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Abstract—As a critical component of mobile crowd sensing
(MCS), task allocation has been extensively investigated. In
general, it addresses how to wisely distribute sensing tasks among
sensing workers. Yet, the security threat involved therein has
hardly been studied. In an ideal scenario, workers are trusted
to report their accurate parameters to the platform, so that task
allocation optimization problems can be correctly formulated and
calculated. Nonetheless, malicious workers can explore illegal
benefit gain by simply uploading falsified parameters. Even
worse, such an attack is difficult to detect. In this paper, we
start from a simplified case in which workers report erroneous
objective functions to gain extra utility. To defend this attack,
we novelly leverage incentive mechanism design. Workers are
motivated to report desirable “indicators”, based on which the
platform can still obtain the accurate task allocation profile
even without workers’ genuine parameters. The effectiveness and
efficiency of our mechanism is validated through both formal
analysis and extensive simulation results.

Index Terms—Mobile crowd sensing, task allocation, param-
eter manipulation attack, incentive design

I. INTRODUCTION

Mobile crowd sensing (MCS) arises as a new sensing
paradigm by exploring a plethora of embedded multi-modal
sensors in today’s ubiquitous mobile devices. By fusing and
analyzing their sensing data, MCS has potential to accelerate
the maturity of smart health caring, environment monitoring,
traffic surveillance, social event observation, etc. An MCS sys-
tem mainly consists of three types of entities, task requestors,
sensing workers, and the platform. A typical MCS workflow
can be divided into three stages: task allocation, task sensing
and data aggregation/analysis.

For the stage of task allocation, its main objective is to
distribute sensing tasks among workers such that sensing
resources of the entire system are efficiently utilized. For this
purpose, prevalent approaches are to formulate and solve the
task allocation optimization problems at the platform, taking
into account various optimization factors from all entities,
e.g., [1]–[3]. Typically, workers are required to explicitly
specify their parameters, including task preferences, computa-
tion capacities, affordable travel distances, cost functions. The
accuracy of task allocation thus directly relies on the quality of
these reported parameters. As pointed out later in this paper,
malicious workers can easily manipulate task allocation of

MCS by simply uploading falsified parameters. In this work,
we name this type of attack as the parameter manipulation
attack. Since these parameters are personal data owned by
each worker, there is lack of evidence at the platform to decide
their accuracy. As a result, parameter manipulation attacks will
be difficult to detect.

While there have been some existing works tackling se-
curity issues in MCS, most of them focus on the stage of
data analysis. Since MCS allows any voluntary participant
to contribute data, it is vulnerable to erroneous or even
malicious data injection. Great efforts have been devoted to
the development of a so-called “reputation system” [4]–[9];
they initially establish reputation scores of workers based on
the quality of their contributions, and later on use these scores
to eliminate reports from less reputable workers.

Instead of tackling data trustworthy issues in the stage of
data analysis as the above works [4]–[9], in this paper, for
the first time, we target at the parameter manipulation attack
in the stage of task allocation in MCS. To defend against
it, our design goal is to enable the platform to find accurate
and optimal solutions to task allocation formulations, even
under the existence of malicious workers. As an initial work
on this topic, we plan to start from a simplified case: workers
report falsified objective function (parameters) while the rest
parameters, i.e., the ones in constraints, are unaltered. Since
the objective function is critical to task allocation and of
complex form, it can easily become the adversary’s target.
However, even under this simplified case, the scheme design
is not an easy task.

Since solving task allocation optimization problems alone
is already complicated in general, it is infeasible to refer
to computationally intensive cryptographic techniques for the
defense scheme design. Instead, we leverage the incentive
mechanism. Our scheme is built on top of an assumption that
all workers are rational and self-interest in a sense that they
launch an attack only to maximize their benefits achieved
during task sensing. Since workers are skeptical to report
genuine parameters for task allocation formulation, instead of
collecting them, our scheme asks each worker to submit its
tunable “indicator” of willingness for executing tasks. Then a
new task allocation formulation, based on collected indicators,
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is constructed, which is slightly different from the original
one. On the other hand, if the new problem’s optimal solution
is the same with that of the original one, the platform can
still derive the accurate task allocation profile via the new
problem. However, the challenge is how to make the optimal
solutions of these two distinguishing problems identical. As
pointed out later, it depends on indicator values chosen by
workers. Incentive mechanism design is thus applied to elicit
workers to offer “proper indicators” so as to achieve the goal.

We summarize the contributions of this work as follows.
• We address the parameter manipulation attack in the

stage of task allocation in MCS, where workers report
falsified parameters to for illegal beneficial gain. It is a
critical security issue in MCS, yet receives rare attention
so far.

• Instead of crypto primitives, we novelly apply the incen-
tive mechanism in our defense scheme development. It
guarantees that the platform can still find the accurate
task allocation solution, even under the existence of
malicious workers.

• We formally prove the security and convergence property
of the proposed scheme. A real-world dataset is applied
to evaluate the scheme performance.

