
definitely not true for many other toric domains, see for example [11].

Note that an ellipsoid is both concave and convex, while a polydisc is
convex. Thus, Theorem 1.2 generalizes well-known results of McDuff [21]
(where Xq, and Xq, are both ellipsoids) and Frenkel-Miiller [10] (where
Xq, is an ellipsoid and Xgq, is a polydisc). As mentioned above, a purely
combinatorial formula for the ECH capacities of concave toric domains was
given in [3]. In the appendix, we give a formula for the ECH capacities
of convex domains that generalizes the formula from [15, Thm. 1.11], see
Corollary A.12. These formulas involve counting lattice points in polygons,
and the combinatorics involved can be interesting [9, 26, 4].

Here is an example of how one can use Theorem 1.2:



Example 1.3. Let X, be an ellipsoid and let Xq, be the convex toric
domain associated to a closed symplectic toric four-manifold X. This means
that 9 is a Delzant polygon for X (note that any Delzant polygon is affine
equivalent to a polygon €y which is convex in the sense of Definition 1.1).
Then X contains the convex toric domain Xgq,, so Theorem 1.2 can be used
to construct embeddings of ellipsoids into X. In fact, it is shown in [7]
that an ellipsoid embeds into X if and only if it embeds into Xq,. Thus,
Theorem 1.2 can be used to understand exactly when an ellipsoid embeds
into a closed symplectic toric four-manifold. This is studied in [7], and the
stabilized version of this embedding problem (as in [5, 6]) could be interesting
to study as well.

More examples are given in §4.4.

Remark 1.4. One could try to extend Theorem 1.2 to other classes of toric
domains. However, it is important to note that ECH capacities definitely
do not always give sharp obstructions to symplectic embeddings, even for
toric domains. A notable example of this is given by Hind and Lisi in [12,
Thm. 1.1], where it is shown that a polydisc P(1,2) can be symplectically
embedded into a ball B(a) if and only if a > 3; ECH capacities only give the
obstruction a > 2. Interestingly, recent work of Hutchings [15] shows that
embedded contact homology can still be used to derive strong obstructions
to symplectic embeddings, even when the obstructions coming from ECH
capacities are weak. For example, in [15] Hutchings defines new obstructions
to embedding one convex toric domain into another that can be used to
recover the result of Hind and Lisi from above. It is an interesting open
question to determine how sharp these new obstructions are, for example
for symplectic embeddings of one four-dimensional polydisc into another.

1.2 Idea of the proof and relationship with previous work

As mentioned above, McDuff showed that ECH capacities give a sharp ob-
struction to symplectically embedding one four-dimensional ellipsoid into
another. Here we use a similar method.

Central to both methods is the symplectic ball-packing problem; for tar-
get a ball, this is the question of whether or not there exists a symplectic
embedding

[1B@) - BW)

for positive real numbers A, a1, ..., a,. McDuff showed in [20] that the ques-
tion of whether or not one rational ellipsoid can be symplectically embedded



into another is equivalent to the question of whether or not a certain sym-
plectic ball packing of a ball exists. In [23], it was then shown that since
ECH capacities are known to give a sharp obstruction to all four-dimensional
symplectic ball packing problems of a ball, they give sharp obstructions to
ellipsoid embeddings as well. Here we first show that the question of em-
bedding a “rational” concave toric domain into a rational convex one is
equivalent to a certain symplectic ball packing problem, see Theorem 2.1
for the precise statement, and we then use this to show that ECH capacities
give a sharp obstruction to embedding a concave domain into a convex one.

1.3 Connectivity of the space of embeddings

McDuff also showed in [20] that the space of embeddings of one ellipsoid
into another is connected. To prove Theorem 1.2 and Theorem 2.1, it will
be helpful to show that this also holds for embeddings of a concave domain
into a convex one:

Proposition 1.5. Let Xq, be a concave toric domain, let Xq, be a convex
toric domain, and let gg and g1 be two symplectic embeddings:

Xq, — int(XQ2).

1

Then there exists an isotopy
{U}o<i<t @ int(Xq,) — int(Xq,)
such that Yo = id and V1(g1) = go-
The following corollary will be particularly useful:

Corollary 1.6. Let Xq, be a concave domain and let Xq, be conver. Then
there is a symplectic embedding

int(Xgl) — int(XQ2)
if and only if there is a symplectic embedding
X)\Ql — il’lt(XQ2>

forall A < 1.



1.4 ECH capacities of convex domains and ECH capacities
of balls

As explained in §1.2, the fact that ECH capacities are sharp for these em-
bedding problems essentially follows from the fact that they are sharp for
symplectic ball packings of a ball. In fact, the ECH capacities of both of
these domains are closely related to the ECH capacities of balls. In [3], it
was shown that the ECH capacities of any concave toric domain are deter-
mined by the ECH capacities of a certain collection of balls, see [3, Thm.
1.4] for the precise statement. In an appendix with Choi, we show that this
is also true for convex toric domains, see Theorem A.1.
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2  Weight sequences

In [20], McDuff introduced a set of real numbers determined by a 4-dimensional
symplectic ellipsoid, called a weight sequence. We begin by explaining how
to extend this construction to concave and convex toric domains.
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Decomposition of a concave domain Decomposition of a convex domain

Figure 2.1: The inductive decomposition of convex and concave toric do-
mains

2.1 The concave case

Weight sequences in the concave case were defined by Choi, the author,
Frenkel, Hutchings, and Ramos in [3]. We begin by reviewing this definition.

First, recall that two subsets of R? are affine equivalent if one can be
obtained from the other by multiplying by an element of SLs(Z) and ap-
plying a translation. Now let €2 be a concave subset of the first quadrant
of R%. The weight sequence of €2 is an unordered set of (possibly repeated)
nonnegative real numbers w(2) defined inductively as follows. If Q is a tri-
angle with vertices (0,0), (0,a) and (a,0), then the weight sequence of € is
(a). Otherwise, let @ > 0 be the largest real number such that 2 contains
the triangle with vertices (0,0), (0,a) and (a,0). Call this triangle Q7. Then
the line « +y = a intersects the upper boundary of €2 in a line segment from
(x1,a—x1) to (x2,a— x2), where 21 < xa. Let Q) be the closure of the part
of Q2 to the left of x; and above this line, and let Q% be the closure of the
part of £ to the right of x5 and above this line, see Figure 2.1. Then, as
explained in [3, §1.3], ) is affine equivalent to a canonical concave subset of
the first quadrant, which we denote by €. Similarly, 2% is affine equivalent
to a canonical concave subset which will be denoted by (3. We now define
w() = w() v w(Q2) U w(Q3), where U denotes the (unordered) union
with repetitions. In the inductive definition, note that w() is defined to be
it Q = .

If Xq is a concave toric domain, then we define the weight sequence of
Xq to be w(Q).



2.2 The convex case

We now define a similar weight expansion for any convex toric domain.
The definition of the weight sequence for convex toric domains is similar
to the definition of the weight sequence for concave toric domains. If € is
a triangle with vertices (0,0), (0,b) and (b,0) then the weight sequence of
Q is (b). Otherwise, let b > 0 be the smallest real number such that 2
is contained in the triangle with vertices (0,0), (0,b) and (b,0). Call this
triangle 1. The line x + y = b intersects the upper boundary of 2 in a line
segment from (x1,b — x1) to (z2,b — x2), with 1 < z2. Let 2 denote the
closure of the portion of 2\ that is to the left of x; and below the line
x+y = b, and let £, denote the closure of the portion of £;\Q that is below
b — x2 and below the line x + y = b, see Figure 2.1.

