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ABSTRACT

We present analytical expressions for direct evaluation of /-mixing rate coefficients in proton-excited
hydrogen atom collisions and describe a software package for efficient numerical evaluation of the
collisional rate coefficients. Comparisons between rate coefficients calculated with various levels of ap-
proximation are discussed, highlighting their range of validity. These rate coefficients are benchmarked
via radio recombination lines for hydrogen, evaluating the corresponding departure coefficients from
local thermal equilibrium.
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1. INTRODUCTION

Energy-conserving angular momentum-changing nf — nf’ transitions induced in collisions between Rydberg atoms
and low velocity ions are needed for accurate comparison between astrophysical observations and models which employ
atomic theory for temperature and density diagnostics in diffuse atomic clouds, H II regions and various nebulae. With
ion collision-induced angular momentum mixing rate coefficients scaling as n*, values as large as a few times 10° cm?® /s
are possible for principal quantum numbers near n ~ 200. Accurate and efficiently calculated rate coefficients are hence
necessary to interpret a host of astrophysical processes, such as radio recombination lines from hydrogen (HRRL) and
carbon (CRRL) as tracers of the neutral phase of the interstellar medium (ISM) (e.g. Oonk et al. 2015, 2017; Salas
et al. 2018), and from hydrogen as a tracer of gas ionized by young stars (HII regions) (e.g. Roelfsema & Goss
1992; Anderson et al. 2011). The recombination of hydrogen and helium in the early Universe, and the primordial
abundance of helium, are also examples of processes affected by collision physics (Izotov & Thuan 2010; Chluba &
Sunyaev 2006).

In their pioneering work, Pengelly and Seaton obtained proton-Rydberg hydrogen collisional cross sections for dipole
allowed transitions within the Born-Bethe approximation (Pengelly & Seaton 1964) (PS64 hereafter). Given that the
probability for A¢ = =1 transition falls off asymptotically as the inverse square of the impact parameter and the cross
section hence becomes logarithmically divergent, PS64 invoked a set of cutoff conditions to circumvent this divergence.
The arbitrariness implicit in choosing these cutoff conditions was re-examined in Vrinceanu & Flannery (2001a,b)
(VF0la and VF01b), where a non-perturbative closed form solution for the transition probability was found.

A semiclassical (SC) rate coefficient for arbitrary ¢-changing collisions was derived in (Vrinceanu, Onofrio & Sadegh-
pour 2012) (VOS12), and was shown to be in agreement with both classical trajectory Monte Carlo simulations and
numerically integrated quantum rate coefficients for transitions with |A¢] > 1. For the dipole allowed transitions
(JA¢ = 1]), probabilities evaluated with VOS12 SC increase linearly with impact parameter and at a critical value
abruptly vanish. This unphysical behavior of the SC transition probability, first noticed in Storey & Sochi (2015),
was addressed by the modified PS64 (PS-M) approximation (Guzman et al. 2016, 2017). A further improved SC
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probability with the correct asymptotic behavior, yielding a more accurate formula for the dipole transitions, was later
derived by Vrinceanu, Onofrio & Sadeghpour (2017) (VOS17).

In this work, we derive a computationally efficient formula of the rate coefficients for collision-induced dipole tran-
sitions, accurate for a broad range of n, temperatures (T') and electron number densities (n.). This is achieved by
using a closed-form expression for the dipole transition rate coefficients, therefore overcoming the need for the explicit
calculation of cross sections. In addition, this formulation circumvents an unphysical behavior of the PS64 rate coef-
ficients, which become negative for a range of astrophysically relevant parameters. The resulting rate coeflicients are
then used to evaluate the departure coefficients from statistical equilibrium of HRRL.