II. RELATED WORK

Security issues in MCS. Among the existing works the one
that is closest to ours is [25]. It aims to thwart malicious be-
haviors in worker recruitment of crowdsourcing via the reverse
game theory. However, it assumes that the worker’s attack
statistics are available at the platform. Besides, it formulates
worker recruitment into a simple optimization problem, where
no constraint is involved. For the other existing works that ad-
dress security issues in MCS, such as [4], [5], [9], they mainly
target at the data analysis stage. As sensing data are reported
by workers, they can possibly be altered by malicious ones.
This raises the issue of data trustworthiness. Effective schemes
are proposed to either detect untrustworthy workers or avoid
their reports during data analysis. The research focuses on
how to evaluate trustworthiness of the shared data and how
to maintain the reputation of various workers. Realizing that
the collected data may include sensitive information regarding
their reporters, such as locations, daily commute, behavior
patterns and habits, the works [6]–[8] further guarantee data
privacy and/or worker anonymity in their reputation systems
design. As we aim to tackle the security issue in the stage
of task allocation, the corresponding approach will be quite
different.

Incentive mechanism design for MCS. To motivate mo-
bile users to participate in MCS, the incentive mechanism
is an effective approach [10]–[14]. Workers get paid by the
platform to compensate their cost in task sensing. To model
the interaction between the platform and workers as well as
among workers themselves, auction theory and game theory
are widely adopted. Different objectives are discussed, such
as maximizing social welfare [13], maximizing the platform’s

profit [10], minimizing social cost [14], minimizing privacy
loss [11], or minimizing the platform’s payment [12]. Al-
though these works also resort to incentive mechanisms, they
have nothing to do with resisting parameter manipulation
attacks.

III. PROBLEM STATEMENT

A. Background

The discussion of this work pertains to a standard MCS
system, which mainly consists of a platform, a set of
task requesters, and a set of participating sensing workers
U = {u1, · · · , ui, · · · , uM}, who communicate with the
platform via wireless connections, such as cellular networks
or Wi-Fi. The platform hosts a set of sensing tasks T =
{τ1, · · · , τj , · · · , τN} that are collected from their requesters.
Conducting sensing tasks are resource-consuming for workers.
Hence, to wisely utilize their resources, a task allocation
framework is needed to coordinate among workers until task
completion. Typically, optimization problems are formulated,
taking into account of constraints from sensing capabilities
and travel budget at workers, and sensing quality requirement
from sensing tasks. Without loss of generality, in this work
we consider a cost minimization problem1

P1 : min
xi

∑
i∈[1,M ]

Ci (xi)

s.t.
∑

j∈[1,N ]

xij ≤ ti, ∀i ∈ [1,M ] (1)

∑
i∈[1,M ]

θijxij ≥ Tj , ∀j ∈ [1, N ] (2)

∑
j∈[1,N ]

dij
wij (xij)

≤ Di, ∀i ∈ [1,M ](3)

xij ≥ 0, ∀i ∈ [1,M ] , ∀j ∈ [1, N ] . (4)

The decision variable xij (i ∈ [1, N ], j ∈ [1,M ]) stands for
the sensing time that worker ui is assigned for task τj and xi
is a vector xi = {xi1, xi2, · · · , xiN}. Ci(·) is ui’s component
in the cost function and can be of different meanings. For
example, in the case of minimizing the payments to workers
[1], [2], it is ui’s pricing function; in the case of minimizing
the overall travel distance [3], it stands for ui’s travel distance
given a specific set of allocated tasks xi. In a word, Ci(·)
is used to represent certain “burden” task sensing causes to
worker ui, and we aim to minimize the overall “burden” from
all workers. Following the prevalent setting, we let Ci(·) be
a convex function.

Denote by ti the maximum sensing time that ui can con-
tribute. Constraint (1) states that each worker’s total sensing
time for all tasks cannot surpass this limit. For a task τj ,
we denote by Tj its minimum sensing time requirement.
Constraint (2) says that the accumulated weighted sensing
time from all workers regarding τj should not be less than

1Our scheme also works for the maximization case with mild modification.
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Tj . Moreover, to carry out a task τj , ui has to travel for a
distance dij from its current location. Let Di be ui’s maximal
distance it is willing to travel. (3) says that each worker’s
total weighted travel distance should be no larger than Di.
wij(xij) is the weight and calculated by wij(xij) =

θij
xij

. A
larger weight wij(·) implies that a worker wi is more willing
to conduct task τj since it can contribute with higher quality
but cost shorter sensing time. The idea of (3) is taken from
[15]. Note that the formulation of P1 is not the contribution
of this work. Once the platform formulates P1, it can apply
its favorite algorithms to solve it. The solution of xij’s is the
final task allocation policy.

B. Adversary Model

In this work, we target at the parameter manipulation attack
in the stage of task allocation in MCS. The malicious workers
submit the falsified parameters, i.e., the cost functions in
this paper, to the platform to manipulate the task allocation
outcome, and thus receive illegal beneficial gain. As a result,
those from others, including benign workers and the platform,
may get harmed. Following a conventional approach, here we
leverage “utility” to measure a worker’s benefit received in
MCS. It is defined as Ui = Pi(xi)−Ci(xi), where xi is ui’s
allocated task set and Pi(xi) is its corresponding payment.

TABLE I
A TOY EXAMPLE.

