

27
28 **Title:**
29 Successful and unsuccessful attempts to swallow in a reduced *Aplysia* preparation regulate feeding
30 responses and produce memory at different neural sites
31
32 **Running Title:**
33 *In vitro* training in *Aplysia*
34
35 **Authors and Author Addresses:**
36 Jeffrey M. McManus¹, Hillel J. Chiel^{1,2,3}, and Abraham J. Susswein^{4,5}
37
38 Departments of ¹Biology, ²Neurosciences and ³Biomedical Engineering, Case Western Reserve
39 University, Cleveland, OH 44106-7080, and ⁴The Mina and Everard Goodman Faculty of Life
40 Sciences, ⁵The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar
41 Ilan University, Ramat Gan, 52900, Israel,
42
43 **Corresponding Author with complete address:**
44 A.J. Susswein
45 Bar Ilan University
46 Ramat Gan 52900 Israel
47 Phone: 972 3 531 8388
48 Email: avy@biu.ac.il
49
50 **Keywords:**
51 learning, feeding, *Aplysia*, post-synaptic, cholinergic
52

54 **Abstract**

55 Sensory feedback shapes ongoing behavior and may produce learning and memory. Motor
56 responses to edible or inedible food in a reduced *Aplysia* preparation were examined to test how
57 sensory feedback affects behavior and memory. Feeding patterns were initiated by applying a
58 cholinomimetic onto the cerebral ganglion. Feedback from buccal muscles increased the response
59 variability and response rate. Repeated application of the cholinomimetic caused decreased
60 responses, expressed in part by lengthening protractions. Swallowing strips of *edible* food, which
61 in intact animals induces learning that enhances ingestion, increased the response rate, and
62 shortened the protraction length, reflecting more swallowing. Testing memory by repeating the
63 procedure prevented the decrease in response rate observed with the cholinomimetic alone, and
64 shortened protractions. Training with *inedible* food that in intact animals produces learning
65 expressed by decreased responses caused lengthened protractions. Testing memory by repeating
66 the procedure did not cause decreased responses or lengthened protractions. After training and
67 testing with edible or inedible food, all preparations were exposed to the cholinomimetic alone.
68 Preparations previously trained with *edible* food displayed memory expressed as decreased
69 protraction length. Preparations previously trained with *inedible* food showed decreases in many
70 response parameters. Memory for inedible food may arise in part via a post-synaptic decrease in
71 response to acetylcholine released by afferents sensing food. The lack of change in response
72 number, and in the time that responses are maintained during the two training sessions preceding
73 application of the cholinomimetic alone suggests that memory expression may differ from
74 behavioral changes during training.

75

76 **Introduction**

77 Learning and memory may be examined in intact behaving animals, and in portions of the nervous
78 system that control the relevant behaviors. Examining intact animals may not provide access to
79 the cellular events underlying the changes in behavior and examining plasticity in isolated tissues
80 does not provide simultaneous monitoring of the behavioral changes arising from cellular changes.
81 Reduced preparations that contain effectors of behavior, as well as portions of the nervous system
82 that control the effectors, can provide a bridge between behavioral and cellular analyses (Antonov
83 et al. 2010; Cohen et al. 1997; Chiel et al. 1986; Frost et al. 1997; Weiss et al. 1986). Such
84 preparations may allow deeper characterization of behavioral changes that may not be evident in
85 an intact animal, as well as providing insight into some of the underlying cellular events.

86 In addition to information on learning and memory, a reduced preparation may also provide
87 an important bridge for studying how a central pattern generator (CPG) is modulated. In behaving
88 animals, many cyclical patterns of neural activity are only intermittently truly cyclical, since they
89 are continuously modulated. Sources of modulation include feedback from effectors of behaviors
90 produced by the cyclical neural activity (Pearson 2004; Rossignol et al. 2006), feed-forward and
91 feed-back information from the current environment (Chiel and Beer 1997), and information
92 about the current state of the organism (Burke 1999). Learning and memory arising from previous
93 experiences that are relevant to the cyclical neural activity may also influence it. Nonetheless,
94 when portions of the nervous system that generate aspects of a repetitive behavior are examined
95 in the absence of such influences, cyclic neural activity may be quite robust and repetitive, due to
96 the unmodulated activity of the CPG (Marder and Bucher 2001). As progressively more
97 information about ongoing and previous performance of the behavior is present, the output may
98 become less influenced purely by the CPG (Diehl et al. 2013; Hamood and Marder 2015; Wenning
99 et al. 2014).

100 In this report, we have examined modulation of neural activity by feedback from effectors in
101 a reduced preparation, in which the ganglia producing cyclical activity remain attached to key
102 effectors, the buccal musculature. This allowed us to challenge the motor system with natural
103 loads that modify neural patterns and produce changes in behavior. Because the loads used to
104 examine change in behavior are also stimuli used in associative learning tasks in intact animals
105 (Nargeot et al. 2007; Susswein et al. 1986), the study also provides deep insight into behavioral
106 changes that occur while animals learn, and also into the neural mechanisms producing learning
107 and memory.

108 The study focuses on the consummatory phase of *Aplysia* feeding, which is controlled by a
109 CPG in the buccal ganglia that organizes repetitive protractions and retractions of the toothed
110 radula via the actions of buccal muscles (for reviews, see Cropper et al. 2004; Elliott and Susswein
111 2002; Wentzell et al. 2009). Activity of the CPG, and repetitive protraction and retraction
112 movements, are central components of a number of distinct consummatory behaviors (Jing and
113 Weiss, 2005; Kupfermann 1974; McManus et al. 2014; Neustadter et al. 2007; Wu et al 2014; Ye et
114 al. 2006). In intact animals, the repetitive activity produced by the CPG shows considerable cycle-
115 to cycle variability (Brezina et al. 2006). The CPG is active even in an isolated buccal ganglia
116 preparation. Activation of the CPG induces fictive feeding that can be monitored by recordings
117 from peripheral nerves which *in vivo* innervate the buccal muscles effecting feeding behaviors
118 (Jing and Weiss 2001; Morton and Chiel 1993; Neveu et al. 2017; Susswein et al. 1996). The cellular
119 processes underlying the properties of individual CPG elements can be readily studied in an
120 isolated ganglion preparation (Dembrow et al. 2003; Hurwitz and Susswein, 1996; Hurwitz et al.
121 1994; 1997; 2008; Sasaki et al 2007; Saada et al. 2009; Susswein and Byrne 1988), in which the
122 ganglia controlling feeding are removed from the animals and studied *in vitro*. However,
123 information that can be gained in isolated ganglia is limited, since one cannot examine modulation
124 arising as a result of changes in the load that animals work against when they attempt to eat a

125 food or learning and memory that result from successful or failed attempts to eat a food. To
126 determine how changes in load, and learning and memory, affect the expression of fictive feeding,
127 we have examined feeding motor patterns expressed in a reduced preparation in which the buccal
128 ganglia remain attached to the buccal muscles, and fictive feeding is expressed both via patterns
129 of neural activity and via observable protractions and retractions of the radula (McManus et al.,
130 2012).

131 In the preparation used, the buccal ganglia and the attached buccal muscles are suspended
132 in a saline bath. The buccal ganglia also remain attached to the cerebral ganglion, which contains a
133 small population of command-like neurons (CBIs – cerebral-buccal interneurons –Hurwitz et al.
134 1999; 2003; Jing and Weiss 2001; 2005; Rosen et al. 1991; Wu et al. 2014) which can directly and
135 indirectly activate the CPG (Hurwitz et al. 2003; Jing and Weiss 2001). Treating the cerebral
136 ganglion with a cholinomimetic activates fictive feeding (Susswein et al. 1996), presumably
137 because sensory neurons that respond to food are cholinergic, and acetylcholine (ACh) depolarizes
138 and fires some of the command-like neurons (Susswein et al. 1996). Because the buccal muscles
139 produce radula protraction and retraction, and also opening and closing of the mouth, food can be
140 put into the buccal cavity, thereby loading the motor system. Both strips of soft, edible food,
141 which weakly load the muscles and can be successfully swallowed, as well as food that is made
142 inedible by wrapping it in plastic netting, which load the muscle more strongly as animals attempt
143 to swallow it, can be placed within the mouth, thereby allowing us to examine the possible effects
144 of different levels of loading on the behavior.

145 In intact animals, both successful swallowing of food and failed attempts to swallow a tough
146 food are experiences that lead to learned changes in behavior while the animals attempt to
147 consume the food, and subsequent changes in response when animals are again challenged with
148 the food, reflecting memory of the previous experience (Brembs et al. 2002; Chiel and Susswein
149 1993; Lechner et al. 2000; Susswein et al. 1986; Nargeot et al 1997; 2007). We tested possible

150 changes in response during the initial exposures to the edible and inedible foods. We also tested
151 short-term memory by re-exposing the preparations to both edible and inedible foods, as well as
152 to the cholinomimetic alone.

153 The presence of the peripheral musculature enriched the expression of consummatory
154 behaviors elicited by the cholinomimetic by increasing the peak frequency, and by causing a wider
155 variety of motor responses. Feedback from successful food consumption enhanced some aspects
156 of feeding responses, and the enhancements were retained when the preparations were tested
157 for a second time with food that is successfully consumed. In contrast, unsuccessful attempts to
158 swallow food produced relatively few changes in response during either an initial attempt, or
159 during a second attempt to consume the food. However, training with inedible food caused short-
160 term memory that was expressed as a decrease in response to a subsequent exposure to the
161 cholinomimetic alone.

162 These findings suggest different sites of memory formation in response to the different
163 types of training. For *edible* food, aspects of short-term memory are likely to be localized to the
164 buccal ganglia. For *inedible* food, the memory measured in the reduced preparation arises
165 primarily via a post-synaptic decrease in response to acetylcholine (ACh) in cholinoreceptive cerebral
166 ganglion neurons. Previous work (Susswein et al., 1996) showed that lip receptors responding to
167 food are cholinergic. Different populations of taste receptors will synapse at different post-
168 synaptic sites. A post-synaptic decrease in response to ACh can account for food-specific learning
169 that food is inedible.

170 **Results**

171 Our aim was to use a reduced *Aplysia* feeding preparation to provide insight into how the
172 presence of peripheral musculature affects repetitive motor programs, and how both effective
173 and ineffective loads (effective and ineffective attempts to consume food) modify feeding motor
174 activity. Since both effective and ineffective attempts to swallow food lead to learning and

175 memory that the food is edible or inedible in intact animals (Susswein et al., 1986; Nargeot et al.
176 2007), these studies also provide insight into how aspects of a training paradigm in a reduced
177 preparation may affect behavior during training, and also produce short-term memory after the
178 training. We used a suspended buccal mass preparation (McManus et al., 2012; 2014) to examine
179 these questions. In this preparation, the buccal mass is suspended in *Aplysia* saline, while it
180 remains attached to the buccal and cerebral ganglia. The buccal muscles and buccal mass are in
181 the same chamber. The cerebral ganglion is in a separate chamber, allowing the two ganglia to be
182 bathed in different fluids, and allowing drugs to be applied separately to the two ganglia. The
183 buccal and cerebral ganglion are connected to one another via the cerebral-buccal connectives,
184 which span the partition separating the two chambers.

185 In intact animals, the lips are stimulated with food to initiate feeding responses
186 (Kupfermann, 1974a). Because the lips are not present in the suspended buccal mass preparation,
187 lip stimulation with food cannot be used to induce bites and food entry into the buccal cavity. To
188 initiate motor activity, the cerebral ganglion is treated with the non-hydrolyzable cholinergic
189 agonist carbamyl choline (carbachol - CCh) (Brown and Laiken 2011), which induces repetitive bite-
190 like motor programs in the buccal ganglia (Susswein et al., 1996). In the suspended buccal mass
191 preparation, because the buccal muscles are present, the mouth opens and closes, the radula
192 protracts and retracts, and the radula halves open and close, as in intact animals (Kupfermann,
193 1974a). Swallowing and rejection responses can be elicited respectively by placing into the buccal
194 cavity either strips of seaweed, or inedible objects. Neural correlates of biting, swallowing and
195 rejection can be examined in detail, providing insight into how the 3 behaviors are organized
196 (McManus et al 2012; 2014). To observe how edible or inedible foods might modulate motor
197 programs, strips of edible food, or of an inedible food similar to that used previously to train
198 animals (Susswein et al. 1986), were placed within the buccal cavity when the mouth opened in
199 response to the CCh. Video recordings of the buccal mass, and extracellular voltage recordings

200 from the buccal nerves and from the I2 buccal muscle, allowed us to monitor motor programs in
201 response to the CCh and in response to the food stimuli. In addition to being initiated by CCh
202 rather than by lip stimulation, feeding responses using inedible food in the preparation differed in
203 a second way from that in intact animals. In the intact animal, after food enters the buccal cavity,
204 the food may intermittently leave the buccal cavity. Because food is still in contact with the lips,
205 additional bouts of bites and attempts to swallow are induced. During the latter portion of a
206 training trial with inedible food, the animals become relatively unresponsive to food, and the food
207 spends relatively little time within the buccal cavity (Susswein et al. 1986). In contrast, in the
208 suspended buccal mass preparation the food was not permitted to exit from the buccal cavity.
209 Whenever the food began to leave the buccal cavity, it was pushed back in.

210 ***Modulation of motor program patterning by the presence of the buccal musculature***

211 A previous report (Susswein et al. 1996) examined parameters of motor programs elicited in
212 response to CCh administered to the cerebral ganglion in preparations in which the cerebral and
213 buccal ganglia did not remain attached to the buccal muscles. After an initial warm-up period, it
214 was found that motor programs were elicited at a rate of approximately 3 per minute, and that
215 95% of the programs were bite-like, on the basis of patterns of firing recorded from buccal
216 ganglion nerves (Morton and Chiel, 1993). In addition, activity during protraction and retraction
217 were relatively consistent, with very little variability from burst to burst. To test whether
218 proprioceptive feedback from the muscles may affect motor activity, we examined motor
219 programs elicited in the suspended buccal mass preparation (Fig. 1). The presence of the buccal
220 muscles leads to an increase in the peak frequency (Figs. 1; 2C and 2E) as well as an increase in the
221 variability in the types of motor responses elicited.

222 On the basis of patterns of firing recorded from buccal ganglion nerves, feeding motor
223 programs have been classified (Morton and Chiel, 1993) as ingestion-like (either bite-like or
224 swallow-like), rejection-like, or intermediate, primarily based on the phasing of neural activity that

225 is a correlate of radula closing with either protraction or retraction. Classification of motor
226 patterns based on buccal nerve recordings have been used extensively in previous reports (Cullins
227 et al. 2015; Jing and Weiss, 2001; 2005; Morton and Chiel, 1993; Neveu et al. 2017; Susswein et al.
228 1996; Wu et al. 2014). However, recent recordings of neural activity while observing the behavior
229 of intact animals have shown that the neural correlates are only approximate indicators of feeding
230 behavior, with many ingestion and rejection behaviors not conforming to the patterns of activity
231 that have been used to classify patterns in reduced preparations (Cullins 2014). For this reason, we
232 did not attempt to assign labels of behavioral categories to the patterns of activity that were
233 recorded. Nonetheless, differences in the activity patterns between preparations with and without
234 the buccal muscles attached were very clear. With the muscles attached, the patterns of activity
235 were much more heterogeneous, with the lengths of the protraction and retraction phases being
236 more variable, as well as being faster (Fig 1). The heterogeneity of the responses elicited by CCh in
237 the suspended buccal mass preparation is likely to be a closer fit to aspects of feeding behavior in
238 intact animals than is the homogeneity of responses in the absence of the muscles. Intact *Aplysia*
239 eat a variety of complex natural foods of different shapes (Kupfermann and Carew 1974; Susswein
240 et al. 1984) that induce a combination of different feeding behaviors (Kupfermann 1974). The
241 varied feeding behaviors produced by the buccal muscles are appropriate to the different types of
242 foods eaten. Thus, food on the lips elicits bites, whereas food within the mouth elicits swallows,
243 rejections or intermediate responses. Complex foods elicit complex sequences of different feeding
244 behaviors. The presence of muscles seems to enrich the programs elicited by CCh, so that their
245 frequency becomes more similar to that in intact animals challenged with natural foods, and the
246 types of patterns elicited become more varied.

247 We quantified a number of parameters of motor programs in preparations in which ganglia
248 remained attached to the buccal muscles and in which the muscles were removed. The total
249 number of feeding programs elicited by the CCh (Fig. 2A), and the total time that feeding programs

250 were maintained (Fig. 2B) were similar in the two types of preparations. However, the peak
251 frequency of the programs was higher with the muscles attached (Fig. 2C), indicating that
252 proprioceptive feedback from the muscles increases the peak frequency, as seen in Fig. 1.
253 Nonetheless, even with the muscles attached the peak frequency was lower than in intact, hungry,
254 fully aroused animals, in which the peak bite frequency is approximately 12 bites per minute
255 (Susswein et al. 1976), rather than the mean of 7.03 responses per minute in the suspended
256 buccal mass preparation.

257 A striking feature of buccal motor programs elicited in intact animals (Susswein et al. 1978),
258 and in isolated buccal-cerebral ganglia preparations stimulated with CCh (Susswein et al. 1996), is
259 a delay between presentation of an adequate stimulus eliciting feeding, and the initiation of
260 feeding activity. The delay reflects a lack of arousal in the absence of stimuli that elicit feeding. The
261 feeding stimuli induce a feeding arousal before eliciting feeding behavior. The slow initiation of
262 feeding was also seen in the suspended buccal mass preparation. Fig. 2D illustrates the start of a
263 trial in which CCh was applied to the cerebral ganglion in the suspended buccal mass preparation.
264 After application of the CCh to the cerebral ganglion, motor programs are recorded after a latency
265 of approximately 4 min (see Supplemental Fig. 1). In Fig. 2E, the frequency of the motor programs
266 is shown for each minute after the initiation of responses. The mean frequency increased in each
267 of the first 6 minutes, reaching a maximal rate of over 7 responses per minute. The rate of
268 responses then gradually decreased, and eventually the preparations stopped responding.
269 Supplemental Figure 1 shows the same dates in Fig. 2E, except plotted from the start of the CCh
270 application, rather than from the start of CCh-induced responses. After the preparation stopped
271 responding (defined as no response for 60 sec), the CCh solution was washed from the cerebral
272 ganglion chamber and was replaced with ASW. The latencies from the exposure to the CCh to the
273 start of bursting (Fig. 2F) were not significantly different in preparations in which the buccal
274 muscles were present or absent.

