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Abstract

Sensory feedback shapes ongoing behavior and may produce learning and memory. Motor
responses to edible or inedible food in a reduced Aplysia preparation were examined to test how
sensory feedback affects behavior and memory. Feeding patterns were initiated by applying a
cholinomimetic onto the cerebral ganglion. Feedback from buccal muscles increased the response
variability and response rate. Repeated application of the cholinomimetic caused decreased
responses, expressed in part by lengthening protractions. Swallowing strips of edible food, which
in intact animals induces learning that enhances ingestion, increased the response rate, and
shortened the protraction length, reflecting more swallowing. Testing memory by repeating the
procedure prevented the decrease in response rate observed with the cholinomimetic alone, and
shortened protractions. Training with inedible food that in intact animals produces learning
expressed by decreased responses caused lengthened protractions. Testing memory by repeating
the procedure did not cause decreased responses or lengthened protractions. After training and
testing with edible or inedible food, all preparations were exposed to the cholinomimetic alone.
Preparations previously trained with edible food displayed memory expressed as decreased
protraction length. Preparations previously trained with inedible food showed decreases in many
response parameters. Memory for inedible food may arise in part via a post-synaptic decrease in
response to acetylcholine released by afferents sensing food. The lack of change in response
number, and in the time that responses are maintained during the two training sessions preceding
application of the cholinomimetic alone suggests that memory expression may differ from

behavioral changes during training.
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Introduction

Learning and memory may be examined in intact behaving animals, and in portions of the nervous
system that control the relevant behaviors. Examining intact animals may not provide access to
the cellular events underlying the changes in behavior and examining plasticity in isolated tissues
does not provide simultaneous monitoring of the behavioral changes arising from cellular changes.
Reduced preparations that contain effectors of behavior, as well as portions of the nervous system
that control the effectors, can provide a bridge between behavioral and cellular analyses (Antonov
et al. 2010; Cohen et al. 1997; Chiel et al. 1986; Frost et al. 1997; Weiss et al. 1986). Such
preparations may allow deeper characterization of behavioral changes that may not be evident in
an intact animal, as well as providing insight into some of the underlying cellular events.

In addition to information on learning and memory, a reduced preparation may also provide
an important bridge for studying how a central pattern generator (CPG) is modulated. In behaving
animals, many cyclical patterns of neural activity are only intermittently truly cyclical, since they
are continuously modulated. Sources of modulation include feedback from effectors of behaviors
produced by the cyclical neural activity (Pearson 2004; Rossignol et al. 2006), feed-forward and
feed-back information from the current environment (Chiel and Beer 1997), and information
about the current state of the organism (Burke 1999). Learning and memory arising from previous
experiences that are relevant to the cyclical neural activity may also influence it. Nonetheless,
when portions of the nervous system that generate aspects of a repetitive behavior are examined
in the absence of such influences, cyclic neural activity may be quite robust and repetitive, due to
the unmodulated activity of the CPG (Marder and Bucher 2001). As progressively more
information about ongoing and previous performance of the behavior is present, the output may
become less influenced purely by the CPG (Diehl et al. 2013; Hamood and Marder 2015; Wenning

et al. 2014).
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In this report, we have examined modulation of neural activity by feedback from effectors in
a reduced preparation, in which the ganglia producing cyclical activity remain attached to key
effectors, the buccal musculature. This allowed us to challenge the motor system with natural
loads that modify neural patterns and produce changes in behavior. Because the loads used to
examine change in behavior are also stimuli used in associative learning tasks in intact animals
(Nargeot et al. 2007; Susswein et al. 1986), the study also provides deep insight into behavioral
changes that occur while animals learn, and also into the neural mechanisms producing learning
and memory.

The study focuses on the consummatory phase of Aplysia feeding, which is controlled by a
CPG in the buccal ganglia that organizes repetitive protractions and retractions of the toothed
radula via the actions of buccal muscles (for reviews, see Cropper et al. 2004; Elliott and Susswein
2002; Wentzell et al. 2009). Activity of the CPG, and repetitive protraction and retraction
movements, are central components of a number of distinct consummatory behaviors (Jing and
Weiss, 2005; Kupfermann 1974; McManus et al. 2014; Neustadter et al. 2007; Wu et al 2014; Ye et
al. 2006). In intact animals, the repetitive activity produced by the CPG shows considerable cycle-
to cycle variability (Brezina et al. 2006). The CPG is active even in an isolated buccal ganglia
preparation. Activation of the CPG induces fictive feeding that can be monitored by recordings
from peripheral nerves which in vivo innervate the buccal muscles effecting feeding behaviors
(Jing and Weiss 2001; Morton and Chiel 1993; Neveu et al. 2017; Susswein et al. 1996). The cellular
processes underlying the properties of individual CPG elements can be readily studied in an
isolated ganglion preparation (Dembrow et al. 2003; Hurwitz and Susswein, 1996; Hurwitz et al.
1994; 1997, 2008; Sasaki et al 2007; Saada et al. 2009; Susswein and Byrne 1988), in which the
ganglia controlling feeding are removed from the animals and studied in vitro. However,
information that can be gained in isolated ganglia is limited, since one cannot examine modulation

arising as a result of changes in the load that animals work against when they attempt to eat a
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food or learning and memory that result from successful or failed attempts to eat a food. To
determine how changes in load, and learning and memory, affect the expression of fictive feeding,
we have examined feeding motor patterns expressed in a reduced preparation in which the buccal
ganglia remain attached to the buccal muscles, and fictive feeding is expressed both via patterns
of neural activity and via observable protractions and retractions of the radula (McManus et al.,
2012).

In the preparation used, the buccal ganglia and the attached buccal muscles are suspended
in a saline bath. The buccal ganglia also remain attached to the cerebral ganglion, which contains a
small population of command-like neurons (CBIs — cerebral-buccal interneurons —Hurwitz et al.
1999; 2003; Jing and Weiss 2001; 2005; Rosen et al. 1991; Wu et al. 2014) which can directly and
indirectly activate the CPG (Hurwitz et al. 2003; Jing and Weiss 2001). Treating the cerebral
ganglion with a cholinomimetic activates fictive feeding (Susswein et al. 1996), presumably
because sensory neurons that respond to food are cholinergic, and acetylcholine (ACh) depolarizes
and fires some of the command-like neurons (Susswein et al. 1996). Because the buccal muscles
produce radula protraction and retraction, and also opening and closing of the mouth, food can be
put into the buccal cavity, thereby loading the motor system. Both strips of soft, edible food,
which weakly load the muscles and can be successfully swallowed, as well as food that is made
inedible by wrapping it in plastic netting, which load the muscle more strongly as animals attempt
to swallow it, can be placed within the mouth, thereby allowing us to examine the possible effects
of different levels of loading on the behavior.

In intact animals, both successful swallowing of food and failed attempts to swallow a tough
food are experiences that lead to learned changes in behavior while the animals attempt to
consume the food, and subsequent changes in response when animals are again challenged with
the food, reflecting memory of the previous experience (Brembs et al. 2002; Chiel and Susswein

1993; Lechner et al. 2000; Susswein et al. 1986; Nargeot et al 1997; 2007). We tested possible
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changes in response during the initial exposures to the edible and inedible foods. We also tested
short-term memory by re-exposing the preparations to both edible and inedible foods, as well as
to the cholinomimetic alone.

The presence of the peripheral musculature enriched the expression of consummatory
behaviors elicited by the cholinomimetic by increasing the peak frequency, and by causing a wider
variety of motor responses. Feedback from successful food consumption enhanced some aspects
of feeding responses, and the enhancements were retained when the preparations were tested
for a second time with food that is successfully consumed. In contrast, unsuccessful attempts to
swallow food produced relatively few changes in response during either an initial attempt, or
during a second attempt to consume the food. However, training with inedible food caused short-
term memory that was expressed as a decrease in response to a subsequent exposure to the
cholinomimetic alone.

These findings suggest different sites of memory formation in response to the different
types of training. For edible food, aspects of short-term memory are likely to be localized to the
buccal ganglia. For inedible food, the memory measured in the reduced preparation arises
primarily via a post-synaptic decrease in response to acetylcholine (ACh) in cholinoceptive cerebral
ganglion neurons. Previous work (Susswein et al., 1996) showed that lip receptors responding to
food are cholinergic. Different populations of taste receptors will synapse at different post-
synaptic sites. A post-synaptic decrease in response to ACh can account for food-specific learning

that food is inedible.

Results

Our aim was to use a reduced Aplysia feeding preparation to provide insight into how the
presence of peripheral musculature affects repetitive motor programs, and how both effective
and ineffective loads (effective and ineffective attempts to consume food) modify feeding motor

activity. Since both effective and ineffective attempts to swallow food lead to learning and
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memory that the food is edible or inedible in intact animals (Susswein et al., 1986; Nargeot et al.
2007), these studies also provide insight into how aspects of a training paradigm in a reduced
preparation may affect behavior during training, and also produce short-term memory after the
training. We used a suspended buccal mass preparation (McManus et al., 2012; 2014) to examine
these questions. In this preparation, the buccal mass is suspended in Aplysia saline, while it
remains attached to the buccal and cerebral ganglia. The buccal muscles and buccal mass are in
the same chamber. The cerebral ganglion is in a separate chamber, allowing the two ganglia to be
bathed in different fluids, and allowing drugs to be applied separately to the two ganglia. The
buccal and cerebral ganglion are connected to one another via the cerebral-buccal connectives,
which span the partition separating the two chambers.