The key point is now that €, and Qf are both affine equivalent to concave
subsets, which we denote by Q9 and 23 respectively. The equivalence for €2,
is given by translating down so that the top left corner of €2 is at the origin,
and then multiplying by the matrix M = (_11 _01 ), while the equivalence for
Y is given by translating so that the bottom right corner is at the origin,
and then multiplying by the matrix M’ = (_01 L ) We then define

w() = (b;w(Q2) U w(3)).

Thus, the weight sequence for a convex set consists of a number, and then
an unordered set of numbers. We call the first number in this sequence the
head, and we call the other numbers the negative weight sequence. If Xq is a
convex toric domain, then we define the weight sequence of Xq to be w(€2).

2.3 Ball packings

To simplify the notation, for a convex €, let

B(@) = [B(®:).
where the b; are the negative weight expansion for 2. Similarly, for a concave
Q, let

B(Q) = [ [ Bla),

where the a; are the weight expansion for €2. Finally, call a concave or
convex domain rational if it has upper boundary that is piecewise linear with
rational slopes. This guarantees that the weight sequence for this domain is
finite.



Here is the key result that we want to prove, in order to prove Theo-
rem 1.2:

Theorem 2.1. Let Xq, be a rational concave toric domain, let Xq, be a
rational convex toric domain, and let b be the head of the weight expansion
for Qqo. Then there exists a symplectic embedding

int(Xgl) — iIlt(XQ2)
if and only if there exists a symplectic embedding
int(B(Q1)) U int(B(Qs)) — int(B(b)).

Note that the “only if” direction of Theorem 2.1 follows from the “Traynor
trick” [33], see e.g. [3, Lem. 1.8] for the version we need, and the definition
of the weight expansion.

3 Embeddings of toric domains and embeddings
of spheres

We now begin the proof of Theorem 2.1. We already showed the “only if”
direction, so we now show the converse. In this section, we give the first part
of the proof, which involves showing that to embed a concave toric domain

into a convex one, it is equivalent to embed a certain chain of spheres into
a blowup of CP2.

3.1 Preliminaries

We start by recalling those details of the symplectic blowup construction
that are relevant to us. Let L denote the homology class of the line in CP?,
and let wy denote the Fubini-Study form, normalized so that {wg, L) = 1.
Now suppose there is a symplectic embedding [ [I~, B(a;) — (CP?,wp). We
can remove the interiors of the B(a;) and collapse their boundaries under the
Reeb flow to get a symplectic manifold, called the blowup of the ball packing,
which is diffeomorphic to CP?#mC P2, with a canonical symplectic form wy.
The image of dB(a;) in this manifold is called the i*" exceptional divisor.
If E; denotes the homology class of the it exceptional divisor, then the
cohomology class of w; is given by

m
PD[wi] = L — > a;E;.
=1

9



Another class which will be relevant for our purposes is the canonical class
K defined by

m
PD(K):= — 3L+ Y| E;.
i=1
The class K is ¢;(T*X), as defined by any almost complex structure com-
patible with w;.

3.2 Blowing up a concave domain

Now let €2 be any rational concave toric domain, and include Xq into some
large ball int(B(R)), which we can include into a (CP?,w). We now mimic
the definition of the weight sequence to define a sequence of symplectic
blowups of (CP?,w) that will produce one of the relevant chains of spheres,
see Figure 3.1 for an illustration.

Let a be the largest real number such that €2 contains the triangle with
vertices (0,0), (0,a) and (a,0), let § > 0 be a sufficiently small real number,
and consider the triangle A(a+4) with vertices (0,0), (0,a+¢) and (a+4,0).
Thus, in Figure 3.1, A(a + §) is the triangle with legs on both of the axes.
Then there is a symplectic embedding B(a + §) — B(R). Blow up along
B(a + §).

Now the upper boundary of A(a + §) intersects the complement of  in
the plane along a line segment between (x1,a + 0 — 1) and (z2,a + 6 — x2)
with 21 < z9. Let I'y be the closure of the subset of {2 which is to the left of
x1 and above the line  +y = a+ 6, and let 'y be the closure of the subset of
Q which is to the right of x5 and above this line. Then, as in the definition
of the weight sequence, I'y and I's are affine equivalent to concave subsets.

In the present context, this implies that we can iterate the procedure
from the previous paragraph to perform a symplectic blowup for each el-
ement of the weight sequence for 2. Each blowup produces a symplectic
sphere. The result of this sequence of blowups is a symplectic manifold
(CP?#mCP?,w) with a configuration of symplectic spheres Cq s, with
one sphere for each element of the weight sequence. Here, g denotes a
sequence of small real numbers corresponding to the § for each blow up.

Later, we will to speak of blowing up Xq with respect to an embedding
g : Xqg — M. This means performing the sequence of blowups from above
in M, via the embedding g, and we will denote the resulting chain of spheres

by Cg(2),80-

10



Figure 3.1: Blowing up a rational concave domain Xq. In this case, the
upper boundary of ) consists of two line segments; to blow up €2, we perform
four blowups, which are illustrated by the four thickened lines. The first blow
up removes the right triangle with legs on both axes, and upper boundary
a thickened line. The next two blow ups correspond to the two regions
that touch one of the axes; the order in which we do these two blowups is
irrelevant. We then do one last blow up, corresponding to the triangle with
all edges thickened lines. The canonical weight sequence decomposition of
the domain is also shown, in which we have partitioned 2 into four regions
each of which are affine equivalent to right triangles. The lines demarcating
these regions are thin.

3.3 Blowing up a convex domain

We now define a similar sequence of blowups if €2 is a rational convex domain.
Specifically, let b be the head of the weight sequence for €2, and choose a
small § > 0. The line x + y = b — § intersects () in a line segment from
(x1,b —§ — x1) to (we,b — d — x2), where 1 < xo. Let A(b — J) be the
triangle with vertices (0,0), (b—4,0) and (0,0 —6). Let I'y be the closure of
the region of the complement of 2 in A(b — 0) that is to the left of 1, and
let 'y be the closure of the region of the complement that is below b—§ — 5.

We showed in the definition of the weight sequence that I'; and I'y are
affine equivalent to concave toric domains. We can therefore apply the
procedure from §3.2 to associate a symplectic blow up of (CP?, (b — §)wo)

11



to each term in the negative weight sequence for €. This gives a symplectic
manifold (CP?#nCP2,ws) with a configuration of symplectic spheres which
we denote by é}),é‘ﬂ. As in the previous section, dg denotes a choice of small
real numbers corresponding to the § in this blow up construction.

3.4 Inner and outer approximations

Our blowup procedure is closely related to the inner and outer approxi-
mations from [20]. To elaborate, consider first the blow up procedure for
rational concave 2. Our blowup procedure shows that we can define an-
other concave toric domain, called an outer approximation to €2, such that
the sequence of blowups removes the interior of the outer approximation
and collapses the boundary of the outer approximation to the configuration
of spheres Cq 5. Denote the outer approximation to 2 by Q“*. For exam-
ple, in the situation illustrated in Figure 3.1, the outer approximation is the
maximum concave set bounded by the axes and segments of the thickened
lines.

Similarly, if {2 is convex, then our blowup procedure shows that we can
define another convex toric domain, called an inner approxzimation to (2,
denoted Q¥ such that the sequence of blowups removes the complement of
the inner approximation in B(b—¢) and collapses the boundary of the inner
approximation to the configuration of spheres é\Q,lSQ.

3.5 Embedding equivalences

The previous subsections defined chains of spheres Cghgﬂl L (’3\9275%. Define
a symplectic embedding of this chain into a symplectic manifold X to be a
map of the disjoint union into X such that the image of the spheres intersect
transversally, the map restricts to each individual sphere as a symplectic
embedding, and the intersection matrix of the chain in X agrees with the
intersection matrix of the chain CQMgQI u(?g%(g%. (Note that our intersection
matrix includes the self-intersections of each sphere.)