275 ***Modulation of protraction durations during CCh exposure in the presence of proprioceptive
276 feedback***

277 Does the patterning of individual motor programs change during CCh exposure in addition to the
278 changes in response rate? Although video recordings of the buccal mass were available, these
279 were only intermittently useful in classifying the nature of feeding responses, since the radula was
280 often not clearly visible. In addition, as noted above, it is difficult to relate extracellular nerve
281 recordings in intact animals to the type of feeding behavior that intact animals perform, limiting
282 the usefulness of nerve recording in classifying behaviors.

283 As a quantitative measure of some aspect of the nature of the motor programs, we
284 measured the length of the protraction phase of activity. Protraction can vary from less than 1
285 second to a maximum approaching 50 seconds. Short protractions are indicative of weak radula
286 protractions, which occur in swallowing, whereas long protractions are indicators of rejection
287 activity (Hurwitz et al., 1996; Ye et al. 2006a, b; Cullins et al. 2015). As the preparations became
288 aroused, and the burst frequency increased, the length of the protractions decreased (Fig. 3A, left
289 panel), indicating that long protractions are correlates of less than maximal arousal. We examined
290 whether there were changes in the protraction length during the exposure to CCh, as response
291 frequency gradually decreased. The mean protraction lengths decreased during the first 10
292 responses (Fig. 3A, left panel), reaching a mean steady value of 3.4 sec. As the effect of the CCh
293 wore off, and the response rate decreased, the protraction length increased. During the last 10
294 responses, protraction lengths were elevated, and were similar to those at the start of the
295 response, when the preparation was just beginning to respond to CCh, and response rates were
296 relatively low (Fig 3A, right panel). Increased protraction length was not systematically tied to
297 increased retraction length, since there were many examples of 20-40 sec protractions followed
298 by relatively brief retractions.

299 We also compared the protraction lengths during the first half of the period during which
300 bursting was sustained to the protraction lengths during the second half (Fig 3B). The distribution
301 of protraction lengths was significantly shifted to longer protractions during the second half,
302 reflecting a slowing of the frequency and a general decrease in efficacy of CCh in driving the motor
303 programs. These data indicate that long protractions are more often present when the CCh is
304 relatively ineffective in driving motor activity, and may be a general indicator of a preparation that
305 is less responsive to stimuli driving feeding.

306 ***Modulation of motor program patterning by edible or inedible foods***

307 To determine how the presence of edible or inedible foods might modulate the feeding motor
308 activity, a number of parameters of the motor programs elicited by CCh were measured in
309 preparations in which the cerebral ganglion was only stimulated by CCh ($N = 7$), as well as in
310 preparations in which either edible [low-load] ($N = 5$) or inedible [high-load] ($N = 9$) foods were
311 placed in the buccal mass after repeated responses had been initiated (Fig. 4). We were unable to
312 measure possible influences of edible or inedible foods on the latency to begin responding, since
313 food could be put into the mouth only after the preparations had begun to respond. However, we
314 measured whether edible or inedible foods affected the total time that preparations remained
315 responsive to the CCh, the total number of responses from the start of a CCh application to the
316 criterion for cessation of the buccal movements, the mean response rate, and the maximum
317 response rate. There were no significant differences in time from the start of responses to
318 cessation of responses between preparations treated with CCh alone and preparations that also
319 were challenged with either edible or inedible food (Fig. 4A). In addition, there were no significant
320 differences between the total number of responses elicited (Fig. 4B), or in the mean response rate
321 (total number of responses / total response time) between the 3 treatments (Fig. 4C). However,
322 there was a significant difference between the 3 groups in the peak response rate (Fig. 4D). A *post-*
323 *hoc* test showed no significant difference in peak response rate between preparations treated

324 with CCh alone and those fed with inedible food. However, the maximal response rate between
325 preparations fed with edible strips was significantly higher than was the maximal rate in response
326 to CCh alone. The maximal response rate to edible strips was approximately 10/min, which is
327 comparable to that in intact animals (Weiss et al., 1986).

328 It was also of interest to examine whether attempts to swallow edible or inedible foods
329 affect the protraction length (Fig. 5A), since swallowing is characterized by weak protractions,
330 which are relatively short, and rejection is characterized by strong protractions, which are
331 relatively long (Hurwitz et al., 1996; Ye et al., 2006; Cullins et al., 2015). There was a significant
332 difference in the distribution of protraction lengths between preparations treated with CCh alone
333 and those also allowed to swallow edible food, with fewer long protractions in preparations that
334 swallowed edible food. The shortened protractions in response to edible food is likely to be
335 caused by such foods eliciting more swallowing responses.

336 A comparison of preparations treated with CCh alone and with CCh+inedible food showed
337 no significant difference in distribution, using a Mann-Whitney *U* test (which tests rankings), but
338 showed a significant difference using a Kolmogorov-Smirnov test (which tests the overall
339 distribution). These findings stress the general and surprising similarity of responses in
340 preparations tested with CCh alone and those tested with CCh+inedible food, although they are
341 not identical.

342 It was of interest to determine the protraction lengths when feeding activity is maximally
343 driven by CCh treatment. Since the protraction length decreased while animals were becoming
344 aroused, and then increased during the second half of the exposure to CCh alone, when the
345 efficacy of the CCh was declining (see Fig. 3), we compared protraction length for the 3 treatments
346 during the first half of the treatment, minus the first 5 feeding bouts, when protraction length is
347 significantly decreasing (see Fig. 3A). There were significant differences in protraction lengths:
348 Exposure to *edible* food caused a significant shortening of protraction, with respect to protraction

349 during exposure to CCh alone, whereas exposure to *inedible* food caused a significant lengthening
350 of protraction (Fig. 4E). The shortening of protraction with edible food is presumably a result of
351 this food inducing swallows, in which protraction is relatively short (Hurwitz et al., 1996; Cullins et
352 al. 2015). The lengthening of protraction with inedible food may arise because of increased
353 attempts to reject the food, even when CCh is relatively effective in driving feeding activity; a
354 characteristic of rejection is an increased protraction (Hurwitz et al., 1996; Ye et al. 2006b).

355 The similarity in the time to stop, number of responses and the response rate between the 3
356 types of preparations indicates that many features of the response in the 3 conditions are dictated
357 by the properties of cerebral ganglion neurons responding to the CCh, irrespective of whether or
358 not food in the buccal mass is loading the muscles. Nonetheless, protraction length and peak
359 frequency are modulated by the presence of food in the buccal mass. Edible food caused an
360 increase in peak frequency and a decrease in protraction length, whereas inedible food caused no
361 change in response frequency, but increased protraction length.

362 ***Short-term memory: Effects of repeating treatments***

363 In intact *Aplysia* both successful and unsuccessful feeding produce learned changes in behavior
364 (Susswein et al. 1986; Nargeot et al. 2007). Successfully consuming food produces an increased
365 rate of responses, as well as a regularization of the responses (Nargeot et al. 2007). Failed
366 attempts to consume food produce a faster decline in the time that animals respond to food, and
367 to a reduction in the time that food remains in the mouth, perhaps because of an increase in
368 rejection responses (Susswein et al. 1986; Schwarz et al. 1988), which are characterized by strong
369 (and therefore long) protraction responses. To test the possibilities that either successful
370 swallowing of food with a low load, or unsuccessful swallowing of food with a high load produces
371 short-term memory in the reduced preparations, approximately 60 minutes after the start of the
372 trials reported above each of the three treatments was repeated, and the effects of a second
373 application of CCh, with or without edible or inedible foods, were measured. The repetition of the

374 response to CCh alone served as a control for changes in the effect of CCh alone, independent of
375 whether or not food was previously swallowed successfully.

376 There were no significant differences in the mean time to stop, or in the total number of
377 responses elicited by CCh, between the preparations that were treated with CCh alone and
378 preparations treated with either edible or inedible food (Figs. 6A, 6B). However, both the mean
379 response rate and the maximal response rate were significantly elevated in preparations that
380 swallowed edible food, with no significant differences between preparations treated with CCh
381 alone and with CCh plus inedible food (Figs. 6C, 6D). Thus, edible food specifically elevated both
382 the mean and maximal response rates.

383 Fig. 6 compared parameters of feeding responses during the second exposure to CCh in
384 preparations exposed to CCh alone and to CCh+edible or CCh+inedible food. However, it was also
385 of interest to compare responses during the repetition of the CCh stimulation to the responses
386 during the initial exposure to CCh, one hour before. Such comparisons might show changes in
387 response caused by the repetition of the exposure to CCh, as well as possible additional effect of
388 memory that may result from the previous attempts to eat edible or inedible foods. Data for each
389 of the parameters measured, for each treatment, during the first and second treatments with CCh,
390 are shown separately in Supplemental Figure 3. To focus on the effects of repetition *per se*,
391 treatments that are not statistically different from one another during the first exposure to CCh
392 were combined, as were treatments that were not significantly different from one another during
393 the second exposure to CCh.

394 For the time to stop responding, and for the total number of responses, there were
395 significant decreases in response during the repetition (Figs. 7A, 7B). Since there are no differences
396 for these parameters between preparations treated with CCh alone or with CCh+edible or inedible
397 food, the decrease in responsivity could be explained by the exposure to CCh *per se* causing a
398 reduction, with no evidence for an additional change in responses caused by the training with

399 either edible or inedible food. For the mean and maximal response rates, there were also
400 significant decreases during the second exposure in preparations treated with CCh alone and
401 those treated with CCh+inedible food, indicating that the repetition of the CCh alone caused the
402 decrease in responsivity, with no additional decrease caused by the exposure to the inedible food
403 (Figs. 7C, 7D). However, for preparations that were treated with edible food, there were no
404 significant decreases in either the mean or maximal response rates when comparing the data from
405 the first and second exposures to CCh+edible food (Figs. 7C, 7D). These findings indicate that the
406 ability to swallow food to some extent overcame the decline of responsiveness that results from
407 the repetition of the exposure to CCh alone. The previous training with edible food may have
408 produced short-term memory that was qualitatively similar to that produced in intact animals, in
409 that the response rate was increased, although other parameters of feeding responses were
410 similar to those in CCh-treated controls. However, since we did not test the response to
411 CCh+edible food after first exposing the preparation to CCh alone, we cannot rule out the
412 possibility that the changes were caused by the previous exposure to CCh, independent of the
413 presence of edible food. Surprisingly, the failed attempts to swallow food did not produce a
414 decrease in response over that caused by the CCh alone.

415 We also tested whether there were significant differences in the length of the protraction
416 phase of responses (Fig. 5B). There was a large, significant increase in the protraction length as a
417 result of repeating the treatment with CCh alone, indicating a general decrease in effectiveness of
418 CCh in driving motor activity. The increases in protraction length is consistent with the decrease in
419 the number of responses, and with the decreased time that responses were maintained. The
420 effect of repeating the CCh+edible food was opposite to that of repeating the CCh alone
421 procedure: in place of a lengthening of the protractions, there was a small, but significant
422 decrease in the protraction lengths after treatments with CCh+edible food, which is consistent
423 with the improvement of some aspects of responsiveness as a result of the repetition of this

424 treatment. Somewhat surprisingly, there was no significant change in protraction length between
425 the first and second treatments with CCh+inedible foods ($p = 0.704$, Mann-Whitney U test). Since
426 long protractions are indicative of a general decrease in responsiveness, the lack of increased long
427 protractions may reflect a possible improvement of some aspects of responsiveness over that
428 induced by the repetition of CCh alone as a result of the repeated attempts to swallow the food,
429 even if the attempts fail.

430 We also determined whether there were significant differences in protraction length when
431 feeding activity is maximally driven by the CCh, during the first halves of the trials, after the
432 preparation was fully aroused (Fig. 6E). A comparison of protraction length for the 3 treatments
433 showed that there was a significant decrease in protraction length in response to edible food, but
434 no change in protraction length in response to inedible food.

435 ***A second test of short-term memory: Effect of CCh alone after two training sessions***

436 In the above treatment, memory after the initial training was tested in response to the same
437 stimulus combinations used during the training: preparations initially challenged with edible food
438 were tested with edible food, and preparations that had been treated with inedible food were
439 again given inedible food. The preparations tested twice with edible food showed improvement in
440 some measures of responsiveness, with respect to controls treated with CCh alone, perhaps
441 reflecting short-term memory. The preparations tested twice with inedible food showed no sign of
442 decreased responsiveness using a number of measures of feeding.

443 Would there be indications of memory after treatment with either edible or inedible foods if
444 the preparations were then treated a third time, but with CCh alone? We tested this possibility.
445 Approximately 60 minutes after the start of the second exposure to CCh reported above, all
446 preparations were exposed to CCh a third time. However, for this exposure, the preparations were
447 not given either edible or inedible foods – all preparations were exposed only to the CCh (Fig. 8).

448 The results of this treatment were remarkably different from the results of the previous
449 treatment. In this treatment, the preparations that had been previously exposed to inedible food
450 showed strong evidence of memory similar with that seen in intact animals that are trained with
451 the same inedible food. Thus, for 3 of 4 parameters measured (time to stop, number of responses,
452 mean response rate), there were significant reductions in the responsiveness to the CCh alone in
453 preparations that had previously been treated with inedible food, with no significant differences in
454 any of the parameters between preparations that had been previously treated with CCh alone
455 twice, or with edible food twice. The preparations that had been treated with inedible food
456 responded significantly less to the CCh alone (see Fig. 8) than did either of the other two groups.
457 These findings indicate that these preparations express short-term memory similar to that in
458 intact animals, in spite of the lack of decreases in responses in previous training trials between
459 treatment with CCh alone and treatment with inedible food. By contrast, the preparations treated
460 with edible food did not express memory, as measured by these parameters, in spite of the
461 possible memory shown in the previous trial.

462 It is possible that the decreased response to the CCh alone after 2 trials with CCh+inedible
463 food is due to fatigue. To exclude this possibility, preparations that had previously been exposed
464 to CCh+inedible food were presented with other stimuli that elicit motor activity (either dopamine
465 applied to the buccal ganglia, N=2, or stimulation of BN2, N=1). These stimuli elicited motor
466 programs.

467 We also measured protraction length in preparations previously treated with CCh alone and
468 in preparations exposed to CCh+edible food (Fig. 8E). Because 7 of the 9 preparations previously
469 exposed to CCh+inedible responded with 10 or fewer feeding responses (the actual number of
470 responses in the 9 preparations were: 0, 1, 3, 5, 6, 7, 9, 17, 29) it was not meaningful to measure
471 protraction lengths in these preparations, because of the problem of heteroscedasticity. There
472 were no significant differences in the overall protraction lengths between the preparations

473 previously exposed twice to CCh alone or to CCh+edible food (Fig. 8E). We also examined
474 separately the protraction length during the first half of the exposures to CCh, when protraction
475 length is unaffected by the decline in responses to CCh (Fig. 8F). During the first half, the
476 protractions in preparations that were previously treated with edible food were significantly
477 shorter than were protractions in animals that were previously treated with CCh alone, indicating
478 that there was some memory of the previous exposure to edible food.

479 **Discussion**

480 In higher animals and humans, different aspects of behavioral change that arise as a result of
481 learning are localized to different areas of the nervous system, which may operate via different
482 mechanisms of neural plasticity. For example, in fear conditioning, a rodent placed in a new
483 environment hears a tone, and is shocked. The animal learns to associate both the new
484 environment and the tone with shock. The amygdala is involved in all forms of fear conditioning,
485 but learning about the environment also requires changes in the hippocampus (Eichenbaum, 2002;
486 Sweatt, 2009). Thus, a single learning event causes changes in different parts of the nervous
487 system responsible for different aspects of behavioral change. The present findings show that
488 aspects of memory formation after training with inedible food are localized to the cerebral
489 ganglion. Earlier data indicated that aspects of memory are localized in the buccal ganglia (Levitin
490 et al., 2018; 2012). Taken together, these results indicate indicates that learning affecting *Aplysia*
491 feeding is caused by changes in different ganglia causing different aspects of behavioral change.
492 Thus, learning that food is inedible is similar to learning in higher animals, in that it is distributed to
493 more than one site.

494 In this study, we investigated whether presence of the buccal musculature, or of feedback
495 from swallowing, affect feeding motor programs elicited by a cholinomimetic. The cholinomimetic
496 induces feeding, since ACh is the transmitter used by afferents responding to food in intact
497 animals (Susswein et al. 1996). Because successful and unsuccessful swallowing produce memory

498 when paired with attempts to feed, the investigation also provides insight into mechanisms
499 underlying learning and memory. Fig. 9 summarizes our findings.

500 ***Effects of CCh on behavioral patterning***

501 Many features of the response to CCh are similar to those of intact animals in response to food,
502 but some are different.

503 *Similarity of effects of CCh to in vivo behavior.* The latency from the exposure to CCh to the start of
504 motor programs, and the gradual increase in response frequency (Figs. 2D, E, F), are remarkably
505 similar to the phenomenon of food arousal in intact animals in response to lip stimulation
506 (Kupfermann 1974; Susswein et al. 1978), suggesting that food arousal in intact animals is
507 triggered by ACh release in response to food. Hungry *Aplysia* in an environment without food are
508 relatively unresponsive to food. Animals respond to food only after several minutes of exposure,
509 after the food induces an arousal state. Some effects of food arousal are caused by activating
510 neuron C-PR, which mediates aspects of appetitive feeding behaviors (Teyke et al. 1991;
511 Nagahama et al. 1993). Additional aspects of food arousal are mediated by the serotonergic MCC
512 neuron, which facilitates buccal ganglia motor neurons and muscles (Weiss et al. 1978). In intact
513 animals, ACh released by taste afferents may act directly or indirectly on these neurons. The slow
514 initiation of feeding indicative of initiation of arousal by CCh occurs in preparations in which the
515 buccal muscles are not present (Susswein et al. 1996), and in preparations in which the ganglia
516 remain attached to the muscles (Figs. 2D, E, F). The delayed response cannot be attributed to the
517 time required for CCh to penetrate the connective tissue sheath covering the ganglion, since most
518 of the delay was still seen when the sheath was removed (Susswein et al. 1996). The similarity of
519 responses of intact animals to food and of reduced preparations to application of a
520 cholinomimetic suggests that the delay in intact animals is not governed by a delay in the release
521 of ACh in response to food, but rather by a delay in the response to ACh. The delay may be caused

522 by a slow response of cholinoreceptive neurons to the transmitter, or by delayed effects on
523 downstream neurons receiving input from those responding to ACh.

