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ABSTRACT

We present analytical expressions for direct evaluation of ℓ-mixing rate coefficients in proton-excited

hydrogen atom collisions and describe a software package for efficient numerical evaluation of the

collisional rate coefficients. Comparisons between rate coefficients calculated with various levels of ap-

proximation are discussed, highlighting their range of validity. These rate coefficients are benchmarked

via radio recombination lines for hydrogen, evaluating the corresponding departure coefficients from

local thermal equilibrium.
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1. INTRODUCTION

Energy-conserving angular momentum-changing nℓ → nℓ′ transitions induced in collisions between Rydberg atoms

and low velocity ions are needed for accurate comparison between astrophysical observations and models which employ

atomic theory for temperature and density diagnostics in diffuse atomic clouds, H II regions and various nebulae. With

ion collision-induced angular momentum mixing rate coefficients scaling as n4, values as large as a few times 105 cm3/s

are possible for principal quantum numbers near n ∼ 200. Accurate and efficiently calculated rate coefficients are hence

necessary to interpret a host of astrophysical processes, such as radio recombination lines from hydrogen (HRRL) and

carbon (CRRL) as tracers of the neutral phase of the interstellar medium (ISM) (e.g. Oonk et al. 2015, 2017; Salas

et al. 2018), and from hydrogen as a tracer of gas ionized by young stars (HII regions) (e.g. Roelfsema & Goss

1992; Anderson et al. 2011). The recombination of hydrogen and helium in the early Universe, and the primordial

abundance of helium, are also examples of processes affected by collision physics (Izotov & Thuan 2010; Chluba &

Sunyaev 2006).

In their pioneering work, Pengelly and Seaton obtained proton-Rydberg hydrogen collisional cross sections for dipole

allowed transitions within the Born-Bethe approximation (Pengelly & Seaton 1964) (PS64 hereafter). Given that the

probability for ∆ℓ = ±1 transition falls off asymptotically as the inverse square of the impact parameter and the cross

section hence becomes logarithmically divergent, PS64 invoked a set of cutoff conditions to circumvent this divergence.

The arbitrariness implicit in choosing these cutoff conditions was re-examined in Vrinceanu & Flannery (2001a,b)

(VF01a and VF01b), where a non-perturbative closed form solution for the transition probability was found.

A semiclassical (SC) rate coefficient for arbitrary ℓ-changing collisions was derived in (Vrinceanu, Onofrio & Sadegh-

pour 2012) (VOS12), and was shown to be in agreement with both classical trajectory Monte Carlo simulations and

numerically integrated quantum rate coefficients for transitions with |∆ℓ| > 1. For the dipole allowed transitions

(|∆ℓ = 1|), probabilities evaluated with VOS12 SC increase linearly with impact parameter and at a critical value

abruptly vanish. This unphysical behavior of the SC transition probability, first noticed in Storey & Sochi (2015),

was addressed by the modified PS64 (PS-M) approximation (Guzman et al. 2016, 2017). A further improved SC
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probability with the correct asymptotic behavior, yielding a more accurate formula for the dipole transitions, was later

derived by Vrinceanu, Onofrio & Sadeghpour (2017) (VOS17).

In this work, we derive a computationally efficient formula of the rate coefficients for collision-induced dipole tran-

sitions, accurate for a broad range of n, temperatures (T ) and electron number densities (ne). This is achieved by

using a closed-form expression for the dipole transition rate coefficients, therefore overcoming the need for the explicit

calculation of cross sections. In addition, this formulation circumvents an unphysical behavior of the PS64 rate coef-

ficients, which become negative for a range of astrophysically relevant parameters. The resulting rate coefficients are

then used to evaluate the departure coefficients from statistical equilibrium of HRRL.

2. RATE COEFFICIENTS FOR ANGULAR MOMENTUM CHANGING TRANSITIONS IN

PROTON-RYDBERG HYDROGEN SCATTERING

The rate coefficients for n-conserving, ℓ-changing transitions are obtained by integrating the corresponding transition

probability, Pnℓ→nℓ′ , over the impact parameter, b, and thermal distribution of the projectile velocity, v,

k(n, ℓ, ℓ′, T,Rc) = 2π

∫︂ ∞

0

fMB(v) vdv

∫︂ Rc

0

Pnℓ→nℓ′(b, v) bdb , (1)

with fMB the Maxwell-Boltzmann distribution at temperature T . The cutoff distance Rc is required to regularize the

