

1 Article

2

Single-Electron Redox Chemistry on the $[\text{Cp}^*\text{Rh}]$ 3 Platform Enabled by a Nitrated Bipyridyl Ligand

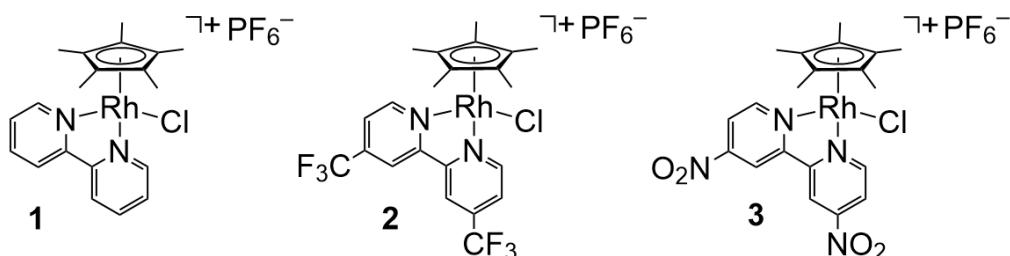
4 **William N. G. Moore,¹ Wade C. Henke,¹ Davide Lionetti,¹ Victor W. Day,¹ and James D.
5 Blakemore^{1,*}**6 ¹ Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United
7 States

8 * Correspondence: blakemore@ku.edu

9 Received: date; Accepted: date; Published: date

10 **Abstract:** $[\text{Cp}^*\text{Rh}]$ complexes (Cp^* = pentamethylcyclopentadienyl) are attracting renewed interest
11 in coordination chemistry and catalysis, but these useful compounds often undergo net
12 two-electron redox cycling that precludes observation of individual one-electron reduction events.
13 Here, we show that a $[\text{Cp}^*\text{Rh}]$ complex bearing the 4,4'-dinitro-2,2'-bipyridyl ligand (dnbpy) (3)
14 can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with
15 prior work that found no accessible reductions in aqueous electrolyte. These states are readily
16 generated from a newly isolated and fully characterized rhodium(III) precursor complex 3,
17 formulated as $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{PF}_6$. Single-crystal X-ray diffraction data, previously unavailable
18 for the dnbpy ligand bound to the $[\text{Cp}^*\text{Rh}]$ platform, confirm the presence of both $[\eta^5\text{-Cp}^*]$ and
19 $[\kappa^2\text{-dnbpy}]$. Four individual one-electron reductions of 3 are observed, contrasting sharply with
20 the single two-electron reductions of other $[\text{Cp}^*\text{Rh}]$ complexes. Chemical preparation and study of
21 the singly reduced species with electronic absorption and electron paramagnetic resonance
22 spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand.
23 Comparative cyclic voltammetry studies with $[\text{NBu}_4]\text{[PF}_6]$ and $[\text{NBu}_4]\text{[Cl]}$ as supporting
24 electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction.
25 Spectroelectrochemical studies with UV-visible detection reveal isosbestic behavior, confirming
26 the clean interconversion of the reduced forms of 3 inferred from the voltammetry with
27 $[\text{NBu}_4]\text{[PF}_6]$ as supporting electrolyte. Electrochemical reduction in the presence of
28 triethylammonium results in an irreversible response, but does not give rise to catalytic H_2
29 evolution, contrasting with the reactivity patterns observed in $[\text{Cp}^*\text{Rh}]$ complexes bearing
30 bipyridyl ligands with less electron-withdrawing substituents.