Proposition 3.1. Let Q1 be a rational concave toric domain, and let Qg be
a rational convex toric domain. Let m be the length of the weight expansion
for Q1, and let n be the length of the negative weight expansion for €o.
If there is a symplectic form w on CP?4#(m + n)CP? such that there is a
symplectic embedding

Ca, 60, U 592,592 — (CP?*#(m + n)CP?,w),

12



then there is a symplectic embedding

Xo, — int(XQ2).

1
To prove the proposition, we will need to use the following result:

Theorem 3.2. (Gromov-McDuff [25, Thm. 9.4.2])

Let (M,w) be a connected symplectic 4-manifold with no symplectically
embedded 2-spheres of self-intersection —1. Assume that there exists a sym-
plectomorphism

U RNV —» M\K,

where K < M is compact, and V. < R* is compact and star-shaped with
respect to the origin. Then for every open neighborhood U of K, (M,w)
is symplectomorphic to (R* wyq) by a symplectomorphism that agrees with
U1 on M\U.

We can now give:

Proof of Proposition 3.1. By assumption, there is a symplectic embedding
Ca g, 2 Casa, = (CPP#(m +n)CP?,w).

We can make a small perturbation to this embedding so that all intersections
are symplectically orthogonal, see for example [20, Lem. 2.2].
Now consider the embedding

Cay 60, — (CP?#(m + n)CP?,w).

A version of the symplectic neighborhood theorem [31, Prop. 3.5] now im-
plies that a neighborhood of these spheres can be identified with a neigh-
borhood of the chain of spheres in the manifold (CP?#mCP? w;) that was
constructed in §3.2 by blowing up the outer approximation. We can there-
fore remove the CQM;Q1 and glue in a copy of XQW1 to get a new symplectic

manifold Z which admits a symplectic embedding of X, whose image avoids
a small neighborhood of 592’592. By again applying the symplectic neigh-
borhood theorem [31, Prop. 3.5], this neighborhood can be identified with
a neighborhood of the chain of spheres constructed in §3.3 by blowing up
the inner approximation.

Let Z denote the complement of 592’592 in Z. As above, we can glue in a
copy of RA‘\th(Q%Q y to Z. This gives a symplectic manifold (M,w). Since

7Re2

Hy(M) = 0, M can not contain any symplectically embedded —1 spheres.

13



For r < 1 close to 1, we can choose a symplectomorphism ¥ : M\K —
RA‘\XT,Q% for some compact K < M. The set Xyqin, 18 star-shaped
9Q9 200
with respect to the origin, since if v € X, gin.  thensois tv forall0 <t <1
. ’ 92

as r- €2y is itself star-shaped with respect to the origin. Now regard Z as
a neighborhood of K in M, and apply Theorem 3.2 to M with U = Z. This
produces a symplectomorphism between (M, w) and (R*, wgy) that maps Z
to Xint(Q%sz

O]

4 Applying inflation

In this section, we prove Theorem 2.1.

Let €1 be concave and 2 convex. We already proved the “only if” direc-
tion of the theorem, so we just have to produce an embedding int(Xq,) —
int(Xg,), assuming that a certain ball packing exists. By Proposition 3.1,
it suffices to find a symplectic embedding

Coansa, U Cayba, — (CP*#(m + n)CP2,w),

where w is any symplectic form. If we choose r sufficiently small, then we
can construct a symplectic embedding

Cr0,,50, U 592,592 — (CP*#(m + n)CP?,w)

for some w, by the procedure in §3.2 and §3.3. We now want to change the
areas of the spheres in CT.Ql’gﬂl, keeping them symplectic. We accomplish
this by using the “inflation” method, from (for example) [20, 24, 1].

4.1 Review of inflation

We begin by reviewing the inflation method.

We first need to recall the aspects of Taubes’ “Seiberg-Witten = Gro-
mov” theorem that we will need. Let (X,w) be a closed symplectic 4-
manifold, and let b3 (X) denote the dimension of the maximal subspace
HJ(X,R) of H?(X,R) on which the intersection form is positive definite.
If A€ Ho(X;Z) and b (X) > 1, then Taubes’ Gromov invariant Gr(A) is
defined by counting certain mostly embedded J-holomorphic curves in class
A, for generic w-compatible almost complex structure J, see for example [16,

14



§2] for details. A symplectic form w defines a spin® structure s,,, and the
“Seiberg-Witten = Gromov” theorem [32] states that there is an equivalence

Gr(A) = SW(A), (4.1)

where SW(A) denotes the Seiberg- Witten invariant of the spin® structure
sw+PD(A), see [18]. When b3 (X) = 1, which is the situation in the present
work, the Seiberg-Witten invariant also depends on a choice of “chamber”,
which we can identify with a choice of orientation of the line Hy (X;R); in
this case, in (4.1) we choose the chamber determined by the cohomology
class of the symplectic form.

Now recall that a symplectic divisor is a union of symplectically embed-
ded surfaces which intersect transversally and symplectically orthogonally,
while an exceptional class € € Ho(X) is a class € represented by a sym-
plectically embedded —1 sphere. Here is the main result from the theory of
inflation that we use:

Proposition 4.1. [24, Lem. 1.2.11] Let (X,w) be a symplectic manifold,
A€ Hy(X), and S a symplectic divisor. Assume:

(i) A-A>0,
(i) A-& =0 for all exceptional classes &,
(iii) A-S; =0 for every component S; of S,
(iv) X has nonzero Gromov invariant in class A.
Then for any s = 0, the class
[w] + sPD(A)
has a symplectic representative that is nondegenerate on S.

The idea of the proof of Proposition 4.1 is that since the manifold X has
nontrivial Gromov invariant in class A, we can find a symplectic submanifold
T in class A. We use condition (ii) to guarantee that 7' is connected, and
then (i) to guarantee that T has positive self intersection. We then deform
w locally around 7" in the normal direction by adding a certain closed 2-form
that is 0 along T, see also Remark 4.2 below. The condition (iii) is needed
to guarantee that these deformations of w remain symplectic along S. A
significant complication occurs when S has at least one component that
can not be made J-holomorphic and transverse for any J because of index

15



considerations, because one can not simultaneously guarantee that S is J-
holomorphic while J is also suitably generic for defining Taubes’ Gromov
invariant; however, these difficulties can be overcome. For more details, see
[24].

Remark 4.2. The simpler case where A - A = 0, § is empty, and A has
an embedded connected symplectic representative T is illustrative. Since
A- A =0, the normal bundle of C is trivial, and a neighborhood of C can
be identified symplectically with the symplectic product

(C X D2,w|c X wstd), (4.2)

where D? is a small disc. To find a deformation through symplectic forms
as in Proposition 4.1, we locally add (0, g(r)wstq) to w in the neighborhood
given by (4.2), where g(r) is a nonnegative bump function.

In general, we can identify a neighborhood of T with a neighborhood of
the zero section in a complex Hermitian line bundle 7 : £ — C of degree
A - A, so that the symplectic form is given by

T (wle) + d(mr?B),

where r is the radial distance function, and [ is a certain connection 1-form
on the unit circle bundle. We can now add

—d(g(r)B)

to the symplectic form, where ¢(r) is an appropriately chosen bump function,
see eg [22, Lem. 1.1] for the details. The requirement A - A > 0 is required
to ensure that the form remains symplectic for large s; in Proposition 4.1,
we demand in addition that A - A > 0 to avoid potential complications
coming from multiply covered torii in Taubes’ Gromov invariant, although
this assumption could be weakened.