divergent integral for dipole allowed transitions (|∆ℓ| = 1), when the transition probability decreases too slowly for

b → ∞. For all other cases, the integral is finite as Rc → ∞. The transition probability does not depend on b and v

independently, but through the collision parameter α = 3Znℏ/(2mvb) (VF01a), so that the double integral in Eq. (1)

is reduced to

k(n, ℓ, ℓ′, T,Rc) = n4a20v0

√︄
8πµv20
kBT

∫︂ ∞

0

zPnℓ→nℓ′(z) e
−θz2/2 dz , (2)

where a0 = 5.29177 × 10−11 m is the Bohr radius, v0 = 2.18769 × 106 m/s is the atomic unit of velocity, and the

integration variable is z = 3/(2nα). The parameter θ, small for large Rc, is defined as

θ = n4 µv20
kBT

a20
R2

c

, (3)

where µ is the reduced mass of the projectile - target system.

When Rc is chosen to be the Debye length λD =
√︁

ϵ0kBT/(nee2), as in PS64, this parameter becomes

θ = 1.704675× 10−10n4 ne

T 2
, (4)

with T in K and ne in cm−3. Depending on the specific physical situations, other choices for Rc are possible as

discussed in PS64, changing the θ parameter accordingly.

Equation (2) is the starting point for the calculation of the rate coefficient using various approaches depending on

the choice of Pnℓ→nℓ′ . The relationships among these approximations reflect the organization of the software package

(Vrinceanu 2018), and are illustrated in the diagram in Fig. 1, and discussed in detail below.

The rate coefficients are calculated by numerically integrating Eq. (2). This integral does not pose difficulties

for relatively low principal quantum numbers n ≲ 40 when using the VF01b non-perturbative quantum mechanical

Pnℓ→nℓ′ . However, for larger n, the calculation does not converge because of truncation errors and near cancellation

of large terms. These problems are addressed in our code by using exact number arithmetic for large factorials and

extended floating point precision for large order polynomials. The computational time increases as ∼ ℓ×n, to the point

that accurate calculations become impractical; for example, the calculation for n = 1000 can take up to 5 minutes.

More efficient, but less accurate approximations are implemented in the code for large n and ℓ, when numerical

integration of quantum probability is slow. The method parameter in the code selects the desired procedure, either

quantum, or from the menu of approximations discussed below, and should be chosen based on the accepted level in

the trade-off of accuracy versus computing cost.

VOS12 SC formula works well for moderate to large |∆ℓ|, but loses accuracy for larger |∆ℓ|, for which the rate

coefficients are small and may be neglected. The VOS12 SC formula has been derived by integrating the classical limit

of VF01a transition probability, and has been validated by extensive classical trajectory Monte Carlo simulations.
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The SC approximation fails for dipole transitions |∆ℓ| = 1, because the SC transition probability increases linearly

with the impact parameter and drops abruptly after a critical value, instead of decreasing as b−2, as obtained with

perturbation theory (PS64).

For dipole transitions, the code provides rate coefficients for combined ℓ → ℓ + 1 and ℓ → ℓ − 1 transitions. In the

Born approximation, Pnℓ→nℓ′ is assumed to be 1/2 for R < R1, after which it decreases as 1/b2. The PS64 formula is

derived from this approximation by adopting the additional assumption that R1 < Rc. This assumption fails for large

ne and low T , limiting the range of applicability of PS64 to n2(n2 − ℓ2 − ℓ− 1)ne/T
2 < 2.98× 109 cm−3/K2. Within

this range of parameters, PS64 is in reasonable agreement with the non-perturbative quantum results, as demonstrated

in the next section. Outside this range, PS64 rate coefficients become negative (Salgado et al. 2017; Guzman et al.

2017).

The PS-M approximation introduced in Guzman et al. (2017) replaces the constant 1/2 transition probability in

the PS64 model with a linearly increasing one, and obtains the rate coefficient by averaging the resulting cross section

over all energies, including those neglected by PS64 for R1 < Rc. The approximate PS-M rate coefficients shown in

table I in Guzman et al. (2017) are positive even when PS64 are negative, and yield an overall better agreement with

the quantum results, although significant deviations are noted in some cases, up to a factor of 10, probably due to the

simplicity of the model.