2. RATE COEFFICIENTS FOR ANGULAR MOMENTUM CHANGING TRANSITIONS IN
PROTON-RYDBERG HYDROGEN SCATTERING

The rate coefficients for n-conserving, ¢-changing transitions are obtained by integrating the corresponding transition
probability, P,¢_sne, over the impact parameter, b, and thermal distribution of the projectile velocity, v,

(e ) Rc
k(n, 0,0, T,R.) = 27T/ fue(v) vdv/ Pro—sne (b,v) bdb , (1)
0 0

with fyp the Maxwell-Boltzmann distribution at temperature T. The cutoff distance R, is required to regularize the
divergent integral for dipole allowed transitions (|A¢| = 1), when the transition probability decreases too slowly for
b — oo. For all other cases, the integral is finite as R. — oco. The transition probability does not depend on b and v
independently, but through the collision parameter o = 3Znh/(2muvb) (VF0la), so that the double integral in Eq. (1)

is reduced to
k(n7£a 6/, T> R - TL aO 0 87”“)0 / ZPnE—MzZ’ ) 79Z2/2 dz (2)
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where ag = 5.29177 x 107! m is the Bohr radius, vg = 2.18769 x 10° m/s is the atomic unit of velocity, and the
integration variable is z = 3/(2n«). The parameter 0, small for large R, is defined as

2 2
g =t P % 5
" T RS (3)

where p is the reduced mass of the projectile - target system.
When R, is chosen to be the Debye length A\p = \/eokpT/(n.€?), as in PS64, this parameter becomes

0 = 1.704675 x 10~ %n 4T2 , (4)

with T in K and n. in cm™3. Depending on the specific physical situations, other choices for R, are possible as
discussed in PS64, changing the 6 parameter accordingly.

Equation (2) is the starting point for the calculation of the rate coeflicient using various approaches depending on
the choice of P,y . The relationships among these approximations reflect the organization of the software package
(Vrinceanu 2018), and are illustrated in the diagram in Fig. 1, and discussed in detail below.

The rate coefficients are calculated by numerically integrating Eq. (2). This integral does not pose difficulties
for relatively low principal quantum numbers n < 40 when using the VF01b non-perturbative quantum mechanical
Ppo_ne. However, for larger n, the calculation does not converge because of truncation errors and near cancellation
of large terms. These problems are addressed in our code by using exact number arithmetic for large factorials and
extended floating point precision for large order polynomials. The computational time increases as ~ £ X n, to the point
that accurate calculations become impractical; for example, the calculation for n = 1000 can take up to 5 minutes.
More efficient, but less accurate approximations are implemented in the code for large n and ¢, when numerical
integration of quantum probability is slow. The method parameter in the code selects the desired procedure, either
quantum, or from the menu of approximations discussed below, and should be chosen based on the accepted level in
the trade-off of accuracy versus computing cost.

VOS12 SC formula works well for moderate to large |Af|, but loses accuracy for larger |A¢|, for which the rate
coefficients are small and may be neglected. The VOS12 SC formula has been derived by integrating the classical limit
of VFOla transition probability, and has been validated by extensive classical trajectory Monte Carlo simulations.
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The SC approximation fails for dipole transitions |A¢| = 1, because the SC transition probability increases linearly
with the impact parameter and drops abruptly after a critical value, instead of decreasing as b~2, as obtained with
perturbation theory (PS64).

For dipole transitions, the code provides rate coefficients for combined ¢ — ¢ + 1 and ¢ — £ — 1 transitions. In the
Born approximation, Py,¢_s,¢ is assumed to be 1/2 for R < Ry, after which it decreases as 1/b%. The PS64 formula is
derived from this approximation by adopting the additional assumption that Ry < R.. This assumption fails for large
ne and low T, limiting the range of applicability of PS64 to n?(n? — ¢? — ¢ — 1)n./T? < 2.98 x 10% cm™3/K2. Within
this range of parameters, PS64 is in reasonable agreement with the non-perturbative quantum results, as demonstrated
in the next section. Outside this range, PS64 rate coefficients become negative (Salgado et al. 2017; Guzman et al.
2017).