524 The finding that the peak rate of motor programs was increased in the presence of the
525 buccal musculature is consistent with findings on other repetitive movements, where a variety of
526 sensorimotor interactions affect cyclical behavior (Pearson 2004; Rossignol et al. 2006). The
527 increased response rate with the buccal muscles attached may occur because the buccal ganglia
528 CPG governing repeated cycling is reset by feedback from the completion of the previous cycle of
529 muscle activity, thereby phase advancing the next activity cycle. The stepping rate generated by a
530 CPG in the spinal cord is sensitive to the hip angle, which may signal the completion of a step
531 cycle, and changes in the hip angle can entrain rhythmic output (Kriellaars et al. 1994). In addition,
532 a variety of spinal reflexes can modulate the CPG (Burke 1999). The peak response frequency is
533 even higher with edible food, perhaps because opening of the esophageal sphincter allowing food
534 to enter the gut may also signal that a cycle has ended, contributing to signals from the buccal
535 muscles that the previous cycle has ended.

536 *Differences in Effect of CCh from in vivo behavior.* Some features of motor programs elicited by
537 CCh in the reduced preparation are markedly different from those in intact animals. Thus,
538 preparations stop responding to ACh in 10-20 min (Fig. 2B), whereas in intact animals food
539 stimulating the lips elicits responses for over an hour (Schwarz et al. 1988). The maintained
540 response in intact animals may reflect the release of other transmitters or of co-transmitters along
541 with ACh (Cropper et al. 2018; Weiss et al. 1993), or of the effects of synaptic input from
542 structures not present in the reduced preparation. The difference may also arise because CCh,
543 rather than ACh was used in the reduced preparation. CCh is resistant to cholinesterase (Brown
544 and Laiken 2011), which will lower the transmitter concentration after it is released. The
545 maintained transmitter presence might lead to desensitization, and a shortening of its effective
546 time. This possibility could be tested by using ACh in place of CCh.

547 A second possible difference is that a repeated exposure to CCh in the reduced preparation 1
548 h after initiation of the first response led to a reduction in parameters of responsiveness to food.
549 Sustained lip stimulation in intact *Aplysia* does not produce long-term memory (Schwarz et al.
550 1988), but the effects of a rest similar to that in the present experiments have not been tested.
551 The reduced response could arise because cholinergic receptors become desensitized by the
552 maintained presence of the transmitter, and the period between transmitter applications is not
553 sufficient to fully overcome the desensitization. Some reduction in response on repetition of CCh
554 exposures was also seen in a previous report in which the cerebral ganglion was exposed to CCh for
555 20 min every hour, over 5 hours (Susswein et al. 1996).

556 ***Effects of successful attempted swallows on behavioral patterning***

557 *Features of feeding responses not affected by attempts to swallow.* Features of individual motor
558 programs and of sequences of responses seem to be separately regulated. Patterns of individual
559 programs may be regulated by feedback from attempts to swallow (see below), but global
560 features of responsiveness, such as the total time that the preparation is responsive, and the
561 number of responses elicited, seem to be regulated by the exposure to the CCh per se, with
562 limited effects of feedback from the attempts to swallow (Figure 4A, B).

563 *Features of feeding responses affected by successful attempts to swallow.* Some features of the
564 programs elicited by CCh were modulated by successful attempts to swallow, but not by
565 unsuccessful swallowing attempts (Figs. 4, 5, 6, 7), indicating that feedback from the success,
566 rather than entry of food into the mouth, is the signal causing these modulations of motor activity.
567 These effects are perhaps signaled by the opening of the esophageal sphincter. Another possibility
568 is that performance of swallowing *per se* causes these effects, independent of success. However,
569 the increased motor activity required to pull against inedible food inhibits the excitatory effects
570 caused by swallowing, and the net effect of combined augmentation and inhibition of motor
571 programs cancel one another when preparations attempt to swallow inedible food. This possibility

572 is partially supported by the finding that some aspects of feeding are enhanced from the first to
573 the second exposure to CCh in preparations tested with CCh+inedible food. Thus, there is a
574 decrease in protraction length in the second half of the repetition of trials with CCh+inedible food
575 (Supplemental Figure 2B). A third possibility is that chemoreceptors in portions of the anterior gut
576 that were still present enhanced responses. Successful swallowing in intact *Aplysia* produces a
577 longer-lasting arousal dependent on chemical stimuli released by the food (Susswein et al. 1984),
578 which could enhance feeding responses elicited by CCh.

579 Responses with edible foods are enhanced on repetition. The enhancement can be
580 explained by a number of possibilities. The most interesting possibility is that enhancement arises
581 from short-term memory. Successful food consumption is a positive reinforcer in both classical
582 and operant learning paradigms (Baxter and Byrne 2006; Brembs et al. 2002; Lechner et al. 2000;
583 Lorenzetti et al. 2006; Nargeot et al. 1997; Nargeot et al. 2007), and the increased responsiveness
584 on the repetition of CCh+edible food may arise from short-term memory that results from the
585 previous pairing. Another possibility is that the enhanced arousal caused by successful swallowing
586 (Susswein et al. 1984) produced a state change that was maintained when the stimulus was
587 repeated. The maintained arousal is dependent on chemical stimuli released by the food
588 (Susswein et al. 1984). Another possibility is that swallowing responses elicited during the first
589 exposure to CCh+edible food prime the feeding system, so that the system is biased to elicit
590 swallowing when activated again. Repetition priming is present in the *Aplysia* feeding motor
591 system (Cropper et al. 2017; Dacks et al., 2012; Friedman and Weiss, 2010; Perkins et al., 2018).
592 However, the priming should also be evident during the third exposure to CCh, which was not
593 paired with edible food. An additional possibility is that there is a ceiling effect on how much
594 successful swallowing can facilitate CCh-elicited feeding responses. During the first exposure to
595 CCh, when the CCh is relatively effective, adding edible food produces a smaller enhancement of
596 responses than during the second exposure to CCh, when the CCh is less effective.

597 Much of the modulation of motor programs by successful swallowing is likely to be
598 mediated by circuitry within the buccal ganglia, since neural correlates of short-term memory after
599 successful swallowing are maintained even when the buccal ganglia are isolated (Nargeot et al.
600 2007). However, some modulation may also occur in the cerebral ganglion, since reduced
601 protraction lengths were also seen when the preparation was stimulated by CCh alone applied
602 after the training to the cerebral ganglion (Fig. 8F). The change in response to CCh could also arise
603 by changes in the output of buccal to cerebral interneurons (Chiel et al 1988), which could change
604 the response of cerebral ganglion neurons to CCh.

605 One feature of feeding responses modulated by successful swallowing was the protraction
606 length. Long protractions, which are indicative of strong protractions, were seen while the
607 preparations were relatively unresponsive to the cholinomimetic, when they were becoming
608 aroused, and when the responses to CCh were declining (Fig. 3A). Strong protraction is a
609 characteristic of rejection, suggesting that these may be rejection programs. By contrast,
610 successful swallowing was correlated with short protractions (Fig. 4E; Fig. 5A2, 5B2), which are
611 correlates of swallowing responses (Hurwitz et al., 1996; Ye et al. 2006a, b; Cullins et al. 2015).
612 Protraction length is partially set by the differential activity of different CBI neurons, which initiate
613 motor programs with shorter or longer protractions (Jing et al. 2010), suggesting that some of the
614 modulatory effects of eating edible foods, as well as some of the changes producing longer
615 protractions after training with inedible food, may be produced by differentially selecting between
616 different CBI neurons.

617 ***Effects of failed attempts to swallow on behavioral patterning***

618 Training with inedible food produced no significant differences in most parameters of the feeding
619 responses during either of the first two repetitions of CCh treatment, with respect to parameters
620 produced by the CCh treatment alone (Figs. 4A-D, 6A-D and 7). The only parameter changed was
621 the protraction length, which became longer during the first exposure to CCh (Figs 4E, 5A). The

622 mild changes in behavior observed are in marked contrast to the numerous changes in response in
623 intact animals while they learn (Susswein et al. 1986).

624 In spite of the limited changes in behavior during the training, when preparations that
625 were trained with CCh+inedible food were exposed to CCh alone, there were significant decreases
626 in response that were similar to those seen in intact animals trained with inedible food (Fig. 8).
627 These findings are consistent with previous data, which showed that long-term memory is blocked
628 by treatments producing only relatively minor changes in behavior during the training (Katzoff et
629 al., 2002), suggesting that separate processes may govern the behavioral changes while animals
630 learn and the creation of memory from the learning experience (Briskin-Luchinsky et al. 2018b).
631 However, we cannot exclude the possibility that one change found, the lengthened protractions
632 during the initial trial with CCh+inedible food, contributed to the memory formation.

633 ***Aspects of memory are localized to a post-synaptic decrease in ACh response in the cerebral
634 ganglion***

635 The finding that after training with inedible food, exposure to CCh alone produces a remarkably
636 reduced response suggests an explicit mechanism of memory: a post-synaptic decrease in
637 response to CCh in cerebral ganglion neurons that are excited by taste cholinergic afferents. CCh
638 applied to the cerebral ganglion may be the equivalent of a massive stimulation of all the
639 cholinergic taste receptors. Pairing a response to ACh in cholinoreceptive neurons initiating feeding
640 with buccal ganglia information reporting aspects of unrewarded effort leads to a decreased
641 sensitivity to ACh, and a decreased drive of buccal ganglia neurons that initiate feeding. The
642 decrease in response to ACh released by sensory neurons would explain aspects of memory, such
643 as a decrease in the time that animals continue to respond to food, without explaining the
644 changes in behavior that occur while animals learn, which may be caused by changes in synaptic
645 connectivity within the buccal ganglia.

646 A post-synaptic decrease in response to ACh released by sensory neurons also provides a
647 mechanism for another aspect of memory, taste specificity. Both short-term and long-term
648 memories are taste specific: after training with a particular food, animals show no memory when
649 trained again with a food of another taste (Schwarz et al. 1988). We hypothesize that taste
650 specificity arises by a localized post-synaptic decrease in response to ACh in only some of the
651 receptors, leaving other receptors still responsive to ACh (Fig. 10). Foods of different tastes will
652 activate different populations of cholinergic afferents which synapse onto different local patches
653 of the cerebral ganglion neurons initiating feeding. Natural foods will elicit activity in only a small
654 sub-population of afferents, and only these afferents will display a decrease in response to ACh
655 when paired with unrewarded effort. Sensory specificity arises by restricting a decreased response
656 to ACh to a small number of post-synaptic sites, those had had been active in tandem with the
657 stimuli that arise from unrewarded attempts to swallow. In response to other foods, post-synaptic
658 cholinoreceptive neurons will still respond to ACh. Taste specificity will arise because only some
659 post-synaptic cholinoreceptive sites were paired with the reinforcing signal (unrewarded effort), and
660 only those sites will show a reduced response to ACh, whereas other sites continue to respond to
661 the ACh released by other taste receptors.

662 After the initial training with CCh+inedible food, a second exposure to CCh+inedible food
663 provided a test of short-term memory. We found no trace of reduced responses indicative of
664 memory similar to that in intact animals during this trial but did find memory expressed by a
665 decreased responsiveness during the third test with CCh alone. Why was no reduction in
666 responses seen during the second trial with CCh? One possibility is that training in the reduced
667 preparation differs from that in intact animals, in that it requires two training sessions. This may
668 be related to the differences in the training procedure in intact animals and in the reduced
669 preparation. A second possibility is that memory would have been present during the second
670 exposure to CCh, had we tested with CCh alone. However, the presence of inedible food in the

671 second exposure produced a facilitation of feeding similar to that seen with edible food and
672 obscured the decrease. This possibility is consistent with the reduction in protraction length seen
673 during the second test (Supplemental Figure 2B). A third possibility is that the 60 min time interval
674 from the start of the training to the memory test was too long to pick up short-term memory,
675 which in intact animals is seen at 30 min after training, but not at 60 min after training (Botzer et
676 al. 1998). Repetition of training can produce intermediate-term memory (Botzer et al. 1998), and it
677 is possible that the memory observed during the test with CCh alone is a form of intermediate-
678 term memory, which would also be evident had we tested with CCh+inedible food, rather than
679 with CCh alone. These possibilities could be examined by exposing the cerebral ganglion to CCh
680 alone after a single training session with inedible food or changing the timing in which tests of
681 memory are performed.

682 The inhibition of feeding activity after training with inedible food was seen 1 h after the start
683 of the second training session, with no examination of possible preservation of memory for longer
684 periods. However, training with inedible food in intact animals also produces longer-lasting
685 memories that can be measured 24 h, 48 h or even 3 weeks after the training (Schwarz et al.
686 1991). Although different molecular processes are likely to underlie short- and longer-term
687 memory, and even different types of long-term memory expressed at different times after training
688 (Levitin et al. 2010), the behavioral expression of the different memory processes are remarkably
689 similar, suggesting that they occur at the same neural sites, although via different molecular
690 mechanisms. This suggests that a post-synaptic decrease in response to ACh may also underlie
691 aspects of long-term memory. The expression of short-term and long-term memory at the same
692 synapses is also a feature of other learning paradigms in *Aplysia* (Frost et al., 1985), as well as in
693 mammalian systems (Squire and Kandel 2008).

694 Previous studies on molecular correlates of long-term memory formation showed increases
695 after training in the buccal ganglia, but no changes in expression were found in the whole cerebral

696 ganglion (Briskin-Luchinsky et al 2018a; Levitan et al. 2008; Michel et al. 2011). However, changes
697 in molecular correlates measured in the whole cerebral ganglia would not pick up changes
698 localized to a small number of key neurons, such as the cholinoreceptive command-like CBI neurons,
699 leaving open the possibility that changes in the response to ACh may also underlie aspects of long-
700 term memory. Previous reports (Briskin-Luchinsky et al 2018a) also found that treatment with an
701 NO donor produces changes in the cerebral ganglion, and the NO donor applied to the cerebral
702 ganglion inhibits CCh-induced motor programs (Briskin-Luchinsky et al 2018b), suggesting that the
703 effects of NO on memory formation are localized to the cerebral ganglion.

704 The changes in gene expression in the buccal ganglia after training, coupled with the
705 experiments above showing changes in the response to CCh in the cerebral ganglion, indicate that
706 different aspects of memory after training with inedible food may be localized to different neural
707 sites. The motor changes that occur while animals learn (decreased time in mouth stemming from
708 fewer attempts to swallow and a greater likelihood to reject food), and that are also expressed
709 during memory, may arise from changes in synaptic connectivity from buccal ganglia
710 mechanoafferents to motor neurons. This is reflected by changes in gene expression in
711 mechanoafferents (Levitin et al. 2012), and by changes in synaptic plasticity in monosynaptic
712 connections from these mechanoafferents to identified motor neurons (Tam 2014). Many of the
713 presumed behavioral correlates of the molecular and physiological consequences of training could
714 not be expressed in the reduced preparation that we examined, since we forced the inedible foods
715 to remain in the buccal cavity. The cessation of response to inedible food, and the taste specificity,
716 are likely to arise via a decrease in response to ACh released from taste receptors onto a small
717 group of command-like neurons in the cerebral ganglion. Thus, learning that food is inedible is
718 similar to various learning paradigms in higher animals and in humans (Squire and Kandel 2008), in
719 that learning leads to memory formation at multiple neural sites, with the different neural sites
720 storing different aspects of behavioral change. Work on memory formation in invertebrate

721 nervous systems has traditionally emphasized the molecular and physiological changes at a
722 specific neural site, which gives rise to behavioral changes. The finding that *Aplysia* learning that
723 food is inedible may arise from multiple changes at different neural sites, controlling different
724 aspects of behavioral change, opens the possibility of using this preparation to explore the
725 integration between different sites of plasticity to produce different aspects of an integrated
726 change in behavior.

727 **Materials and Methods**

728 ***Animals.***

729 *Aplysia californica* weighing 250-350 g were purchased from Marinus (Garden Grove, CA) and kept
730 in aquaria filled with circulating artificial sea water (Instant Ocean; Aquarium Systems, Mentor,
731 OH) at ~16°C. Animals were fed every other day with large strips of dried seaweed (laver). Before
732 experiments, animals were presented with seaweed, and animals that displayed strong bites (large
733 mouth opening with the radula protracting well beyond the mouth – see Susswein et al. 1976 for
734 pictures) at 3- to 5-s intervals were selected for use.

735 ***Electrodes.***

736 Hook electrodes were constructed from two wrapped, enamel-coated 0.001-in.-diameter stainless
737 steel wires (California Fine Wire, Grover City, CA) that were coated in household silicone glue (GE).
738 Before an experiment, the insulation was removed from the ends of the wires. One wire was
739 attached to the target nerve or muscle with the use of Quick Gel Super Glue (Henkel, Avon, OH) to
740 insulate the wire from the saline and hold it in place; the other wire served as a reference. Signals
741 were amplified using an AC-coupled differential amplifier (model 1700; A-M Systems, Everett,
742 WA). A 500-Hz low-pass filter and a 300-Hz high-pass filter were used for nerve recordings. A 10-
743 Hz high-pass filter was used for muscle recordings.

744 ***Experimental preparation***

745 The preparation used is described in detail elsewhere (McManus et al. 2012). Briefly, animals were
746 anesthetized by injecting them with 25% of their weight with isotonic MgCl₂. The buccal mass was
747 removed, while still attached to the buccal and cerebral ganglia. The buccal mass and the attached
748 buccal ganglia were suspended in artificial seawater (ASW) in a round 100 mm (diameter) x 50 mm
749 (height) Pyrex dish. This dish had a front chamber in which the buccal mass was suspended, as well
750 as a separate, elevated back chamber in which the cerebral ganglion was loosely pinned on a
751 Sylgard substrate. The cerebral-buccal connective is placed in a notch in the Sylgard, thereby
752 allowing neural communication between the two ganglia, while also allowing the cerebral ganglion
753 to be bathed in a different solution from that bathing the buccal mass and the attached buccal
754 ganglia.