The shortcomings of the VOS12 SC approximation for dipole allowed transitions were addressed in VOS17 by deriving

a more accurate SC probability with the correct large b asymptotics. When used in Eq. (2), the VOS17 transition

probability leads to a SC rate coefficient for dipole allowed transitions

k(n, ℓ, T, ne) =

√︃
π

2
a20v0

√︄
µv20
kBT

Dnℓ

[︄
3
√
π

4x3/2
erf(η

√
x)− 3η

2x
e−η2x +

Nt∑︂
k=0

Ak(Bk − 3γ − log(4x))xk

]︄
(5)

where erf is the error function, Dnℓ = 6n2(n2− ℓ2− ℓ−1), η = 0.277855 is the solution of the equation j1(1/z)
2 = z/6,

with jk(u) a spherical Bessel function of order k and argument u, and x = 3Dnℓθ/(4n
4) = neDnℓ/(7.82162× 109T 2).

The coefficients in the asymptotic expansion can be calculated up to the truncation order Nt by using

Ak =
18× 4k

(k + 2)(k + 3)(2k + 3) k! (2k + 1)!

and

Bk =
1

k + 2
+

1

k + 3
+

2

2k + 3
+Hk + 2H2k+1

probability Pn`!n`0
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 in Eq. (2)
integration 

method

non-perturbative quantum mechanical 
Eq. (3) in VF01 or Eq. (2) in VOS12

notes method
parameter

multiprecision 
numerical

n ≲ 40
any �`
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semi-classical Eq. (6) in VOS12
large n limit 

resulting in Eq. 
(8) in VOS12

n ≳ 40
|�`| > 1
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semi-classical Eq. (18) in VOS17
asymptotic 

expansion in θ, 
yields Eq.(5)

n ≳ 40
|�`| = 1
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“semiclassical”

Born approximation Eq. (6) closed-form, 
yields Eq. (8)
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“Born”

Born approximation Eq. (6) θ → 0 limit, Eq. 
(43) in PS64
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“P_and_S”

PS-M  approximation Eq. (9) in 
Guzman et al. 2017

closed-form 
yields eq. 18
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“PS-M”

T = 10; ne = 10; L = 1

print("  n   quantum    semiclassical PS64     Born\n"\
      "  ================================================")

for n in range(10,50,10):
    print("{0:4d}  {1:10.4e} {2:10.4e}  {3:10.4e} {4:10.4e}".
    format(n,\
            rate(n, L, T, ne),\
            rate(n, L, T, ne, method='semiclassical'),\
            rate(n, L, T, ne, method='P_and_S'),\
            rate(n, L, T, ne, method='Born')
            ))
print( rate(20, 1, 10, rho=10))
            
print("\n  Delta L  quantum    classical\n"\
        "  ================================")
for h in range(2,8):
    print("{0:4d}       {1:10.4e} {2:10.4e}".format(h,
        rate(20, L, T, lf = L + h),
        rate(20, L, T, lf = L + h, method="classical")
      ))

Figure 1. The Lmixing package provides the rate coefficient k(n, ℓ, T, ne) by using several approximations for the transition
probability Pnℓ→nℓ′ in Eq. (2), as outlined in the table on the left. An example code showing the usage of the package is
displayed on the right. By default, the function rate calculates the rate coefficient for both dipole allowed transitions ℓ′ = ℓ± 1
by integrating numerically the quantum mechanical probability. For n ≳ 40, when integration requires extended precision and
takes a longer time to complete, faster, but less accurate, approximations can be selected with the optional parameter method.
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Figure 2. Rate coefficients for combined (n, ℓ) → (n, ℓ± 1) transitions versus n for transitions of extreme eccentricities ℓ = 1
(a) and ℓ = n − 2 (b), at T = 10 K and ne = 100 cm−3. The solid line is obtained by using Eq. (5) with Nt = 16, dots refer
to the direct integration of the quantum transition probabilities, dashed lines and dot dashed lines represent the PS64 Eq. (9)
and PS-M Eq. (18) results, respectively.

where Hk =
∑︁k

j=1 1/j for k > 0, H0 = 0, with k the k-th harmonic number and γ = 0.57721 the Euler constant. A

derivation of this formula, and a list of the first eleven Ak and Bk coefficients, is given in the appendix. Our experience

shows that a truncation order Nt ∼ 16− 20 is sufficient to provide accurate results.