31 **Keywords:** rhodium; electrochemistry; paramagnetic; spectroelectrochemistry; catalysis.
3233


1. Introduction

34 The development of metal complexes capable of efficiently storing and transferring reducing
35 equivalents attracts interest in a variety of contexts. Reduced metal complexes are key reaction
36 intermediates in many transformations, including photoredox reactions enabled by reductive
37 quenching pathways,¹ olefin polymerization or oligomerization,² and reactions involving
38 concerted oxidative addition to transition metal complexes.³ Reduced metal complexes also attract
39 significant attention in the area of molecular electrocatalysis,⁴ as several reduced intermediates are
40 typically involved in multielectron redox cycles that generate fuels like H_2 via H^+ and e^- coupling.^{5,6}
41 In many of these cycles, however, the key metal complexes reduced by one or more e^- equivalents
42 are not isolated or detected—instead, their involvement is inferred from the observed reactivity.

43 $[\text{Cp}^*\text{Rh}]$ complexes (Cp^* = pentamethylcyclopentadienyl) are one class of catalysts for H^+ and
44 e^- coupling that are capable of generating H_2 from water.^{7,8} These catalysts are supported by

45 bidentate chelating ligands, such as 2,2'-bipyridyl (bpy, as in complex **1**) and its substituted
 46 derivatives.⁹ $[\text{Cp}^*]$ and diimine ligands (like bpy) are readily installed through straightforward
 47 synthetic chemistry onto the rhodium center in these compounds,^{10,11} and thus this system has been
 48 popular for model studies of H_2 generation¹² as well as applications in other areas.¹³ In this work,
 49 two-electron reduction of the rhodium(III) precatalyst in the presence of a suitably strong acid
 50 results in quantitative formation of H_2 and regeneration of the starting rhodium(III) complexes.⁹
 51 However, in chemistry that is distinctive for this family of catalysts, the putative rhodium(II)
 52 intermediate generated by the initial 1e^- reduction of a given precatalyst does not result in a stable
 53 intermediate. In chemical work, treatment of Rh^{III} with 1 equiv. of reducing agent results in
 54 disproportionation of two transient Rh^{II} complexes to yield 0.5 equiv. each of Rh^{I} and Rh^{III} .⁸ In
 55 electrochemical work, a so-called ECE-type event occurs at the electrode: a single reductive wave is
 56 observed by cyclic voltammetry, corresponding to the first reduction of Rh^{III} (E), followed by a fast
 57 chemical reaction step (C), and then immediate transfer of a second electron (E') to reduce Rh^{II} to
 58 Rh^{I} .¹⁴ Thus, Rh^{I} is very quickly generated following formation of Rh^{II} , because the $E(\text{Rh}^{\text{II}}/\text{Rh}^{\text{I}})$ is
 59 more positive than $E(\text{Rh}^{\text{III}}/\text{Rh}^{\text{II}})$. These two-electron events obscure the routine measurement of the
 60 individual one-electron reduction events involved in this chemistry.^{15,16}

61

62

63

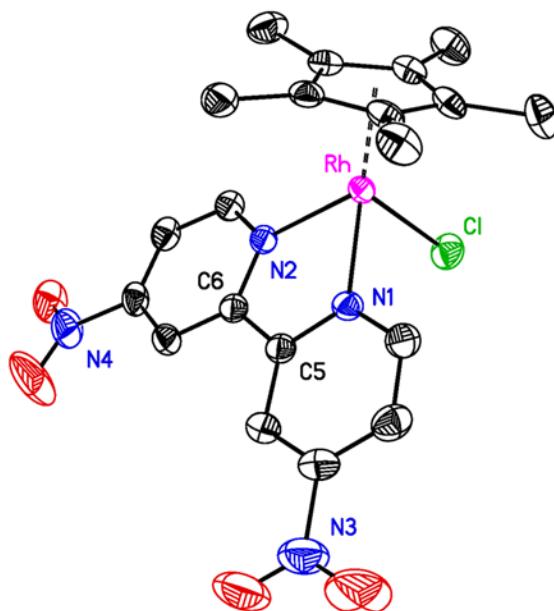
64

Chart 1. $[\text{Cp}^*\text{Rh}]$ complexes discussed in this study.