755 Electrodes were attached to the Radula Nerve (RN), as well as onto buccal nerves 2 and 3
756 (BN2, BN3), and the electrodes recorded extracellular action potentials in these nerves. An
757 additional electrode was attached to a strip of the I2 muscle. EMGs recorded in the I2 muscle
758 reflect radula protraction, which is produced by I2 contraction (Hurwitz et al. 1996). Large unit
759 activity in the RN is a monitor of radula closing (Morton and Chiel 1993). BN3 activity is used to
760 distinguish firing in identified neurons B4/B5, which are active at the start of retraction, primarily
761 in rejection behavior (Jing and Weiss 2001; Warman and Chiel 1995; Ye et al. 2006). Firing in BN2 is
762 a monitor of retraction (Morton and Chiel 1993). In addition, a video camera recorded movement
763 of the radula, from the side, and from the mouth.

764 ***Stimulation with CCh***

765 CCh was applied by replacing the *Aplysia* saline in the cerebral ganglion chamber with a solution of
766 10 mM CCh in *Aplysia* saline. The preparations responded with an increase in motor responses a
767 number of minutes after the application. The CCh remained in the cerebral ganglion chamber as
768 long as the preparation continued to respond to the CCh. The criterion for cessation of responses

769 was 60 sec without a response, which is approximately the spontaneous response rate in the
770 absence of CCh. Approximately 2-4 min after reaching the criterion, the CCh was washed out by
771 removing and replacing the solution with fresh *Aplysia* saline four times. Parameters measured
772 include: 1) the latency to begin responding to the CCh; 2) the time from the start of responses
773 until the last response before the criterion was reached; 3) the total number of responses from
774 the start of responses until the criterion; 4) the maximal response rate, which was calculated by
775 counting the number of responses over 100 sec after each response, and then expressing this
776 number in responses per minute; 5) the length of the protraction phase, which was measured
777 from the start of activity in the I2 muscle until the start of retraction. Retraction was identified by
778 the cessation of I2 activity, which corresponds with the start of BN2 and BN3 activity, which begins
779 just before the cessation of I2 activity.

780 **Loads**

781 Edible foods used to load the suspended buccal mass were strips of commercially bought laver
782 (Nori) seaweed that were cut to be 0.25 cm wide and 8-10 cm long. After the preparations were
783 responding at a regular rate in response to the CCh, a strip of food was placed within the mouth,
784 eliciting swallows. The swallows successfully transferred the strip into the gut, and the strips
785 exited through the cut end of the esophagus. After a full strip was swallowed, a second strip was
786 placed within the mouth, thereby eliciting continued swallows.

787 Inedible food was used to load the buccal mass. The food used was identical to that used
788 previously to train intact animals that food is inedible (Botzer et al. 1998; Briskin-Luchinsky et al.
789 2018a; b; Katzoff et al. 2003; et al. 2008; 2010; 2012; Susswein et al. 1986), except that *Gracilaria*
790 was used in place of *Ulva*. Squares of plastic window netted were cut, and pieces of seaweed were
791 placed within the center of the square. The square was then folded in half, folded again, and then
792 a third time, with the seaweed located at the apex of the thrice-folded square. The folded square
793 was held in a hemostat and was placed within the mouth when the response to the CCh became

794 maximal. The inedible netted food was then released, allowing the preparation to attempt to
795 swallow the netted food. The netted food occasionally was pushed outward as a result of
796 rejection-like responses. The food was not allowed to exit the mouth: it was pushed back in before
797 it exited.

798 ***Statistics***

799 Parametric statistics were used for most measures of feeding. A number of on-line statistical
800 calculators were used. Post-hoc tests after ANOVAs were performed at:
801 http://astatsa.com/OneWay_Anova_with_TukeyHSD_get_data/. Protraction lengths were not
802 normally distributed, and therefore non-parametric statistics were used. Mann-Whitney U-tests
803 were performed at: <https://www.socscistatistics.com/tests/mannwhitney/Default.aspx>.
804 Kolmogorov-Smirnov tests were performed at: http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html.

806 **Acknowledgements:**

807 The research was supported by Israel Science Foundation Grants 1379/12 and 2396/18, U.S. -
808 Israel Binational Science Foundation Grant No. 2017624, and NSF-IOS-BSF Grant 1754869.
809

810 **References**

- 811 Antonov I, Kandel ER, Hawkins RD. 2010. Presynaptic and postsynaptic mechanisms of synaptic
812 plasticity and metaplasticity during intermediate-term memory formation in *Aplysia*. *J
813 Neurosci* **30**: 5781-5791.
- 814 Baxter DA, Byrne JH. 2006. Feeding behavior of *Aplysia*: a model system for comparing cellular
815 mechanisms of classical and operant conditioning. *Learn Mem* **13**: 669-680.
- 816 Botzer D, Markovich S, Susswein AJ. 1998. Multiple memory processes following training that a
817 food is inedible in *Aplysia*. *Learn Mem* **5**: 204-219.
- 818 Brezina V, Proekt A, Weiss KR. 2006. Cycle-to-cycle variability as an optimal behavioral strategy.
819 *Neurocomputing* **69**:1120-1124.
- 820 Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH. 2002. Operant reward learning in *Aplysia*:
821 neuronal correlates and mechanisms. *Science* **296**: 1706-1709.
- 822 Brown JH, Laiken N. 2011. Muscarinic Receptor Agonists and Antagonists, chapter 9. In: *Goodman
823 & Gilman's The Pharmacological Basis of Therapeutics, 12th Edition*. L. Brunton, B. Chabner,
824 B. Knollmann, eds. McGraw-Hill, 2011
- 825 Briskin-Luchinsky V, Levy R, Halfon M, Susswein AJ. 2018a. Molecular correlates of separate
826 components of training that contribute to longterm memory formation after learning that
827 food is inedible in *Aplysia*. *Learn Mem* **25**: 90-99.
- 828 Briskin-Luchinsky V, Tam S, Shabbat S, Hurwitz I, Susswein AJ. 2018b. NO is required for memory
829 formation and expression of memory, and for minor behavioral changes during training
830 with inedible food in *Aplysia*. *Learn Mem* **25**: 206-213.
- 831 Burke RE. 1999. The use of state-dependent modulation of spinal reflexes as a tool to investigate
832 the organization of spinal interneurons. *Exp Brain Res* **128**: 263–277.
- 833 Chiel HJ, Beer RD. 1997. The brain has a body: adaptive behavior emerges from interactions of
834 nervous system, body and environment. *Trends Neurosci* **20** :553-557.

- 835 Chiel HJ, Kupfermann I, Weiss KR. 1988. An identified histaminergic neuron can modulate the
836 outputs of buccal-cerebral interneurons in *Aplysia* via presynaptic inhibition. *J Neurosci* **8**:
837 49-63.
- 838 Chiel HJ, Weiss KR, Kupfermann I. An identified histaminergic neuron modulates feeding motor
839 circuitry in *Aplysia*. 1986. *J Neurosci* **6**: 2427-2450.
- 840 Chiel HJ, Susswein AJ. 1993. Learning that food is inedible in freely-behaving *Aplysia californica*.
841 *Behav Neurosci* **107**: 327-338.
- 842 Cohen TE, Kaplan SW, Kandel ER, Hawkins RD. 1997. A simplified preparation for relating cellular
843 events to behavior: Mechanisms contributing to habituation, dishabituation, and
844 sensitization of the *Aplysia* gill-withdrawal reflex. *J Neurosci* **17**: 2886-2899.
- 845 Cropper EC, Evans CG, Hurwitz I, Jing J, Proekt A, Romero A, Rosen SC. 2004. Feeding neural
846 networks in the mollusc *Aplysia*. *Neurosignals* **13**: 70-86.
- 847 Cropper EC, Jing J, Perkins MH, Weiss KR. 2017. Use of the *Aplysia* feeding network to study
848 repetition priming of an episodic behavior. *J Neurophysiol* **118**: 1861-1870.
- 849 Cropper EC, Jing J, Vilim FS, Barry MA, Weiss KR. 2018. Multifaceted Expression of Peptidergic
850 Modulation in the Feeding System of *Aplysia*. *ACS Chem Neurosci* **9**: 1917-1927.
- 851 Cullins MJ. 2014. *Parsing variability: Variability in Aplysia feeding motor programs and behavioral*
852 *performance due to behavioral differences, individuality, and sensory feedback*. PhD thesis,
853 Case Western Reserve University
- 854 Cullins MJ, Shaw KM, Gill JP, Chiel HJ. 2015. Motor neuronal activity varies least among individuals
855 when it matters most for behavior. *J Neurophysiol* **113**: 981-1000.
- 856 Dacks AM, Siniscalchi MJ, Weiss KR. 2012. Removal of default state-associated inhibition during
857 repetition priming improves response articulation. *J Neurosci*. **32**: 17740-17752.

- 858 Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR. 2003. A newly identified
859 buccal interneuron initiates and modulates feeding motor programs in *Aplysia*. *J
860 Neurophysiol* **90**: 2190-2204.
- 861 Diehl F, White RS, Stein W, Nusbaum MP. 2013. Motor circuit-specific burst patterns drive
862 different muscle and behavior patterns. *J Neurosci* **33**: 12013-1229.
- 863 Drushel RF, Neustadter DM, Shallenberger LL, Crago PE, Chiel HJ. 1997. The kinematics of
864 swallowing in the buccal mass of *Aplysia californica*. *J Exp Biol* **200**: 735-752.
- 865 Eichenbaum H. 2002. *The Cognitive Neuroscience of Memory: An Introduction.* , Oxford University
866 2002.
- 867 Elliott CJ, Susswein AJ. 2002. Comparative neuroethology of feeding control in molluscs. *J Exp Biol*
868 **205**: 877-896.
- 869 Friedman AK, Weiss KR. 2010. Repetition priming of motoneuronal activity in a small motor
870 network: intercellular and intracellular signaling. *J Neurosci* **30**: 8906-8919.
- 871 Frost WN, Castellucci VF, Hawkins RD, Kandel ER. 1985. Monosynaptic connections made by the
872 sensory neurons of the gill- and siphon-withdrawal reflex in *Aplysia* participate in the
873 storage of long-term memory for sensitization. *Proc Natl Acad Sci U S A* **82**: 8266-8269.
- 874 Frost L, Kaplan SW, Cohen TE, Henzi V, Kandel ER, Hawkins RD. 1997. A simplified preparation for
875 relating cellular events to behavior: contribution of LE and unidentified siphon sensory
876 neurons to mediation and habituation of the *Aplysia* gill- and siphon-withdrawal reflex. *J
877 Neurosci* **17**: 2900-2913.
- 878 Hamood AW, Marder E. 2015. Consequences of acute and long-term removal of neuromodulatory
879 input on the episodic gastric rhythm of the crab *Cancer borealis*. *J Neurophysiol* **114**: 1677-
880 1692.

- 881 Hurwitz I, Goldstein RS, Susswein AJ. 1994. Compartmentalization of pattern-initiation and motor
882 functions in the B31 and B32 neurons of the buccal ganglia of *Aplysia californica*. *J
883 Neurophysiol* **71**: 1514-1527.
- 884 Hurwitz I, Kupfermann I, Susswein AJ. 1997. Different roles of neurons B63 and B34 that are active
885 during the protraction phase of buccal motor programs in *Aplysia californica*. *J
886 Neurophysiol* **78**: 1305-1319.
- 887 Hurwitz I, Kupfermann I, Weiss KR. 2003. Fast synaptic connections from CBIs to pattern-
888 generating neurons in *Aplysia*: initiation and modification of motor programs. *J
889 Neurophysiol* **89**: 2120-2136.
- 890 Hurwitz I, Neustadter D, Morton D, Chiel HJ, Susswein AJ. 1996. Activity patterns of the B31/B32
891 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding
892 movements in *Aplysia californica*. *J Neurophysiol* **75**: 1309-1326.
- 893 Hurwitz I, Perrins R, Xin Y, Weiss KR, Kupfermann I. 1999. C-PR neuron of *Aplysia* has differential
894 effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12. *J
895 Neurophysiol* **81**: 521-534.
- 896 Hurwitz I, Ophir A, Korngreen A, Koester J, Susswein AJ. 2008. Currents contributing to decision-
897 making in neurons B31/B32 of *Aplysia*. *J Neurophysiol* **99**: 814-830.
- 898 Hurwitz I, Susswein AJ. 1996. B64, a newly identified central pattern generator element producing
899 a phase switch from protraction to retraction in buccal motor programs of *Aplysia*
900 *californica*. *J Neurophysiol* **75**: 1327-1344.
- 901 Jing J, Sweedler JV, Cropper EC, Alexeeva V, Park JH, Romanova EV, Xie F, Dembrow NC, Ludwar
902 BC, Weiss KR, Vilim FS. 2010. Feedforward compensation mediated by the central and
903 peripheral actions of a single neuropeptide discovered using representational difference
904 analysis. *J Neurosci* **30**: 16545-16558.

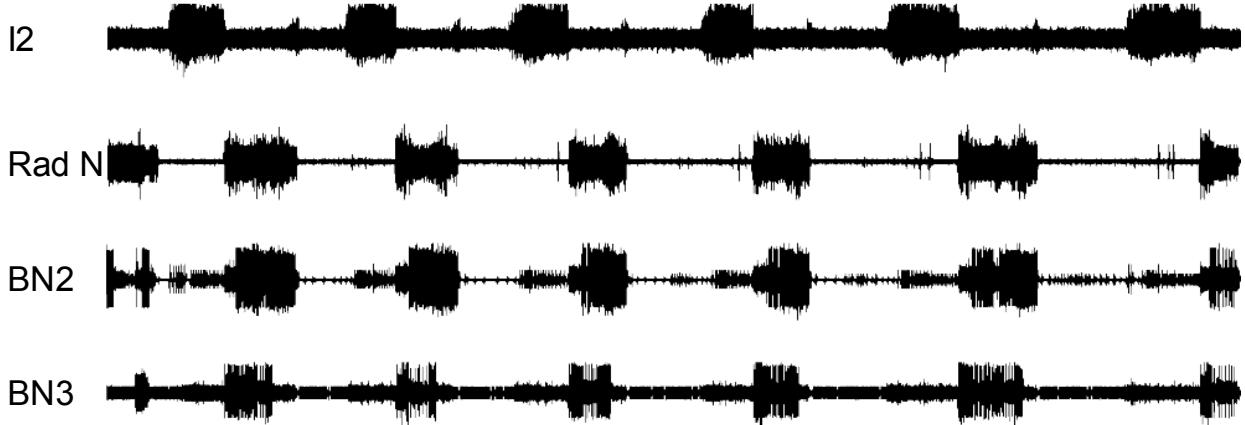
- 905 Jing J, Weiss KR. 2005. Generation of variants of a motor act in a modular and hierarchical motor
906 network. *Curr Biol* **15**: 1712-1721.
- 907 Jing J, Weiss KR. 2001. Neural mechanisms of motor program switching in *Aplysia*. *J Neurosci* **21**:
908 7349-7362.
- 909 Katzoff A, Ben-Gedalya T, Hurwitz I, Miller N, Susswein YZ, Susswein AJ. 2006. Nitric Oxide signals that
910 *Aplysia* have attempted to eat, a necessary component of memory formation after learning that
911 food is inedible. *J Neurophysiol* **96**: 1247-1257.
- 912 Katzoff A, Ben-Gedalya T, Susswein AJ. 2002. Nitric Oxide is necessary for multiple memory
913 processes after learning that a food is inedible in *Aplysia*. *J Neurosci* **22**: 9581-9594.
- 914 Kupfermann I. 1974a. Feeding behavior in *Aplysia*: a simple system for the study of motivation.
915 *Behav Biol* **10**: 1-26.
- 916 Kupfermann I. 1974b. Dissociation of the appetitive and consummatory phases of feeding
917 behavior in *Aplysia*: a lesion study. *Behav Biol* **10**: 89-97.
- 918 Kupfermann I, Carew TJ. 1974. Behavior patterns of *Aplysia californica* in its natural environment.
919 *Behav Biol* **12**: 317-37.
- 920 Lechner HA, Baxter DA, Byrne JH. 2000. Classical conditioning of feeding in *Aplysia*: I. Behavioral
921 analysis. *J Neurosci* **20**: 3369-3376.
- 922 Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. 2008. Training with
923 inedible food in *Aplysia* causes expression of C/EBP in the buccal but not cerebral ganglion.
924 *Learn Mem* **15**: 412-416.
- 925 Levitan D, Saada-Madar R, Teplinsky A, Susswein AJ. 2012. Localization of molecular correlates of
926 memory consolidation to buccal ganglia mechanoafferent neurons after learning that food
927 is inedible in *Aplysia*. *Learn Mem* **19**: 503-512.
- 928 Levitan D, Twitto R, Levy R, Lyons L, Susswein AJ. 2010. A brief retraining regulates the persistence
929 and lability of a long-term memory. *Learn Mem* **17**: 402-406.

- 930 Lorenzetti FD, Mozzachiodi R, Baxter DA, Byrne JH. 2006. Classical and operant conditioning
931 differentially modify the intrinsic properties of an identified neuron. *Nat Neurosci* **9**: 17-19.
- 932 Lyons, L.C., Rawashdeh, O., Katzoff, A., Susswein, A.J., and Eskin, A. (2005) Circadian modulation of
933 complex learning in diurnal and nocturnal *Aplysia*. *Proc Natl Acad Sci USA* **102**: 12589-
934 12594.
- 935 Marder E, Bucher D. 2001. Central pattern generators and the control of rhythmic movements.
936 *Curr Biol* **11**: R986-R996.
- 937 McManus JM, Lu H, Chiel HJ 2012. An *in vitro* preparation for eliciting and recording feeding motor
938 programs with physiological movements in *Aplysia californica*. *J Vis Exp* (70):e4320. doi:
939 10.3791/4320.
- 940 McManus JM, Lu H, Cullins MJ, Chiel HJ. 2014. Differential activation of an identified motor neuron
941 and neuromodulation provide *Aplysia*'s retractor muscle an additional function. *J
942 Neurophysiol* **112**: 778-791.
- 943 Michel M, Green CL, Eskin A, Lyons LC. 2011. PKG-mediated MAPK signaling is necessary for long-
944 term operant memory in *Aplysia*. *Learn Mem* **18**: 108-117.
- 945 Morton DW, Chiel HJ. 1993. *In vivo* buccal nerve activity that distinguishes ingestion from rejection
946 can be used to predict behavioral transitions in *Aplysia*. *J Comp Physiol A*. **172**: 17-32.
- 947 Nagahama T, Weiss KR, Kupfermann I. 1993. Effects of cerebral neuron C-PR on body postural
948 muscles associated with a food-induced arousal state in *Aplysia*. *J Neurophysiol* **70**: 1231-
949 1243.
- 950 Nargeot R, Baxter DA, Byrne JH. 1997. Contingent-dependent enhancement of rhythmic motor
951 patterns: an *in vitro* analog of operant conditioning. *J Neurosci* **17**: 8093-8105.
- 952 Nargeot R, Baxter DA, Byrne JH. 1999. *In vitro* analog of operant conditioning in *Aplysia*. I.
953 Contingent reinforcement modifies the functional dynamics of an identified neuron. *J
954 Neurosci* **19**: 2247-2260.