Parameters
T1 = 3 t1 = 2 d11 = 150 θ11 = 0.7 D1 = 3000

t2 = 3 d21 = 100 θ21 = 0.8 D2 = 2000
Without attack

C1(x) = 0.1 · e0.7xij x∗11 = 3.8 U11 = 0.1
C2(x) = 0.1 · e0.8xij x∗21 = 0.4 U21 = 0.1

With attack
C′1(x) = 0.1 · e5xij x′11 = 0.9 U ′11 = 8.9
C2(x) = 0.1 · e0.8xij x′21 = 3.0 U ′21 = 0.1

We now use a toy example to better illustrate the parameter
manipulation attack. All the system parameters are provided in
Table I. Under the attack-free scenario, the allocated sensing
time to u1 and u2 is x∗11 = 3.8 and x∗12 = 0.4, respectively,
through optimally solving P1. Without loss of generality, we
set the payment Pi(xi) = Ci(xi)+0.1, i.e., each worker gets
paid by 0.1 more than its actual cost. Under this setting, we
calculate the utility of u1 and u2 as U11 = U21 = 0.1. Now,
if worker u1 is malicious and changes ρ11 in its cost function
to 5, then x′11 and x′21 become 0.9 and 3.0, respectively.
Accordingly, U ′11 turns to 8.9, which is significantly larger
than U11 (U ′21 stays at 0.1 unchanged). Thus, not only does the
parameter manipulation attack benefit malicious workers with
illegal gain, but also compromises interest of other entities,
i.e., the platform has to pay much more than it should.

In this work, malicious workers are modeled as rational
and self-interest. When launching a parameter manipulation
attack, a malicious worker chooses the strategy that brings
itself the greatest benefit. In another word, its objective is

solely to maximize its own utility. Therefore, it distinguishes
from the attacker who aims to sabotage system operations.
These more aggressive attackers are not the focus of this work.
It is worth noting that the rational and self-interest attacker is
a widely adopted attack model in game theoretical approaches
to tackling security problems, such as attack-defense analysis
[16] and security/dependability measurement [17].

IV. OUR PROPOSED SCHEME

A. KKT Conditions of P1

Before digging into details of the scheme, we first briefly
go through the KKT conditions of P1, which play a critical
role in the scheme design.

In P1 introduced in Section III-A, its objective and con-
straint functions are convex. Hence, it admits a unique optimal
solution that can be characterized using the necessary and
sufficient Karush-Kuhn-Tucker (KKT) conditions [18].

We first derive the Lagrangian of P1 as follows

L(λ, µ, ν, x) =
∑

i∈[1,M ]

Ci(xi) +
∑

i∈[1,M ]

λi · (
∑

j∈[1,N ]

xij − ti)

+
∑

j∈[1,N ]

µj(Tj −
∑

i∈[1,M ]

θijxij) +
∑

i∈[1,M ]

νi(
∑

j∈[1,N ]

dij
xij
θij
−Di)

where λ , {λi ≥ 0 : ∀i ∈ [1,M ]}, µ , {µj ≥ 0 : ∀j ∈
[1, N ]}, and ν , {νi ≥ 0 : ∀i ∈ [1,M ]} are the vectors
of Lagrange multipliers corresponding to constraints (1), (2),
and (3), respectively. The KKT conditions that produce the
optimal dual solution λ◦, µ◦ and ν◦, and the optimal primal
solution x◦ for P1 are given by the following set of equations
∀i ∈ [1,M ] , ∀j ∈ [1, N ],

∂Ci(xi
◦)

∂xij
= µ◦jθij −

ν◦i dij
θij

− λ◦i , (5)

λ◦i · (
∑

j∈[1,N ]

x◦ij − ti) = 0, (6)

µ◦j · (Tj −
∑

i∈[1,M ]

θijx
◦
ij) = 0, (7)

ν◦i · (
∑

j∈[1,N ]

dijx
◦
ij

θij
−Di) = 0, (8)

x◦ij , λ
◦
i , µ
◦
j , ν
◦
i ≥ 0. (9)

The KKT conditions work well when all workers honestly
report their genuine cost functions. However, the platform fails
to yield x◦ by solving (5)-(9) with any falsified C ′i(·) 6= Ci(·).

B. Scheme Overview

Our objective is to develop a defense scheme to enable
the platform to correctly find out x◦ even without the cor-
rect information of Ci(·). Since workers are suspicious to
report manipulated cost functions, rather than having each
of them report its cost function Ci(·), it is asked to submit
an “indicator” parameter, the willingness of this worker to
participate in a specific task. Then we construct a new task
allocation optimization problem P2 (to be presented soon) that
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takes “indicator” parameters as the coefficients of its objective
function, but shares identical constraints with P1. If, with a
carefully designed scheme, the optimal solution of P2 is the
same with that of P1, x◦, then we can bypass P1 to find x◦.
It means we no longer need to worry about falsified C ′i(·)’s.
However, the challenge is how to have the optimal solutions
of P1 and P2 identical. Apparently, it relies on the indicators
submitted by workers. Then the problem becomes how to
design a mechanism to elicit workers to offer proper indicators
so as to fulfill this goal. Note that malicious workers may still
report falsified indicators to manipulate the new problem P2’s
task allocation solution.

Inspired by the work [19], we adopt the incentive mecha-
nism to stimulate workers to submit proper indicators. The
platform pays workers according to their reported indica-
tors. Since (malicious) workers are rational, they strategically
report indicators to maximize their utility. Then, if indica-
tors which produce x◦, coincide with the ones which bring
worker’s maximal utility, then our objective achieves. To
summarize, the scheme needs to address two questions. First,
what are the values of “proper indicators”? Second, how to
elicit all workers to report their “proper indicators”? Next, we
are going to answer these two questions in the following two
subsections, respectively.

C. Determination of “Proper Indicators”

Instead of Ci(·), we have each worker ui submit an indica-
tor vector bi to the platform, where bi , {bi1, bi2, · · · , biN}
and bij is ui’s indicator value for task τj ∈ T . A lower
value of bij indicates that ui is more willing to execute τj ,
while a larger value indicates the less willingness ui has. As
mentioned above, malicious workers may still strategically
report their bi’s for illegal utility gain.