3. RESULTS

As illustrated in Fig. (1), the Python module Lmixing (Vrinceanu 2018) has a function that calculates the angular

momentum mixing rate coefficient. The required arguments are the principal quantum number n, the initial angular

momentum ℓ, and the temperature in Kelvin. The optional arguments are the electron number density ne in cm−3,

the final angular momentum ℓ′, and the method of calculation. The choices for this argument are: quantum (default

value) using Eq. (2) with the probability defined by Eq. (3) in VF01b, semiclassical using Eq. (5), Born for the

Born approximation Eq. (8), PS-M for the approximation in Eq. (18) originally introduced in Guzman et al. (2017),

and P_and_S which implements the PS64 method. If ℓ′ is not provided, the rate for the combined ℓ → ℓ±1 transitions

is calculated. If ℓ′ is given, one can then choose the exact quantum calculation, or the SC approximation (Eq. (8) in

VOS12) with the value for the method parameter classical, provided that |∆ℓ| > 1.

Figure 2 shows a comparison between the rate coefficients coefficients for dipole allowed transitions for ℓ = 1 and

ℓ = n− 2 angular momenta, calculated by integrating the VF01b quantum formula, the PS64 approximation and the

SC approximation in Eq. (5). The evaluation of the quantum case for extremely large n is slow even when low accuracy

results are sufficient, due to the use of multiprecision floating point arithmetic necessary to prevent truncation error

and loss in precision. The calculations in Fig. 2 required 400 digits of precision and took several hours for ℓ = 1 cases

and two days for ℓ = n − 2 cases to complete on a single processor. At around n = 200, in the ℓ = 1 case, the PS64

approximation fails and becomes negative for higher n, as first discussed in Salgado et al. (2017), and in the caption

of Table 1 in Guzman et al. (2017), while the SC approximation is in good agreement with the quantum results

over a much larger range of n. For sufficiently low T and high ne, the SC rate coefficients for n ≳ 500 overestimate

the corresponding quantum result, then underestimate the latter at even higher n (not shown in Figure 2), eventually

becoming negative. However, unlike the case of PS64, the negative-defined region occurs for progressively higher values

of n as more terms in the expansion of Eq. (5) are considered. In the ℓ = n−2 case, the PS64 results are more reliable

with respect to the corresponding ones at low angular momentum, and begin to diverge from the exact results for

n > 700, becoming negative at around n = 1000. The overall shape of the dependence of the rate coefficient, k with n,

is the result of two competing factors, as seen in Eq. (5): on the one hand the prefactor in front of the integral increases

as n4, while the integral decreases roughly as 1/θ. For comparison, we also include in Figure 2 PS-M rate coefficients

which behave more consistently with n than the PS64 model in the ℓ = 1 case, and approach the quantum results at

large n. However, other than the large n limit for ℓ = 1, PS-M predicts rate coefficients which are consistently smaller

than QM and SC values, as particularly evident in the ℓ = n− 2 case.
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Figure 3. Discrepancies for the rate coefficients calculated with the PS64 approach (left) and the SC approximation (right),
both referred to the non-perturbative rate coefficients evaluated using the quantum formula, for a broad range of n and T 2/ne.

In Figure 3, the accuracy of PS64 approximation (left panel) and of the SC approximation (right panel), both with

respect to the quantum rate coefficients, is shown for astrophysically relevant values of n, T and ne, and for the ℓ = 1

transition. The SC approximation is accurate within 1% over a wide range of T and n, while the accuracy of PS64

is roughly one order of magnitude worse at the same point in the n − T 2/ne plane. The PS64 approximation yields

negative rate coefficients in the upper left corner of the diagram, i.e. in the low T , high ne, and high n regime. As

already discussed for Figure 2, the SC rate coefficients also become negative in the upper left corner, but in comparison

to the PS64 case this occurs for a smaller region with size inversely proportional to the number of terms Nt in Eq. (5).

These cases are extreme, but important for the interpretation of HRRLs which probe the low electron density, cool

ISM (e.g. Salgado et al. (2017) and references therein). The SC approximation obviously becomes less accurate

in the region for which the rate coefficients approach negative values. This is also expected as for these parameters

λD ≤ n2a0, indicating that the binary collision assumption may fail, with the ℓ-mixing instead ruled by many-body

interactions. If the opposite case of ℓ = n− 2 is considered, the rate coefficients for PS64 and the SC approximations

are much closer, in line with what is expected by inspecting the corresponding curves in Fig. 2. Figure 3 puts on

a more quantitative standing the recent debate on the accuracy of various proposed rate coefficients as reported in

Storey & Sochi (2015); Guzman et al. (2016, 2017); Williams et al. (2017). The SC approximation is in general more

accurate than the above approximations because the VOS17 transition probability agrees better with the quantum

results. It was noticed in Guzman et al. (2017) that for some extreme cases, the PS-M overestimates the quantum

results by a factor of 10.