65 The energy conversion efficiency of these $[\text{Cp}^*\text{Rh}]$ catalysts is closely tied to the potentials of
 66 the individual reduction events,^{17,18} but only a limited level of control of these parameters has been
 67 demonstrated to date. Moreover, the use of redox-active bpy ligands (and other diimines) in these
 68 complexes has attracted significant attention.^{19,20,21} Understanding the nature of the observed
 69 reductions is key, as these $[\text{Cp}^*\text{Rh}]$ complexes bearing diimine ligands undergo unique
 70 $[\text{Cp}^*]$ -centered protonations^{22,23} during catalysis to generate $[\text{Cp}^*\text{H}]$ complexes²⁴ that are active for
 71 H_2 evolution. Our group recently showed⁹ that installation of electron-withdrawing trifluoromethyl
 72 groups at the 4 and 4' positions of the bpy ligand (as in **2**) results in a previously unobserved
 73 catalytic pathway involving reduction of the 4,4'-bis(trifluoromethyl)-2,2'-bipyridyl ligand on
 74 $[(\text{Cp}^*\text{H})\text{Rh}^{\text{I}}]$ species, followed by H_2 evolution. We have also found that $[\text{Cp}^*\text{Rh}]$ complexes bearing
 75 bidentate diphosphine²⁵ or hybrid phosphine-quinoline ligands²⁶ are not capable of similar
 76 catalysis. Thus, although the role of supporting bidentate ligand structure in formation of $[\text{Cp}^*\text{H}]$
 77 intermediates is not yet clear, it is of high interest considering the new reactivity manifolds that
 78 may be accessible with $[\text{Cp}^*\text{H}]$ complexes.^{27,28}

79 As use of 4,4'-bis(trifluoromethyl)-2,2'-bipyridyl enables observation of a new catalytic
 80 pathway with **2**,⁹ we became interested in the electrochemical behavior engendered by use of the
 81 4,4'-dinitro-2,2'-bipyridyl (dnbpy) ligand, which features rather electron-withdrawing nitro groups
 82 ($-\text{NO}_2$). In considering use of the dnbpy ligand, it is useful to note the Hammett parameter (σ)
 83 values associated with the hydrogen ($-\text{H}$), trifluoromethyl ($-\text{CF}_3$), and nitro functionalities ($-\text{NO}_2$).
 84 Specifically, these values are 0, 0.65, and 1.27, respectively.²⁹ Thus, in terms of the effects
 85 engendered by substituents at the 4 and 4' positions on electronic properties, moving from $-\text{CF}_3$ to
 86 $-\text{NO}_2$ represents a similarly significant difference as moving from $-\text{H}$ to $-\text{CF}_3$.

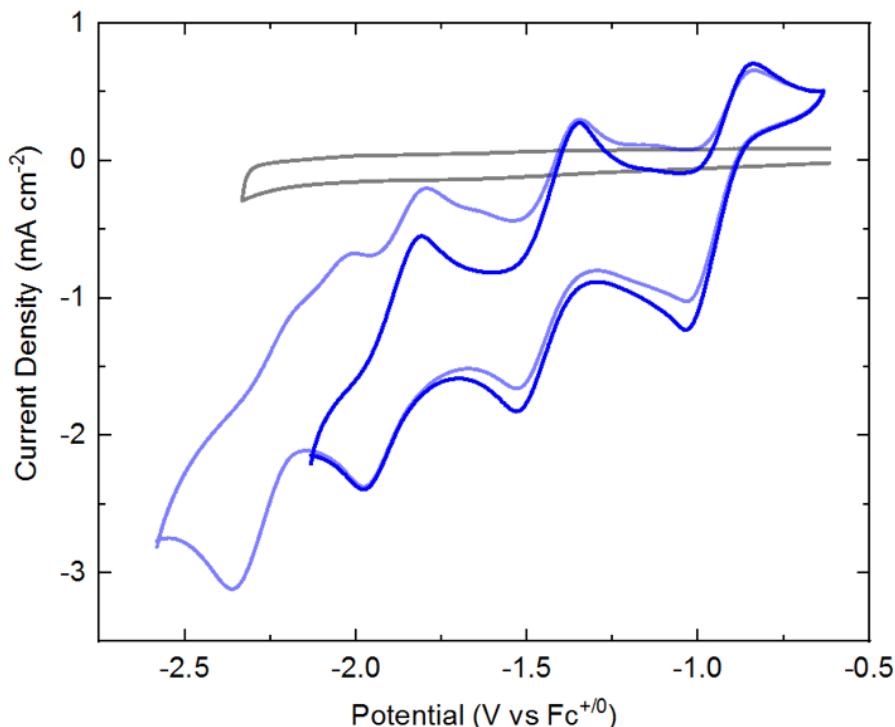
87 We were pleased to find that Lütz and co-workers previously reported preparation of
 88 $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{Cl}$,³⁰ and that $[\text{Cp}^*\text{Ir}]$ complexes bearing dnbpy have been known for some
 89 years.^{31,32,33} Moreover, dnbpy^{34,35,36} and other nitrated polypyridyls^{37,38} have been explored as
 90 ligands to rhodium in other frameworks. We were especially intrigued to read that Lütz and