Upon receiving all bi’s, the platform formulates an alterna-
tive task allocation optimization problem (P2)

min
x

∑
i∈[1,M ]

∑
j∈[1,N ]

bij
2
x2ij , s.t. (1), (2), (3) and (4).

P2 shares the same set of constraints with P1, but differs in
its objective function; P2 minimizes the overall unwillingness
(or maximize the overall willingness), while P1 minimizes
an overall cost. Besides, P2’s objective function has a much
simpler form compared with that of P1.

Since P2 has a convex objective and constraint functions,
similarly, it admits a unique optimal solution as well. We write
the Lagrange of P2 as

L̃(λ, µ, ν, x) =
∑

i∈[1,M ]

∑
j∈[1,N ]

bij
2
x2ij +

∑
i∈[1,M ]

λi(
∑

j∈[1,N ]

xij − ti)

+
∑

j∈[1,N ]

µj(Tj −
∑

i∈[1,M ]

θijxij) +
∑

i∈[1,M ]

νi(
∑

j∈[1,N ]

dij
xij
θij
−Di)

and denote the optimal primal and dual solutions of P2 as
x∗ and λ∗, µ∗ and ν∗, respectively. Its corresponding KKT

conditions yield a set of equations,

x∗ij =
µ∗jθij −

ν∗
i dij
θij
− λ∗i

bij
, (10)

λ∗i · (
∑

j∈[1,N ]

x∗ij − ti) = 0, (11)

µ∗j · (Tj −
∑

i∈[1,M ]

θijx
∗
ij) = 0, (12)

ν∗i · (
∑

j∈[1,N ]

dijx
∗
ij

θij
−Di) = 0, (13)

x∗ij , λ
∗
i , µ
∗
j , ν
∗
i ≥ 0, (14)

where (11)-(14) are identical to (6)-(9) of P1, while (10)
differs from (5).

Our goal is to have x◦ , x∗, i.e., the optimal solution of P1

is identical to that of P2. Comparing equations (10)-(14) and
(5)-(9), we observe that if bijx∗ij =

∂Ci(x
∗
i )

∂xij
then the goal is

achieved. Or, equivalently, ui submits the following indicator
for each task τj

bij =
1

x∗ij
· ∂Ci (x∗i )

∂xij
. (15)

Up to now, we have determined exact values of proper indi-
cators bij’s. When workers submit their indicators following
(15), the platform can still correctly find out x◦ by formulating
and solving P2, even without the knowledge of workers’
original cost functions.

D. Elicitation of “Proper Indicators”
Now the remaining issue is how to induce workers to offer

indicators strictly following (15). This is where the incentive
mechanism plays; the platform carefully chooses its payment
to workers, so as to elicit them to offer the desirable indicators.

Since each worker is rational and self-interest in a sense
to always submit its indicator to maximize its own utility,
and thus ui determines its optimal indicator b∗i by solving the
following utility maximization problem (UMPi)

max
bi

Pi(xi)− Ci(xi)

s.t. bij ≥ 0, ∀j ∈ [1, N ] .

The unique optimal solution of the UMPi meets the following
optimality condition

∂Ci (xi)

∂xij
=

b2ij

λi +
νidij
θij
− µjθij

∂Pi (xi)

∂bij
, ∀j ∈ [1, N ] ,

(16)

where we utilize derivative ∂xij
∂bij

=
λi+

νidij
θij
−µjθij

b2ij
derived

from (10).
Jointly consider (5) and (16). In order to elicit workers to

submit desirable indicator (15), a feasible incentive mecha-
nism is to pay ui with

Pi(bi) =
∑

j∈[1,N ]

(λi +
νidij
θij
− µjθij)2

bij
, (17)
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where we express Pi (bi) as the function of ui’s indicator.
Alternatively, we can rewrite Pi (bi) as the function of ui’s
sensing time with the relation (10)

Pi(xi) =
∑

j∈[1,N ]

xij(µjθij − λi −
νidij
θij

), (18)

i.e., the payment to ui is proportional to its devoted sensing
time. (18) is intuitive; the more sensing time ui contributes,
the higher payment it receives. Till now, the second question
has been answered as well.

Remark I. One may ask rather than eliciting workers
to submit proper indicators, why not directly elicit them to
submit accurate cost functions? This is because the original
cost function (of P1) can be in an arbitrary form. It is ex-
tremely difficult to develop an effective incentive mechanism
to motivate workers to report the genuine cost functions when
their forms are unknown. With the introduction of indicators, a
new problem P2 is formulated. Due to its fixed and simplified
expression of the objective function, it makes the design
feasible.

Remark II. It is worth mentioning two relevant but to-
tally different research topics. The first one is to achieve
truthfulness (or called incentive compatibility) in auctions.
Its objective is to decide winners and their payment such
that their best strategy is to submit their true values/costs as
bids. The second one is to find out an employee’s true type
in a monopoly market, when such information is unknown
to the employer. Contract theory has been widely adopted;
incentives are provided to employees such that their utilities
are maximized when reporting true types. Differently, we do
not care about whether workers honestly submit their true cost
functions/types or not; instead, we aim to enable the platform
to derive accurate task allocation profile even without these
information.