The PS-M approximation introduced in Guzman et al. (2017) replaces the constant 1/2 transition probability in
the PS64 model with a linearly increasing one, and obtains the rate coefficient by averaging the resulting cross section
over all energies, including those neglected by PS64 for R; < R.. The approximate PS-M rate coefficients shown in
table I in Guzman et al. (2017) are positive even when PS64 are negative, and yield an overall better agreement with
the quantum results, although significant deviations are noted in some cases, up to a factor of 10, probably due to the
simplicity of the model.

The shortcomings of the VOS12 SC approximation for dipole allowed transitions were addressed in VOS17 by deriving
a more accurate SC probability with the correct large b asymptotics. When used in Eq. (2), the VOS17 transition
probability leads to a SC rate coefficient for dipole allowed transitions

U
k(n, ¢, T,ne) = [aoo\/:% ne

where erf is the error function, D,,, = 6n2(n? — %2 — ¢ —1), n = 0.277855 is the solution of the equation j;(1/2)? = 2/6,
with ji.(u) a spherical Bessel function of order k and argument u, and x = 3D,,,0/(4n*) = neDype/(7.82162 x 10°T2).
The coefficients in the asymptotic expansion can be calculated up to the truncation order Ny by using

YT oxt(ny/z) — ol 4 ZAk By — 3y — log(4x))z* (5)
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Figure 1. The Lmixing package provides the rate coefficient k(n, ¢, T,n.) by using several approximations for the transition
probability P,,—,e in Eq. (2), as outlined in the table on the left. An example code showing the usage of the package is
displayed on the right. By default, the function rate calculates the rate coefficient for both dipole allowed transitions ¢/ = £+ 1
by integrating numerically the quantum mechanical probability. For n 2 40, when integration requires extended precision and
takes a longer time to complete, faster, but less accurate, approximations can be selected with the optional parameter method.
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Figure 2. Rate coefficients for combined (n,£) — (n,£ + 1) transitions versus n for transitions of extreme eccentricities £ = 1
(a) and £ =n —2 (b), at T = 10 K and n. = 100 cm~>. The solid line is obtained by using Eq. (5) with N; = 16, dots refer
to the direct integration of the quantum transition probabilities, dashed lines and dot dashed lines represent the PS64 Eq. (9)
and PS-M Eq. (18) results, respectively.

where Hj, = Z§:1 1/j for k > 0, Hy = 0, with k the k-th harmonic number and v = 0.57721 the Euler constant. A

derivation of this formula, and a list of the first eleven Ay and By coefficients, is given in the appendix. Our experience
shows that a truncation order N; ~ 16 — 20 is sufficient to provide accurate results.

3. RESULTS

As illustrated in Fig. (1), the Python module Lmixing (Vrinceanu 2018) has a function that calculates the angular
momentum mixing rate coefficient. The required arguments are the principal quantum number n, the initial angular
momentum /, and the temperature in Kelvin. The optional arguments are the electron number density n. in cm™3,
the final angular momentum ¢’, and the method of calculation. The choices for this argument are: quantum (default
value) using Eq. (2) with the probability defined by Eq. (3) in VF01b, semiclassical using Eq. (5), Born for the
Born approximation Eq. (8), PS-M for the approximation in Eq. (18) originally introduced in Guzman et al. (2017),
and P_and_S which implements the PS64 method. If ¢’ is not provided, the rate for the combined ¢ — £+ 1 transitions
is calculated. If ¢’ is given, one can then choose the exact quantum calculation, or the SC approximation (Eq. (8) in
VOS12) with the value for the method parameter classical, provided that |A¢| > 1.