91 co-workers found that $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{Cl}$ did not undergo electrochemical reduction in their
92 hands down to -1 V vs. Ag/AgCl in aqueous electrolyte.³⁰ However, in their report,
93 $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{Cl}$ was prepared for use in a high-throughput, robotic electrochemical system,³⁰
94 rather than fully characterized with proof of homogeneity and bulk composition from synthetic
95 work. Moreover, the electrochemical studies were carried out in aqueous electrolyte, rather than the
96 organic electrolytes common in studies involving organometallic compounds.

97 Here, we now report the isolation, full characterization, and electrochemical studies of
98 $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{PF}_6$ (3). We find that use of dnbpy engenders unique electrochemical properties
99 in organic solvent-based electrolytes, as 3 undergoes three quasi-reversible one-electron reduction
100 events and an additional, one-electron reduction event that is irreversible. The first, one-electron
101 reduced product of 3 can be generated chemically and isolated, and spectroscopic work confirms
102 that the first electron transferred is stored in orbitals primarily associated with the dnbpy ligand.
103 Spectroelectrochemical studies reveal the clean interconversion of 3 and its reduction products, as
104 isosbestic behavior is observed during multistep polarization experiments. Addition of acid in the
105 form of triethylammonium bromide ($\text{pK}_a \approx 19$ in MeCN³⁹) does not result in generation of
106 diamagnetic $[\text{Cp}^*\text{H}]$ complexes or hydrides, and does not lead to catalytic activity toward H_2
107 evolution. These results are discussed in the context of understanding and guiding the order and
108 energetics of e^- and H^+ delivery to complexes assembled with the $[\text{Cp}^*\text{Rh}]$ fragment.

109 2. Results

110 In order to study the properties of dnbpy complexes containing the $[\text{Cp}^*\text{Rh}]$ fragment, we
111 targeted synthesis of $[\text{Cp}^*\text{Rh}(\text{dnbpy})\text{Cl}]\text{PF}_6$ (3). We have encountered cleaner reactivity of the
112 $[\text{Cp}^*\text{RhCl}_2]_2$ precursor¹¹ upon use of silver reagents to remove one equivalent of chloride from each
113 rhodium center, motivating preparation of the hexafluorophosphate salt 3.^{40,41} We first synthesized
114 dnbpy with literature methods, routinely obtaining an overall yield of ca. 50%.^{42,43,44} 3 was then
115 prepared in tetrahydrofuran (THF) by addition of 2 equiv. of dnbpy to $[\text{Cp}^*\text{RhCl}_2]_2$, followed by
116 addition of 2 equiv. of AgPF_6 , resulting in formation of the rhodium(III) complex 3 in moderate 44%
117 yield (See Experimental Section and SI, Figures S1-S4, S6, S7 for characterization data).