E. Scheme Implementation

With the payment rule (17) or (18), each worker ui can
compute its optimal indicator by solving UMPi. Based on
collected indicators, the platform then optimally solves P2

for task allocation. However, UMPi and P2 are intertwined
with each other. On one hand, ui has to be aware of the task
allocation result xi to solve UMPi and derive its indicator.
On the other hand, xi is obtained by the platform via solving
P2, which takes workers’ indicators as inputs. Hence, there is
a need for an iterative operation that gradually adjusts results
of both P2 and UMPi to reach the optimum point.

With this in mind, Algorithm 1 outlines our final scheme.
The platform first initializes the primal variable x and dual
variables λ, µ and ν with their values satisfying KKT
conditions (11)-(14). For example, we can choose λ

(0)
i =

µ
(0)
j = ν

(0)
i = 0, with any positive value of x(0)ij .

Then the algorithm iteratively computes the primal and
dual solutions of P2 (at the platform) and indicators via
UMPi (at ui) until convergence. Specifically, the platform first

Algorithm 1 Our proposed scheme
Output: x∗ (x◦), Pi(x∗i ), ∀i ∈ [1,M ]

1: t← 0, conv flag ← 0;
2: Initialize x(0)ij , λ(0)i , µ(0)

j , ν(0)i , ∀i ∈ [1,M ] , j ∈ [1, N ];
3: while conv flag = 0 do
4: t← t+ 1;
5: The platform announces λ

(t)
i , µ

(t)
j , ν

(t)
i , ∀i ∈

[1,M ] , j ∈ [1, N ];
6: Each worker ui computes its optimal indicator b(t)i by

solving UMPi;
7: Each worker ui submits its indicator b(t)i to the plat-

form;
8: The platform computes the new x(t) by (10);
9: The platform uses gradient updates for dual variables:

λ
(t)
i =

λ(t−1)
i + s(t) · (

∑
j∈[1,N ]

x
(t−1)
ij − ti)

+

µ
(t)
j =

µ(t−1)
j + s(t) · (Tj −

∑
i∈[1,M ]

θijx
(t−1)
ij )

+

ν
(t)
i =

ν(t−1)
i + s(t) · (

∑
j∈[1,N ]

dijx
(t−1)
ij

θij
−Di)

+

∀i ∈ [1,M ] , j ∈ [1, N ];

10: if
∣∣∣∣ b(t)ij −b(t−1)

ij

b
(t−1)
ij

∣∣∣∣ < ε, ∀i ∈ [1,M ] , j ∈ [1, N ] then

11: conv flag ← 1;
12: end if
13: end while
14: x∗i (x◦i )← x

(t)
i , ∀i ∈ [1,M ];

15: The platform computes Pi (x∗i ) , ∀i ∈ [1,M ] , by (18).

announces dual solutions λ(t)i , µ(t)
j , ν(t)i of P2 (line 5). With

these values and the knowledge of Ci(·), ui calculates its
optimal indicator b(t)i by solving UMPi and submits it to the
platform (line 6-7). Then the platform obtains a new allocation
rule x(t) by (10) (line 8). It also updates dual solutions λ(t)i ,
µ
(t)
j and ν

(t)
i (∀i ∈ [1,M ], j ∈ [1, N ]) by using a gradient

descent method (line 9).
Note that (x)+ represents max{x, 0}. In the end, the plat-

form checks the termination criterion (line 10). When changes
of indicators for two consecutive iterations are sufficiently
small with ε ≥ 0, the iteration terminates. Otherwise, another
round of iteration is performed. Once convergence is reached,
the solution of x(t) is exactly the optimal solution x∗ and
thus x◦, i.e., the optimal solution to P1. Finally, the platform
determines the final payment Pi (x∗i ) for each worker with
(18) (line 15).

Theorem 1. (Convergence.) Algorithm 1 converges to the
optimal solution of P2 globally.

Proof: The formal proof is provided in Appendix A.
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Besides, it is also critical to show that our scheme pays
workers properly, without causing them negative utilities, as
otherwise workers will be discouraged from participating.

Proposition 1. (Non-negative Utility.) Each worker ui ∈ U
receives a nonnegative utility via our scheme, i.e.,

Pi (x∗i )− Ci (x∗i ) ≥ 0. (19)

Proof: The formal proof is provided in the technical
report [26].

V. ENHANCING THE CONVERGENCE SPEED

The effectiveness of our defense scheme is in trade of
extra interactions between workers and the platform (until
Algorithm 1 converges). As a result, calculation delay will be
caused in deriving the final task allocation profile. To tackle
this side effect, we plan to further accelerate the algorithm
convergence speed.

The value of s(t) plays a critical role in the convergence
speed of Algorithm 1. Basically, a large value implies a
large step size in each iteration toward the optimal solution.
However, it may cause oscillation in the algorithm. On the
other hand, a small s(t) may lead to extra iterations, and thus
a longer running time. Hence, in this section we propose to
enhance the convergence speed of Algorithm 1 via adaptive
selection of s(t) in each iteration. We adopt the backtracking
line search [21], an efficient online search method used in
unconstrained convex optimization. Its idea is to determine the
maximum step size to move along a given search direction to
find the optimal result. Since it operates over unconstrained
convex optimization problems, we first transfer P2 into an
unconstrained form. The Lagrange dual function of P2 is

g(λ, µ, ν) = inf
x
L̃ (λ, µ, ν, x)

=
∑

i∈[1,M ]

∑
j∈[1,N ]

[
θijf

2 + 2θijλif − 2θ2ijµjf + 2νidijf

2bijθij

]
−

∑
i∈[1,M ]

(λiti + νiDi) +
∑

j∈[1,N ]

µjTj ,

where f = µjθij − νidij
θij
− λi. According to the backtracking

line search, our objective is to find the optimal length to
maximize the above Lagrange dual function.