Figure 2 shows a comparison between the rate coefficients coefficients for dipole allowed transitions for ¢ = 1 and
{ = n — 2 angular momenta, calculated by integrating the VF01b quantum formula, the PS64 approximation and the
SC approximation in Eq. (5). The evaluation of the quantum case for extremely large n is slow even when low accuracy
results are sufficient, due to the use of multiprecision floating point arithmetic necessary to prevent truncation error
and loss in precision. The calculations in Fig. 2 required 400 digits of precision and took several hours for ¢ = 1 cases
and two days for £ = n — 2 cases to complete on a single processor. At around n = 200, in the ¢ = 1 case, the PS64
approximation fails and becomes negative for higher n, as first discussed in Salgado et al. (2017), and in the caption
of Table 1 in Guzman et al. (2017), while the SC approximation is in good agreement with the quantum results
over a much larger range of n. For sufficiently low T and high n., the SC rate coefficients for n 2 500 overestimate
the corresponding quantum result, then underestimate the latter at even higher n (not shown in Figure 2), eventually
becoming negative. However, unlike the case of PS64, the negative-defined region occurs for progressively higher values
of n as more terms in the expansion of Eq. (5) are considered. In the £ = n — 2 case, the PS64 results are more reliable
with respect to the corresponding ones at low angular momentum, and begin to diverge from the exact results for
n > 700, becoming negative at around n = 1000. The overall shape of the dependence of the rate coefficient, k with n,
is the result of two competing factors, as seen in Eq. (5): on the one hand the prefactor in front of the integral increases
as n*, while the integral decreases roughly as 1/6. For comparison, we also include in Figure 2 PS-M rate coefficients
which behave more consistently with n than the PS64 model in the ¢ = 1 case, and approach the quantum results at
large n. However, other than the large n limit for £ = 1, PS-M predicts rate coefficients which are consistently smaller
than QM and SC values, as particularly evident in the ¢/ = n — 2 case.
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Figure 3. Discrepancies for the rate coefficients calculated with the PS64 approach (left) and the SC approximation (right),
both referred to the non-perturbative rate coefficients evaluated using the quantum formula, for a broad range of n and T2 /n..

In Figure 3, the accuracy of PS64 approximation (left panel) and of the SC approximation (right panel), both with
respect to the quantum rate coefficients, is shown for astrophysically relevant values of n, T' and n., and for the £ =1
transition. The SC approximation is accurate within 1% over a wide range of T' and n, while the accuracy of PS64
is roughly one order of magnitude worse at the same point in the n — T?/n, plane. The PS64 approximation yields
negative rate coefficients in the upper left corner of the diagram, i.e. in the low 7', high n., and high n regime. As
already discussed for Figure 2, the SC rate coefficients also become negative in the upper left corner, but in comparison
to the PS64 case this occurs for a smaller region with size inversely proportional to the number of terms N; in Eq. (5).
These cases are extreme, but important for the interpretation of HRRLs which probe the low electron density, cool
ISM (e.g. Salgado et al. (2017) and references therein). The SC approximation obviously becomes less accurate
in the region for which the rate coefficients approach negative values. This is also expected as for these parameters
Ap < n2ag, indicating that the binary collision assumption may fail, with the /-mixing instead ruled by many-body
interactions. If the opposite case of £ = n — 2 is considered, the rate coefficients for PS64 and the SC approximations
are much closer, in line with what is expected by inspecting the corresponding curves in Fig. 2. Figure 3 puts on
a more quantitative standing the recent debate on the accuracy of various proposed rate coefficients as reported in
Storey & Sochi (2015); Guzman et al. (2016, 2017); Williams et al. (2017). The SC approximation is in general more
accurate than the above approximations because the VOS17 transition probability agrees better with the quantum
results. It was noticed in Guzman et al. (2017) that for some extreme cases, the PS-M overestimates the quantum
results by a factor of 10.

The HRRL results shown in Fig. 4 were produced with the Salgado et al. (2017a) models using the updated ¢-
changing collision rate coefficients, Eq. (5) with N; = 10 and, as a comparison, also using the PS64 rate coefficients.
The latter are known to be in good agreement with the quantum mechanical rate coefficients for sufficiently high T,
high n. and low n.