To apply Proposition 4.1, we need conditions guaranteeing that certain
classes have nonzero Gromov invariant. By (4.1), it is equivalent to find
spin® structures with nonvanishing Seiberg-Witten invariant. The Seiberg-
Witten invariants of blow ups of CP? were studied by Kronheimer and
Mrowka in [17]. Their results, combined with (4.1) and known properties of
the Seiberg-Witten invariant give the following, see Remark 4.4 below:

Proposition 4.3. Let (M,w) be a symplectic blow up of CP?, and let A €
Hy(M;Z). Assume that

A2 —K-A>0, [w] - (PD(K) — A) < 0. (4.3)
Then Gr(A) # 0.
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Remark 4.4. A sketch of the proof of Proposition 4.3 is valuable in order
to understand why the conditions (4.3) appear. The equation

[w]- (PD(K) — A) <0 (4.4)

guarantees that the manifold M has vanishing Gromov invariant in the class
PD(K)— A, since (4.4) implies that any curve in class PD(K)— A would have
to have negative area. Now the Seiberg-Witten invariants satisfy a basic
symmetry, called charge conjugation. In the case where by > 2, charge
conjugation states that the Seiberg-Witten invariants of a spin® structure
and its dual structure are the same up to sign, which one expects from
examining the unperturbed equations and applying complex conjugation.
In the situation of Proposition 4.3, where b = 1, a similar fact holds except
that there is an additional complication coming from the choice of chamber;
the upshot for our purposes is that when we combine the charge conjugation
relation in the case b = 1 with (4.1), we find that

Gr(A) — Gr(PD(K — A)) = w(4) mod 2, (4.5)

where w(A) is the wall-crossing number which is defined as the difference
between the two chambers of the Seiberg-Witten invariants of the spin®
structure corresponding to A, counted modulo! 2. This wall-crossing number
was computed in the cases we need by Kronheimer-Mrowka: as explained
in [29, Thm. 9.9], the condition

A2 K. - A>0

implies that
w(A) = 1. (4.6)

Since Gr(PD(K) — A) = 0 as explained above, combining (4.5) with (4.6)
implies that Gr(A) # 0.

We will also need a “family” version of Proposition 4.1. To state the
variant that we use, recall that two symplectic forms are called deformation
equivalent relative to a symplectic divisor S if there is a family of symplectic
forms between them that restrict to nondegenerate forms on S; they are
called isotopic relative to S if one can choose this family to have constant
cohomology class. We call such a family a connecting isotopy.

!There is a version of (4.5) that holds without reducing modulo 2 but we do not need
this.

17



Theorem 4.5. [24, Thm. 1.2.12] Let (M,w) be a symplectic blow up of
CP? and let ' be any symplectic form in the same cohomology class as w.
Assume that w and W' are deformation equivalent relative to S. Then w and
W' are isotopic relative to S. Moreover, if w = ' near S then we can choose

the connecting isotopy to be constant near S.

The assumption in Theorem 4.5 that (M, w) is a blowup of CP? is suffi-
cient for our purposes, but can be weakened; probably all that is needed is
that by (X) = 1 so that X has enough nonvanishing Seiberg-Witten invari-
ants, see [24, Rmk. 1.2.14].

4.2 Connectivity

Having reviewed the inflation method, we can now give the proof of Propo-
sition 1.5, which states that the space of embeddings from a concave domain
into a convex one is connected. We also prove Corollary 1.6.

Proof of Proposition 1.5. The proof closely follows the proof of [20, Cor.
1.6].

First, assume that 21 and €25 are rational, and let gy and g; be symplectic
embeddings of Xq, into int(Xgq,). By applying Alexander’s trick, see e.g.
the proof of [30, Prop. A.l], we can assume that go and g; agree with the
inclusion of X,q, into int(Xq,) for sufficiently small r.

We will produce an isotopy between gy and g; by using Theorem 4.5.
Namely, as explained in §3.2, we can blow up Xq, with respect to gog to get
a symplectic manifold (Xo,wg) with a symplectic divisor S = Cgo(©1),60, |

(/2\9275(22. We can produce a family of symplectic forms on Xg starting at wg
by first blowing up ¢ - Xq, with respect to gy as t ranges from 1 to r, and
then blowing up ¢ - X, with respect to g; as t ranges from r to 1, while
identifying the underlying smooth manifolds of these blow ups with Xg as
in Step 2 of [22, §3]. This implies in particular that the symplectic form
w’ on Xy, given by blowing up along gi, is deformation equivalent to the
symplectic form w = wy. We can assume in addition that w = w’ near S.

Now apply Theorem 4.5. This gives an isotopy of symplectic forms on
Xo that is constant near S. By Moser’s trick, this gives an isotopy W, of
the symplectic manifold X, which we can blow down to get an isotopy ¥y
of Q9 taking gg to gi.

Step 2. We now deduce the general case from the rational one.

We can extend the embeddings gg and g; to an open neighborhood of
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21, and so we can find a rational concave set {2} satisfying
Ql C Qll
such that gg and g1 give symplectic embeddings
Xq, — int(Xq,).
We can then pick a rational convex set 2, with
Q/2 c QQ

so that the images of Xq, under go and g; lie in int(XQIQ). By the previous
step, we can find an isotopy of int(XQ/Q) taking gg to g1. Moreover, since
the isotopy of symplectic forms in the previous step was constant near S,
we can extend this isotopy to int(Xq,).

O

Proof of Corollary 1.6. Since for A < 1, X)\q, < Xgq,, an embedding
int(Xq,) — int(Xq,)

induces an embedding
int(Xyxq,) — int(Xq,)

by composition.
In the other direction, given symplectic embeddings

X\, — int(XQ2)
for all A < 1, we can choose a sequence of embeddings
I+ Xa-1/my0, — int(Xa,).

By applying Proposition 1.5, we can further assume that this sequence of
maps is nested. We can therefore construct the desired symplectic embed-
ding by taking the direct limit.

O
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4.3 Inflating the spheres

We can now complete the proof of Theorem 2.1 by using the inflation pro-
cedure.

Proof of Theorem 2.1. Let 21 be concave and 23 convex. We already showed
the “only if” direction of the theorem, so we just have to prove the converse.
Step 1. By assumption, there is a symplectic embedding

int(B(Q)) U int(B(Qs)) — int(B())). (4.7)

Let the a; be the weights for 2 and the b; the negative weights for (2o, as
defined in §2.

Because of the existence of the embedding (4.7), we can find a symplectic
embedding

(L[B(aé)) L (]_I B(b3)) — int(B(b)), (4.8)

where the a/ and the b, are strictly smaller than the corresponding a; and
b;, but otherwise as close as we wish. For any A > 1, we can in addition
choose the a}, b so that (b;b],...,b]) is the weight sequence for a rational
convex toric domain 2 with the property that

QX Qy, (4.9)

while the @ are the weights for a rational concave toric domain 2} with

1
X 0 < int(2)). (4.10)
We can also assume that b, the a and the b are all rational.

We will show that because of the existence of an embedding (4.8), there

is an embedding

Step 2. Let r be small enough that r - Q] < int(Q). Since r - Q] is a
concave toric domain, and € is a convex toric domain, we can apply the
iterated blowup procedure from §3.2 and §3.3 to conclude that there is a
symplectic embedding

S =Cras,.q HC%0, (CP*#(m +n)CP?,w).

Let L denote the homology class of the line in this blowup, let E1, ..., E,,
be the exceptional classes associated to the blow ups for r - Q}, and let
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El, . ,E’n be the exceptional classes associated to the blow ups for €. Let

¢ = PD(L), let e; = PD(E;), and let e; = PD(E;). By §3.1 we know that
the cohomology class of wy is given by

m

[wi] = bl — Z(’I“ cay)e; — Z viej; —err(9),
j=1

i=1

where err(d) denotes the error term coming from the ¢; parameters in the
iterated blowup construction, and limits to 0 as the §; do.