Algorithm 2 The selection of suitable s
Input: bi, ∆(λ, µ, ν), α, β
Output: s

1: s← 1
2: while g ((λ, µ, ν) + s∆(λ, µ, ν)) < g (λ, µ, ν) +α · s ·
∇g (λi, µj , νi)

T
∆(λ, µ, ν) do

3: s← βs.
4: end while
5: return s;

The inputs of Algorithm 2 include bi, the descending
direction ∆(λ, µ, ν) = (dλidt ,

dµj
dt ,

dνi
dt ) for g(λ, µ, ν), where
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Fig. 1. Task allocation outcome comparison under different scenarios, i.e.,
without attack, with attack, with attack but protected by our scheme.

λi, µj , νi ≥ 0 (i ∈ [1,M ], j ∈ [1, N ]), and two predefined
constants α and β. The output is the optimal line length s.
It starts with a rough estimate, i.e., s = 1 (line 1). Then we
iteratively adapt the step length (line 3) as long as the criterion
in line 2 holds, where ∇g (λi, µj , νi) represents the local gra-
dient of function g. Note that g ((λ, µ, ν) + s∆(λ, µ, ν)) =
g (λ, µ, ν) +α · s ·∇g (λi, µj , νi)

T
∆(λ, µ, ν) takes place at

the optimal point of g. Following the standard approach in the
backtracking line search, we set α ∈ (0, 0.5) and β ∈ (0, 1).

Once the suitable s is identified via Algorithm 2, it will be
used to update s(t) in each iteration of Algorithm 1.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performance of our scheme. The study is based on the Yelp
Dataset Challenge [22]. The data is sampled by Yelp from the
greater Phoenix, AZ metropolitan area from March 2005 to
January 2013. This dataset includes 11537 businesses, 229907
reviews by 229907 users, and 8282 check-in sets in the form
of separate JSON or SQL files. Specifically, our evaluation
selects a set of Yelp users as workers in the MCS system.
We then take the distance between two consecutive check-in
locations from the same user as the worker’s travel distance for
one task and the corresponding time interval in between as the
worker’s maximum sensing time it can contribute. Note that
this dataset has been widely used in many other crowd/social
sensing related research, such as [23], [24].

We assume that each worker ui holds its convex objective
function Ci (xi) = 0.1 ·

∑
j∈[1,N ] e

ρijxij where ρij is ran-
domly chosen from [0.5, 1]. For the sensing quality θij , it is
a random value from [0, 1]. Besides, we set the termination
condition ε = 10−5, i.e., the algorithm terminates if the gap
between two consecutive iterations is less than 10−5. Each
simulation result is the average over 20 trials.

Effectiveness of Our Scheme. We start from a small-scale
MCS with M = 2 workers and N = 2 tasks. Besides, u2
is assumed as the malicious worker to manipulate the task
allocation outcome. Performances of our scheme, in terms of
security and convergence property, have been examined.

Fig. 1(a) shows utility of u1 and u2 under three scenarios,
i.e., without attack (U∗11, U∗21), with attack (U ′11, U ′21), with
attack but protected by our scheme (U11, U21). Once the
algorithm converges, we observe that U ′21 > U∗21. It means
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Fig. 2. Iteration number needed for our algorithm to converge under different
MCS sizes.

the attacker u2 gains extra utility by launching the parameter
manipulation attack. However, such a utility gain diminishes
once our scheme is implemented. Specifically, U21 is equal
to U∗21. Meanwhile, U ′11 < U∗11, i.e., the benign worker u1’s
utility is harmed by u2’s parameter manipulation attack. How-
ever, it can be fully defended by our scheme, as U∗11 = U11.

We further depict in Fig. 1(b) worker’s total allocated
sensing time under the three scenarios same as above. With the
implementation of our scheme, we observe x11 = x∗11 = 0.6
and x12 = x∗12 = 1.5 after 20 iterations. It means that the
platform is capable of finding the optimal task allocation
policy even with the existence of malicious worker u2. Be-
sides, if setting ε = 10−1 (the gap between two consecutive
iterations is less than 10−1), our scheme will stop after only
13 iterations. Hence, if we want to achieve a shorter running
time of the scheme, a larger ε is in need.

Impact of MCS Size. We further evaluate in Fig. 2 the
impact of MCS size, in terms of worker and task numbers,
to the scheme performance. For example, in Fig. 2(a), when
N = 20 and M = 5, the average iteration number is about
29. It is slightly increased to 42 when M = 50. The similar
trend is observed in Fig. 2(b); when N = 2 and M ranges
from 5 to 50. We conclude that the algorithm converges pretty
fast with moderate system sizes. Moreover, as discussed in the
previous section, the platform can further choose a larger ε to
accelerate the convergence speed.

Impact of Step Size s. Recall that s stands for the step size
of our iterative Algorithm 1. Fig. 3 shows the convergence
property of Algorithm 1 under different values of s. Still,
we consider a system with M = 50 workers and N = 20
tasks. Note that the dashed line represents the optimal result
of P1 when all workers honestly report their genuine cost
functions. We find that the convergence speed is dependent
on the step size. For example, when s = 3.5× 10−5, it takes
61 iterations to reach the optimal result. When choosing a
larger s = 4.1 × 10−5, i.e., a larger step size, the iteration
number decreases to 43. However, a larger step size does not
necessarily lead to a faster convergence speed. For example,
when s = 4.7×10−5, the iteration number becomes 48. Thus,
a suitable s is critical to the convergence speed of our scheme.