We show in Fig. 4 the results for the departure coefficients from thermal population, b,, for a homogeneous, one
dimensional gas slab with: (i) 7. = 100 K and n, = 0.1 em~3, and (ii) 7. = 10 K and n, = 100 cm~3. The former
is a typical cool ISM case and the latter is an an extreme case. Both are exposed to a Galactic power-law radiation
field T oc A26 that is normalized at 100 MHz by Tr 100 = 2000 K (Salgado et al. 2017). We find that the different
{-changing collision rate coefficients primarily affect b, at low to intermediate n values (n < 300) with differences up
to a few percent for typical cool ISM conditions. As explained in Salgado et al. (2017), but see also Hummer &
Storey (1987), this is because at these intermediate n levels collisions compete with spontaneous decay, effectively
storing electrons in high ¢ sublevels for which radiative decay is less important. Notably, the ¢-changing collision rate
coefficients presented here allow us to efficiently calculate b,, values for high n, where the PS64 rate coefficients no
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Figure 4. Calculations of the b,, departure coefficient from collisional-radiative simulations of hydrogen for two cases: T' = 100
K and n. = 0.1 cm™® (blue lines), and T = 10 K and n. = 100 cm™® (red lines). The upper plot shows b, calculated by using
PS64 (dashed lines) and by using the SC approximation (solid lines). The lower plot shows the relative difference between the
results using the two approximations, for each case considered. The dotted line and the circled point mark the maximum n for
which PS64 provides convergent results in the low T, high n. case. When converged, the PS64 and SC results agree with a
maximum difference of few percent.

longer apply, and which are important to studies of cool, partially ionized ISM (e.g. Oonk et al. 2017; Salas et al.
2018).

The HRRL optical depths are calculated using the product of b,03,, where the correction factor for stimulated
emission (3, can be seen as the derivative of b, (Salgado et al. 2017), such that small changes in b, can lead to
somewhat larger changes in HRRL optical depth. These changes are measurable, but require very high signal to noise
observations across a broad frequency range (i.e. 240-2000 MHz). Most HRRL observations have difficulties achieving
such accuracy, and hence the calculated differences will be within current observational uncertainties for typical ISM
conditions. We have also compared the HRRL results presented here with those computed using the VOS12 SC rate
coefficients (Salgado et al. 2017). We find that for these cases the results agree to within a few percent for n > 300.
For lower n-values the agreement is less good.

We are currently implementing our new /-changing rate coefficients for CRRLs, as will be presented in a future work.
Although we anticipate that the results may be qualitatively similar to those for HRRLs, from a quantitative standpoint
we expect to have stronger dependence of the departure coefficients on the ¢-changing collision rate coefficients than
HRRLs (Salgado et al. 2017).

4. CONCLUSIONS

We have introduced an efficient and accurate SC approximation for ¢-mixing processes, allowing direct evaluation
of collisional rate coefficients for a broad range of n, T, and n. relevant to astrophysical plasmas. We provide a
Python module for evaluating these rate coefficients for easy integration in large-scale radiative-collisional simulation
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codes. The Python code also implements a multi-precision numerical integration of the quantum rate constants for
small to moderate n. The relationship and range of validity and accuracy for various schemes to evaluate /-changing
rate coefficients are elucidated. Furthermore, we identify the range of parameters for which PS64 rate coefficients
become unphysical. Efficient computer codes for the evaluation of ¢ mixing rate coefficients with various levels of
approximation are beneficial for accurate astrophysical modeling. As noted in the recent release of Cloudy (Ferland et
al. 2017), different choices for the rate coefficients can lead to differences up to 10% in the predicted line intensities,
which are larger than the precision of current observations. The rate coefficients proposed here are in better agreement
with the more rigorous, but computationally less efficient quantum rate coefficients.
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Software: Lmixing (Vrinceanu 2018)