To show that a symplectic embedding (4.11) exists, we will show that
there is a symplectic embedding

Coy sy, 5 Coryiy, = (CPHE(m + )TP?, ),

Syt
7Q1

for some symplectic form w, so that we can appeal to Proposition 3.1. The
intersection matrix for the configuration Cor b U Cay by 18 the same as
1
the intersection matrix for S. Our strategy is then to find a symplectic
form wo, different from wq, that restricts to .S as a nondegenerate form with
the property that the spheres in S have the same areas as the spheres in
CQ’lv‘SQ’l Ll CQ,276Q’2 .
Step 3. Consider the rational homology class

m n
A =bL—Za;Ei Eb;E],
i=1 j=1

and choose a positive integer k such that kA is integral. We want to apply
Proposition 4.1 to kA on the manifold M = (CP?#(m + n)CP2,w), for
sufficiently large integer k. To do this, we have to check that the four
conditions in the assumptions of Proposition 4.1 are satisfied.

The conditions in (4.3) are satisfied for sufficiently large k, so by Propo-
sition 4.3 we can assume that the manifold M has nonzero Gromov invariant
in class kA. The condition k%(A - A) > 0 holds because of the existence of
the embedding (4.8), since symplectic embeddings have to preserve volume.

To see that the second condition in Proposition 4.3 holds, let £ be an
exceptional class. Then by a result of Li-Li [19], F is an exceptional class
for any symplectic form on CP?#(m +n)CP2. In particular, the symplectic
form w that comes from blowing up along the ball packing (4.8) has positive
pairing with £, which implies that k- A does as well.

Finally, we can see that kA intersects any sphere in & nonnegatively as
follows. First, let S; be an element of CAQ/2 oy Then the homology class [.S;]
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of S; is in the span of L, E1, ..., Ep, so
A-[Si] = (bL = Y V3E;) - [Si].
j=1
Since [w1] - S; > 0, we have
(bL — Y V3E;) - [Si] — err(8) - [Si] > 0. (4.12)
j=1

We can choose the §; in the blow up construction as small as we would like,
and the relation (4.12) remains true. Hence, since err(d) goes to 0 as the ¢;
do, we have A - [S;] = 0 by continuity.

The case where S; is an element of CQ/I o is analogous. In this case,

[S;] is in the span of Ey, ..., E,,. Hence
A-[Si] = (= Y] aiEy) - [Si].
i=1

Now choose R such that Q] < R -int(), and blow up to get a symplectic
form on CP?#(m + n)CP2. This form pairs positively with [S;], so we can
repeat the argument from the previous paragraph to conclude that A-[S;] =
0 in this case as well.

Step 4. By the previous step, we are now justified in applying Propo-
sition 4.1. For any s > 0, this gives a symplectic form w; s in cohomology
class

[wl,s] = [wl] + sk - PD[A]

that is nondegenerate along S. Now consider the symplectic form ﬁwlys.
We have

1 & - r+ sk 1
J=b0—Nte;—Nd, - 5).
T3 sk te] ]Zl i€ ;“Z<1+sk>e T3 50

By choosing k sufficiently large, this gives an embedding

CT-Q/DSTAQ/ H CQ/Q,(SQ/ - (CP2#(m + H)CP2,W>
1 2

for r < 1 arbitrarily close to 1, and appropriate choice of ST,Q/I . Hence, by
Proposition 3.1, there is a symplectic embedding

X, — Xay,
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hence by Corollary 1.6 a symplectic embedding

Step 5. By combining (4.9), (4.10), and (4.13), we therefore have an

embedding
1

2
for any A > 1. Hence, by corollary 1.6, there exists an embedding

XQ1 - XQQ?

int(Xgl) — XQ2,

which must necessarily have image in the interior of Xq,. This completes
the proof of the theorem.
O]

Remark 4.6. It is a very interesting problem to try to understand embed-
dings of other kinds of toric domains. For example, one can ask under what
conditions on (a, b, ¢) there exists a symplectic embedding

P(a,b) — B%(c). (4.14)

It does not seem possible to answer this question using only the methods in
this paper. For studying embeddings as in (4.14) in a systematic way using
something like the method we develop here, a first step would be to find an
analogue of Proposition 3.1 for embeddings with domain a polydisc, such
that there exists a natural symplectic embedding of the resulting chain of
spheres up to differences in symplectic areas. The method in §3.2 can not
be used to do this.

It would be valuable to explore whether any scheme at all like what
is done in this paper could be used to study (4.14), or to study similar
problems. Certainly new ideas would be needed for this. It is important
to warn though that there are definitely differences between embeddings
of concave toric domains into convex ones, and embedding problems like
(4.14). For one thing, as has been already pointed out, ECH capacities
do not always give a sharp obstruction to (4.14). Also, by Proposition 1.5,
symplectic embeddings of concave toric domains into convex ones are unique
up to isotopy when they exist, which is known not to be true for certain
problems like (4.14). There are natural symplectic packings of polydiscs by
balls, and one could hope for some generalizations of the weight sequence
and Theorem 1.2 along these lines. However, this looks problematic as well.
For example, the polydisc P(1,2) has a natural decomposition into four
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disjoint B*(1), but it is not true that an embedding of L} B%(1) implies
the existence of an embedding P(1,2) since the former domain embeds into
B*(2) but as stated in the introduction the domain P(1,2) does not.

4.4 Examples
We now present several illustrative examples.

Example 4.7. Weight sequences are not unique. Let {2 be the rectangle
with vertices (0,0),(1,0),(0,1) and (1,1), and let ' be the triangle with
vertices (0,0), (2,0) and (0,1). Then X is a polydisk and X, is an ellipsoid.
Both © and Q' are convex (we could also regard Q' as concave, although for
this example we do not want to), and the weight sequence for both is given
by (2,1,1); in particular, both have the same weight sequence. This shows
that weight sequences are not unique. Also, by Theorem 2.1, a concave
domain embeds into Xgq if and only if it embeds into X¢q/. This generalizes
a result of Frenkel and Mueller [10, Cor. 1.5], which proves this when the
domain is an ellipsoid (our proof is also different from theirs).

Example 4.8. Constraints on weight sequences? Let (ao,...,a,) be any
finite sequence of nonincreasing real numbers. We now explain why we can
always construct a concave toric domain with weight sequence (ag, ..., ay,).
This concave domain will have the property that at each step in the in-
ductive definition of the weight sequence, the domain €, from §2 is empty
(we will call such a domain short). By induction, we can assume that we
can construct a short rational concave domain {2y with weight sequence
(a1,...,an). Now, consider the triangle A(ag) with vertices (0,0), (ap,0)
and (0, ap). Multiply Qo by the matrix ({ ') and then translate the result
by (ao,0). Let £ be formed by taking the union of this region with A(ag).
Then by construction €2 is a short concave domain with weight sequence
(ag, - . .,ay). Thus, any possible ball packing problem of a ball can arise by
applying Theorem 2.1. This is to be compared with the case of embedding
an ellipsoid into a ball. For example, it is shown in [26, Lem. 1.2.6] that if
a = p/q is rational, then the weights (ai,...,ay) of E(1,a) are required to

satisfy
m m
1
Zalz:a, Zaiza—f-l—f.
i=1 i=1 q

Example 4.9. Billiards. Another simple example of a symplectic four-
manifold is the Lagrangian bidisk

Pri={(p1,q1,p2,02) eR* | pT +p3 < 1,¢7 +¢5 < 1}.
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The domain Py, is the state space for a circular billiard table, and is of
interest in dynamics. After the first version of this paper appeared, Ramos
[28] showed that the interior of Py, is in fact symplectomorphic to the interior
of a concave toric domain. Thus, Theorem 1.2 can be used to produce
embeddings of int(Pr) into many targets. Ramos used Theorem 1.2 to
produce optimal embeddings of int(Py,) into balls and ellipsoids, for example
he showed that there is a symplectic embedding

P, — B*(3/3)

and no embedding into a smaller ball exists, answering a question of Ostro-
ver.