The HRRL results shown in Fig. 4 were produced with the Salgado et al. (2017a) models using the updated ℓ-

changing collision rate coefficients, Eq. (5) with Nt = 10 and, as a comparison, also using the PS64 rate coefficients.

The latter are known to be in good agreement with the quantum mechanical rate coefficients for sufficiently high T ,

high ne and low n.

We show in Fig. 4 the results for the departure coefficients from thermal population, bn, for a homogeneous, one

dimensional gas slab with: (i) Te = 100 K and ne = 0.1 cm−3, and (ii) Te = 10 K and ne = 100 cm−3. The former

is a typical cool ISM case and the latter is an an extreme case. Both are exposed to a Galactic power-law radiation

field TR ∝ λ2.6 that is normalized at 100 MHz by TR,100 = 2000 K (Salgado et al. 2017). We find that the different

ℓ-changing collision rate coefficients primarily affect bn at low to intermediate n values (n ≲ 300) with differences up

to a few percent for typical cool ISM conditions. As explained in Salgado et al. (2017), but see also Hummer &

Storey (1987), this is because at these intermediate n levels collisions compete with spontaneous decay, effectively

storing electrons in high ℓ sublevels for which radiative decay is less important. Notably, the ℓ-changing collision rate

coefficients presented here allow us to efficiently calculate bn values for high n, where the PS64 rate coefficients no
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Figure 4. Calculations of the bn departure coefficient from collisional-radiative simulations of hydrogen for two cases: T = 100
K and ne = 0.1 cm−3 (blue lines), and T = 10 K and ne = 100 cm−3 (red lines). The upper plot shows bn calculated by using
PS64 (dashed lines) and by using the SC approximation (solid lines). The lower plot shows the relative difference between the
results using the two approximations, for each case considered. The dotted line and the circled point mark the maximum n for
which PS64 provides convergent results in the low T , high ne case. When converged, the PS64 and SC results agree with a
maximum difference of few percent.

longer apply, and which are important to studies of cool, partially ionized ISM (e.g. Oonk et al. 2017; Salas et al.

2018).

The HRRL optical depths are calculated using the product of bnβn, where the correction factor for stimulated

emission βn can be seen as the derivative of bn (Salgado et al. 2017), such that small changes in bn can lead to

somewhat larger changes in HRRL optical depth. These changes are measurable, but require very high signal to noise

observations across a broad frequency range (i.e. 240-2000 MHz). Most HRRL observations have difficulties achieving

such accuracy, and hence the calculated differences will be within current observational uncertainties for typical ISM

conditions. We have also compared the HRRL results presented here with those computed using the VOS12 SC rate

coefficients (Salgado et al. 2017). We find that for these cases the results agree to within a few percent for n ≳ 300.

For lower n-values the agreement is less good.

We are currently implementing our new ℓ-changing rate coefficients for CRRLs, as will be presented in a future work.

Although we anticipate that the results may be qualitatively similar to those for HRRLs, from a quantitative standpoint

we expect to have stronger dependence of the departure coefficients on the ℓ-changing collision rate coefficients than

HRRLs (Salgado et al. 2017).

4. CONCLUSIONS

We have introduced an efficient and accurate SC approximation for ℓ-mixing processes, allowing direct evaluation

of collisional rate coefficients for a broad range of n, T , and ne relevant to astrophysical plasmas. We provide a

Python module for evaluating these rate coefficients for easy integration in large-scale radiative-collisional simulation
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codes. The Python code also implements a multi-precision numerical integration of the quantum rate constants for

small to moderate n. The relationship and range of validity and accuracy for various schemes to evaluate ℓ-changing

rate coefficients are elucidated. Furthermore, we identify the range of parameters for which PS64 rate coefficients

become unphysical. Efficient computer codes for the evaluation of ℓ mixing rate coefficients with various levels of

approximation are beneficial for accurate astrophysical modeling. As noted in the recent release of Cloudy (Ferland et

al. 2017), different choices for the rate coefficients can lead to differences up to 10% in the predicted line intensities,

which are larger than the precision of current observations. The rate coefficients proposed here are in better agreement

with the more rigorous, but computationally less efficient quantum rate coefficients.
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5. APPENDIX

This section presents the derivations of the main results and implementation details of the computational module.