118 Vapor diffusion of diethyl ether into a concentrated acetonitrile (MeCN) solution of 3 yielded
119 orange crystals suitable for single-crystal X-ray diffraction (XRD) studies. The geometry at the
120 rhodium center is pseudo-octahedral, with a first coordination sphere around the metal center
121 containing $[\eta^5\text{-Cp}^*]$, $[\kappa^2\text{-dnbpy}]$, and a bound chloride anion (see Figure 1). The geometry and
122 metal-ligand distances do not differ significantly from other structures of $[\text{Cp}^*\text{Rh}^{\text{III}}]$ complexes
123 containing 4,4'-disubstituted-2,2'-bipyridyl ligands.⁹ However, only a limited number of XRD
124 datasets are available in the Cambridge Structural Database for metal complexes of dnbpy, and our
125 structure of 3 is the first structure obtained with rhodium.⁴⁵ In the structure of 3, as in most other of
126 structures containing dnbpy, the (NO_2) groups are approximately co-planar with their partnered
127 pyridine rings. In fact, of the seven total structures of dnbpy itself⁴⁶ or those containing dnbpy,⁴⁷
128 only one of these^{47b} has a $\text{O}-\text{N}-\text{C}-\text{C}$ torsion angle greater than 13° . The observed co-planarity of the
129 NO_2 groups and the pyridine rings suggests that there is likely strong electronic communication
130 between these substituents and the π system of bipyridine. Therefore, we turned to electrochemical
131 methods to establish the influence of the nitro groups on the electrochemical properties of the metal
132 complex.

133
 134 **Figure 1.** Solid-state structure (XRD) of **3**. H atoms, PF_6^- counteranion, and one co-crystallized
 135 MeCN molecule omitted for clarity. Displacement ellipsoids are shown at 50% probability.
 136

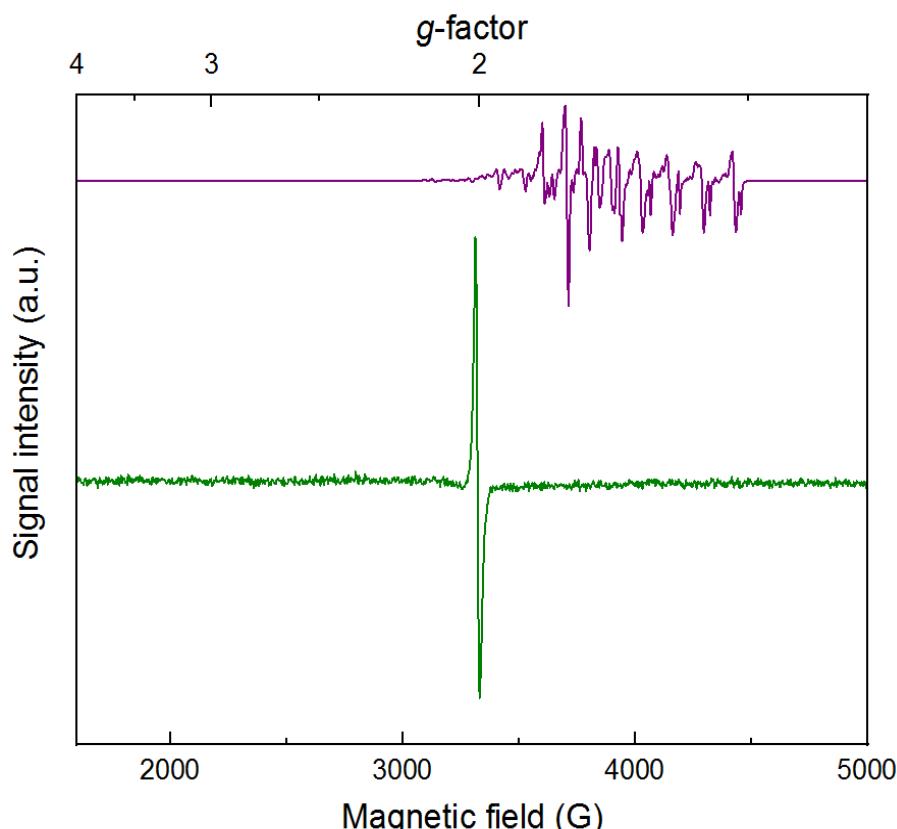
137 Cyclic voltammograms (CV) of **3** (ca. 1 mM) were collected in THF solution containing 0.1 M
 138 tetrabutylammonium hexafluorophosphate ($[\text{NBu}_4]\text{[PF}_6]$) as supporting electrolyte. Beginning at
 139 oxidizing potentials, **3** displays a manifold of four reduction events (see Figure 2) that onset around
 140 -1 V versus the ferrocenium/ferrocene couple (denoted hereafter as Fc^{+0}). The key parameters
 141 associated with each of these four reduction events are summarized in Table 1. If the switching
 142 potential for the return anodic sweep is set at -2.2 V, the first three reduction events appear to be
 143 quasi-reversible with well-defined, clean return anodic waves. However, if the switching potential
 144 is set at a more negative value of -2.6 V, the fourth reduction wave is clearly visible. This fourth
 145 reduction, however, is not accompanied by a clean return oxidation wave, suggesting that one or
 146 more significant chemical reactions may follow injection of a fourth electron into the rhodium
 147 complex. Interrogation of the scan rate dependence of the both the cathodic and anodic peak
 148 currents for the first three observed redox processes reveals a square-root dependence (see SI,
 149 Figures S13-S15). This indicates that all the oxidized and reduced forms of the complex undergoing
 150 reduction and oxidation are freely diffusional in solution and homogeneous.