Ramos’ argument involves producing a toric action on subsets of P, and
examining the moment image. As mentioned in Example 1.3, convex toric
domains naturally arise from toric actions on closed symplectic manifolds,
and it would be interesting to look for situations as in the case of Py, where
concave toric domains naturally arise from toric actions on noncompact sets.

Example 4.10. Flezibility. For convex toric domains Xq, determining the
set of a such that there exists a symplectic embedding

int(E(1,a)) — ﬁ - int(Xq) (4.15)

is often subtle. Here, by vol(Xq) we mean twice the area of §2; the equation
(4.15) then implies that the ellipsoid fills all of the volume of the target, so we
call such an embedding a full filling. For example, let T be the trapezoid with
vertices (0,0),(0,1),(1,1) and (2,0); this is the moment polytope for the
first Hirzebruch surface. The weight sequence of X7 is (2;1). By combining
Theorem 2.1 with the algorithm from [2, §2.3], there exists a symplectic
embedding
E(1,3-(49/30)%) — 49/30 - int(X7),

in particular for a = 3-(49/30)% ~ 8.0033 a full filling of int(X7) as in (4.15)
exists.

However, for 8 < a < 3-(49/30)2, no such full filling exists. We can
see this as follows. First, as we explain in the appendix, we can compute
the ECH capacities of X7 using Theorem A.1. We can also compute the
ECH capacities of E(a,b) by the formula we review in §5.1, see (5.1). In
particular, we have

cirs5(X7) =30,  ci175(E(1,8)) = 49,
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€,

Figure 4.1: The target for Example 4.11. We have drawn the canonical
decomposition given by the weight sequence (remember that the weight
sequence for )y gives a decomposition of the complement of s in a ball).
The upper boundary of the inner approximation of 2, is also shown.

so by the Monotonicity Axiom for ECH capacities (1.1) and the Scaling
Axiom (5.3), if for a = 8 there exists a symplectic embedding

int(E(1,a)) — X int(X7)

then we must have A > 49/30. In particular, if a > 8, then the same con-
straint on A must hold, so for 8 < a < 3-(49/30)? we can not have a full
filling, as claimed.

Example 4.11. A sample calculation. We now work through a more ex-
tended example in detail, see Figure 4.1.
Let €2 be the domain whose upper boundary has vertices

(0,10/3),(2/3,4/3),(4/3,2/3),(7/3,0),

and let 29 be the domain whose upper boundary has vertices

(0,1),(1,2),(5,0).

Then the weight expansion of € is (2,2/3,2/3,1/3,1/3) and the weight
expansion of g is (5,3,2, 1), see Figure 4.1.

By Theorem 2.1, to see if int(Xq, ) embeds into int(Xq, ), it is equivalent
to see if there is a ball packing

int (B(2/3) L B(2/3) U B(2) L B(1/3) U B(1/3) L B(3) U B(2) L B(1)) — B(5).

(4.16)
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One can check, e.g. by applying the algorithm from [2, §2.3], that in
fact such a ball packing exists. Hence, there is a symplectic embedding
int(Xq,) — int(Xq,). In fact, this embedding is optimal (e.g. by [2, §2.3]
again applied to (4.16)), in the sense that no larger scaling of int(Xgq,)
embeds into int(Xgq,).

To illustrate the concepts from the previous sections, note that there
are five spheres in the chain of spheres corresponding to the blow up of
r - {21. Each sphere corresponds to a blow up, and if we label these spheres
in the order that they appear as edges of the outer approximation (with
the first sphere the left most edge), and label the blow ups they correspond
to accordingly, then the spheres, from left to right, have homology classes
El,EQ - El,Eg - E2 - E4 - E5,E4 and E5 - E4.

There are four spheres in the chain of spheres corresponding to the blow
up of Q9 (including the sphere corresponding to the line at infinity). If we
label these spheres and the blowups with the same ordering convention as
above, then they have homology classes El, EQ—EI—E37 Eg, and L—Eg—@g.

The cohomology class of the symplectic form on the blow up is given in
this notation by

[wi] = 5L — (2/3)re1r — (2/3)rea — 2res
— (1/3)req — (1/3)res

— €] — 3ey — 2e3

5 3
— Y erri(Sy)e; — Y err;(82)€;. (4.17)
i=1 j=1

5 ECH capacities give sharp obstructions to em-
beddings of concave domains into convex ones

In this section we prove Theorem 1.2. We will first review the definition of
ECH capacities in the cases that we need. We will also review some formal
properties that will be used in the proof.

5.1 Embedded contact homology

Let Y be a closed oriented three-manifold. A contact formon Y is a one-form
A satisfying
AAdA>0.
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A contact form determines a canonical vector field R by the equations
AMR) =1, dA(R,:)=0.

The vector field R is called the Reeb vector field, and the closed orbits of R,
called Reeb orbits, are of considerable interest. A contact form A is called
nondegenerate if all Reeb orbits for A are cut out transversally, see [16, §1.3]
for the precise definition.

Let (Y, A) be a closed three-manifold with nondegenerate contact form.
The embedded contact homology of the pair (Y, \), denoted ECH (Y, \), is
the homology of a chain complex ECC, (Y, A). The chain complex ECC (Y, \)
is freely generated over Z/27 by finite orbit sets

a = {(vi,mi)},

where the v; are distinct embedded Reeb orbits and the m; are positive
integers, with the constraint that m; = 1 whenever ~; is hyperbolic. (We
could also define the chain complex over Z, but for the applications in this
paper we do not need this.) The chain complex differential d counts “ECH
index 1”7 J-holomorphic curves in R x Y, for a generic compatible almost
complex structure J. The ECH index induces a grading = on EC'C such that
the differential decreases the grading by 1. Taubes has shown that there is
a canonical isomorphism

ECH.(Y,\) =~ HM " (Y),

where H M denotes the Seiberg- Witten Floer cohomology defined by Kronheimer-
Mrowka in [17]. In particular, the homology EC H (Y, \) depends neither on
the choice of almost complex structure .J, nor on A, and so we sometimes
denote it ECH(Y'). For more details about the above, see [16].

Reeb orbits v have an action A(y) = Sv)‘ which we can extend to a
filtration on ECH. Specifically, if o = {(7;,m;)} is an orbit set, define the

action of o
Ala) = Zmzf A,
7 v

and let ECCY(Y,)\) denote the subspace generated by orbit sets a with
A(a) < L. The differential restricts to ECCL, so the homology ECH (Y, \)
is well-defined and there is an inclusion induced map ECH®(Y,\) — ECH(Y).
If o is a nonzero class in EC H, we can define the action required to represent
it by

¢o(N) := inf{L | 0 € Im (ECH"(Y,\) > ECH(Y)) }.
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The number ¢, (A) is called the spectral invariant associated to 0. When A is
degenerate, we can still define ¢, () by taking the limit of ¢, (\,) as A, = A
in C°) see [14].

5.2 ECH capacities

We would like to use EC'H to define symplectic capacities. This is most
natural when (X,w) is a symplectic 4-manifold with boundary, such that
w = dX and M|gx is a contact form. When 0X is oriented positively with
respect to w?, we call such an (X,w) a Liouville domain. For example, any
concave or convex toric domain is a Liouville domain.