Impact of Malicious Worker Ratio. We now examine the
impact of malicious worker ratio to the effectiveness of our
scheme. It is defined as the percentage of malicious workers
to the entire worker set. We consider an MCS consisting of
M = 50 workers and N = 2 sensing tasks, where u1 is set as
a benign worker. Fig. 4 shows u1’s utility U1. We first examine
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the case without our scheme. When all workers honestly report
their cost functions, i.e., the ratio is 0, we obtain U1 = 0.92.
As the ratio increases, U1 drops fast. In particular, when the
ratio is equal to 26%, i.e., there are 13 malicious workers,
U1 becomes 0.64. Moreover, the red dashed line (with our
scheme) in this figure clearly demonstrates that U1 keeps
at 0.92, under different malicious worker ratios. Thus, we
conclude that the malicious worker ratio does not impact the
effectiveness of our scheme.

Performance Enhancement by Integrating Algorithm
2. We now validate the effectiveness of Algorithm 2. Fig.
5(a) compares the iteration number needed for Algorithm 1
to converge with and without the integration of Algorithm
2. Apparently, the former is significantly smaller than the
latter in all cases when the number of workers is from 5 to
50. For example, when there are 30 workers, the enhanced
Algorithm 1 requires 11 iterations to converge, while the other
one requires 36 iterations; the former is about 1/3 of the latter.
Under the same parameter setting, we further show in Fig.
5(b) the running time ratio between these two algorithms. We
observe that the enhanced Algorithm 1 only needs about half
running time than the other one. We have a similar observation
in Fig. 5(c) and Fig. 5(d) under M = 50. Thus, we conclude
that Algorithm 2 can significantly improve the performances
of Algorithm 1, in terms of both iteration number and running
time.

VII. CONCLUSION

In order to resist parameter manipulation attacks in the
stage of task allocation in MCS, we leverage the incentive
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mechanism to develop an effective and novel defense scheme.
Our idea is to stimulate workers to report desirable indicators,
such that the new formulated problem shares the identical
optimal solution with the original one. To implement the
defense scheme, we further develop an iterative algorithm.
The backtracking based approach is adopted to accelerate the
convergence speed. We then formally prove its convergence
property. Extensive simulation results show that the algorithm
only takes a few iterations to converge, and thus to find the
accurate solution under moderate system sizes.
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APPENDIX A
PROOF OF THEOREM 1

We first cite a notation that has been used in [20]. It will
be extensively used in our analysis. Given g(x) an arbitrary
function, and x and y arbitrary real values, (g (x))

+
y is defined

as

(g (x))
+
y =

{
g (x) , y > 0,

max (g (x) , 0) , y = 0.
(20)

To prove Theorem 1, it is critical to derive the following
lemma first.

Lemma 1. Given λ, µ and ν2 as dual solutions obtained in
an arbitrary iteration of Algorithm 1, and λ∗, µ∗ and ν∗ the
optimal dual solutions, we have
(λi − λ∗i )(

∑
j∈[1,N ]

xij − ti)+λi ≤ (λi − λ∗i )(
∑

j∈[1,N ]

xij − ti)

(µj − µ∗j )(Tj −
∑

i∈[1,M ]

θijxij)
+
µj ≤ (µj − µ∗j )(Tj −

∑
i∈[1,M ]

θijxij)

(νi − ν∗i )(
∑

j∈[1,N ]

dijxij
θij

−Di)+νi ≤ (νi − ν∗i )(
∑

j∈[1,N ]

dijxij
θij

−Di).

Proof: We focus on the first inequality. According to the
update rule to λ in Algorithm 1, we have λ � 0. Then for
λi ∈ λ, we discuss under two cases: λi = 0 and λi > 0.

Case I: λi = 0. We have
(λi − λ∗i )(

∑
j∈[1,N ]

xij − ti)+λi ≤ (λi − λ∗i )(
∑

j∈[1,N ]

xij − ti)

(21)⇐⇒ (
∑

j∈[1,N ]

xij − ti)+λi ≥
∑

j∈[1,N ]

xij − ti

⇐⇒ max{
∑

j∈[1,N ]

xij − ti, 0} ≥
∑

j∈[1,N ]

xij − ti.

Therefore, the first inequality holds.

2In the following, we use λ, µ and ν to represent λ(t), µ(t) and ν(t),
respectively, without causing confusion.
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Case II: λi > 0. We have
(λi − λ∗i )(

∑
j∈[1,N ]

xij − ti)+λi ≤ (λi − λ∗i )(
∑

j∈[1,N ]

xij − ti)

⇐⇒ (λi − λ∗i )(
∑

j∈[1,N ]

xij − ti) ≤ (λi − λ∗i )(
∑

j∈[1,N ]

xij − ti).

Thus, the first inequality also holds.
In all, the first inequality holds in both cases. The proof for

the rest two inequalities similarly follows.
With Lemma 1, we are now ready to prove Theorem 1. We

first rewrite it here again.
Theorem 1. Algorithm 1 converges to the optimal solution of
P2 globally.