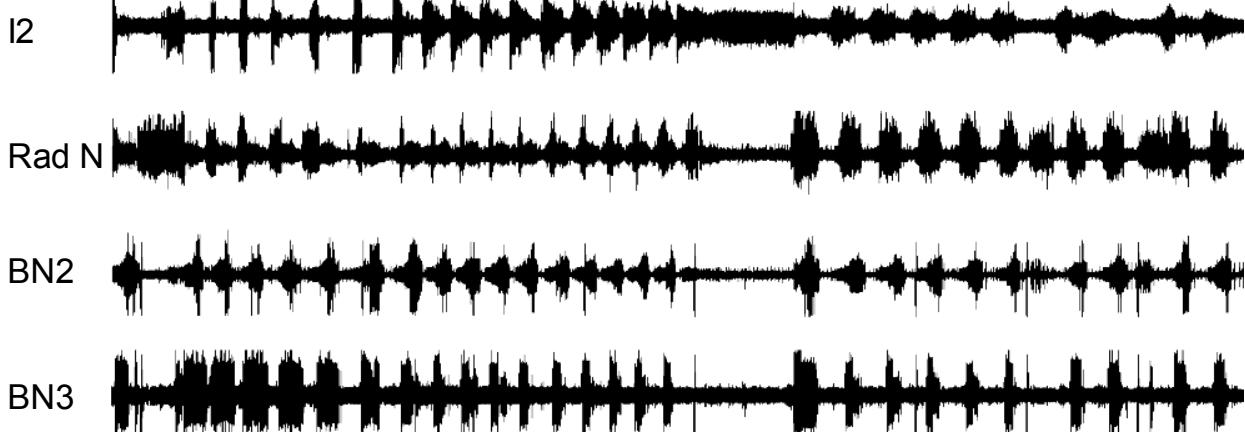
- 955 Nargeot R, Petrissans C, Simmers J. 2007. Behavioral and *in vitro* correlates of compulsive-like food
956 seeking induced by operant conditioning in *Aplysia*. *J Neurosci* **27**: 8059-8070.
- 957 Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ. 2002. A kinematic model of swallowing
958 in *Aplysia californica* based on radula/odontophore kinematics and *in vivo* magnetic
959 resonance images. *J Exp Biol* **205**: 3177-3206.
- 960 Neustadter DM, Herman RL, Drushel RF, Chestek DW, Chiel HJ. 2007. The kinematics of
961 multifunctionality: comparisons of biting and swallowing in *Aplysia californica*. *J Exp Biol*
962 **210**: 238-60.
- 963 Neveu CL, Costa RM, Homma R, Nagayama S, Baxter DA, Byrne JH. 2017. Unique configurations of
964 compression and truncation of neuronal activity underlie L-DOPA-induced selection of
965 motor patterns in *Aplysia*. *eNeuro*. Oct 24;4(5). pii: ENEURO.0206-17.2017. doi:
966 10.1523/ENEURO.0206-17.2017. eCollection 2017 Sep-Oct.
- 967 Pearson KG. 2004. Generating the walking gait: role of sensory feedback *Prog Brain Res* **143**:123-
968 129.
- 969 Perkins MH, Cropper EC, Weiss KR. 2018. Cellular effects of repetition priming in the *Aplysia*
970 feeding network are suppressed during a task-switch but persist and facilitate a return to
971 the primed state. *J Neurosci*. **38**: 6475-6490.
- 972 Rosen SC, Teyke T, Miller MW, Weiss KR, Kupfermann I. 1991. Identification and characterization
973 of cerebral-to-buccal interneurons implicated in the control of motor programs associated
974 with feeding in *Aplysia*. *J Neurosci* **11**: 3630-3655.
- 975 Rossignol S, Dubuc R, Gossard JP. 2006. Dynamic sensorimotor interactions in locomotion. *Physiol*
976 *Rev* **86**: 89-154.
- 977 Saada R, Miller N, Hurwitz I, Susswein AJ. 2009. Autaptic excitation elicits persistent activity and a
978 plateau potential in a neuron of known behavioral function. *Curr Biol* **19**: 479-484.

- 979 Sasaki K, Due MR, Jing J, Weiss KR. 2007. Feeding CPG in *Aplysia* directly controls two distinct
980 outputs of a compartmentalized interneuron that functions as a CPG element. *J
981 Neurophysiol* **98**: 3796-3801.
- 982 Schwarz M, Feldman E, Susswein AJ. 1991. Variables affecting long-term memory of learning that a
983 food is inedible in *Aplysia*. *Behav Neurosci* **105**: 193-201.
- 984 Schwarz M, Markovich S, Susswein AJ. 1988. Parametric features of inhibition of feeding in *Aplysia*
985 by associative learning, satiation and sustained lip stimulation. *Behav Neurosci* **102**: 124-
986 133.
- 987 Squire LR, Kandel ER. 2008. *Memory: From Mind to Molecules. Second Edition*. Roberts & Company,
988 Greenwood Village, Colorado.
- 989 Susswein AJ, Byrne JH. 1988. Identification and characterization of neurons initiating patterned
990 neural activity in the buccal ganglia of *Aplysia*. *J Neurosci* **8**: 2049-2061.
- 991 Susswein AJ, Chiel HJ. 2012. Nitric oxide as a regulator of behavior: New ideas from *Aplysia*
992 feeding. *Prog Neurobiol* **97**: 304-317.
- 993 Susswein AJ, Gev S, Achituv Y, Markovich S. 1984. Behavioral patterns of *Aplysia fasciata* along the
994 Mediterranean coast of Israel. *Behav Neural Biol* **41**: 7-22.
- 995 Susswein AJ, Kupfermann I, Weiss KR. 1976. The stimulus control of biting in *Aplysia*. *J Comp
996 Physiol* **108**: 75-96.
- 997 Susswein AJ, Rosen SC, Gapon S, Kupfermann I. 1996. Characterization of buccal motor programs
998 elicited by a cholinergic agonist applied to the cerebral ganglion of *Aplysia californica*. *J
999 Comp Physiol A* **179**: 509-524.
- 1000 Susswein AJ, Schwarz M, Feldman E. 1986. Learned changes of feeding behavior in *Aplysia* in
1001 response to edible and inedible foods. *J Neurosci* **6**: 1513-1527.
- 1002 Susswein AJ, Weiss KR, Kupfermann I. 1978. The effects of food arousal on the latency of biting in
1003 *Aplysia*. *J Comp Physiol* **123**: 31-41

- 1004 Susswein AJ, Weiss KR, Kupfermann I. 1984. Internal stimuli enhance feeding behavior in the
1005 mollusc *Aplysia*. *Behav Neural Biol* **41**: 90-95.
- 1006 Sweatt JD. 2009. *Mechanisms of Memory, 2nd Edition.*, Academic Press
- 1007 Tam S. 2014. Expression of long-term memory after training with inedible food in *Aplysia*:
1008 Modification of fast synaptic connections from buccal ganglia mechanoafferents to B4, but
1009 not to B31/B32. Program No. 600.01/D43. Neuroscience Meeting Planner. Washington, DC:
1010 Society for Neuroscience, 2014. Online
- 1011 Warman EN, Chiel HJ. 1995. A new technique for chronic single-unit extracellular recording in
1012 freely behaving animals using pipette electrodes. *J Neurosci Methods* **57**: 161-169.
- 1013 Wenning A, Norris BJ, Doloc-Mihu A, Calabrese RL. 2014. Variation in motor output and motor
1014 performance in a centrally generated motor pattern. *J Neurophysiol* **112**: 95-109.
- 1015 Weiss KR, Brezina V, Cropper EC, Heierhorst J, Hooper SL, Probst WC, Rosen SC, Vilim FS,
1016 Kupfermann I. 1993. Physiology and biochemistry of peptidergic cotransmission in *Aplysia*.
1017 *J Physiol Paris* **87**: 141-151.
- 1018 Weiss KR, Chiel HJ, Koch U, Kupfermann I. 1986. Activity of an identified histaminergic neuron, and
1019 its possible role in arousal of feeding behavior in semi-intact *Aplysia*. *J Neurosci* **6**: 2403-
1020 2415.
- 1021 Weiss KR, Cohen JL, Kupfermann I. 1978. Modulatory control of buccal musculature by a
1022 serotonergic neuron (metacerebral cell) in *Aplysia*. *J Neurophysiol* **41**: 181-203.
- 1023 Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD. 2009. Comparative neurobiology of
1024 feeding in the opisthobranch sea slug, *Aplysia*, and the pulmonate snail, *Helisoma*:
1025 evolutionary considerations. *Brain Behav Evol* **74**: 219-230.
- 1026 Wu JS, Wang N, Siniscalchi MJ, Perkins MH, Zheng YT, Yu W, Chen SA, Jia RN, Gu JW, Qian YQ, Ye Y,
1027 Vilim FS, Cropper EC, Weiss KR, Jing J. 2014. Complementary interactions between


- 1028 command-like interneurons that function to activate and specify motor programs. *J*
- 1029 *Neurosci* **34**: 6510-6521.
- 1030 Ye, H., Morton, D. W. and Chiel, H. J. 2006a. Neuromechanics of coordination during swallowing in
- 1031 *Aplysia californica*. *J Neurosci* **26**:1470-1485.
- 1032 Ye H, Morton DW, Chiel HJ. 2006b. Neuromechanics of multifunctionality during rejection in
- 1033 *Aplysia californica*. *J Neurosci* **26**: 10743-10755.
- 1034

1035 **Figures**


1036

Comparison of Motor Patterns with and without Proprioceptive Feedback

A) Isolated ganglia preparation

B) Suspended buccal mass preparation

50 sec

1037

1038

Fig. 1. Changes in patterning of feeding responses as a result of the buccal mass remaining

1039

attached to the buccal and cerebral ganglia. Examples of fictive feeding induced by CCh applied to

1040

the cerebral ganglion in: A) a preparation in which the buccal muscles were not present, and B) a

1041

preparation in which the buccal muscles remained attached to the buccal ganglia. The records

1042

shown are portions of longer recordings, and were chosen to display the patterning and rate of

1043

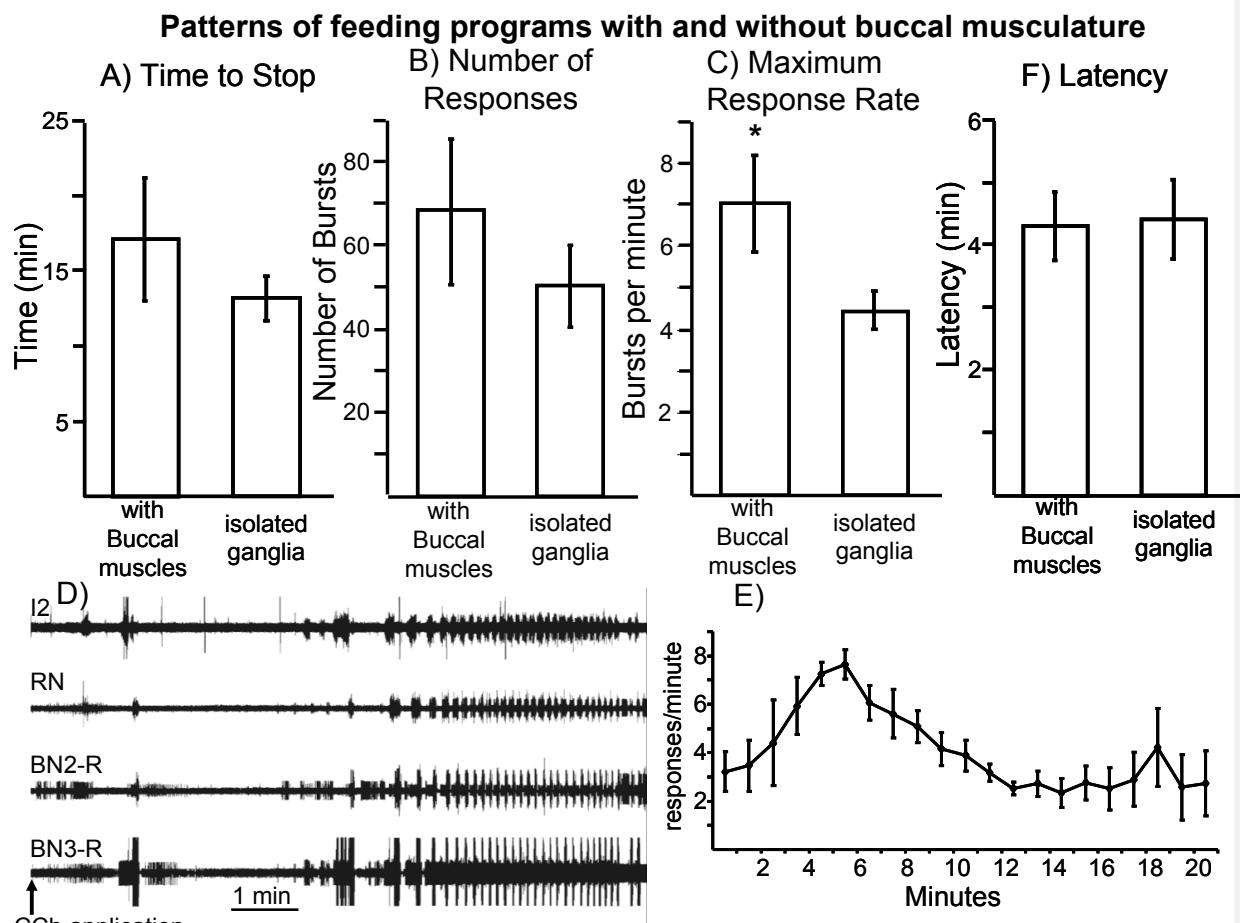
responses during a 200 sec interval at the peak of responses to CCh (A - 200-400 sec after

1044

application of CCh; B - 270-470 sec after application of CCh). I2 = EMG recordings from the I2

1045

muscle; Rad N = recording from the Radula Nerve; BN2 = recording from the right Buccal Nerve 2;

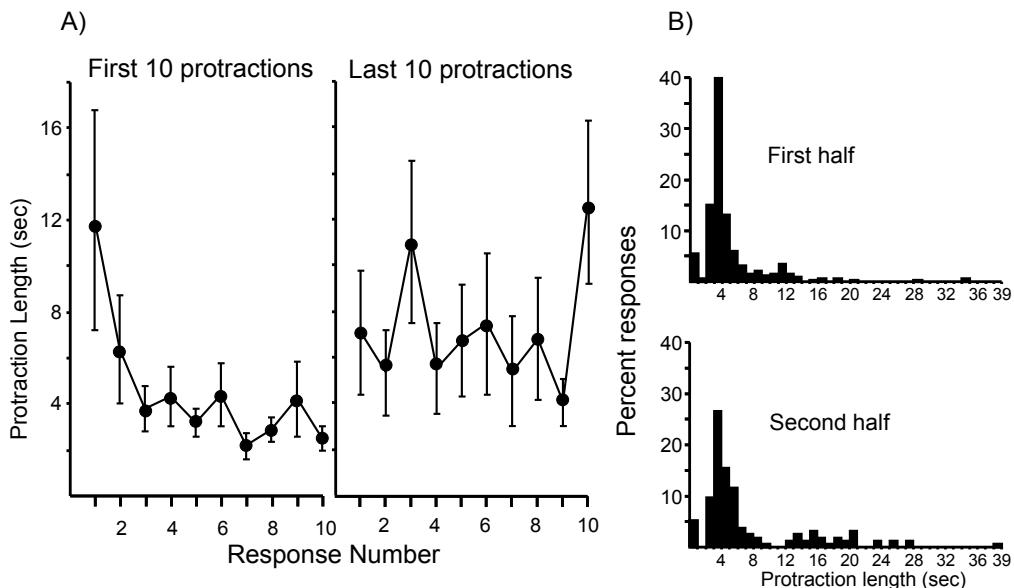

1046

BN3 = recording from the right Buccal Nerve 3. In addition to an increase in the rate at which CCh

1047 generates fictive feeding, attachment of the muscle also increases the variability of the feeding

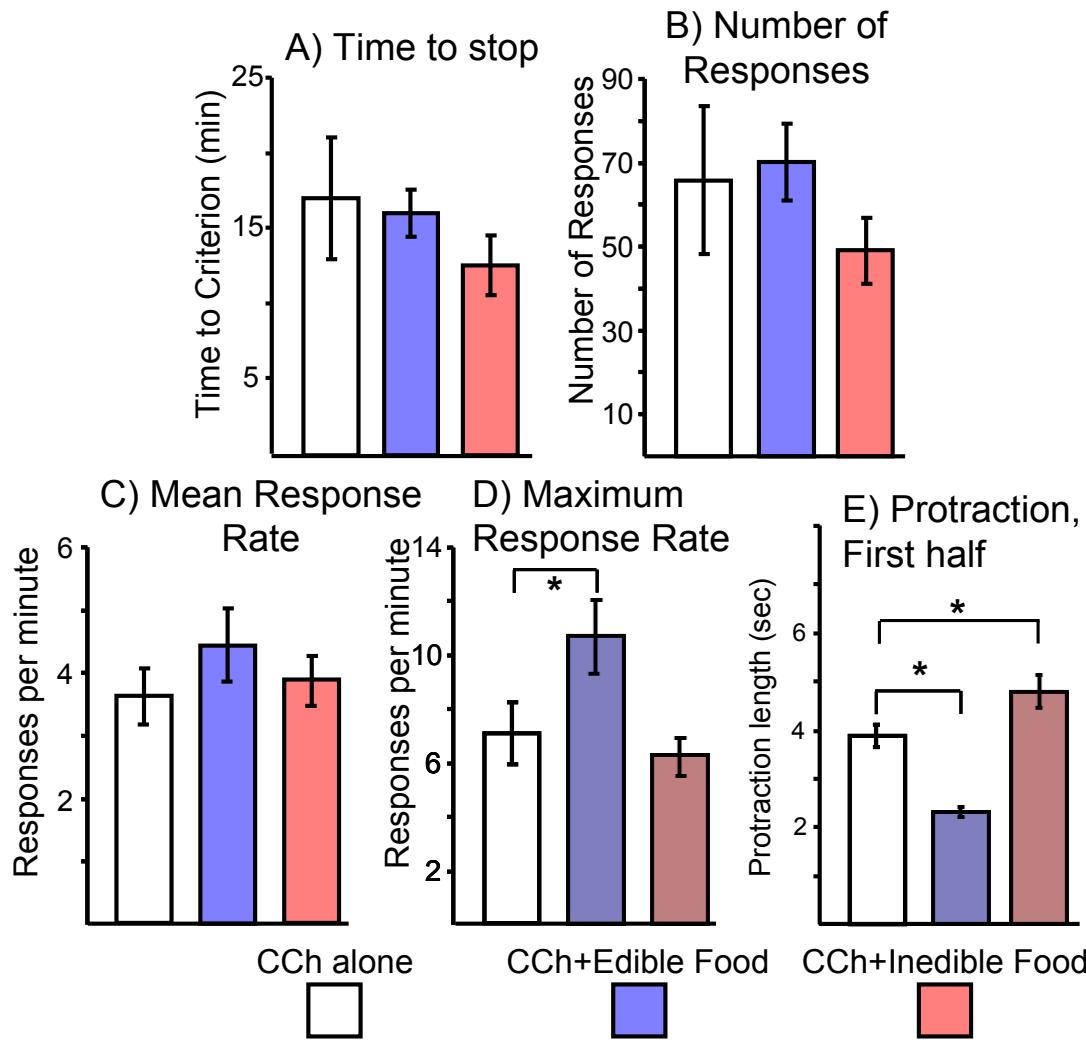
1048 bursts that are elicited.