In our case, where X is a concave or convex toric domain, 0X = S3. The
embedded contact homology of S? has a canonical Z grading in this case,
and ECH,(S?) is given by

ECHo,(S*)or = 2/27,k =0,  ECH,(S®) = 0, otherwise,

as explained in [16]. In particular, for each nonnegative integer k, there are
canonical nonzero classes o in grading 2k. If w is concave or convex, we
now define the k** ECH capacity

ck(X,w) 1= co, (N),

where )\ is the restriction of the standard one-form Agq = % Di(@idy; —yida;)
on R* to 0X. One can modify this definition to define ECH capacities for
any Liouville domain, and in fact ECH capacities can be defined for any
symplectic 4-manifold, see [14].

Example 5.1. The ECH capacities of the ellipsoid were computed in [14].
The k" ECH capacity of the ellipsoid E(a, b) is the (k+1)% smallest element
in the matrix

(ma + nb)(m,n)EZZQXZZQ‘ (51)

For example, the ECH capacities of the ball F(1,1) start with
0,1,1,2,2,2,3,3,3,3,....

We will give a formula for the ECH capacities of convex domains in terms
of ECH capacities of balls in Theorem A.1.

As mentioned in the introduction, the ECH capacities satisfy the key
Monotonicity Property (1.1). To state another property that they satisfy,
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recall the sequence summation operation from [14], defined for sequences S
and T indexed starting at k = 0 by

(S#T)y. = sup; (S + Tj).

Here, the notation A; denotes the i*” term of the sequence A. We can now
state the Disjoint Union axiom [14] for the sequence of ECH capacities cgom,
which says that for Liouville domains X7, Xo,

cpon(Xo, | [ Xa,) = ceon(Xa,)#cncn(Xa,). (5.2)

Another useful axiom is the Scaling Axiom, also proved in [14], which says
that
Ck(X?T'w) :T'Ck(X?w)a (53)

for any positive real number 7.

5.3 Sharpness for the ball packing problem implies sharpness
for ECH capacities

We now explain the proof of Theorem 1.2. The key point is that it was
shown in [14] that ECH capacities are known to give sharp obstructions to
symplectic ball packing problems.

Proof of Theorem 1.2. Let 1 be concave and 25 convex. We need to show
that int(Xq, ) embeds into int(Xgq, ) if and only if ¢k (int(Xq, )) < cx(int(Xq,))
for all k. The fact that a symplectic embedding

int(Xgl) — il’lt(XQQ)

implies that
ck(int(Xq,)) < ex(int(Xgq,)) (5.4)

for all k follows from the Monotonicity property (1.1).
Step 1. We first prove the converse assuming that €2; and €29 are rational.
By the Monotonicity Axiom (1.1), the Disjoint Union property (5.2),
and the proof of the “only if” direction of Theorem 2.1, we know that

(cpcn(int(Xo,))#epon (int(B(Q2))))r < cr(B())

for all k. We also know that for any k,

ck(int(B(21))) < ex(int(Xq,)).
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Since sequence sum against a fixed sequence respects inequalities, we can
combine (5.4) with the above inequalities to find that

cr(int(B(Q1)) L int(B(Q2))) < cx(B(b)) (5.5)

for all k. It is known that ECH capacities give sharp obstructions to all
(open) ball packings of a ball, see e.g. [14]. Hence, (5.5) implies that there
exists a symplectic embedding

int(B(1)) wint(B(Qs)) — B(b).
Hence by Theorem 2.1, there exists a symplectic embedding
int(XQI) — int(ng),

hence the theorem in the rational case.

Step 2. We now deduce Theorem 1.2 in general by using the result from
the previous step.

Given €2 concave and {25 convex, for each A > 1 we can find a rational
concave set ] and a rational convex set Qf such that

%Ql - mt(Q’l) - Ql,

and

QQ C Hlt(Qé) C )\QQ

By combining the above inclusions with (1.1) and (5.4), it follows from the
previous step that there is a symplectic embedding

Hence, by again applying the above inclusions, there is a symplectic embed-
ding
1
22
By letting A tend to 1 and applying Corollary 1.6, we therefore get a sym-
plectic embedding

- Xa, — Xaq,.

il’lt(XQl) — XQQ,

which must necessarily have image in the interior of Xgq,.
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A Appendix (by Keon Choi and Daniel Cristofaro-
Gardiner): The geometric meaning of ECH ca-
pacities of convex domains

A.1 The main theorem

We assume below that the reader is familiar with the definitions and notation
from the body of this paper. There, the second author showed that ECH
capacities give a sharp obstruction to embedding any concave toric domain
into a convex one. The basic idea of the proof was to show that a concave
domain embeds into a convex one if and only if it is possible to symplectically
embed a certain collection of balls into another ball. This suggests that
there should be a close relationship between the ECH capacities of concave
or convex toric domains, and the ECH capacities of balls.

In [3], the authors and Frenkel, Hutchings and Ramos showed that ECH
capacities of any concave toric domain are given by the ECH capacities of
the disjoint union of the balls determined by the weight sequence of the
domain, see Theorem A.5 for the precise statement. The purpose of this
appendix is to prove a similar formula for convex domains.

To state our formula, we recall the sequence subtraction operation that
is implicit in [14] and was first explicitly defined in [13]. This is given for
nondecreasing sequences S and 7', indexed starting at 0 and with 7" < S, by

(S =Ty := inf>0 Sy — Tt (A1)
(Here, the notation 7' < S means that T; < S; for every index i.) The
operation # and — are related by the inequalities
(S—T)#T < S < (S#T)—T. (A.2)
For our purposes, the sequence subtraction operation is significant be-
cause of the following:

Theorem A.l1. Let Xq be a convex toric domain, let b be the head of the
weight expansion for Q, and let b; be the it" term in the negative weight
expansion for Q. Then

CECH(XQ) = CECH(B(b)) — CECH(L[ B(bi)). (A.3)

Note that it follows from the Monotonicity and Scaling axioms that
ck(Xq) = ¢ (int(Xgq)) for any convex toric domain Xq. Note also that even
when () is not rational, the above formula still makes sense, see [3, Rmk.
1.6]. For the formula for the ECH capacities of a ball, see Example 5.1.
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Remark A.2. If T'< S, and
lim; 0 S; — T; = +0,

write T' < S. If T < S, then we are justified in replacing the infimum in
(A.1) with a minimum. When X; and Xy are Liouville domains with all
ECH capacities finite, and T' = cgcopg(X7) and S = cpop(X2) are sequences
of ECH capacities, we have T' < S whenever vol(X;) < vol(X2). This follows
from [8, Thm. 1.1].

We can regard Theorem A.1l as expressing a fundamental limitation of
the strength of ECH capacities of convex domains. For example, we have:

Corollary A.3. Let ) be convex and let X be any Liouville domain with
all ECH capacities finite. Let b be the head of the weight expansion for €,
and let b; be the i term in the negative weight expansion for Q. If we have

(X b (L[ B(bi))) < cx(B(b)) (A.4)

for all k, then we must have

en(X) < ep(Xa) (A.5)
for all k.
Proof. By combining the Disjoint Union axiom (5.2) and (A.4), we have

CECH(X)#CECH(H B(b;)) < cecu(B(b)).

Now subtract cpcu ([ [; B(b;)) from both sides of this equation and apply
(A.2) to get
cpon(X) < cpon(B(b)) — caen(] [ B(®).
Now apply Theorem A.1 to get (A.5).
O

Remark A.4. The analogue of Theorem A.1 was proved in the concave
case in [3]. There, the authors show:

Theorem A.5. [3, Thm. 1.}]
Let Q be concave, and let a; be the i*" weight of Q. Then

cr(Xa) = cr(] [ Bla). (A.6)
The equation (A.6) will be used in the proof of Theorem A.1.
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A.2 Lattice points and ()-lengths

The ECH capacities of concave and convex domains are related to certain
lattice point counts. We now introduce the terms we need to make this
precise.