In intact animals, the lips are stimulated with food to initiate feeding responses
(Kupfermann, 1974a). Because the lips are not present in the suspended buccal mass preparation,
lip stimulation with food cannot be used to induce bites and food entry into the buccal cavity. To
initiate motor activity, the cerebral ganglion is treated with the non-hydrolyzable cholinergic
agonist carbamyl choline (carbachol - CCh) (Brown and Laiken 2011), which induces repetitive bite-
like motor programs in the buccal ganglia (Susswein et al., 1996). In the suspended buccal mass
preparation, because the buccal muscles are present, the mouth opens and closes, the radula
protracts and retracts, and the radula halves open and close, as in intact animals (Kupfermann,
1974a). Swallowing and rejection responses can be elicited respectively by placing into the buccal
cavity either strips of seaweed, or inedible objects. Neural correlates of biting, swallowing and
rejection can be examined in detail, providing insight into how the 3 behaviors are organized
(McManus et al 2012; 2014). To observe how edible or inedible foods might modulate motor
programs, strips of edible food, or of an inedible food similar to that used previously to train
animals (Susswein et al. 1986), were placed within the buccal cavity when the mouth opened in

response to the CCh. Video recordings of the buccal mass, and extracellular voltage recordings
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from the buccal nerves and from the 12 buccal muscle, allowed us to monitor motor programs in
response to the CCh and in response to the food stimuli. In addition to being initiated by CCh
rather than by lip stimulation, feeding responses using inedible food in the preparation differed in
a second way from that in intact animals. In the intact animal, after food enters the buccal cavity,
the food may intermittently leave the buccal cavity. Because food is still in contact with the lips,
additional bouts of bites and attempts to swallow are induced. During the latter portion of a
training trial with inedible food, the animals become relatively unresponsive to food, and the food
spends relatively little time within the buccal cavity (Susswein et al. 1986). In contrast, in the
suspended buccal mass preparation the food was not permitted to exit from the buccal cavity.

Whenever the food began to leave the buccal cavity, it was pushed back in.

Modulation of motor program patterning by the presence of the buccal musculature

A previous report (Susswein et al. 1996) examined parameters of motor programs elicited in
response to CCh administered to the cerebral ganglion in preparations in which the cerebral and
buccal ganglia did not remain attached to the buccal muscles. After an initial warm-up period, it
was found that motor programs were elicited at a rate of approximately 3 per minute, and that
95% of the programs were bite-like, on the basis of patterns of firing recorded from buccal
ganglion nerves (Morton and Chiel, 1993). In addition, activity during protraction and retraction
were relatively consistent, with very little variability from burst to burst. To test whether
proprioceptive feedback from the muscles may affect motor activity, we examined motor
programs elicited in the suspended buccal mass preparation (Fig. 1). The presence of the buccal
muscles leads to an increase in the peak frequency (Figs. 1; 2C and 2E) as well as an increase in the
variability in the types of motor responses elicited.

On the basis of patterns of firing recorded from buccal ganglion nerves, feeding motor
programs have been classified (Morton and Chiel, 1993) as ingestion-like (either bite-like or

swallow-like), rejection-like, or intermediate, primarily based on the phasing of neural activity that



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

is a correlate of radula closing with either protraction or retraction. Classification of motor
patterns based on buccal nerve recordings have been used extensively in previous reports (Cullins
et al. 2015; Jing and Weiss, 2001; 2005; Morton and Chiel, 1993; Neveu et al. 2017; Susswein et al.
1996; Wu et al. 2014). However, recent recordings of neural activity while observing the behavior
of intact animals have shown that the neural correlates are only approximate indicators of feeding
behavior, with many ingestion and rejection behaviors not conforming to the patterns of activity
that have been used to classify patterns in reduced preparations (Cullins 2014). For this reason, we
did not attempt to assign labels of behavioral categories to the patterns of activity that were
recorded. Nonetheless, differences in the activity patterns between preparations with and without
the buccal muscles attached were very clear. With the muscles attached, the patterns of activity
were much more heterogeneous, with the lengths of the protraction and retraction phases being
more variable, as well as being faster (Fig 1). The heterogeneity of the responses elicited by CCh in
the suspended buccal mass preparation is likely to be a closer fit to aspects of feeding behavior in
intact animals than is the homogeneity of responses in the absence of the muscles. Intact Aplysia
eat a variety of complex natural foods of different shapes (Kupfermann and Carew 1974; Susswein
et al. 1984) that induce a combination of different feeding behaviors (Kupfermann 1974). The
varied feeding behaviors produced by the buccal muscles are appropriate to the different types of
foods eaten. Thus, food on the lips elicits bites, whereas food within the mouth elicits swallows,
rejections or intermediate responses. Complex foods elicit complex sequences of different feeding
behaviors. The presence of muscles seems to enrich the programs elicited by CCh, so that their
frequency becomes more similar to that in intact animals challenged with natural foods, and the
types of patterns elicited become more varied.

We quantified a number of parameters of motor programs in preparations in which ganglia
remained attached to the buccal muscles and in which the muscles were removed. The total

number of feeding programs elicited by the CCh (Fig. 2A), and the total time that feeding programs
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were maintained (Fig. 2B) were similar in the two types of preparations. However, the peak
frequency of the programs was higher with the muscles attached (Fig. 2C), indicating that
proprioceptive feedback from the muscles increases the peak frequency, as seen in Fig. 1.
Nonetheless, even with the muscles attached the peak frequency was lower than in intact, hungry,
fully aroused animals, in which the peak bite frequency is approximately 12 bites per minute
(Susswein et al. 1976), rather than the mean of 7.03 responses per minute in the suspended
buccal mass preparation.

A striking feature of buccal motor programs elicited in intact animals (Susswein et al. 1978),
and in isolated buccal-cerebral ganglia preparations stimulated with CCh (Susswein et al. 1996), is
a delay between presentation of an adequate stimulus eliciting feeding, and the initiation of
feeding activity. The delay reflects a lack of arousal in the absence of stimuli that elicit feeding. The
feeding stimuli induce a feeding arousal before eliciting feeding behavior. The slow initiation of
feeding was also seen in the suspended buccal mass preparation. Fig. 2D illustrates the start of a
trial in which CCh was applied to the cerebral ganglion in the suspended buccal mass preparation.
After application of the CCh to the cerebral ganglion, motor programs are recorded after a latency
of approximately 4 min (see Supplemental Fig. 1). In Fig. 2E, the frequency of the motor programs
is shown for each minute after the initiation of responses. The mean frequency increased in each
of the first 6 minutes, reaching a maximal rate of over 7 responses per minute. The rate of
responses then gradually decreased, and eventually the preparations stopped responding.
Supplemental Figure 1 shows the same dates in Fig. 2E, except plotted from the start of the CCh
application, rather than from the start of CCh-induced responses. After the preparation stopped
responding (defined as no response for 60 sec), the CCh solution was washed from the cerebral
ganglion chamber and was replaced with ASW. The latencies from the exposure to the CCh to the
start of bursting (Fig. 2F) were not significantly different in preparations in which the buccal

muscles were present or absent.
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Modulation of protraction durations during CCh exposure in the presence of proprioceptive
feedback

Does the patterning of individual motor programs change during CCh exposure in addition to the
changes in response rate? Although video recordings of the buccal mass were available, these
were only intermittently useful in classifying the nature of feeding responses, since the radula was
often not clearly visible. In addition, as noted above, it is difficult to relate extracellular nerve
recordings in intact animals to the type of feeding behavior that intact animals perform, limiting
the usefulness of nerve recording in classifying behaviors.

As a quantitative measure of some aspect of the nature of the motor programs, we
measured the length of the protraction phase of activity. Protraction can vary from less than 1
second to a maximum approaching 50 seconds. Short protractions are indicative of weak radula
protractions, which occur in swallowing, whereas long protractions are indicators of rejection
activity (Hurwitz et al., 1996; Ye et al. 20064, b; Cullins et al. 2015). As the preparations became
aroused, and the burst frequency increased, the length of the protractions decreased (Fig. 3A, left
panel), indicating that long protractions are correlates of less than maximal arousal. We examined
whether there were changes in the protraction length during the exposure to CCh, as response
frequency gradually decreased. The mean protraction lengths decreased during the first 10
responses (Fig. 3A, left panel), reaching a mean steady value of 3.4 sec. As the effect of the CCh
wore off, and the response rate decreased, the protraction length increased. During the last 10
responses, protraction lengths were elevated, and were similar to those at the start of the
response, when the preparation was just beginning to respond to CCh, and response rates were
relatively low (Fig 3A, right panel). Increased protraction length was not systematically tied to
increased retraction length, since there were many examples of 20-40 sec protractions followed

by relatively brief retractions.
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We also compared the protraction lengths during the first half of the period during which
bursting was sustained to the protraction lengths during the second half (Fig 3B). The distribution
of protraction lengths was significantly shifted to longer protractions during the second half,
reflecting a slowing of the frequency and a general decrease in efficacy of CCh in driving the motor
programs. These data indicate that long protractions are more often present when the CCh is
relatively ineffective in driving motor activity, and may be a general indicator of a preparation that

is less responsive to stimuli driving feeding.