151 We also carried out cyclic voltammetry of **3** in acetonitrile electrolyte, and consistently
 152 observed a similar manifold of reduction events (see SI, Figure S10). Specifically, three
 153 quasi-reversible reductions are followed by a virtually irreversible reduction.⁴⁸ However, we
 154 conducted most of our studies in THF electrolyte, as the complex typically yielded a better response
 155 under these conditions.

156
 157 **Figure 2.** Cyclic voltammograms of **3**. Scan rate: 100 mV/s. Dark blue line: Cathodic sweep from ca.
 158 –0.6 V to a switching potential of –2.2 V and returning to –0.6 V. Light blue line: Cathodic sweep
 159 from ca. –0.6 V to a switching potential of –2.6 V and returning to –0.6 V. Gray line: electrolyte-only
 160 blank. Conditions: $[3] \approx 1 \times 10^{-3}$ M; electrolyte: 0.1 M $[\text{NBu}_4][\text{PF}_6]$ in THF.

161
 162 **Table 1.** Cyclic voltammetry data for **3**. Conditions: $[3] = 10^{-3}$ M; scan rate: 100 mV/s; electrolyte: 0.1
 163 M $[\text{NBu}_4][\text{PF}_6]$ in THF.

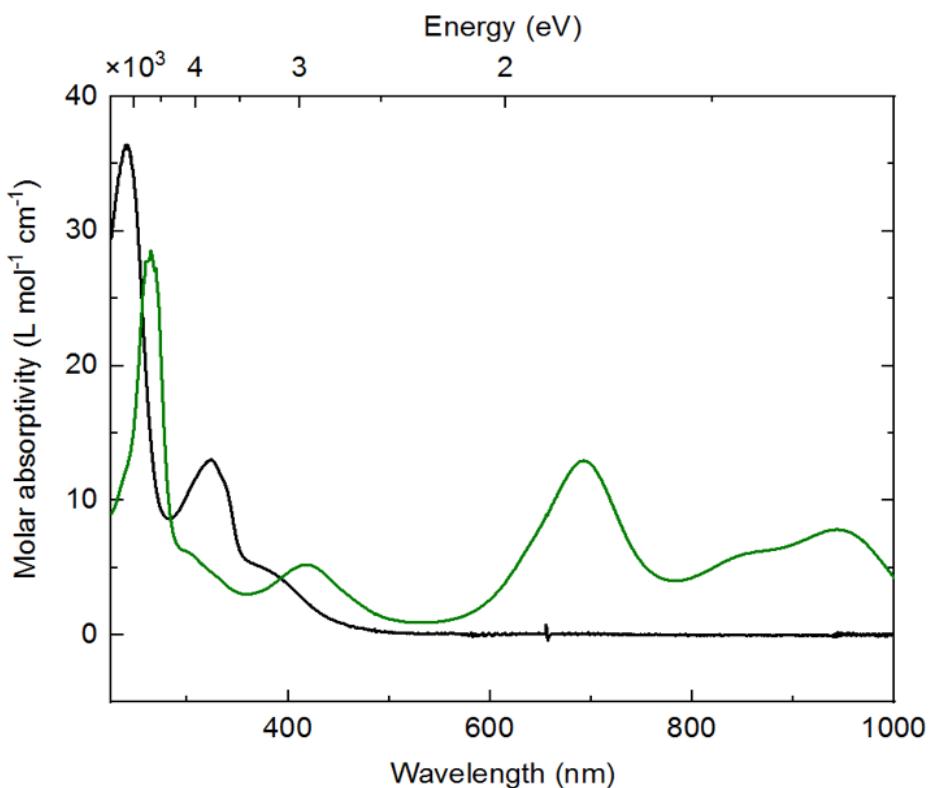
Redox event	$E_{1/2}$ (V)	ΔE_p (V)	$E_{p,c}$ (V)	$E_{p,a}$ (V)
A	–0.94	0.20	–1.04	–0.84
B	–1.44	0.18	–1.53	–1.35
C	–1.89	0.17	–1.98	–1.81
D	–	–	–2.36	–


164
 165 In the cyclic voltammetry shown in Figure 2, the peak heights of the reduction processes
 166 appear to be similar, suggesting that the same number of electrons are transferred during each
 167 event. However, as the individual reduction events are relatively closely spaced, estimation of the
 168 appropriate background-corrected peak heights could be challenging. Therefore, differential pulse
 169 voltammetry (DPV) was carried out to quantitatively examine the number of electrons transferred