We first define the upper boundaries of the regions we need to consider.

Definition A.6. Let A : [0,¢] — R? for some ¢ > 0 be a polygonal path
in the plane, with vertices at lattice points. Assume that the tangent A’ is
nonzero on [0,¢]\{0 = ¢y < -+ < ¢, = ¢}, where the A(¢;) are the vertices
of A. In addition, for any nonzero vector v € R?, let §(v) be the number
0 € [0,27) so that v is a positive multiple of (sin#, cos ).

e An edge of A is the displacement vector between consecutive vertices
of A.

o A is a lattice path if its vertices are lattice points and A(0) = (0,y(A))
and A(c) = (z(A),0) for nonnegative integers z(A) and y(A).

e A is concave if §(A’) is nonincreasing and takes values in (7/2, 7).

e A is convez if §(A’) is nondecreasing and takes values in (0, 37/2).

The paths A have an Q-length, defined by the domain €2, which will also
be important.

Definition A.7. Let X be a convex toric domain and A a convex lattice
path. If v is any vector in R?, let po,, be a point on the boundary of {2 such
that ) lies entirely in the “right half-plane” of the line through pq , in the
direction v. More precisely, for any p € (), we have

(p 7pQ,V) Xxvz=0 (A7)
where x denotes the cross product. Define
lo(v) = v X pov, (A.8)

and if A is a convex lattice path, define

fo(d)= Y talv). (4.9)

veEdges(A)

If Xq is a concave toric domain and A is a concave lattice path, fq(A)
is defined by (A.8) and (A.9), where pg, is a point on the boundary of
Q° 1= [0,00)2\Q so that Q¢ lies entirely on the “left half-plane” of the line
through pq ., in the direction v.

34



We will also want to count lattice points in regions bounded by A. We
now make this precise.

Definition A.8. If A is a convex lattice path, let EQ(A) denote the count
of lattice points in the region enclosed by A and the axes, including all the
lattice points on the boundary. If A is a concave lattice path, let E(A) denote
the number of lattice points in the region enclosed by A and the axes, not
including lattice points on A itself.

Example A.9. Using this terminology, we can state an alternative formula
for the ECH capacities of concave toric domains. Namely, we have:

Theorem A.10. [3, Thm. 1.21]
Let Q be concave. Then

cx(Xq) = max{lo(A)|L(A) = K}, (A.10)
where the maximum runs over all concave lattice paths.
We will also use this fact in the proof.

Remark A.11. When (2 is convex, {q is in fact a (non-symmetric) norm:
it satisfies the scaling axiom lq(c - v) = ¢ lo(v) whenever ¢ > 0, and it
satisfies the triangle inequality

lo(v+ w) < Llo(v) + lo(w). (A.11)
To see why (A.11) holds, for a fixed v € R? consider the function
rT—ov-x

on R?. This is maximized over § on €, at points = at which v is normal to
Q and pointing outward. (When 0f is not smooth, we consider any vector v
such that (A.7) holds a tangent vector, and we consider any vector normal
to a tangent vector a normal vector.) It follows that x — v x x is maximized
at the point pg , from Definition A.6. We therefore have

KQ(U + ’lU) = (U + IU) X PO v+w S U X Py +w X P w,

hence (A.11).
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A.3 ECH capacities of convex domains
We can now give the proof of the main theorem of this appendix.

Proof of Theorem A.1. Recall from §2 that the first step of the weight ex-
pansion for Xq determines regions €2, and Q3 such that Xq, is a B(b)
and Xgq, and Xq, are concave toric domains. For a given k > 0, we claim a
series of inequalities

ar(Xo) < min {o, (Xa,) —a([ [ Bo:))

= kl—l?gli—rligzk{ch (XQI) — Cky (ng) — Ckg (XQ?,)}

min{lo(A) | £(A) = & + 1) (A.12)

which proves the theorem. (We are justified in writing a minimum rather
than an infimum throughout, by Remark A.2.) Here and throughout the
proof, ki, ko, ks and | denote nonnegative integers. We now explain the
proofs of the above inequalities.
Step 1. By the definition of the weight expansion, there is a symplectic
embedding
Xou (] [int(B(b;)) — B(b).

)

It then follows from the Monotonicity axiom (1.1) and the Disjoint Union
property (5.2) that for any k; and [

cry (Xa) + Cz(]_I B(bi)) < ¢y +1(B(D)).

This proves the first inequality of (A.12).
Step 2. Since the weights of Q9 and Q3 collectively correspond to the
negative weights of €2, we have

L {00 (Xo) + e (X)) = s B (B(0) = [ [ 502)

by (A.6). This proves the equality on the second line of (A.12).

Step 3. To prove the third inequality of (A.12), given any convex lattice
path A with EA(A) — 1= kg = k, we show how to choose k1, ks and ks with
k1 — ko — k3 = k so that

la(A) = e, (Xa,) — ok, (Xa,) — ey (Xay)- (A.13)
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Write A as a concatenation AaA1A3z of paths so that O(A%), O(A}) and O(A%)
take values in (0,37/4), {37/4} and (3w/4,37/2), respectively. As in the
definition of the weight expansion, Ay and Aj are affine equivalent to concave
lattice paths Ay and Ag, respectively. Also, let A1 denote the linear path
from (0,a) to (a,0) extending A;. We take ky = Z(Ag), ks = Z(Ag) and
ki =k + ko + k3. Observe that £(A1) — 1 = ko + ko + ks = ki.

By (5.1) and the fact that the ECH capacities of any symplectic manifold
are nondecreasing, we then have

€y (A1) = Chothaths (B(D)) = ci, (B(D))-

By (A.10),
o, (A2) < ey (Xay)
and

693 (A3) < Cpy (XQs)
Moreover, by the argument in Step 4 of [3, §2.1],

la(A) = Lo, (A1) — Loy (A2) — Loy (As).

We substitute the previously obtained bounds into the above to obtain
(A.13).

Step 4. Consider a dilation 2 of by a factor A < 1 about an interior
point of . Then, Xg is a disk bundle over T2, and by [14, Thm. 1.11], there
is a closed convex path A with corners on lattice points so that /3(]\) =k+1
and EQ(A) = (Q). Here, E([\) denotes the number of lattice points in
the region enclosed by A, including the ones on the boundary, and EQ(A) is
defined by (A.9) as in the case of a convex domain.

Consider the part A of the path A consisting only of edges with 0 <
0(v) < 3m/2. Then A is a convex lattice path (after translation if necessary)

with £(A) = k+1 and £5(A) = Mq(A). Hence, by the Monotonicity axiom,
fa(A) = ex(@)/A < cx(2)/A
Taking the limit as A — 1 proves the last inequality. ]

We close with the following analogue of the formula from [14, Thm.
1.11].

Corollary A.12. Let Q be a convex toric domain. Then
ce(Xa) = min{lo(A)|L(A) = k + 1},

where the minimum is over convex lattice paths A.
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Proof. As part of the proof of Theorem A.1, we saw that this formula holds
when the minimum is taken over A with E(A) > k + 1. Thus, to prove the
theorem, it suffices to show that given any lattice path A, there is another
lattice path A’ with

LIN)=L(A) =1,  fo(N) < lo(A). (A.14)

We can define such a path by using an analogue of the “corner rounding”
operation from [15]: specifically, given A we define A’ by choosing any vertex
other than the origin, removing the lattice point corresponding to that edge,
and taking the convex hull of the remaining lattice points. This satisfies the
first equation in (A.14) by definition, and it satisfies the second equality by
the triangle inequality (A.11).

O
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