Proof: We consider a very small time slot, and hence
assume that dual solutions are updated according to the
differential equations

dλi
dt

= (
∑

j∈[1,N ]

xij − ti)+λi , (22)

dµj
dt

= (Tj −
∑

i∈[1,M ]

θijxij)
+
µj , (23)

dνi
dt

= (
∑

j∈[1,N ]

dijxij
θij

−Di)
+
νi . (24)

We first define the Lyapunov function

Z (λ,µ,ν) =

M∑
i=1

(λi − λ∗i )2

2
+

N∑
j=1

(
µj − µ∗j

)2
2

+

M∑
i=1

(νi − ν∗i )2

2
.

If we can prove that dZ(λ,µ,ν)
dt ≤ 0, it indicates that

Z (λ,µ,ν) is stable and thus our algorithm converges to the
optimal solution of P2. By applying the chain rule and taking
the derivative with respect to t, we obtain

dZ (λ,µ,ν)

dt
=

∑
i∈[1,M ]

(λi − λ∗i )
dλi
dt

+
∑

j∈[1,N ]

(
µj − µ∗j

) dµj
dt

+
∑

i∈[1,M ]

(νi − ν∗i )
dνi
dt
,

which can be rewritten below with (22)-(24)

dZ (λ,µ,ν)

dt
=

∑
i∈[1,M ]

(λi − λ∗i ) · (
∑

j∈[1,N ]

xij − ti)+λi

+
∑

j∈[1,N ]

(µj − µ∗j ) · (Tj −
∑

i∈[1,M ]

θijxij)
+
µj

+
∑

i∈[1,M ]

(νi − ν∗i ) · (
∑

j∈[1,N ]

dijxij
θij

−Di)+νi .

From Lemma 1, we directly derive

dZ (λ,µ,ν)

dt
≤

∑
i∈[1,M ]

(λi − λ∗i ) · (
∑

j∈[1,N ]

xij − ti)

+
∑

j∈[1,N ]

(µj − µ∗j ) · (Tj −
∑

i∈[1,M ]

θijxij)

+
∑

i∈[1,M ]

(νi − ν∗i ) · (
∑

j∈[1,N ]

dijxij
θij

−Di).

Next, we make some modification in the right-hand-side of
the above inequality. Hence, we get

Ż ≤
∑

i∈[1,M ]

(λi − λ∗i ) · (
∑

j∈[1,N ]

xij −
N∑
j=1

x∗ij)

+
∑

i∈[1,M ]

(λi − λ∗i ) · (
∑

j∈[1,N ]

x∗ij − ti)

+
∑

j∈[1,N ]

(µj − µ∗j ) · (
∑

i∈[1,M ]

θijx
∗
ij −

∑
i∈[1,M ]

θijxij)

+
∑

j∈[1,N ]

(µj − µ∗j ) · (Tj −
∑

i∈[1,M ]

θijx
∗
ij)

+
∑

i∈[1,M ]

(νi − ν∗i ) · (
∑

j∈[1,N ]

dijxij
θij

−
∑

j∈[1,N ]

dijx
∗
ij

θij
)

+
∑

i∈[1,M ]

(νi − ν∗i ) · (
∑

j∈[1,N ]

dijx
∗
ij

θij
−Di).

The second, forth and sixth terms in RHS of the above
inequality are nonpositive due to (1)-(3) and (11)-(13). Thus,

Ż ≤
∑

i∈[1,M ]

(λi − λ∗i ) · (
∑

j∈[1,N ]

xij −
∑

j∈[1,N ]

x∗ij)

+
∑

j∈[1,N ]

(µj − µ∗j ) · (
∑

i∈[1,M ]

θijx
∗
ij −

∑
i∈[1,M ]

θijxij)

+
∑

i∈[1,M ]

(νi − ν∗i ) · (
∑

j∈[1,N ]

dijxij
θij

−
∑

j∈[1,N ]

dijx
∗
ij

θij
)

=
∑

i∈[1,M ]

∑
j∈[1,N ]

(xij − x∗ij)(
∂Ci(x

∗
i )

∂xij
− ∂Ci(xi)

∂xij
).

The last equation comes from (5). The RHS of the above
inequality is nonpositive because of the following property
that holds for any convex function f (·) [18]

f (u) ≥ f (v) +∇f (v)
T

(u− v) . (25)

To be specific, for any xi and the optimal solution x∗i , we
have[
∂Ci (x∗i )

∂xi1
, · · · , ∂Ci (x∗i )

∂xiN

]T
· (xi − x∗i ) ≤ Ci (xi)−Ci (x∗i )[

∂Ci (xi)

∂xi1
, · · · , ∂Ci (xi)

∂xiN

]T
·(x∗i − xi) ≤ Ci (x∗i )−Ci (xi) .

Then, add the above two inequalities,[
∂Ci (x

∗
i )

∂xi1
− ∂Ci (xi)

∂xi1
, · · · , ∂Ci (x

∗
i )

∂xiN
− ∂Ci (xi)

∂xiN

]T
(xi − x∗i )

=
∑

j∈[1,N ]

(
xij − x∗ij

)
(
∂Ci (x

∗
i )

∂xij
− ∂Ci (xi)

∂xij
) ≤ 0.

By adding together the above inequalities for all xi’s (i ∈
[1,M ]), we have∑

i∈[1,M ]

∑
j∈[1,N ]

(
xij − x∗ij

)
(
∂Ci (x∗i )

∂xij
− ∂Ci (xi)

∂xij
) ≤ 0.

Thus, Ż ≤ 0 holds, which ends the proof.
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