Modulation of motor program patterning by edible or inedible foods

To determine how the presence of edible or inedible foods might modulate the feeding motor
activity, a number of parameters of the motor programs elicited by CCh were measured in
preparations in which the cerebral ganglion was only stimulated by CCh (N = 7), as well as in
preparations in which either edible [low-load] (N = 5) or inedible [high-load] (N = 9) foods were
placed in the buccal mass after repeated responses had been initiated (Fig. 4). We were unable to
measure possible influences of edible or inedible foods on the latency to begin responding, since
food could be put into the mouth only after the preparations had begun to respond. However, we
measured whether edible or inedible foods affected the total time that preparations remained
responsive to the CCh, the total number of responses from the start of a CCh application to the
criterion for cessation of the buccal movements, the mean response rate, and the maximum
response rate. There were no significant differences in time from the start of responses to
cessation of responses between preparations treated with CCh alone and preparations that also
were challenged with either edible or inedible food (Fig. 4A). In addition, there were no significant
differences between the total number of responses elicited (Fig. 4B), or in the mean response rate
(total number of responses / total response time) between the 3 treatments (Fig. 4C). However,
there was a significant difference between the 3 groups in the peak response rate (Fig. 4D). A post-

hoc test showed no significant difference in peak response rate between preparations treated
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with CCh alone and those fed with inedible food. However, the maximal response rate between
preparations fed with edible strips was significantly higher than was the maximal rate in response
to CCh alone. The maximal response rate to edible strips was approximately 10/min, which is
comparable to that in intact animals (Weiss et al., 1986).

It was also of interest to examine whether attempts to swallow edible or inedible foods
affect the protraction length (Fig. 5A), since swallowing is characterized by weak protractions,
which are relatively short, and rejection is characterized by strong protractions, which are
relatively long (Hurwitz et al., 1996; Ye et al., 2006; Cullins et al., 2015). There was a significant
difference in the distribution of protraction lengths between preparations treated with CCh alone
and those also allowed to swallow edible food, with fewer long protractions in preparations that
swallowed edible food. The shortened protractions in response to edible food is likely to be
caused by such foods eliciting more swallowing responses.

A comparison of preparations treated with CCh alone and with CCh+inedible food showed
no significant difference in distribution, using a Mann-Whitney U test (which tests rankings), but
showed a significant difference using a Kolmogorov-Smirnov test (which tests the overall
distribution). These findings stress the general and surprising similarity of responses in
preparations tested with CCh alone and those tested with CCh+inedible food, although they are
not identical.

It was of interest to determine the protraction lengths when feeding activity is maximally
driven by CCh treatment. Since the protraction length decreased while animals were becoming
aroused, and then increased during the second half of the exposure to CCh alone, when the
efficacy of the CCh was declining (see Fig. 3), we compared protraction length for the 3 treatments
during the first half of the treatment, minus the first 5 feeding bouts, when protraction length is
significantly decreasing (see Fig. 3A). There were significant differences in protraction lengths:

Exposure to edible food caused a significant shortening of protraction, with respect to protraction
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during exposure to CCh alone, whereas exposure to inedible food caused a significant lengthening
of protraction (Fig. 4E). The shortening of protraction with edible food is presumably a result of
this food inducing swallows, in which protraction is relatively short (Hurwitz et al., 1996; Cullins et
al. 2015). The lengthening of protraction with inedible food may arise because of increased
attempts to reject the food, even when CCh is relatively effective in driving feeding activity; a
characteristic of rejection is an increased protraction (Hurwitz et al., 1996; Ye et al. 2006b).

The similarity in the time to stop, number of responses and the response rate between the 3
types of preparations indicates that many features of the response in the 3 conditions are dictated
by the properties of cerebral ganglion neurons responding to the CCh, irrespective of whether or
not food in the buccal mass is loading the muscles. Nonetheless, protraction length and peak
frequency are modulated by the presence of food in the buccal mass. Edible food caused an
increase in peak frequency and a decrease in protraction length, whereas inedible food caused no

change in response frequency, but increased protraction length.

Short-term memory: Effects of repeating treatments

In intact Aplysia both successful and unsuccessful feeding produce learned changes in behavior
(Susswein et al. 1986; Nargeot et al. 2007). Successfully consuming food produces an increased
rate of responses, as well as a regularization of the responses (Nargeot et al. 2007). Failed
attempts to consume food produce a faster decline in the time that animals respond to food, and
to a reduction in the time that food remains in the mouth, perhaps because of an increase in
rejection responses (Susswein et al. 1986; Schwarz et al. 1988), which are characterized by strong
(and therefore long) protraction responses. To test the possibilities that either successful
swallowing of food with a low load, or unsuccessful swallowing of food with a high load produces
short-term memory in the reduced preparations, approximately 60 minutes after the start of the
trials reported above each of the three treatments was repeated, and the effects of a second

application of CCh, with or without edible or inedible foods, were measured. The repetition of the
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response to CCh alone served as a control for changes in the effect of CCh alone, independent of
whether or not food was previously swallowed successfully.

There were no significant differences in the mean time to stop, or in the total number of
responses elicited by CCh, between the preparations that were treated with CCh alone and
preparations treated with either edible or inedible food (Figs. 6A, 6B). However, both the mean
response rate and the maximal response rate were significantly elevated in preparations that
swallowed edible food, with no significant differences between preparations treated with CCh
alone and with CCh plus inedible food (Figs. 6C, 6D). Thus, edible food specifically elevated both
the mean and maximal response rates.

Fig. 6 compared parameters of feeding responses during the second exposure to CCh in
preparations exposed to CCh alone and to CCh+edible or CCh+inedible food. However, it was also
of interest to compare responses during the repetition of the CCh stimulation to the responses
during the initial exposure to CCh, one hour before. Such comparisons might show changes in
response caused by the repetition of the exposure to CCh, as well as possible additional effect of
memory that may result from the previous attempts to eat edible or inedible foods. Data for each
of the parameters measured, for each treatment, during the first and second treatments with CCh,
are shown separately in Supplemental Figure 3. To focus on the effects of repetition per se,
treatments that are not statistically different from one another during the first exposure to CCh
were combined, as were treatments that were not significantly different from one another during
the second exposure to CCh.

For the time to stop responding, and for the total number of responses, there were
significant decreases in response during the repetition (Figs. 7A, 7B). Since there are no differences
for these parameters between preparations treated with CCh alone or with CCh+edible or inedible
food, the decrease in responsivity could be explained by the exposure to CCh per se causing a

reduction, with no evidence for an additional change in responses caused by the training with
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either edible or inedible food. For the mean and maximal response rates, there were also
significant decreases during the second exposure in preparations treated with CCh alone and
those treated with CCh+inedible food, indicating that the repetition of the CCh alone caused the
decrease in responsivity, with no additional decrease caused by the exposure to the inedible food
(Figs. 7C, 7D). However, for preparations that were treated with edible food, there were no
significant decreases in either the mean or maximal response rates when comparing the data from
the first and second exposures to CCh+edible food (Figs. 7C, 7D). These findings indicate that the
ability to swallow food to some extent overcame the decline of responsiveness that results from
the repetition of the exposure to CCh alone. The previous training with edible food may have
produced short-term memory that was qualitatively similar to that produced in intact animals, in
that the response rate was increased, although other parameters of feeding responses were
similar to those in CCh-treated controls. However, since we did not test the response to
CCh+edible food after first exposing the preparation to CCh alone, we cannot rule out the
possibility that the changes were caused by the previous exposure to CCh, independent of the
presence of edible food. Surprisingly, the failed attempts to swallow food did not produce a
decrease in response over that caused by the CCh alone.

We also tested whether there were significant differences in the length of the protraction
phase of responses (Fig. 5B). There was a large, significant increase in the protraction length as a
result of repeating the treatment with CCh alone, indicating a general decrease in effectiveness of
CCh in driving motor activity. The increases in protraction length is consistent with the decrease in
the number of responses, and with the decreased time that responses were maintained. The
effect of repeating the CCh+edible food was opposite to that of repeating the CCh alone
procedure: in place of a lengthening of the protractions, there was a small, but significant
decrease in the protraction lengths after treatments with CCh+edible food, which is consistent

with the improvement of some aspects of responsiveness as a result of the repetition of this
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treatment. Somewhat surprisingly, there was no significant change in protraction length between
the first and second treatments with CCh+inedible foods (p = 0.704, Mann-Whitney U test). Since
long protractions are indicative of a general decrease in responsiveness, the lack of increased long
protractions may reflect a possible improvement of some aspects of responsiveness over that
induced by the repetition of CCh alone as a result of the repeated attempts to swallow the food,
even if the attempts fail.

We also determined whether there were significant differences in protraction length when
feeding activity is maximally driven by the CCh, during the first halves of the trials, after the
preparation was fully aroused (Fig. 6E). A comparison of protraction length for the 3 treatments
showed that there was a significant decrease in protraction length in response to edible food, but

no change in protraction length in response to inedible food.

A second test of short-term memory: Effect of CCh alone after two training sessions

In the above treatment, memory after the initial training was tested in response to the same
stimulus combinations used during the training: preparations initially challenged with edible food
were tested with edible food, and preparations that had been treated with inedible food were
again given inedible food. The preparations tested twice with edible food showed improvement in
some measures of responsiveness, with respect to controls treated with CCh alone, perhaps
reflecting short-term memory. The preparations tested twice with inedible food showed no sign of
decreased responsiveness using a number of measures of feeding.