5. APPENDIX

This section presents the derivations of the main results and implementation details of the computational module.
According to the organization of the code illustrated in Fig. 1 we will discuss the four main sections: the integration of
the exact quantum formula, the Born approximation, the classical approximation and the semiclassical approximation.
These approaches are derived from Eq. (2) either by keeping the exact, but computationally expensive form for the
transition probability P,¢_n¢, or by replacing it by an approximate expression that provides quicker results with a
limited range of validity. The goal is to calculate the dimensionless integral in Eq.(2)

];(n,ga 6/7 9) = /; anfqnz/(z)eialﬁ/z dz. (6)

The exact calculation uses the quantum transition probability derived in (VF01b), that has practical use limited to
small (n < 30) quantum numbers in regular computer arithmetic. The main two reasons for this difficulty are the
combinatorial Wigner 6-j symbols involving factorials of large integers that cannot be represented exactly with integer
types, and the loss of precision in the calculation of polynomials of large order with alternating terms. Our code
takes advantage of the unlimited size integer type in Python by pre-computing tables of large factorials, and by using
fixed-point representations of real numbers with a prescribed, but arbitrary, number of decimal figures. As a rule of
thumb, we find that a calculation for quantum numbers n requires setting the precision at n/2 digits. The numerical
integral Eq. (6) is calculated with a recurrent Gauss-Lobatto-Kronrod algorithm from Press et al. (1992) adapted for
the use of extended precision real numbers.

A Born approximation is obtained from perturbation theory (VOS17) only for dipole allowed transitions. The
cumulative probability for both £ — ¢ transitions is approximated as

P(B)—l 1 7ifZ§\/Dng/’fL4 (7)
2| Dne/(n*2?) ,if 2> \/Dpe/n*

with D,y = 6n%(n? — ¢2 — ¢ — 1). When used in Eq. (6), this transition probability provides the Born approximation
for the rate Dot2nt

~ _ ne n

kB (n,0,0) = 1€T + %F(Q Dy0/2n%) (8)
where T'(0,x) is the incomplete gamma function. The PS64 result was derived under the same conditions with the
additional tacit assumption that the cutoff impact parameter R, is greater than the R; parameter (R. > Rp) for any
projectile speed. Since the transition impact parameter increases with the speed of the projectile as ~ 1/v, the thermal
average Eq. (1) will have a contribution from small speeds for which Ry > R.. This contribution, neglected in PS64,

diminishes as R, — co. Indeed, the PS64 rate is obtained from Eq. (8) in the 8 — 0 limit

Dn@
4n4

) (n,0,0) = [1 -7 1Og<Dn€0/2n4)} (9)
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where v is the Euler constant. This corresponds to Eq.(43) in PS64. The rate coefficients in Equation (9) become
negative for n large enough such that D,,0/n* > 2¢!=7. In other words, the PS64 approximation is limited to cases
where n?(n? — 2 —{ — 1)n./T? < 2.98 x 10°, which for small ¢ reduces roughly to nn./T? < 3 x 10°, and for large £
to n3n./T? < 10°.

A semiclassical transition probability, compatible with the Born approximation and increasing linearly for small
impact parameter, as predicted by the classical approximation, was obtained in (VOS17). In terms of the parameter
z, the unresolved transition probability, summed over the ¢’ and slightly modified in order to give a better agreement
with the quantum results, is

P(sc):{z/ 6Dn[/n4 ,ifZS’I] 3Dng/2n4 (10)

3j1(\/3Dne/2n%/2)? | if 2 > 0n\/3Dpe/2n*

where j;(z) is the spherical Bessel function of order 1, and 1 = 0.277855 is the solution of the equation j?(1/z) = x/6.
When used in Eq. (6), one gets the semiclassical approximation for the rate coefficient