1049


1050

1051 **Fig. 2. Parameters of motor responses induced by CCh with and without the buccal musculature.**

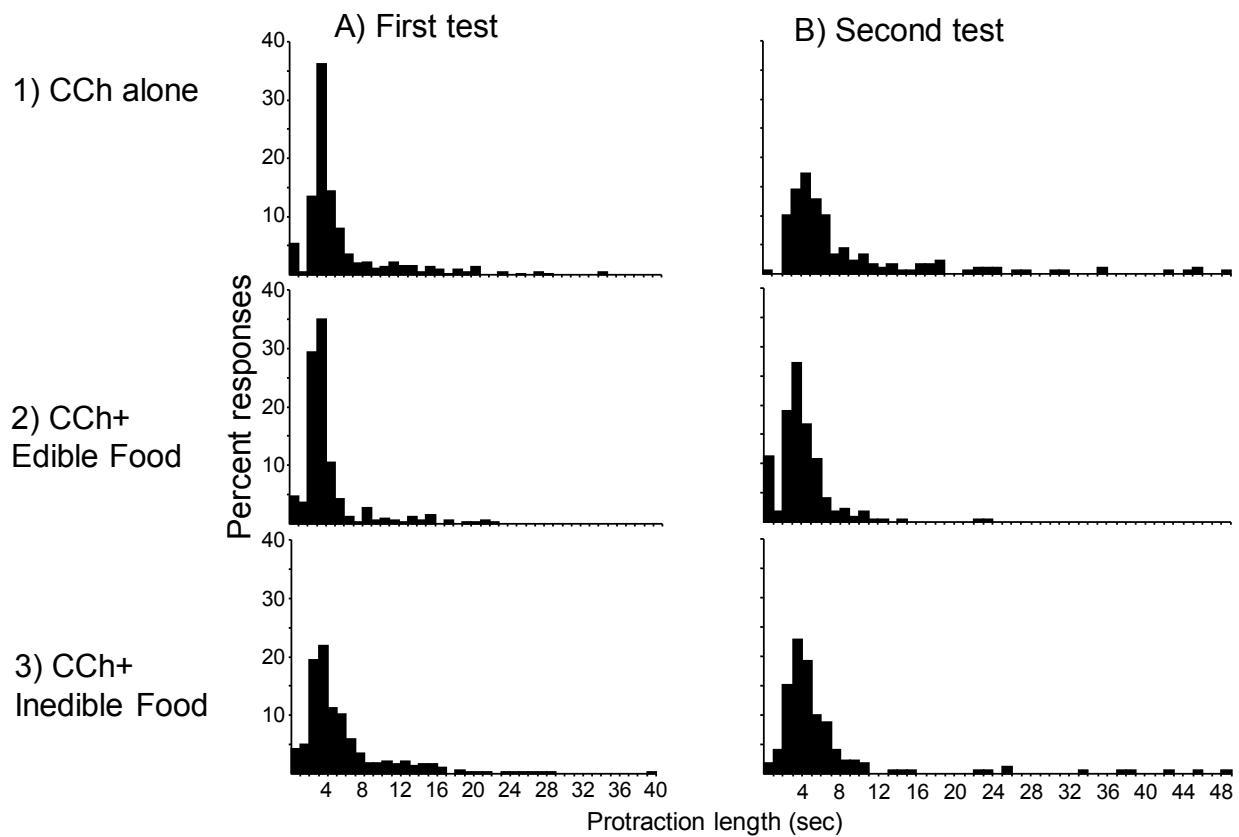
1052 *A-C) Summary data comparing response parameters in the presence and absence of the buccal*
 1053 *musculature. Asterisks mark significant differences. Data on bursting in the absence of the buccal*
 1054 *muscles are from the first of 5 repetitions with CCh applied to the cerebral ganglion that were*
 1055 *reported in Susswein et al. 1996 (N = 10). Data on bursting in the presence of the buccal muscles is*
 1056 *from the first of 3 repetitions with CCh applied to the cerebral ganglion reported in the present*
 1057 *paper (N = 7). There were no significant differences between preparations with and without the*
 1058 *buccal musculature for the total time that bursting was maintained ($p = 0.17$, $t(14) = 1.44$), or for*
 1059 *the number of responses recorded during this period ($p = 0.36$, $t(14) = 0.94$). In contrast, the*
 1060 *maximum response rate was higher when the musculature was attached ($p = 0.01$, $t(13) = 3.00$; all*
 1061 *test are two-tailed t -tests), presumably as a result of proprioceptive feedback. D-F) Latency and*
 1062 *pattern of responses to CCh in a suspended buccal mass preparation. D) The CCh was applied 20-30*


1063 sec after the start of the recording in a preparation in which the buccal and cerebral ganglia
1064 remained attached to the buccal mass. Regular motor programs were initiated approximately 5
1065 min after the start of the recording. I2 = EMG recordings from the I2 muscle, which is active during
1066 protraction; RN = recording from the radular nerve, which is a monitor of radular closing; BN2-R =
1067 Recording from the right Buccal Nerve 2, which is active during retraction; BN3-R = Recording from
1068 the right Buccal Nerve 3, in which the largest units are B4/B5, which are active at the start of
1069 retraction. *E*) The rate of responses gradually increases, reaching a maximum approximately 6 min
1070 after the start of the regular responses, corresponding to a mean of approximately 9 min after the
1071 start of the CCh application. The mean responses per minute after the start of response to CCh is
1072 shown; bars indicate the standard errors. Preparations differed in the length of time that they
1073 continued to respond. For the first 3 minutes, all 7 preparations responded. For minutes 4-14, data
1074 are shown for 6 preparations that continued to respond. For minutes 15-17, 5 preparations
1075 continued to respond. For minute 18, 4 preparations continued to respond. For minutes 19-21, 3
1076 preparations continued to respond. Because only a single preparation continued to respond after
1077 minute 21, data are not shown. Note that data are shown only from the first of 3 exposures to CCh
1078 (see below). *F*) There was no significant difference in the latency from application of CCh to begin
1079 bursting between preparations with and without the buccal muscles ($p = 0.91$, $t(15) = 0.11$; two-
1080 tailed *t*-test).
1081

Protraction Durations After Carbachol Exposure

1084 Fig. 3. Changes in protraction length during the first exposure to CCh. A) The mean protraction
 1085 length during the first and last 10 feeding responses in 6 preparations exposed to CCh alone.
 1086 Standard errors are shown. During the first few feeding responses, when response rate is low,
 1087 protractions are relatively long. A one-way analysis of variance showed significant differences in
 1088 protraction length among the first 10 protractions ($p = 0.0007$, $F(9, 53) = 3.91$). To be certain that
 1089 protraction length had reached baseline values, we elected to analyze protraction length from
 1090 after the fifth response. During the last 10 responses, the protractions are similarly long. B) The
 1091 time from the start of regular motor programs until the criterion for cessation was divided in
 1092 halves, and the distribution of protraction lengths during each half was plotted. Bins are 1 sec
 1093 each. Since response rate is higher during the first half than during the second half, there are more
 1094 protractions in the first half ($N = 310$) than in the second half ($N = 154$). To provide a common
 1095 scale of frequencies, the frequency was expressed as a percentage of the total number of
 1096 responses elicited by CCh. A Kolmogorov-Smirnov test showed that there was a significant
 1097 difference in the distribution of the protraction lengths between the first and second halves ($D =$
 1098 0.2164 , $p < 0.0001$), with a more prominent tail of long protractions found in the second half.
 1099

Parameters of feeding responses to edible and inedible foods

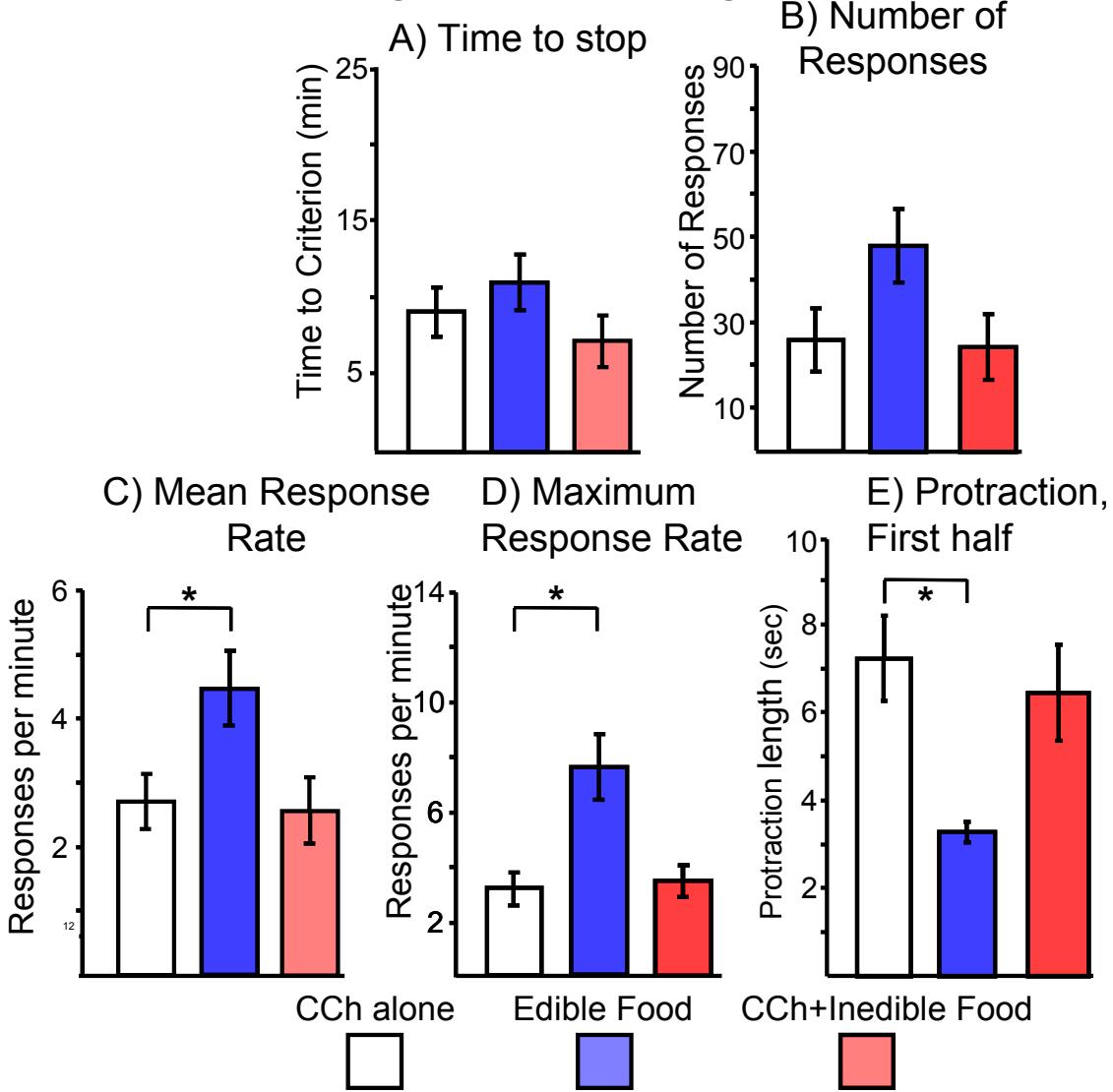


1100

1101 Fig. 4. **Parameters of feeding responses during the first exposure to CCh alone, and when either**
 1102 **edible or inedible foods were also present.** Asterisks mark significant differences. *A) Time from*
 1103 *the start of active bursting to the 60 sec criterion for cessation of bursting.* There was no significant
 1104 difference between the 3 treatments ($p = 0.48$, $F(2,18) = 0.77$, one-way analysis of variance). *B)*
 1105 *The total number of feeding responses elicited from the application of CCh until the criterion for*
 1106 *cessation of response was reached.* There was no significant difference between the 3 treatments
 1107 ($p = 0.44$, $F(2,18) = 0.87$, one-way analysis of variance). *C) The mean response rate* (defined as total
 1108 number of responses/total response time (in minutes)). There was no significant difference
 1109 between the 3 treatments ($p = 0.52$, $F(2,18) = 0.67$, one-way analysis of variance). *D) The peak*
 1110 *response rate.* There was a significant difference between the 3 treatments ($p = 0.02$, $F(2,18) =$

1111 4.78, one-way analysis of variance). A Tukey HSD *post-hoc* test showed no significant difference
1112 between preparations treated with CCh alone and those treated with CCh+inedible food ($p = 0.80$).
1113 The difference between preparations treated with CCh alone and those treated with CCh+edible
1114 food approached significance ($p = 0.07$). There was a significant increase in the maximum response
1115 rate in animals treated with CCh+edible food with respect to those treated with CCh+inedible food
1116 ($p = 0.01$). *E*) Mean protraction lengths during the first half of the CCh exposure, with the first 5
1117 feeding responses (when the preparation is not maximally aroused) removed (one of the 7
1118 preparation exposed to CCh alone had fewer than 20 responses, and so was not included in the
1119 analysis, since there were not enough responses to provide estimates of protraction length after
1120 the first 5 responses were subtracted). Edible food ($N = 215$ protractions) showed significantly
1121 shortened protraction ($p < 0.0002$) compared to CCh alone ($N = 277$ protractions), whereas
1122 inedible food ($N = 202$ protractions) showed significantly lengthened protraction ($p = 0.0452$,
1123 Mann-Whitney *U*-test, which was used because of the clear non-normal distribution of protraction
1124 length -see Fig. 4).
1125