Would there be indications of memory after treatment with either edible or inedible foods if
the preparations were then treated a third time, but with CCh alone? We tested this possibility.
Approximately 60 minutes after the start of the second exposure to CCh reported above, all
preparations were exposed to CCh a third time. However, for this exposure, the preparations were

not given either edible or inedible foods — all preparations were exposed only to the CCh (Fig. 8).
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The results of this treatment were remarkably different from the results of the previous
treatment. In this treatment, the preparations that had been previously exposed to inedible food
showed strong evidence of memory similar with that seen in intact animals that are trained with
the same inedible food. Thus, for 3 of 4 parameters measured (time to stop, number of responses,
mean response rate), there were significant reductions in the responsiveness to the CCh alone in
preparations that had previously been treated with inedible food, with no significant differences in
any of the parameters between preparations that had been previously treated with CCh alone
twice, or with edible food twice. The preparations that had been treated with inedible food
responded significantly less to the CCh alone (see Fig. 8) than did either of the other two groups.
These findings indicate that these preparations express short-term memory similar to that in
intact animals, in spite of the lack of decreases in responses in previous training trials between
treatment with CCh alone and treatment with inedible food. By contrast, the preparations treated
with edible food did not express memory, as measured by these parameters, in spite of the
possible memory shown in the previous trial.

It is possible that the decreased response to the CCh alone after 2 trials with CCh+inedible
food is due to fatigue. To exclude this possibility, preparations that had previously been exposed
to CCh+inedible food were presented with other stimuli that elicit motor activity (either dopamine
applied to the buccal ganglia, N=2, or stimulation of BN2, N=1). These stimuli elicited motor
programs.

We also measured protraction length in preparations previously treated with CCh alone and
in preparations exposed to CCh+edible food (Fig. 8E). Because 7 of the 9 preparations previously
exposed to CCh+inedible responded with 10 or fewer feeding responses (the actual number of
responses in the 9 preparations were: 0, 1, 3,5, 6, 7,9, 17, 29) it was not meaningful to measure
protraction lengths in these preparations, because of the problem of heteroscedasticity. There

were no significant differences in the overall protraction lengths between the preparations
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previously exposed twice to CCh alone or to CCh+edible food (Fig. 8E). We also examined
separately the protraction length during the first half of the exposures to CCh, when protraction
length is unaffected by the decline in responses to CCh (Fig. 8F). During the first half, the
protractions in preparations that were previously treated with edible food were significantly
shorter than were protractions in animals that were previously treated with CCh alone, indicating

that there was some memory of the previous exposure to edible food.

Discussion
In higher animals and humans, different aspects of behavioral change that arise as a result of
learning are localized to different areas of the nervous system, which may operate via different
mechanisms of neural plasticity. For example, in fear conditioning, a rodent placed in a new
environment hears a tone, and is shocked. The animal learns to associate both the new
environment and the tone with shock. The amygdala is involved in all forms of fear conditioning,
but learning about the environment also requires changes in the hippocampus (Eichenbaum, 2002;
Sweatt, 2009). Thus, a single learning event causes changes in different parts of the nervous
system responsible for different aspects of behavioral change. The present findings show that
aspects of memory formation after training with inedible food are localized to the cerebral
ganglion. Earlier data indicated that aspects of memory are localized in the buccal ganglia (Levitan
et al., 2018; 2012). Taken together, these results indicate indicates that learning affecting Aplysia
feeding is caused by changes in different ganglia causing different aspects of behavioral change.
Thus, learning that food is inedible is similar to learning in higher animals, in that it is distributed to
more than one site.

In this study, we investigated whether presence of the buccal musculature, or of feedback
from swallowing, affect feeding motor programs elicited by a cholinomimetic. The cholinomimetic
induces feeding, since ACh is the transmitter used by afferents responding to food in intact

animals (Susswein et al. 1996). Because successful and unsuccessful swallowing produce memory
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when paired with attempts to feed, the investigation also provides insight into mechanisms

underlying learning and memory. Fig. 9 summarizes our findings.

Effects of CCh on behavioral patterning

Many features of the response to CCh are similar to those of intact animals in response to food,
but some are different.

Similarity of effects of CCh to in vivo behavior. The latency from the exposure to CCh to the start of
motor programs, and the gradual increase in response frequency (Figs. 2D, E, F), are remarkably
similar to the phenomenon of food arousal in intact animals in response to lip stimulation
(Kupfermann 1974; Susswein et al. 1978), suggesting that food arousal in intact animals is
triggered by ACh release in response to food. Hungry Aplysia in an environment without food are
relatively unresponsive to food. Animals respond to food only after several minutes of exposure,
after the food induces an arousal state. Some effects of food arousal are caused by activating
neuron C-PR, which mediates aspects of appetitive feeding behaviors (Teyke et al. 1991;
Nagahama et al. 1993). Additional aspects of food arousal are mediated by the serotonergic MCC
neuron, which facilitates buccal ganglia motor neurons and muscles (Weiss et al. 1978). In intact
animals, ACh released by taste afferents may act directly or indirectly on these neurons. The slow
initiation of feeding indicative of initiation of arousal by CCh occurs in preparations in which the
buccal muscles are not present (Susswein et al. 1996), and in preparations in which the ganglia
remain attached to the muscles (Figs. 2D, E, F). The delayed response cannot be attributed to the
time required for CCh to penetrate the connective tissue sheath covering the ganglion, since most
of the delay was still seen when the sheath was removed (Susswein et al. 1996). The similarity of
responses of intact animals to food and of reduced preparations to application of a
cholinomimetic suggests that the delay in intact animals is not governed by a delay in the release

of ACh in response to food, but rather by a delay in the response to ACh. The delay may be caused
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by a slow response of cholinoceptive neurons to the transmitter, or by delayed effects on
downstream neurons receiving input from those responding to ACh.

The finding that the peak rate of motor programs was increased in the presence of the
buccal musculature is consistent with findings on other repetitive movements, where a variety of
sensorimotor interactions affect cyclical behavior (Pearson 2004; Rossignol et al. 2006). The
increased response rate with the buccal muscles attached may occur because the buccal ganglia
CPG governing repeated cycling is reset by feedback from the completion of the previous cycle of
muscle activity, thereby phase advancing the next activity cycle. The stepping rate generated by a
CPG in the spinal cord is sensitive to the hip angle, which may signal the completion of a step
cycle, and changes in the hip angle can entrain rhythmic output (Kriellaars et al. 1994). In addition,
a variety of spinal reflexes can modulate the CPG (Burke 1999). The peak response frequency is
even higher with edible food, perhaps because opening of the esophageal sphincter allowing food
to enter the gut may also signal that a cycle has ended, contributing to signals from the buccal
muscles that the previous cycle has ended.

Differences in Effect of CCh from in vivo behavior. Some features of motor programs elicited by
CCh in the reduced preparation are markedly different from those in intact animals. Thus,
preparations stop responding to ACh in 10-20 min (Fig. 2B), whereas in intact animals food
stimulating the lips elicits responses for over an hour (Schwarz et al. 1988). The maintained
response in intact animals may reflect the release of other transmitters or of co-transmitters along
with ACh (Cropper et al. 2018; Weiss et al. 1993), or of the effects of synaptic input from
structures not present in the reduced preparation. The difference may also arise because CCh,
rather than ACh was used in the reduced preparation. CCh is resistant to cholinesterase (Brown
and Laiken 2011), which will lower the transmitter concentration after it is released. The
maintained transmitter presence might lead to desensitization, and a shortening of its effective

time. This possibility could be tested by using ACh in place of CCh.
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A second possible difference is that a repeated exposure to CCh in the reduced preparation 1
h after initiation of the first response led to a reduction in parameters of responsiveness to food.
Sustained lip stimulation in intact Aplysia does not produce long-term memory (Schwarz et al.
1988), but the effects of a rest similar to that in the present experiments have not been tested.
The reduced response could arise because cholinergic receptors become desensitized by the
maintained presence of the transmitter, and the period between transmitter applications is not
sufficient to fully overcome the desensitization. Some reduction in response on repetition of CCh
exposures was also seen in a previous report in which the cerebral ganglion was expose to CCh for

20 min every hour, over 5 hours (Susswein et al. 1996).

Effects of successful attempted swallows on behavioral patterning

Features of feeding responses not affected by attempts to swallow. Features of individual motor
programs and of sequences of responses seem to be separately regulated. Patterns of individual
programs may be regulated by feedback from attempts to swallow (see below), but global
features of responsiveness, such as the total time that the preparation is responsive, and the
number of responses elicited, seem to be regulated by the exposure to the CCh per se, with
limited effects of feedback from the attempts to swallow (Figure 4A, B).

Features of feeding responses affected by successful attempts to swallow. Some features of the
programs elicited by CCh were modulated by successful attempts to swallow, but not by
unsuccessful swallowing attempts (Figs. 4, 5, 6, 7), indicating that feedback from the success,
rather than entry of food into the mouth, is the signal causing these modulations of motor activity.
These effects are perhaps signaled by the opening of the esophageal sphincter. Another possibility
is that performance of swallowing per se causes these effects, independent of success. However,
the increased motor activity required to pull against inedible food inhibits the excitatory effects
caused by swallowing, and the net effect of combined augmentation and inhibition of motor

programs cancel one another when preparations attempt to swallow inedible food. This possibility
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is partially supported by the finding that some aspects of feeding are enhanced from the first to
the second exposure to CCh in preparations tested with CCh+inedible food. Thus, there is a
decrease in protraction length in the second half of the repetition of trials with CCh+inedible food
(Supplemental Figure 2B). A third possibility is that chemoreceptors in portions of the anterior gut
that were still present enhanced responses. Successful swallowing in intact Aplysia produces a
longer-lasting arousal dependent on chemical stimuli released by the food (Susswein et al. 1984),
which could enhance feeding responses elicited by CCh.