According to the organization of the code illustrated in Fig. 1 we will discuss the four main sections: the integration of

the exact quantum formula, the Born approximation, the classical approximation and the semiclassical approximation.

These approaches are derived from Eq. (2) either by keeping the exact, but computationally expensive form for the

transition probability Pnℓ→nℓ′ , or by replacing it by an approximate expression that provides quicker results with a

limited range of validity. The goal is to calculate the dimensionless integral in Eq.(2)

k̃(n, ℓ, ℓ′, θ) =
∫︂ ∞

0

zPnℓ→nℓ′(z)e
−θz2/2 dz. (6)

The exact calculation uses the quantum transition probability derived in (VF01b), that has practical use limited to

small (n < 30) quantum numbers in regular computer arithmetic. The main two reasons for this difficulty are the

combinatorial Wigner 6-j symbols involving factorials of large integers that cannot be represented exactly with integer

types, and the loss of precision in the calculation of polynomials of large order with alternating terms. Our code

takes advantage of the unlimited size integer type in Python by pre-computing tables of large factorials, and by using

fixed-point representations of real numbers with a prescribed, but arbitrary, number of decimal figures. As a rule of

thumb, we find that a calculation for quantum numbers n requires setting the precision at n/2 digits. The numerical

integral Eq. (6) is calculated with a recurrent Gauss-Lobatto-Kronrod algorithm from Press et al. (1992) adapted for

the use of extended precision real numbers.

A Born approximation is obtained from perturbation theory (VOS17) only for dipole allowed transitions. The

cumulative probability for both ℓ → ℓ′ transitions is approximated as

P (B) =
1

2

{︄
1 , if z ≤

√︁
Dnℓ/n4

Dnℓ/(n
4z2) , if z >

√︁
Dnℓ/n4

(7)

with Dnℓ = 6n2(n2 − ℓ2 − ℓ− 1). When used in Eq. (6), this transition probability provides the Born approximation

for the rate

k̃(B)(n, ℓ, θ) =
1− eDnℓθ/2n

4

2θ
+

Dnℓ

4n4
Γ(0, Dnℓθ/2n

4) (8)

where Γ(0, x) is the incomplete gamma function. The PS64 result was derived under the same conditions with the

additional tacit assumption that the cutoff impact parameter Rc is greater than the R1 parameter (Rc > R1) for any

projectile speed. Since the transition impact parameter increases with the speed of the projectile as ∼ 1/v, the thermal

average Eq. (1) will have a contribution from small speeds for which R1 > Rc. This contribution, neglected in PS64,

diminishes as Rc → ∞. Indeed, the PS64 rate is obtained from Eq. (8) in the θ → 0 limit

k̃(PS)(n, ℓ, θ) =
Dnℓ

4n4

[︁
1− γ − log(Dnℓθ/2n

4)
]︁

(9)
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where γ is the Euler constant. This corresponds to Eq.(43) in PS64. The rate coefficients in Equation (9) become

negative for n large enough such that Dnℓθ/n
4 > 2e1−γ . In other words, the PS64 approximation is limited to cases

where n2(n2 − ℓ2 − ℓ− 1)ne/T
2 < 2.98× 109, which for small ℓ reduces roughly to n4ne/T

2 < 3× 109, and for large ℓ

to n3ne/T
2 < 109.

A semiclassical transition probability, compatible with the Born approximation and increasing linearly for small

impact parameter, as predicted by the classical approximation, was obtained in (VOS17). In terms of the parameter

z, the unresolved transition probability, summed over the ℓ′ and slightly modified in order to give a better agreement

with the quantum results, is

P (SC) =

{︄
z/

√︁
6Dnℓ/n4 , if z ≤ η

√︁
3Dnℓ/2n4

3j1(
√︁
3Dnℓ/2n4/z)2 , if z > η

√︁
3Dnℓ/2n4

(10)

where j1(x) is the spherical Bessel function of order 1, and η = 0.277855 is the solution of the equation j21(1/x) = x/6.