_ Dy [ 37 3 > 2
(SC) _ It f _ 9Nz 1 / i2(1 —xy 11
k (na E’ 9) 4n4 |:4ZL‘3/2 er (77\/5) 2 € =+ 8 0 .]1( /y) ye dy ( )

where 2 = 3D,,,0/4n*, and erf is the error function. The integral can be treated as a Mellin-Barnes integral (Paris &
Kaminisky 2001) to obtain an asymptotic expansion in the parameter z, because

oo N 1 c+ioco
I(z) = 18/ J2(1/y) ye™ ™ dy = 51 F(1—s)G(s) ds (12)
0 c—100

where the integral goes along a line parallel with the imaginary axis with 0 < ¢ < 2, and where F' and G are the Mellin
transforms

> 3= cos(ms s —
F=9) =18 [ 201/ e dy =18 2 ) (13)
and
> —xy2 s—1 _ F(S/2)

G(s) :/0 e Y’ dy = 57572 (14)

Therefore the integral is y

€110 925 cos(ms/2)[ (s — 1) T'(s/2)

=1 ety e 1

An expansion for small x can be obtained by completing the integration along another line parallel with the imaginary
axis, to create a contour around poles on the negative real axis and using the residue theorem. The poles of the
integrand occur at negative even numbers s = 0, —2, —4,...,—2k, ... and are double. The double nature of the poles
is the origin of the logarithm in the expansion of I(z). The poles at s = 1,—1,—3,... are removable and do not
contribute to the expansion. Therefore, after calculating the residues, one obtains

N N
I(z) = ZRes(s =s1) + 0N = Z Ap(By, — 3y —2In2 — Inz)z® + OV 1) (16)
k=0 k=0

where « is the Euler constant, and the coefficients are A;, = 18 x 4% /(k!(2k + 1)!(k + 2)(k + 3)(2k + 3)) and By =
1/(E+2)+1/(k+3)+2/2k+3)+1+1/24+ ... +1/k+2+2/3+...+2/(2k+1). With the first 11 terms listed in
Table 1 the expansion of Eq. (16) is accurate within one part in 10* for x < 50.

A modified PS64 approximation was obtained in (Guzman et al. 2017) by replacing the original constant 1/2 for
b < R; with a linearly increasing transition probability. When written in terms of the dimensionless parameter z, as
defined in the discussion following Eq. (2), this approximate transition probability is

P(PS—I\/I) — 1 z (2P1)3/2/ V Dné/n4 s if z < vV Dn@/(2P1n4) (17>
2| Dune/(n*2?) ,if 2 > \/Dpe/(2P1n*)



Table 1. Coeflicients Ay and By for the expansion of the integral in Eq.(12).

k Ak Bk

0 1 7/2 = 3.5

1 1/5=10.2 113/20 = 5.65

2 3/350 = 0.00857142857142857 2857/420 = 6.80238095238095

3 2/14175 = 0.000141093474426808 4793/630 = 7.60793650793651

4 1/873180 = 1.14523924047734x107° 28526/3465 = 8.23261183261183

5  1/189189000 = 5.28571957143386x 107 3151273/360360 = 8.74479131979132

6  1/65675610000 = 1.52263526749123x107*! 1102667/120120 = 9.17971195471195

7 1/34192364456250 = 2.92462956540933x 10 2439746/255255 = 9.55807329924977

8  1/25408725942600000 = 3.93565581469558x 1017 575762023/58198140 = 9.89313443694249
9  1/25932145697017560000 = 3.85621772946852x 1020 42376261/4157010 = 10.1939280877361
10 1/35244143470037502000000 = 2.83735083773604x102*  1000753049/95611230 = 10.4668985954893

with the free parameter P; equal to the transition probability at the matching impact parameter. The integral Eq. (6)

in this case yields the PS-M approximation

~ D 1
(PS—M) _ “nt _ .8
k (n,6,6) = 705 | 57 f(VB) = 577 +T(0,8) (18)
with parameter 8 = D,,,0/(4Pin?).
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