Responses with edible foods are enhanced on repetition. The enhancement can be
explained by a number of possibilities. The most interesting possibility is that enhancement arises
from short-term memory. Successful food consumption is a positive reinforcer in both classical
and operant learning paradigms (Baxter and Byrne 2006; Brembs et al. 2002; Lechner et al. 2000;
Lorenzetti et al. 2006; Nargeot et al. 1997; Nargeot et al. 2007), and the increased responsiveness
on the repetition of CCh+edible food may arise from short-term memory that results from the
previous pairing. Another possibility is that the enhanced arousal caused by successful swallowing
(Susswein et al. 1984) produced a state change that was maintained when the stimulus was
repeated. The maintained arousal is dependent on chemical stimuli released by the food
(Susswein et al. 1984). Another possibility is that swallowing responses elicited during the first
exposure to CCh+edible food prime the feeding system, so that the system is biased to elicit
swallowing when activated again. Repetition priming is present in the Aplysia feeding motor
system (Cropper et al. 2017; Dacks et al., 2012; Friedman and Weiss, 2010; Perkins et al., 2018).
However, the priming should also be evident during the third exposure to CCh, which was not
paired with edible food. An additional possibility is that there is a ceiling effect on how much
successful swallowing can facilitate CCh-elicited feeding responses. During the first exposure to
CCh, when the CCh is relatively effective, adding edible food produces a smaller enhancement of

responses than during the second exposure to CCh, when the CCh is less effective.
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Much of the modulation of motor programs by successful swallowing is likely to be
mediated by circuitry within the buccal ganglia, since neural correlates of short-term memory after
successful swallowing are maintained even when the buccal ganglia are isolated (Nargeot et al.
2007). However, some modulation may also occur in the cerebral ganglion, since reduced
protraction lengths were also seen when the preparation was stimulated by CCh alone applied
after the training to the cerebral ganglion (Fig. 8F). The change in response to CCh could also arise
by changes in the output of buccal to cerebral interneurons (Chiel et al 1988), which could change
the response of cerebral ganglion neurons to CCh.

One feature of feeding responses modulated by successful swallowing was the protraction
length. Long protractions, which are indicative of strong protractions, were seen while the
preparations were relatively unresponsive to the cholinomimetic, when they were becoming
aroused, and when the responses to CCh were declining (Fig. 3A). Strong protraction is a
characteristic of rejection, suggesting that these may be rejection programs. By contrast,
successful swallowing was correlated with short protractions (Fig. 4E; Fig. 5A2, 5B2), which are
correlates of swallowing responses (Hurwitz et al., 1996; Ye et al. 20064, b; Cullins et al. 2015).
Protraction length is partially set by the differential activity of different CBI neurons, which initiate
motor programs with shorter or longer protractions (Jing et al. 2010), suggesting that some of the
modulatory effects of eating edible foods, as well as some of the changes producing longer
protractions after training with inedible food, may be produced by differentially selecting between

different CBI neurons.

Effects of failed attempts to swallow on behavioral patterning

Training with inedible food produced no significant differences in most parameters of the feeding
responses during either of the first two repetitions of CCh treatment, with respect to parameters
produced by the CCh treatment alone (Figs. 4A-D, 6A-D and 7). The only parameter changed was

the protraction length, which became longer during the first exposure to CCh (Figs 4E, 5A). The
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mild changes in behavior observed are in marked contrast to the numerous changes in response in
intact animals while they learn (Susswein et al. 1986).

In spite of the limited changes in behavior during the training, when preparations that
were trained with CCh+inedible food were exposed to CCh alone, there were significant decreases
in response that were similar to those seen in intact animals trained with inedible food (Fig. 8).
These findings are consistent with previous data, which showed that long-term memory is blocked
by treatments producing only relatively minor changes in behavior during the training (Katzoff et
al., 2002), suggesting that separate processes may govern the behavioral changes while animals
learn and the creation of memory from the learning experience (Briskin-Luchinsky et al. 2018b).
However, we cannot exclude the possibility that one change found, the lengthened protractions

during the initial trial with CCh+inedible food, contributed to the memory formation.

Aspects of memory are localized to a post-synaptic decrease in ACh response in the cerebral
ganglion

The finding that after training with inedible food, exposure to CCh alone produces a remarkably
reduced response suggests an explicit mechanism of memory: a post-synaptic decrease in
response to CCh in cerebral ganglion neurons that are excited by taste cholinergic afferents. CCh
applied to the cerebral ganglion may be the equivalent of a massive stimulation of all the
cholinergic taste receptors. Pairing a response to ACh in cholinoceptive neurons initiating feeding
with buccal ganglia information reporting aspects of unrewarded effort leads to a decreased
sensitivity to ACh, and a decreased drive of buccal ganglia neurons that initiate feeding. The
decrease in response to ACh released by sensory neurons would explain aspects of memory, such
as a decrease in the time that animals continue to respond to food, without explaining the
changes in behavior that occur while animals learn, which may be caused by changes in synaptic

connectivity within the buccal ganglia.
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A post-synaptic decrease in response to ACh released by sensory neurons also provides a
mechanism for another aspect of memory, taste specificity. Both short-term and long-term
memories are taste specific: after training with a particular food, animals show no memory when
trained again with a food of another taste (Schwarz et al. 1988). We hypothesize that taste
specificity arises by a localized post-synaptic decrease in response to ACh in only some of the
receptors, leaving other receptors still responsive to ACh (Fig. 10). Foods of different tastes will
activate different populations of cholinergic afferents which synapse onto different local patches
of the cerebral ganglion neurons initiating feeding. Natural foods will elicit activity in only a small
sub-population of afferents, and only these afferents will display a decrease in response to ACh
when paired with unrewarded effort. Sensory specificity arises by restricting a decreased response
to ACh to a small number of post-synaptic sites, those had had been active in tandem with the
stimuli that arise from unrewarded attempts to swallow. In response to other foods, post-synaptic
cholinoceptive neurons will still respond to ACh. Taste specificity will arise because only some
post-synaptic cholinoceptive sites were paired with the reinforcing signal (unrewarded effort), and
only those sites will show a reduced response to ACh, whereas other sites continue to respond to
the ACh released by other taste receptors.

After the initial training with CCh+inedible food, a second exposure to CCh+inedible food
provided a test of short-term memory. We found no trace of reduced responses indicative of
memory similar to that in intact animals during this trial but did find memory expressed by a
decreased responsiveness during the third test with CCh alone. Why was no reduction in
responses seen during the second trial with CCh? One possibility is that training in the reduced
preparation differs from that in intact animals, in that it requires two training sessions. This may
be related to the differences in the training procedure in intact animals and in the reduced
preparation. A second possibility is that memory would have been present during the second

exposure to CCh, had we tested with CCh alone. However, the presence of inedible food in the
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second exposure produced a facilitation of feeding similar to that seen with edible food and
obscured the decrease. This possibility is consistent with the reduction in protraction length seen
during the second test (Supplemental Figure 2B). A third possibility is that the 60 min time interval
from the start of the training to the memory test was too long to pick up short-term memory,
which in intact animals is seen at 30 min after training, but not at 60 min after training (Botzer et
al. 1998). Repetition of training can produce intermediate-term memory (Botzer et al. 1998), and it
is possible that the memory observed during the test with CCh alone is a form of intermediate-
term memory, which would also be evident had we tested with CCh+inedible food, rather than
with CCh alone. These possibilities could be examined by exposing the cerebral ganglion to CCh
alone after a single training session with inedible food or changing the timing in which tests of
memory are performed.

The inhibition of feeding activity after training with inedible food was seen 1 h after the start
of the second training session, with no examination of possible preservation of memory for longer
periods. However, training with inedible food in intact animals also produces longer-lasting
memories that can be measured 24 h, 48 h or even 3 weeks after the training (Schwarz et al.
1991). Although different molecular processes are likely to underlie short- and longer-term
memory, and even different types of long-term memory expressed at different times after training
(Levitan et al. 2010), the behavioral expression of the different memory processes are remarkably
similar, suggesting that they occur at the same neural sites, although via different molecular
mechanisms. This suggests that a post-synaptic decrease in response to ACh may also underlie
aspects of long-term memory. The expression of short-term and long-term memory at the same
synapses is also a feature of other learning paradigms in Aplysia (Frost et al., 1985), as well as in
mammalian systems (Squire and Kandel 2008).

Previous studies on molecular correlates of long-term memory formation showed increases

after training in the buccal ganglia, but no changes in expression were found in the whole cerebral
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ganglion (Briskin-Luchinsky et al 2018a; Levitan et al. 2008; Michel et al. 2011). However, changes
in molecular correlates measured in the whole cerebral ganglia would not pick up changes
localized to a small number of key neurons, such as the cholinoceptive command-like CBI neurons,
leaving open the possibility that changes in the response to ACh may also underlie aspects of long-
term memory. Previous reports (Briskin-Luchinsky et al 2018a) also found that treatment with an
NO donor produces changes in the cerebral ganglion, and the NO donor applied to the cerebral
ganglion inhibits CCh-induced motor programs (Briskin-Luchinsky et al 2018b), suggesting that the
effects of NO on memory formation are localized to the cerebral ganglion.