When used in Eq. (6), one gets the semiclassical approximation for the rate coefficient

k̃(SC)(n, ℓ, θ) =
Dnℓ

4n4

[︃
3
√
π

4x3/2
erf(η

√
x)− 3η

2x
e−η2x + 18

∫︂ ∞

0

j21(1/y) ye
−xy2

dy

]︃
(11)

where x = 3Dnℓθ/4n
4, and erf is the error function. The integral can be treated as a Mellin-Barnes integral (Paris &

Kaminisky 2001) to obtain an asymptotic expansion in the parameter x, because

I(x) = 18

∫︂ ∞

0

j21(1/y) ye
−xy2

dy =
1

2πi

∫︂ c+i∞

c−i∞
F (1− s)G(s) ds (12)

where the integral goes along a line parallel with the imaginary axis with 0 < c < 2, and where F and G are the Mellin

transforms

F (1− s) = 18

∫︂ ∞

0

j21(1/y) y
−s dy = 18

23−s cos(πs/2)Γ(s− 1)

(s− 6)(s− 4)(s− 3)
(13)

and

G(s) =

∫︂ ∞

0

e−xy2

ys−1 dy =
Γ(s/2)

2xs/2
(14)

Therefore the integral is

I(x) = 18

∫︂ c+i∞

c−i∞

22−s cos(πs/2)Γ(s− 1)

(s− 6)(s− 4)(s− 3)

Γ(s/2)

xs/2
ds (15)

An expansion for small x can be obtained by completing the integration along another line parallel with the imaginary

axis, to create a contour around poles on the negative real axis and using the residue theorem. The poles of the

integrand occur at negative even numbers s = 0,−2,−4, . . . ,−2k, . . . and are double. The double nature of the poles

is the origin of the logarithm in the expansion of I(x). The poles at s = 1,−1,−3, . . . are removable and do not

contribute to the expansion. Therefore, after calculating the residues, one obtains

I(x) =

N∑︂
k=0

Res(s = sk) +O(xN+1) =

N∑︂
k=0

Ak(Bk − 3γ − 2 ln 2− lnx)xk +O(xN+1) (16)

where γ is the Euler constant, and the coefficients are Ak = 18 × 4k/(k!(2k + 1)!(k + 2)(k + 3)(2k + 3)) and Bk =

1/(k+ 2) + 1/(k+ 3) + 2/(2k+ 3) + 1+ 1/2 + . . .+ 1/k+ 2+ 2/3 + . . .+ 2/(2k+ 1). With the first 11 terms listed in

Table 1 the expansion of Eq. (16) is accurate within one part in 104 for x ≤ 50.

A modified PS64 approximation was obtained in (Guzman et al. 2017) by replacing the original constant 1/2 for

b < R1 with a linearly increasing transition probability. When written in terms of the dimensionless parameter z, as

defined in the discussion following Eq. (2), this approximate transition probability is

P (PS−M) =
1

2

{︄
z (2P1)

3/2/
√︁

Dnℓ/n4 , if z ≤
√︁

Dnℓ/(2P1n4)

Dnℓ/(n
4z2) , if z >

√︁
Dnℓ/(2P1n4)

(17)
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Table 1. Coefficients Ak and Bk for the expansion of the integral in Eq.(12).

k Ak Bk

0 1 7/2 = 3.5

1 1/5 = 0.2 113/20 = 5.65

2 3/350 = 0.00857142857142857 2857/420 = 6.80238095238095

3 2/14175 = 0.000141093474426808 4793/630 = 7.60793650793651

4 1/873180 = 1.14523924047734×10−6 28526/3465 = 8.23261183261183

5 1/189189000 = 5.28571957143386×10−9 3151273/360360 = 8.74479131979132

6 1/65675610000 = 1.52263526749123×10−11 1102667/120120 = 9.17971195471195

7 1/34192364456250 = 2.92462956540933×10−14 2439746/255255 = 9.55807329924977

8 1/25408725942600000 = 3.93565581469558×10−17 575762023/58198140 = 9.89313443694249

9 1/25932145697017560000 = 3.85621772946852×10−20 42376261/4157010 = 10.1939280877361

10 1/35244143470037502000000 = 2.83735083773604×10−23 1000753049/95611230 = 10.4668985954893

with the free parameter P1 equal to the transition probability at the matching impact parameter. The integral Eq. (6)

in this case yields the PS-M approximation

k̃(PS−M)(n, ℓ, θ) =
Dnℓ

4n4

[︃ √
π

2β3/2
erf(

√︁
β)− 1

β
e−β + Γ(0, β)

]︃
(18)

with parameter β = Dnℓθ/(4P1n
4).
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