Swallowing foods and Repetition Affect Protraction Length

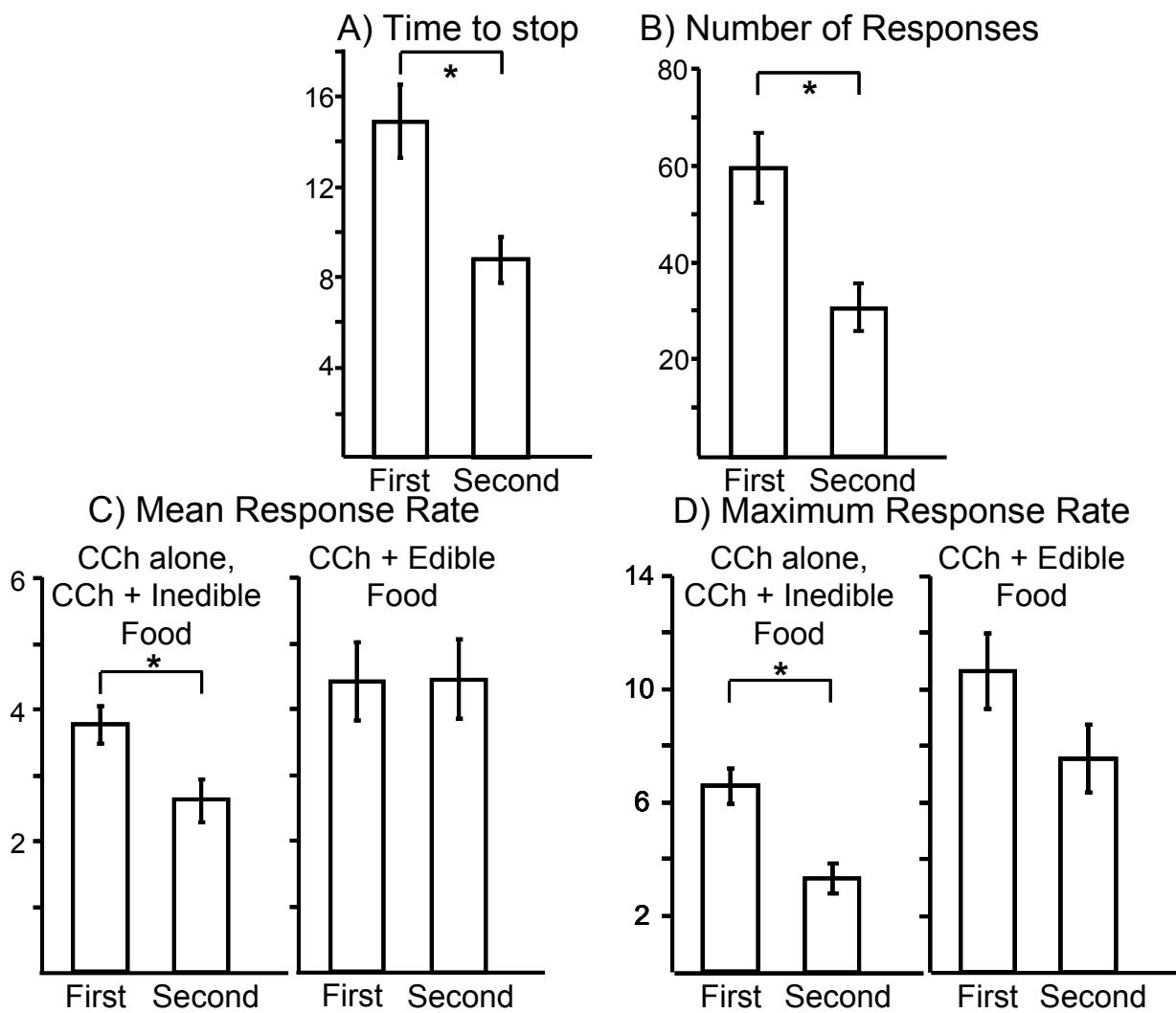

1126

1127 **Fig. 5. Distributions of protraction lengths in preparations treated with CCh alone, and in**
1128 **preparations treated with CCh and edible or inedible foods.** As in Fig. 3B, bins of the protraction
1129 lengths are 1 sec each. To provide a common scale of frequencies, the frequency was expressed as
1130 a percentage of the total number of responses from the application of CCh until the criterion for
1131 cessation of responses was reached. A) First treatment with CCh. Kolmogorov-Smirnov tests
1132 showed that there were significant differences in the distribution of the protraction lengths
1133 between treatment with CCh alone ($N = 461$) and with CCh+edible food ($N = 323$) ($p < 0.0001$, $D =$
1134 0.3189), and between CCh alone and CCh+inedible food ($N = 379$) ($p = 0.002$, $D = 0.1265$). In
1135 addition, Mann-Whitney U-tests were performed to test whether the populations were ranked
1136 differently. There was a significant difference between CCh alone and CCh+edible food ($p = 0.002$,
1137 Mann-Whitney U test with Bonferroni correction), but not between CCh alone and CCh+inedible
1138 food ($p = 0.50$, Mann-Whitney U test). A comparison of protraction lengths in response to edible

1139 and inedible foods showed that protraction length in response to edible foods was significantly
1140 shorter than in response to inedible food ($p = 0.018$, Mann-Whitney U test with Bonferroni
1141 correction). The shortened protraction in response to edible food is likely to be because they
1142 elicited more swallowing responses, which are characterized by weak, short protractions. *B)* The
1143 second treatment with CCh. Protraction lengths during the second exposure were compared to
1144 those during the first exposure, for the same treatments. Kolmogoroff- Smirnov tests were
1145 significant for CCh alone ($N = 179$) ($p < 0.001$, $D = 0.2866$) and for CCh+edible food ($N = 221$) ($p <$
1146 0.001 , $D = 0.2012$), but not for CCh+inedible food ($N = 171$) ($p = 0.471$, $D = 0.0770$). Mann-Whitney
1147 *U* tests with Bonferroni corrections (used because the data are not normally distributed) showed a
1148 significant *increase* in protraction length for preparations treated with CCh alone ($p < 0.00002$), a
1149 significant *decrease* in protraction length for preparations treated with CCh+edible food ($p =$
1150 0.0088), and no significant change in protraction length in preparations treated with CCh+inedible
1151 food ($p = 0.7039$).

1152

Parameters of feeding responses during the initial test of memory



1153

1154 Fig. 6. One hour after the start of the 3 treatments whose results are shown in Fig. 4 and 5A, the
 1155 treatments were repeated. Asterisks mark significant differences. A) There were no significant
 1156 differences in the time to stop responding between the 3 treatments ($p = 0.35, F(2,18) = 1.13$, one-
 1157 way analysis of variance). B) There were no significant differences in the number of responses
 1158 between the 3 treatments ($p = 0.12, F(2,18) = 2.41$, one-way analysis of variance). C) There was a
 1159 significant difference in the mean response rate between the 3 treatments ($p = 0.046, F(2,18) =$
 1160 3.66, one-way analysis of variance). A Tukey HSD post-hoc test showed that there was no
 1161 significant difference between preparations treated with CCh alone and those treated with
 1162 CCh+inedible food ($p = 0.90$). By contrast, there was a significant difference between preparations

1163 treated with CCh+edible and CCh+inedible food ($p = 0.039$), and the difference between
1164 preparations treated with CCh alone and those treated with CCh+edible food approached
1165 significance ($p = 0.088$). *D*) There was a significant difference in the maximum response rate
1166 between the 3 treatments ($p = 0.008$, $F(2,18) = 6.38$). A Tukey HSD post-hoc test showed that
1167 there was no significant difference between preparations treated with CCh alone and those
1168 treated with CCh+inedible food ($p = 0.90$). By contrast, there were significant differences between
1169 preparations treated with CCh+edible and CCh+inedible food ($p = 0.014$), and between
1170 preparations treated with CCh alone and those treated with CCh+edible food ($p = 0.012$). *E*) Mean
1171 protraction lengths during the first half of the CCh exposure, with the first 5 feeding responses
1172 (when the preparation is not maximally aroused) removed. Edible food ($N = 113$ protractions)
1173 significantly shortened protraction ($p < 0.0001$), with respect to CCh alone ($N = 79$ protractions),
1174 whereas inedible food ($N = 81$ protractions) had no significant effect on protraction ($p = 0.0226$;
1175 Mann-Whitney *U* test).

1176

1177

1178 **Fig. 7. Comparison between parameters of feeding responses during the first and second test**

1179 **with CCh.** Asterisks mark significant differences. A) Because there were no significant differences

1180 in the time to stop responding among the 3 groups tested in either the first or the second

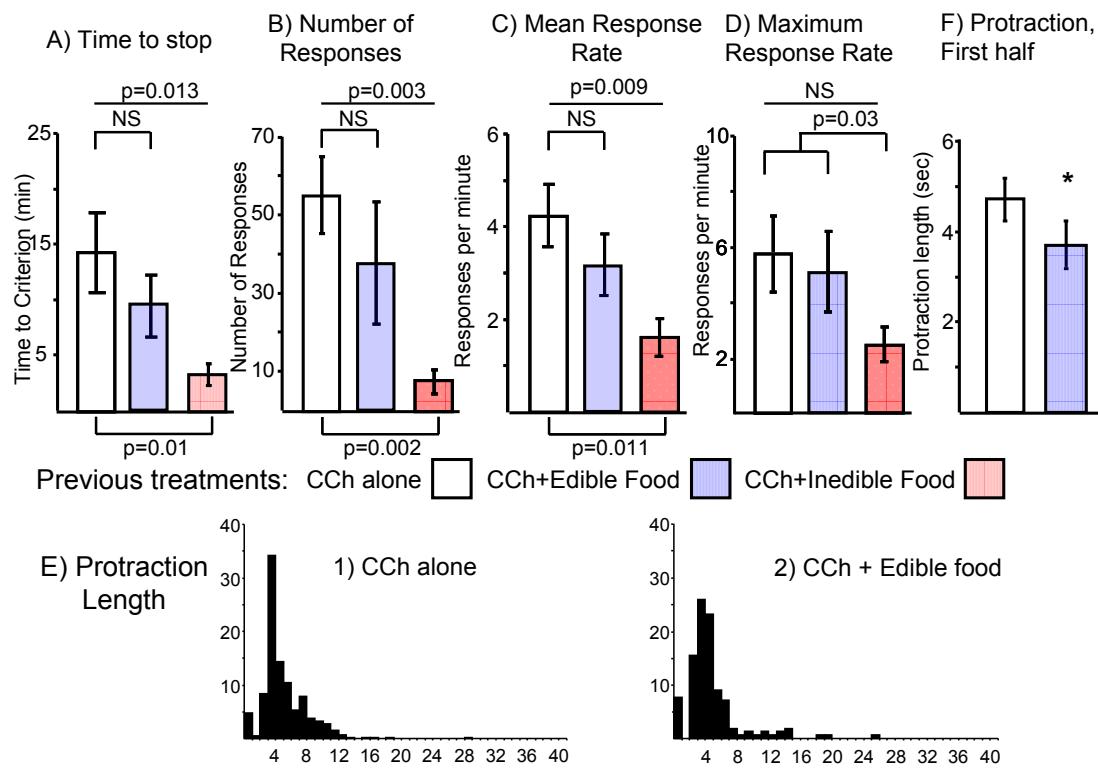
1181 exposure to CCh (see Fig 6A and 6B), data from the 3 treatments were combined for the first

1182 exposure to CCh, and again for the second exposure to CCh. The time to stop responding during

1183 the second exposure was significantly less than the time to stop during the first exposure to CCh (p

1184 = 0.002, $t = 3.64$, $df = 20$, two-tailed paired t-test, comparing all preparations from the first to the

1185 second CCh exposure). B) There was also no significant difference in number of responses

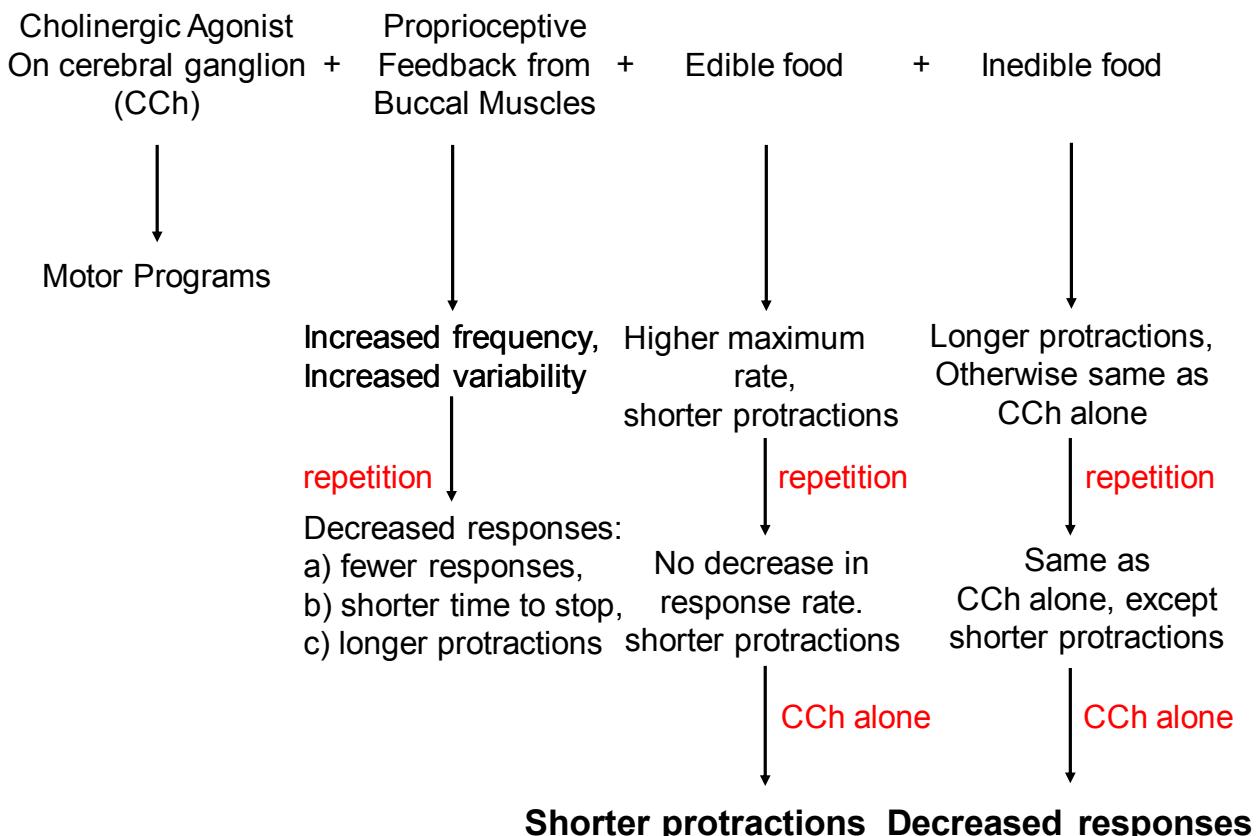

1186 between the 3 treatments during either of the exposures to CCh, and therefore data were

1187 combined for each exposure to CCh. The number of feeding responses during the second exposure

1188 was significantly less than the number of responses during the first exposure to CCh ($p = 0.003$, $t =$

1189 3.45, $df = 20$, two-tailed paired t-test, comparing all preparations from the first to the second CCh
1190 exposure). *C*) Because there were significant differences between the 3 treatments during the
1191 second exposure to CCh, the mean response rate between the first and second exposures to CCh
1192 for the treatment that was significantly different from the other two (CCh+edible food) was
1193 analyzed separately from the mean response rate for CCh alone and for inedible food, which were
1194 combined. There was a significant reduction in mean response rate for preparations treated with
1195 CCh alone and with CCh+inedible food ($p = 0.006$, $t = 3.23$, $df = 15$, two-tailed paired t-test), with
1196 no significant difference for preparations treated with edible food ($p = 0.95$, $t = 0.07$, $df = 4$, two-
1197 tailed paired t-test). *D*) Because there were significant differences between the 3 treatments
1198 during both the first and second exposures to CCh for the maximal response rate, the values
1199 between the first and second exposures to CCh for the group that differed from the others
1200 (CCh+edible food) were analyzed separately, whereas data from the 2 groups that were not
1201 significantly different (CCh alone and CCh+inedible food) were combined. There was a significant
1202 reduction in mean response rate for preparations treated with CCh alone and with CCh+inedible
1203 food ($p = 0.0003$, $t = 4.75$, $df = 15$, two-tailed paired t-test), but not for preparations treated with
1204 CCh+edible food ($p = 0.12$, $t = 1.92$, $df = 4$, two-tailed paired t-test). Note that the data for the first
1205 and second exposures to CCh are plotted separately for each of the three procedures (no
1206 combining of data from different procedures) are presented in Supplemental Figure 2.
1207

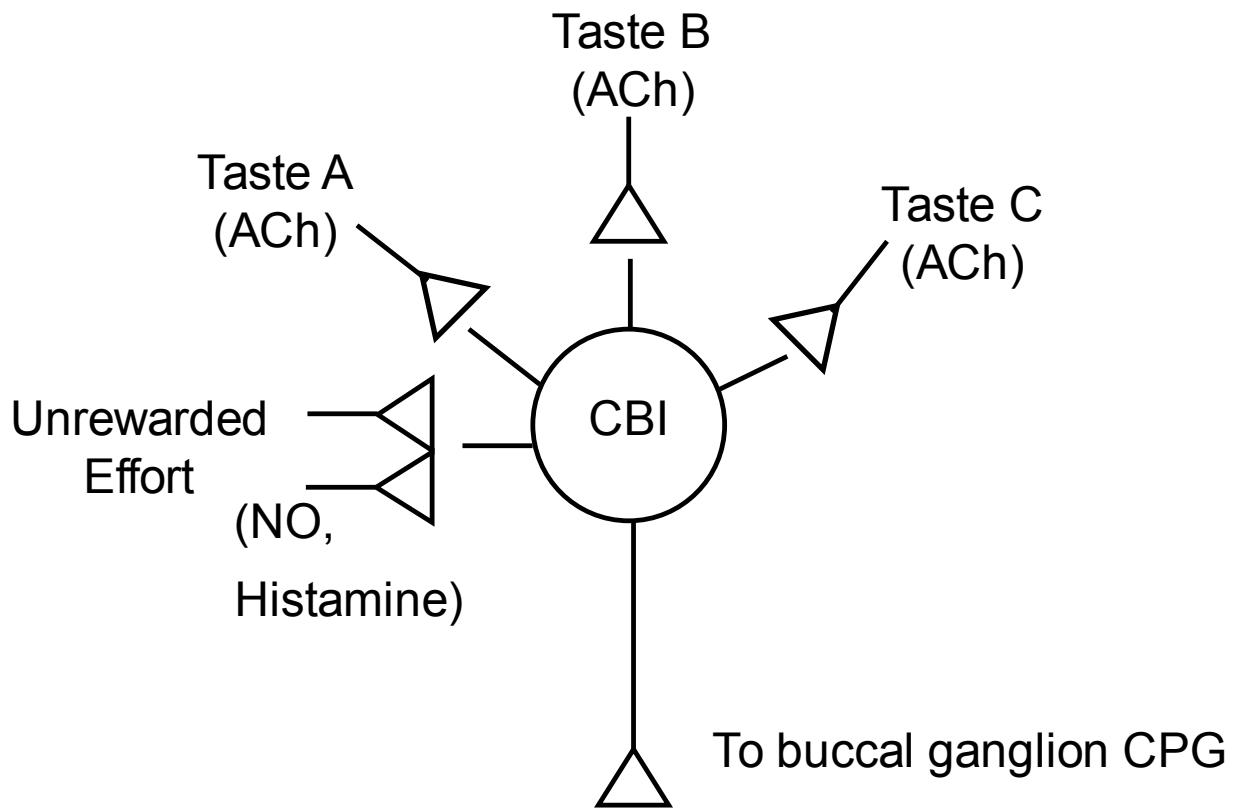
Parameters of feeding responses during memory test In response to carbachol alone