The changes in gene expression in the buccal ganglia after training, coupled with the
experiments above showing changes in the response to CCh in the cerebral ganglion, indicate that
different aspects of memory after training with inedible food may be localized to different neural
sites. The motor changes that occur while animals learn (decreased time in mouth stemming from
fewer attempts to swallow and a greater likelihood to reject food), and that are also expressed
during memory, may arise from changes in synaptic connectivity from buccal ganglia
mechanoafferents to motor neurons. This is reflected by changes in gene expression in
mechanoafferents (Levitan et al. 2012), and by changes in synaptic plasticity in monosynaptic
connections from these mechanoafferents to identified motor neurons (Tam 2014). Many of the
presumed behavioral correlates of the molecular and physiological consequences of training could
not be expressed in the reduced preparation that we examined, since we forced the inedible foods
to remain in the buccal cavity. The cessation of response to inedible food, and the taste specificity,
are likely to arise via a decrease in response to ACh released from taste receptors onto a small
group of command-like neurons in the cerebral ganglion. Thus, learning that food is inedible is
similar to various learning paradigms in higher animals and in humans (Squire and Kandel 2008), in
that learning leads to memory formation at multiple neural sites, with the different neural sites

storing different aspects of behavioral change. Work on memory formation in invertebrate
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nervous systems has traditionally emphasized the molecular and physiological changes at a
specific neural site, which gives rise to behavioral changes. The finding that Aplysia learning that
food is inedible may arise from multiple changes at different neural sites, controlling different
aspects of behavioral change, opens the possibility of using this preparation to explore the
integration between different sites of plasticity to produce different aspects of an integrated

change in behavior.

Materials and Methods

Animals.

Aplysia californica weighing 250-350 g were purchased from Marinus (Garden Grove, CA) and kept
in aquaria filled with circulating artificial sea water (Instant Ocean; Aquarium Systems, Mentor,
OH) at ~16°C. Animals were fed every other day with large strips of dried seaweed (laver). Before
experiments, animals were presented with seaweed, and animals that displayed strong bites (large
mouth opening with the radula protracting well beyond the mouth — see Susswein et al. 1976 for

pictures) at 3- to 5-s intervals were selected for use.

Electrodes.

Hook electrodes were constructed from two wrapped, enamel-coated 0.001-in.-diameter stainless
steel wires (California Fine Wire, Grover City, CA) that were coated in household silicone glue (GE).
Before an experiment, the insulation was removed from the ends of the wires. One wire was
attached to the target nerve or muscle with the use of Quick Gel Super Glue (Henkel, Avon, OH) to
insulate the wire from the saline and hold it in place; the other wire served as a reference. Signals
were amplified using an AC-coupled differential amplifier (model 1700; A-M Systems, Everett,
WA). A 500-Hz low-pass filter and a 300-Hz high-pass filter were used for nerve recordings. A 10-

Hz high-pass filter was used for muscle recordings.
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Experimental preparation
The preparation used is described in detail elsewhere (McManus et al. 2012). Briefly, animals were
anesthetized by injecting them with 25% of their weight with isotonic MgCl,. The buccal mass was
removed, while still attached to the buccal and cerebral ganglia. The buccal mass and the attached
buccal ganglia were suspended in artificial seawater (ASW) in a round 100 mm (diameter) x 50 mm
(height) Pyrex dish. This dish had a front chamber in which the buccal mass was suspended, as well
as a separate, elevated back chamber in which the cerebral ganglion was loosely pinned on a
Sylgard substrate. The cerebral-buccal connective is placed in a notch in the Sylgard, thereby
allowing neural communication between the two ganglia, while also allowing the cerebral ganglion
to be bathed in a different solution from that bathing the buccal mass and the attached buccal
ganglia.

Electrodes were attached to the Radula Nerve (RN), as well as onto buccal nerves 2 and 3
(BN2, BN3), and the electrodes recorded extracellular action potentials in these nerves. An
additional electrode was attached to a strip of the 12 muscle. EMGs recorded in the 12 muscle
reflect radula protraction, which is produced by 12 contraction (Hurwitz et al. 1996). Large unit
activity in the RN is a monitor of radula closing (Morton and Chiel 1993). BN3 activity is used to
distinguish firing in identified neurons B4/B5, which are active at the start of retraction, primarily
in rejection behavior (Jing and Weiss 2001; Warman and Chiel 1995; Ye et al. 2006). Firing in BN2 is
a monitor of retraction (Morton and Chiel 1993). In addition, a video camera recorded movement

of the radula, from the side, and from the mouth.

Stimulation with CCh

CCh was applied by replacing the Aplysia saline in the cerebral ganglion chamber with a solution of
10 mM CCh in Aplysia saline. The preparations responded with an increase in motor responses a
number of minutes after the application. The CCh remained in the cerebral ganglion chamber as

long as the preparation continued to respond to the CCh. The criterion for cessation of responses
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was 60 sec without a response, which is approximately the spontaneous response rate in the
absence of CCh. Approximately 2-4 min after reaching the criterion, the CCh was washed out by
removing and replacing the solution with fresh Aplysia saline four times. Parameters measured
include: 1) the latency to begin responding to the CCh; 2) the time from the start of responses
until the last response before the criterion was reached; 3) the total number of responses from
the start of responses until the criterion; 4) the maximal response rate, which was calculated by
counting the number of responses over 100 sec after each response, and then expressing this
number in responses per minute; 5) the length of the protraction phase, which was measured
from the start of activity in the 12 muscle until the start of retraction. Retraction was identified by
the cessation of 12 activity, which corresponds with the start of BN2 and BN3 activity. which begins

just before the cessation of 12 activity.

Loads

Edible foods used to load the suspended buccal mass were strips of commercially bought laver
(Nori) seaweed that were cut to be 0.25 cm wide and 8-10 cm long. After the preparations were
responding at a regular rate in response to the CCh, a strip of food was placed within the mouth,
eliciting swallows. The swallows successfully transferred the strip into the gut, and the strips
exited through the cut end of the esophagus. After a full strip was swallowed, a second strip was
placed within the mouth, thereby eliciting continued swallows.

Inedible food was used to load the buccal mass. The food used was identical to that used
previously to train intact animals that food is inedible (Botzer et al. 1998; Briskin-Luchinsky et al.
2018a; b; Katzoff et al. 2003; et al. 2008; 2010; 2012; Susswein et al. 1986), except that Gracilaria
was used in place of Ulva. Squares of plastic window netted were cut, and pieces of seaweed were
placed within the center of the square. The square was then folded in half, folded again, and then
a third time, with the seaweed located at the apex of the thrice-folded square. The folded square

was held in a hemostat and was placed within the mouth when the response to the CCh became
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maximal. The inedible netted food was then released, allowing the preparation to attempt to
swallow the netted food. The netted food occasionally was pushed outward as a result of
rejection-like responses. The food was not allowed to exit the mouth: it was pushed back in before

it exited.

Statistics
Parametric statistics were used for most measures of feeding. A number of on-line statistical
calculators were used. Post-hoc tests after ANOVAs were performed at:

http://astatsa.com/OneWay_Anova_with TukeyHSD/ get data/. Protraction lengths were not

normally distributed, and therefore non-parametric statistics were used. Mann-Whitney U-tests

were performed at: https://www.socscistatistics.com/tests/mannwhitney/Default.aspx.

Kolmogorov-Smirnov tests were performed at: http://www.physics.csbsju.edu/stats/KS-

test.n.plot_form.html.
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1035  Figures

1036 Comparison of Motor Patterns with and without Proprioceptive Feedback
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1037

1038  Fig. 1. Changes in patterning of feeding responses as a result of the buccal mass remaining

1039 attached to the buccal and cerebral ganglia. Examples of fictive feeding induced by CCh applied to
1040 the cerebral ganglion in: A) a preparation in which the buccal muscles were not present, and B) a
1041  preparation in which the buccal muscles remained attached to the buccal ganglia. The records
1042  shown are portions of longer recordings, and were chosen to display the patterning and rate of
1043  responses during a 200 sec interval at the peak of responses to CCh (A - 200-400 sec after

1044  application of CCh; B - 270-470 sec after application of CCh). 12 = EMG recordings from the 12

1045  muscle; Rad N = recording from the Radula Nerve; BN2 = recording from the right Buccal Nerve 2;

1046  BN3 =recording from the right Buccal Nerve 3. In addition to an increase in the rate at which CCh



1047  generates fictive feeding, attachment of the muscle also increases the variability of the feeding
1048  bursts that are elicited.
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Patterns of feeding programs with and without buccal musculature
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Fig. 2. Parameters of motor responses induced by CCh with and without the buccal musculature.
A-C) Summary data comparing response parameters in the presence and absence of the buccal
musculature. Asterisks mark significant differences. Data on bursting in the absence of the buccal
muscles are from the first of 5 repetitions with CCh applied to the cerebral ganglion that were
reported in Susswein et al. 1996 (N = 10). Data on bursting in the presence of the buccal muscles is
from the first of 3 repetitions with CCh applied to the cerebral ganglion reported in the present
paper (N = 7). There were no significant differences between preparations with and without the
buccal musculature for the total time that bursting was maintained (p = 0.17, t(14) = 1.44), or for
the number of responses recorded during this period (p = 0.36, t(14) = 0.94). In contrast, the
maximum response rate was higher when the musculature was attached (p = 0.01, t(13) = 3.00; all
test are two-tailed t-tests), presumably as a result of proprioceptive feedback. D-F) Latency and

pattern of responses to CCh in a suspended buccal mass preparation. D) The CCh was applied 20-30
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sec after the start of the recording in a preparation in which the buccal and cerebral ganglia
remained attached to the buccal mass. Regular motor programs were initiated approximately 5
min after the start of the recording. 12 = EMG recordings from the 12 muscle, which is active during
protraction; RN = recording from the radular nerve, which is a monitor of radular closing; BN2-R =
Recording from the right Buccal Nerve 2, which is active during retraction; BN3-R = Recording from
the right Buccal Nerve 3, in which the largest units are B4/B5, which are active at the start of
retraction. E) The rate of responses gradually increases, reaching a maximum approximately 6 min
after the start of the regular responses, corresponding to a mean of approximately 9 min after the
start of the CCh application. The mean responses per minute after the start of response to CCh is
shown; bars indicate the standard errors. Preparations differed in the length of time that they
continued to respond. For the first 3 minutes, all 7 preparations responded. For minutes 4-14, data
are shown for 6 preparations that continued to respond. For minutes 15-17, 5 preparations
continued to respond. For minute 18, 4 preparations continued to respond. For minutes 19-21, 3
preparations continued to respond. Because only a single preparation continued to respond after
minute 21, data are not shown. Note that data are shown only from the first of 3 exposures to CCh
(see below). F) There was no significant difference in the latency from application of CCh to begin
bursting between preparations with and without the buccal muscles (p = 0.91, t(15) = 0.11; two-

tailed t-test).
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Fig. 3. Changes in protraction length during the first exposure to CCh. A) The mean protraction
length during the first and last 10 feeding responses in 6 preparations exposed to CCh alone.
Standard errors are shown. During the first few feeding responses, when response rate is low,
protractions are relatively long. A one-way analysis of variance showed significant differences in
protraction length among the first 10 protractions (p = 0.0007, F(9, 53) = 3.91). To be certain that
protraction length had reached baseline values, we elected to analyze protraction length from
after the fifth response. During the last 10 responses, the protractions are similarly long. B) The
time from the start of regular motor programs until the criterion for cessation was divided in
halves, and the distribution of protraction lengths during each half was plotted. Bins are 1 sec
each. Since response rate is higher during the first half than during the second half, there are more
protractions in the first half (N = 310) than in the second half (N = 154). To provide a common
scale of frequencies, the frequency was expressed as a percentage of the total number of
responses elicited by CCh. A Kolmogorov-Smirnov test showed that there was a significant
difference in the distribution of the protraction lengths between the first and second halves (D =

0.2164, p < 0.0001), with a more prominent tail of long protractions found in the second half.
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Fig. 4. Parameters of feeding responses during the first exposure to CCh alone, and when either

edible or inedible foods were also present. Asterisks mark significant differences. A) Time from
the start of active bursting to the 60 sec criterion for cessation of bursting. There was no significant
difference between the 3 treatments (p = 0.48, F(2,18) = 0.77, one-way analysis of variance). B)
The total number of feeding responses elicited from the application of CCh until the criterion for
cessation of response was reached. There was no significant difference between the 3 treatments
(p=0.44, F(2,18) = 0.87, one-way analysis of variance). C) The mean response rate (defined as total
number of responses/total response time (in minutes)). There was no significant difference
between the 3 treatments (p = 0.52, F(2,18) = 0.67, one-way analysis of variance). D) The peak

response rate. There was a significant difference between the 3 treatments (p = 0.02, F(2,18) =
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4.78, one-way analysis of variance). A Tukey HSD post-hoc test showed no significant difference
between preparations treated with CCh alone and those treated with CCh+inedible food (p = 0.80).
The difference between preparations treated with CCh alone and those treated with CCh+edible
food approached significance (p= 0.07). There was a significant increase in the maximum response
rate in animals treated with CCh+edible food with respect to those treated with CCh+inedible food
(p =0.01). E) Mean protraction lengths during the first half of the CCh exposure, with the first 5
feeding responses (when the preparation is not maximally aroused) removed (one of the 7
preparation exposed to CCh alone had fewer than 20 responses, and so was not included in the
analysis, since there were not enough responses to provide estimates of protraction length after
the first 5 responses were subtracted). Edible food (N =215 protractions) showed significantly
shortened protraction (p < 0.0002) compared to CCh alone (N = 277 protractions), whereas
inedible food (N = 202 protractions) showed significantly lengthened protraction (p = 0.0452,
Mann-Whitney U-test, which was used because of the clear non-normal distribution of protraction

length -see Fig. 4).
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Fig. 5. Distributions of protraction lengths in preparations treated with CCh alone, and in
preparations treated with CCh and edible or inedible foods. As in Fig. 3B, bins of the protraction
lengths are 1 sec each. To provide a common scale of frequencies, the frequency was expressed as
a percentage of the total number of responses from the application of CCh until the criterion for
cessation of responses was reached. A) First treatment with CCh. Kolmogorov-Smirnov tests
showed that there were significant differences in the distribution of the protraction lengths
between treatment with CCh alone (N = 461) and with CCh+edible food (N = 323) (p < 0.0001, D =
0.3189), and between CCh alone and CCh+inedible food (N = 379) (p = 0.002, D = 0.1265). In
addition, Mann-Whitney U-tests were performed to test whether the populations were ranked
differently. There was a significant difference between CCh alone and CCh+edible food (p = 0.002,
Mann-Whitney U test with Bonferroni correction), but not between CCh alone and CCh+inedible

food (p = 0.50, Mann-Whitney U test). A comparison of protraction lengths in response to edible
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and inedible foods showed that protraction length in response to edible foods was significantly
shorter than in response to inedible food (p = 0.018, Mann-Whitney U test with Bonferroni
correction). The shortened protraction in response to edible food is likely to be because they
elicited more swallowing responses, which are characterized by weak, short protractions. B) The
second treatment with CCh. Protraction lengths during the second exposure were compared to
those during the first exposure, for the same treatments. Kolmogoroff- Smirnov tests were
significant for CCh alone (N = 179) (p < 0.001, D = 0.2866) and for CCh+edible food (N = 221) (p <
0.001, D =0.2012), but not for CCh+inedible food (N =171) (p = 0.471, D = 0.0770). Mann-Whitney
U tests with Bonferroni corrections (used because the data are not normally distributed) showed a
significant increase in protraction length for preparations treated with CCh alone (p < 0.00002), a
significant decrease in protraction length for preparations treated with CCh+edible food (p =
0.0088), and no significant change in protraction length in preparations treated with CCh+inedible

food (p = 0.7039).
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Fig. 6. One hour after the start of the 3 treatments whose results are shown in Fig. 4 and 5A, the

treatments were repeated. Asterisks mark significant differences. A) There were no significant
differences in the time to stop responding between the 3 treatments (p = 0.35, F(2,18) = 1.13, one-
way analysis of variance). B) There were no significant differences in the number of responses
between the 3 treatments (p = 0.12, F(2,18) = 2.41, one-way analysis of variance). C) There was a
significant difference in the mean response rate between the 3 treatments (p = 0.046, F(2,18) =
3.66, one-way analysis of variance). A Tukey HSD post-hoc test showed that there was no
significant difference between preparations treated with CCh alone and those treated with

CCh+inedible food (p = 0.90). By contrast, there was a significant difference between preparations
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treated with CCh+edible and CCh+inedible food (p = 0.039), and the difference between
preparations treated with CCh alone and those treated with CCh+edible food approached
significance (p = 0.088). D) There was a significant difference in the maximum response rate
between the 3 treatments (p = 0.008, F(2,18) = 6.38). A Tukey HSD post-hoc test showed that
there was no significant difference between preparations treated with CCh alone and those
treated with CCh+inedible food (p = 0.90). By contrast, there were significant differences between
preparations treated with CCh+edible and CCh+inedible food (p = 0.014), and between
preparations treated with CCh alone and those treated with CCh+edible food (p = 0.012). E) Mean
protraction lengths during the first half of the CCh exposure, with the first 5 feeding responses
(when the preparation is not maximally aroused) removed. Edible food (N = 113 protractions)
significantly shortened protraction (p < 0.0001), with respect to CCh alone (N = 79 protractions),
whereas inedible food (N = 81 protractions) had no significant effect on protraction (p = 0.0226;

Mann-Whitney U test).
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Fig. 7. Comparison between parameters of feeding responses during the first and second test
with CCh. Asterisks mark significant differences. A) Because there were no significant differences
in the time to stop responding among the 3 groups tested in either the first or the second
exposure to CCh (see Fig 6A and 6B), data from the 3 treatments were combined for the first
exposure to CCh, and again for the second exposure to CCh. The time to stop responding during
the second exposure was significantly less than the time to stop during the first exposure to CCh (p
=0.002, t = 3.64, df = 20, two-tailed paired t-test, comparing all preparations from the first to the
second CCh exposure). B) There was also no significant difference in number of responses
between the 3 treatments during either of the exposures to CCh, and therefore data were
combined for each exposure to CCh. The number of feeding responses during the second exposure

was significantly less than the number of responses during the first exposure to CCh (p = 0.003, t =
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3.45, df = 20, two-tailed paired t-test, comparing all preparations from the first to the second CCh
exposure). C) Because there were significant differences between the 3 treatments during the
second exposure to CCh, the mean response rate between the first and second exposures to CCh
for the treatment that was significantly different from the other two (CCh+edible food) was
analyzed separately from the mean response rate for CCh alone and for inedible food, which were
combined. There was a significant reduction in mean response rate for preparations treated with
CCh alone and with CCh+inedible food (p = 0.006, t = 3.23, df =15, two-tailed paired t-test), with
no significant difference for preparations treated with edible food (p = 0.95, t = 0.07, df = 4, two-
tailed paired t-test). D) Because there were significant differences between the 3 treatments
during both the first and second exposures to CCh for the maximal response rate, the values
between the first and second exposures to CCh for the group that differed from the others
(CCh+edible food) were analyzed separately, whereas data from the 2 groups that were not
significantly different (CCh alone and CCh+inedible food) were combined. There was a significant
reduction in mean response rate for preparations treated with CCh alone and with CCh+inedible
food (p = 0.0003, t = 4.75, df =15, two-tailed paired t-test), but not for preparations treated with
CCh+edible food (p = 0.12, t = 1.92, df = 4, two-tailed paired t-test). Note that the data for the first
and second exposures to CCh are plotted separately for each of the three procedures (no