1208

1209 Fig. 8. One hour after the start of the treatments whose results are shown in Figs. 6 and 7, a
 1210 second test of memory examined the response to CCh alone. A) There were significant
 1211 differences in the time to stop responding based on which of the 3 treatments preceded the CCh
 1212 alone ($p = 0.013$, $F(2,18) = 5.55$, one-way analysis of variance). The difference arose because of a
 1213 decrease in response time of preparations that were previously treated with CCh+inedible food
 1214 with respect to preparations previously treated with CCh alone ($p = 0.010$, Tukey HSD post-hoc
 1215 test), with no significant difference between preparations previously treated with CCh+edible food
 1216 and CCh alone ($p = 0.46$, Tukey HSD post-hoc test). B) There were significant differences in the
 1217 number of responses to CCh alone based on which of the 3 treatments preceded the CCh alone (p
 1218 = 0.003, $F(2,18) = 8.31$, one-way analysis of variance). The difference arose because of a decrease
 1219 in response time of preparations that were previously treated with CCh+inedible food with respect
 1220 to preparations previously treated with CCh alone ($p = 0.002$, Tukey HSD post-hoc test), with no
 1221 significant difference between preparations previously treated with CCh+edible food and CCh
 1222 alone ($p = 0.44$, Tukey HSD post-hoc test). C) There were significant differences in the mean

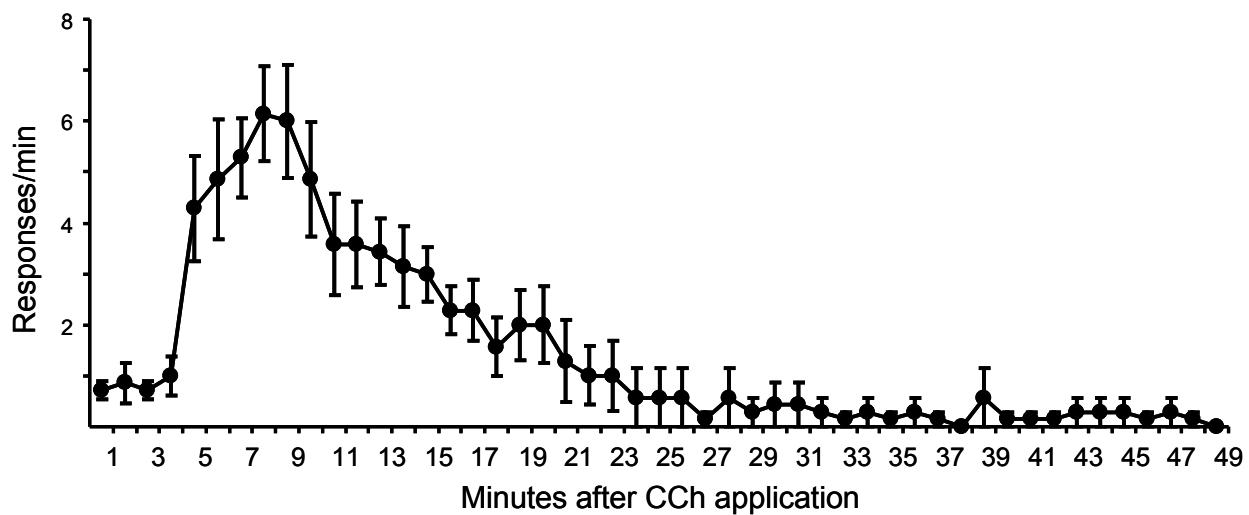
1223 response rate to CCh alone, based on which of the 3 prior treatments was applied previously ($p =$
1224 0.009 , $F(2,18) = 6.28$, one-way analysis of variance). The difference arose because of a decrease in
1225 response time of preparations that were previously treated with CCh+inedible food with respect
1226 to preparations previously treated with CCh alone ($p = 0.011$, Tukey HSD post-hoc test), with no
1227 significant difference between preparations previously treated with CCh+edible food and CCh
1228 alone ($p = 0.49$, Tukey HSD post-hoc test). *D*) There were no significant differences in the peak
1229 response rate to CCh after the 3 preceding treatments ($p = 0.08$, $F(2,18) = 2.85$, one-way analysis
1230 of variance). However, when the data from preparations that were exposed previously to CCh
1231 alone and to CCh+edible food were combined, and were compared to data from preparations that
1232 had been previously exposed to CCh+inedible food, there was a significant difference ($p = 0.026$,
1233 $t(19) = 2.41$). In addition, there was a significant difference between preparations previously
1234 tested with CCh alone and those previously tested with CCh+inedible food ($p = 0.03$, $t(14)=2.36$). *E*)
1235 Distribution of protraction lengths for preparations treated previously with 1) CCh alone ($N = 392$),
1236 and 2) CCh+Edible food ($N = 155$). There were too few responses in 7 of the 9 preparations trained
1237 with inedible food to meaningfully compare preparations previously treated with CCh+inedible
1238 food to the other two groups. There were no significant differences in protraction length between
1239 the two groups shown (Kolmogorov-Smirnov test: $D = 0.1124$, $p = 0.112$; Mann-Whitney *U* test: U
1240 = 27211 , $p = 0.05744$). *B*) Comparison of protraction lengths during the first half of the exposure to
1241 CCh alone in preparations treated previously with CCh alone or with CCh+edible food. There was a
1242 significant decrease in protraction length in preparations previously treated with CCh+edible food
1243 ($p = 0.00022$, Mann-Whitney *U*-test) during the first half of exposure to CCh.


1244

1247 Fig. 9. **Summary of the findings.** The cholinergic agonist CCh applied to the cerebral ganglion
 1248 induces repetitive feeding motor programs. When the buccal muscles remain attached to the
 1249 buccal ganglia, there is an increase in peak frequency, and an increase in the variability of the
 1250 motor patterns. Repetition of this procedure leads to a decrease in responses, as measured by a
 1251 shorter time that the preparation responds, fewer responses, and a lengthening of protractions.
 1252 Challenging the preparation with edible food leads to an increase in mean and peak response
 1253 rates, and a shortening of the protractions. Repetition of this procedure does not lead to the
 1254 decrease in mean or peak response rates seen when the preparation is exposed to CCh alone, and
 1255 leads to shorter protractions than during the initial training with edible food. Challenging the
 1256 preparation with inedible foods causes responses that are similar to those to CCh alone during the
 1257 training and during the repetition, except that the increased protraction length during the
 1258 repetition does not occur, because protraction length is paradoxically decreased during the second

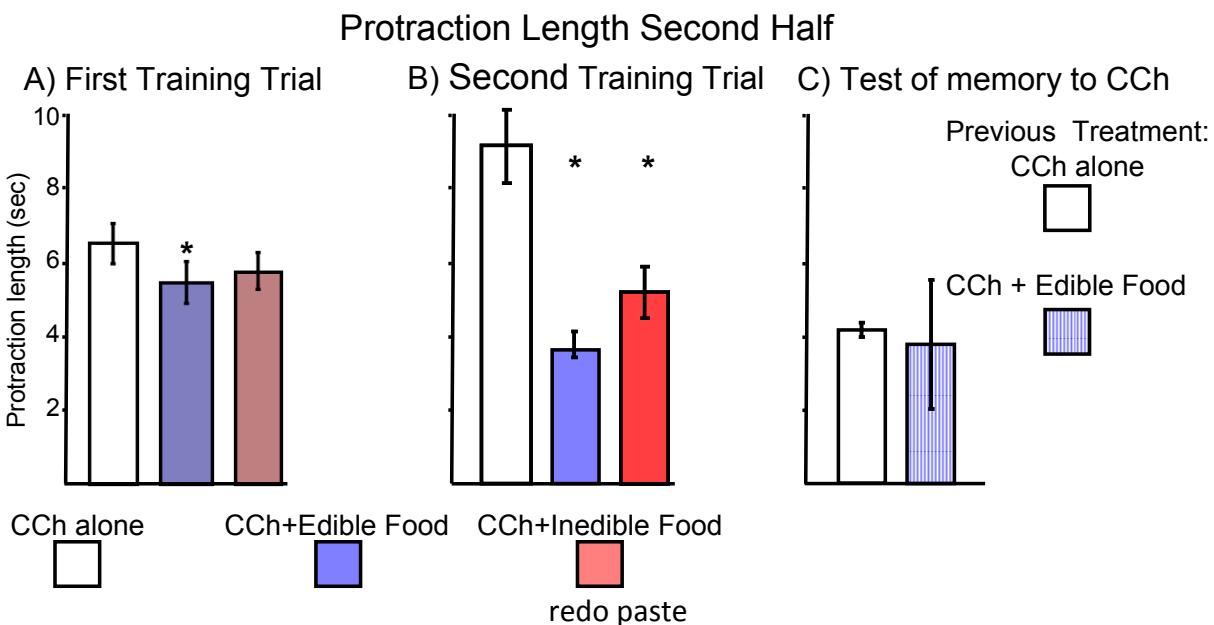
1259 half of the CCh exposure. When the preparations are again challenged with CCh alone, there are
1260 shorter protractions in preparations previously treated with CCh and edible food relative to
1261 preparations previously treated with CCh alone, with no other differences in other parameters of
1262 feeding. However, preparations previously treated with inedible food show reductions in many
1263 response parameters, showing memory similar to that in intact animals.

1264


1265

1266 Fig 10. **Hypothesis of mechanism of learning that food is inedible in the cerebral ganglion.** Taste
 1267 receptors respond to different tastes, but all release ACh onto different neurites of command-like
 1268 CBI neurons. These excite the CPG within the buccal ganglia. Pairing activation of a specific taste
 1269 with unrewarded effort, signaled by the release of Nitric Oxide (NO) and histamine, causes a
 1270 decrease in responsivity to ACh at the specific neurite (or combination of neurites) that were
 1271 activated, while leaving intact the responses at neurites that were not paired with NO and
 1272 histamine.

1273


1274

Supplemental material

1275

1276 **Supplemental Figure 1.** The number of responses per minute from the application of the CCh to
1277 the cerebral ganglion, rather than from the start of regular bursting in response to the CCh. In
1278 addition, after a preparation stopped responding to the CCh, its response rate was given a value of
1279 zero. In the graph above the abscissa continues for 49 min, which is the time to criterion of the
1280 longest-responding preparation. The earliest responding preparations began to respond only after
1281 a 3 min delay. As more preparations respond, and as the response rates increase, the mean
1282 response rate increases, reaching a peak 8-9 min after the application of CCh. Response rate then
1283 slowly declines, as progressively fewer preparation remain responsive, and as the response rate in
1284 each preparation decreases.

1285
1286

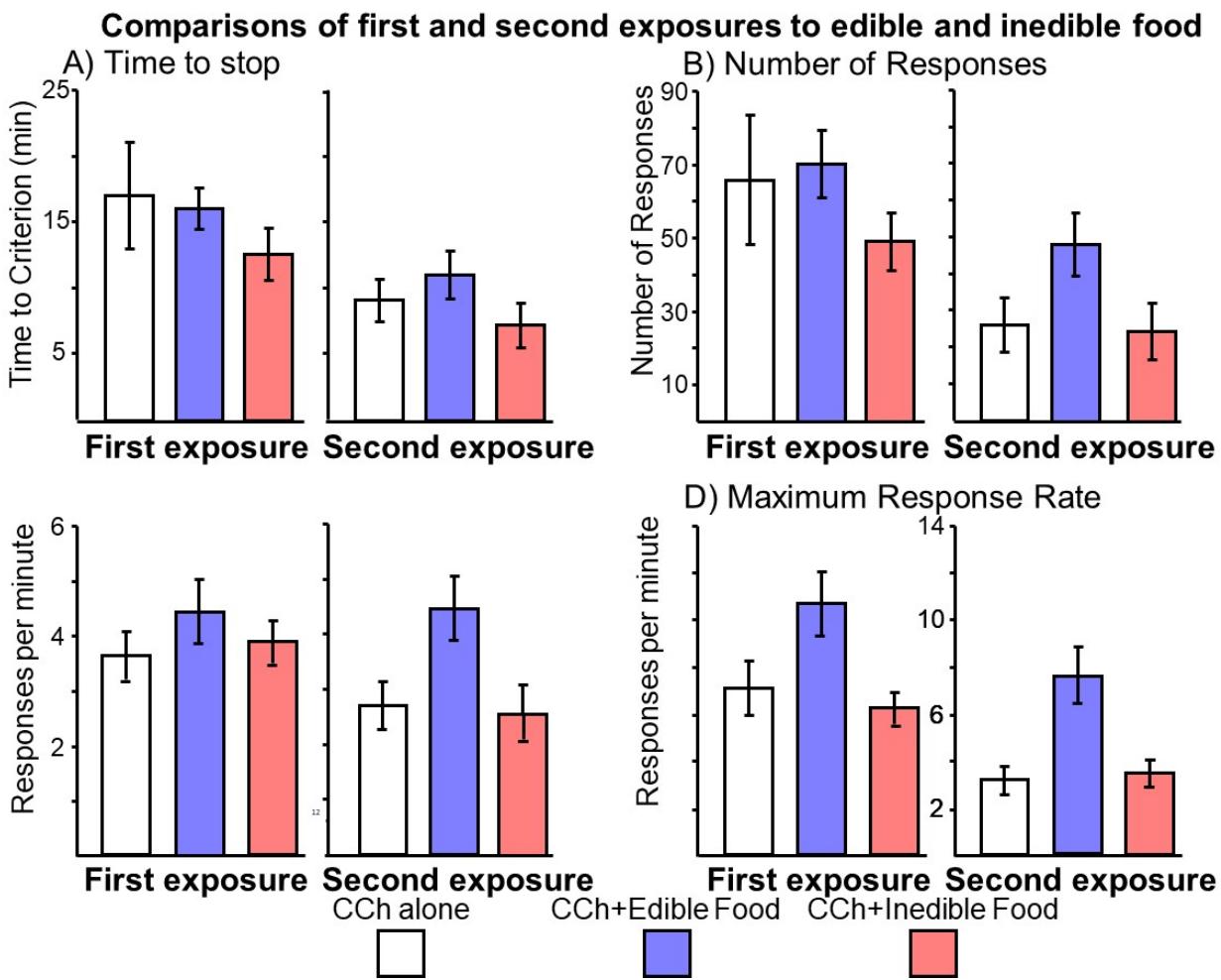
1287

1288 **Supplemental Figure 2.** Comparison of protraction length in seconds during the second half of an
1289 exposure to carbachol (CCh) in different conditions. Asterisks denote significant differences rm
1290 values in CCh alone. *A*) Mean protraction lengths during the first exposure to CCh in preparations
1291 that were exposed to CCh alone, to CCh+edible food, or to CCh+inedible food. Edible food ($N = 93$
1292 protractions) significantly shortened the protraction length ($p = 0.0455$), with respect to CCh
1293 alone ($N = 154$ protractions) but protraction length with inedible food ($N = 142$) was not
1294 significantly different from that in response to CCh alone ($p = 0.12602$; Mann-Whitney *U*-tests). *B*)
1295 Mean protraction lengths during the second exposure to CCh in preparations that were exposed to
1296 CCh alone, to CCh+edible food, or to CCh+inedible food. Surprisingly, both edible ($N = 84$) and
1297 inedible ($N = 63$) foods significantly shortened the protraction length (for edible food: $p < 0.0001$;
1298 for inedible food: $p < 0.0001$; Mann-Whitney *U* tests). *C*) Mean protraction lengths during the third
1299 exposure to CCh in preparations that were now exposure only to CCh, but which were previously
1300 exposed to CCh alone ($N = 392$), or to CCh+edible food ($N = 155$). There was no significant
1301 decrease in protraction length between preparations previously treated with CCh alone or with
1302 CCh+Edible food ($p = 0.2113$, Mann-Whitney *U*-test) during the second half of exposure to CCh.

1303 There were too few responses in 7 of the 9 preparations trained with inedible food to
1304 meaningfully compare preparations previously treated with CCh+Inedible food to the other two
1305 groups.

1306

1307 **Discussion of data in Supplemental Figure 2:**


1308 A) The decrease in protraction length in response to CCh+edible food was consistent with the
1309 decrease seen during the first half of the CCh exposure. The lack of change in response to
1310 CCh+inedible food was also consistent with the lack of change seen during the first half of the CCh
1311 exposure.

1312 B) The decrease in protraction length in response to CCh+edible food was consistent with the
1313 decrease seen during the first half of the CCh exposure. However, the decrease in protraction
1314 length in response to CCh+inedible food was the opposite of what was seen during the first half.

1315 This finding suggests that the attempts to swallow per se, independent of whether or not they
1316 were successful, produced an improvement in aspects of feeding when preparations were tested
1317 after the initial training. This suggests that attempts to swallow inedible food produce mixed
1318 effects on subsequent exposure to food. The attempts to swallow per se may enhance subsequent
1319 feeding, whereas the failure has a counteracting inhibitory effect, which generally overrides the
1320 enhancement.

1321 C) The lack of an effect on protraction length during the second half of the stimulation with
1322 CCh+edible food differs from the shortening seen during the first half.

1323

1324

1325 **Supplemental Figure 3.** Data shown in Figure 7 plotted without combined data from the different
 1326 treatments, thereby allowing the reader to directly compare data from the training session and
 1327 the subsequent 1-hour test procedure, for each of the three treatments. **A)** For the time to stop, a
 1328 two-way analysis of variance showed a significant decrease in responses between the first and
 1329 second exposure to food ($p = 0.004, F(1,36) = 9.47$), with no significant difference between the 3
 1330 treatments ($p = 0.23, F(2,36) = 1.52$), and no significant interaction ($p = 0.80, F(2, 36) = 0.22$). **B)**
 1331 For the number of responses, a two-way analysis of variance showed a significant decrease in
 1332 responses between the first and second exposure to food ($p = 0.002, F(1,36) = 11.04$), with no
 1333 significant difference between the 3 treatments ($p = 0.13, F(2,36) = 2.18$), and no significant
 1334 interaction ($p = 0.66, F(2, 36) = 0.42$). **C)** For the mean response rate, a two-way analysis of variance
 1335 showed a significant decrease in responses between the first and second exposure to food ($p =$
 1336 $0.034, F(1,36) = 3.73$), with a difference between the 3 treatments that approached significance (p

1337 = 0.08, $F(2,36) = 3.22$), and no significant interaction ($p = 0.41$, $F(2, 36) = 0.93$. **D**) For the
1338 maximum response rate, a two-way analysis of variance showed a significant difference in
1339 responses between the first and second exposure to food ($p < 0.001$, $F(1,36) = 16.84$), as well as a
1340 significant difference between the 3 treatments ($p < 0.001$, $F(2,36) = 10.76$), and no significant
1341 interaction ($p = 1.22$, $F(2, 36) = 0.82$.

1342