combining of data from different procedures) are presented in Supplemental Figure 2.
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Fig. 8. One hour after the start of the treatments whose results are shown in Figs. 6 and 7, a
second test of memory examined the response to CCh alone. A) There were significant
differences in the time to stop responding based on which of the 3 treatments preceded the CCh
alone (p =0.013, F(2,18) = 5.55, one-way analysis of variance). The difference arose because of a
decrease in response time of preparations that were previously treated with CCh+inedible food
with respect to preparations previously treated with CCh alone (p = 0.010, Tukey HSD post-hoc
test), with no significant difference between preparations previously treated with CCh+edible food
and CCh alone (p = 0.46, Tukey HSD post-hoc test). B) There were significant differences in the
number of responses to CCh alone based on which of the 3 treatments preceded the CCh alone (p
=0.003, F(2,18) = 8.31, one-way analysis of variance). The difference arose because of a decrease
in response time of preparations that were previously treated with CCh+inedible food with respect
to preparations previously treated with CCh alone (p = 0.002, Tukey HSD post-hoc test), with no
significant difference between preparations previously treated with CCh+edible food and CCh

alone (p = 0.44, Tukey HSD post-hoc test). C) There were significant differences in the mean
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response rate to CCh alone, based on which of the 3 prior treatments was applied previously (p =
0.009, F(2,18) = 6.28, one-way analysis of variance). The difference arose because of a decrease in
response time of preparations that were previously treated with CCh+inedible food with respect
to preparations previously treated with CCh alone (p = 0.011, Tukey HSD post-hoc test), with no
significant difference between preparations previously treated with CCh+edible food and CCh
alone (p = 0.49, Tukey HSD post-hoc test). D) There were no significant differences in the peak
response rate to CCh after the 3 preceding treatments (p = 0.08, F(2,18) = 2.85, one-way analysis
of variance). However, when the data from preparations that were exposed previously to CCh
alone and to CCh+edible food were combined, and were compared to data from preparations that
had been previously exposed to CCh+inedible food, there was a significant difference (p = 0.026,
t(19) = 2.41). In addition, there was a significant difference between preparations previously
tested with CCh alone and those previously tested with CCh+inedible food (p = 0.03, t(14)=2.36). E)
Distribution of protraction lengths for preparations treated previously with 1) CCh alone (N = 392),
and 2) CCh+Edible food (N = 155). There were too few responses in 7 of the 9 preparations trained
with inedible food to meaningfully compare preparations previously treated with CCh+inedible
food to the other two groups. There were no significant differences in protraction length between
the two groups shown (Kolmogorov-Smirnov test: D = 0.1124, p = 0.112; Mann-Whitney U test: U
= 27211, p = 0.05744). B) Comparison of protraction lengths during the first half of the exposure to
CCh alone in preparations treated previously with CCh alone or with CCh+edible food. There was a
significant decrease in protraction length in preparations previously treated with CCh+edible food

(p =0.00022, Mann-Whitney U-test) during the first half of exposure to CCh.
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Fig. 9. Summary of the findings. The cholinergic agonist CCh applied to the cerebral ganglion
induces repetitive feeding motor programs. When the buccal muscles remain attached to the
buccal ganglia, there is an increase in peak frequency, and an increase in the variability of the
motor patterns. Repetition of this procedure leads to a decrease in responses, as measured by a
shorter time that the preparation responds, fewer responses, and a lengthening of protractions.
Challenging the preparation with edible food leads to an increase in mean and peak response
rates, and a shortening of the protractions. Repetition of this procedure does not lead to the
decrease in mean or peak response rates seen when the preparation is exposed to CCh alone, and
leads to shorter protractions than during the initial training with edible food. Challenging the
preparation with inedible foods causes responses that are similar to those to CCh alone during the
training and during the repetition, except that the increased protraction length during the

repetition does not occur, because protraction length is paradoxically decreased during the second
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half of the CCh exposure. When the preparations are again challenged with CCh alone, there are
shorter protractions in preparations previously treated with CCh and edible food relative to
preparations previously treated with CCh alone, with no other differences in other parameters of
feeding. However, preparations previously treated with inedible food show reductions in many

response parameters, showing memory similar to that in intact animals.
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Fig 10. Hypothesis of mechanism of learning that food is inedible in the cerebral ganglion. Taste
receptors respond to different tastes, but all release ACh onto different neurites of command-like
CBI neurons. These excite the CPG within the buccal ganglia. Pairing activation of a specific taste
with unrewarded effort, signaled by the release of Nitric Oxide (NO) and histamine, causes a
decrease in responsivity to ACh at the specific neurite (or combination of neurites) that were
activated, while leaving intact the responses at neurites that were not paired with NO and

histamine.
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1276  Supplemental Figure 1. The number of responses per minute from the application of the CCh to
1277  the cerebral ganglion, rather than from the start of regular bursting in response to the CCh. In
1278  addition, after a preparation stopped responding to the CCh, its response rate was given a value of
1279  zero. In the graph above the abscissa continues for 49 min, which is the time to criterion of the
1280 longest-responding preparation. The earliest responding preparations began to respond only after
1281 a3 min delay. As more preparations respond, and as the response rates increase, the mean

1282  response rate increases, reaching a peak 8-9 min after the application of CCh. Response rate then
1283  slowly declines, as progressively fewer preparation remain responsive, and as the response rate in

1284  each preparation decreases.
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Supplemental Figure 2. Comparison of protraction length in seconds during the second half of an
exposure to carbachol (CCh) in different conditions. Asterisks denote significant differences rm
values in CCh alone. A) Mean protraction lengths during the first exposure to CCh in preparations
that were exposed to CCh alone, to CCh+edible food, or to CCh+inedible food. Edible food (N = 93
protractions) significantly shortened the protraction length (p = 0.0455,), with respect to CCh
alone (N = 154 protractions) but protraction length with inedible food (N = 142) was not
significantly different from that in response to CCh alone (p = 0.12602; Mann-Whitney U-tests). B)
Mean protraction lengths during the second exposure to CCh in preparations that were exposed to
CCh alone, to CCh+edible food, or to CCh+inedible food. Surprisingly, both edible (N = 84) and
inedible (N = 63) foods significantly shortened the protraction length (for edible food: p < 0.0001;
for inedible food: p < 0.0001; Mann-Whitney U tests). C) Mean protraction lengths during the third
exposure to CCh in preparations that were now exposure only to CCh, but which were previously
exposed to CCh alone (N = 392), or to CCh+edible food (N = 155). There was no significant
decrease in protraction length between preparations previously treated with CCh alone or with

CCh+Edible food (p = 0.2113, Mann-Whitney U-test) during the second half of exposure to CCh.
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There were too few responses in 7 of the 9 preparations trained with inedible food to
meaningfully compare preparations previously treated with CCh+Inedible food to the other two

groups.

Discussion of data in Supplemental Figure 2:

A) The decrease in protraction length in response to CCh+edible food was consistent with the
decrease seen during the first half of the CCh exposure. The lack of change in response to
CCh+inedible food was also consistent with the lack of change seen during the first half of the CCh
exposure.

B) The decrease in protraction length in response to CCh+edible food was consistent with the
decrease seen during the first half of the CCh exposure. However, the decrease in protraction
length in response to CCh+inedible food was the opposite of what was seen during the first half.
This finding suggests that the attempts to swallow per se, independent of whether or not they
were successful, produced an improvement in aspects of feeding when preparations were tested
after the initial training. This suggests that attempts to swallow inedible food produce mixed
effects on subsequent exposure to food. The attempts to swallow per se may enhance subsequent
feeding, whereas the failure has a counteracting inhibitory effect, which generally overrides the
enhancement.

C) The lack of an effect on protraction length during the second half of the stimulation with

CCh+edible food differs from the shortening seen during the first half.
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Comparisons of first and second exposures to edible and inedible food
A) Time to stop B) Number of Responses
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Supplemental Figure 3. Data shown in Figure 7 plotted without combined data from the different

treatments, thereby allowing the reader to directly compare data from the training session and
the subsequent 1-hour test procedure, for each of the three treatments. A) For the time to stop, a
two-way analysis of variance showed a significant decrease in responses between the first and
second exposure to food (p = 0.004, F(1,36) = 9.47), with no significant difference between the 3
treatments (p = 0.23, F(2,36) = 1.52), and no significant interaction (p = 0.80, F(2, 36) = 0.22). B)
For the number of responses, a two-way analysis of variance showed a significant decrease in
responses between the first and second exposure to food (p = 0.002, F(1,36) = 11.04), with no
significant difference between the 3 treatments (p = 0. 13, F(2,36) = 2.18), and no significant
interaction (p = 0.66, F(2, 36) = 0.42. C) For the mean response rate, a two-way analysis of variance
showed a significant decrease in responses between the first and second exposure to food (p =

0.034, F(1,36) = 3.73), with a difference between the 3 treatments that approached significance (p
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=0.08, F(2,36) = 3.22), and no significant interaction (p = 0.41, F(2, 36) = 0.93. D) For the
maximum response rate, a two-way analysis of variance showed a significant difference in
responses between the first and second exposure to food (p < 0.001, F(1,36) = 16.84), as well as a
significant difference between the 3 treatments (p < 0. 001, F(2,36) = 10.76), and no significant

interaction (p =1.22, F(2, 36) = 0.82.