 170 in each event. For this determination, we prepared a solution containing a 1:1 mixture of ferrocene
 171 (Cp_2Fe) and **3** in THF containing 0.1 M $[\text{NBu}_4][\text{PF}_6]$ supporting electrolyte and collected a
 172 differential pulse voltammogram from +0.5 V to –2.6 V (see SI, Figure S12). In addition to the
 173 one-electron process corresponding to the $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$ couple of ferrocene, we observe four closely
 174 spaced and reasonably well resolved processes over a range similar to that seen for **3** in cyclic
 175 voltammetry. The areas of the four processes measured for **3** and that of Cp_2Fe were fit to Gaussian
 176 profiles, and comparison of the peak areas to that of the internal ferrocene standard confirms that
 177 one electron is indeed transferred in each event (see SI, Table S3 for peak area ratios).

178 The electrochemical response of complex **3** sharply contrasts with the behavior commonly
 179 encountered for other $[\text{Cp}^*\text{Rh}^{\text{III}}]$ complexes. Most other chloride-bound complexes in this family
 180 containing other diimine,^{7,9,12,13} diphosphine,^{8,25} or hybrid phosphine-monoimine ligands,²⁶ undergo
 181 a net two-electron reduction that appears as a single redox process in cyclic voltammetry
 182 experiments. As described in the Introduction, this ECE-type electrochemical response implicates

183 that a chemical reaction follows the initial reduction of the metal complex and leads to formation of
184 a species that undergoes immediate transfer of a second electron.¹⁴ Disentangling the nature of the
185 elementary steps in this chemistry is of high interest, as the resulting 2e⁻-reduced complexes often
186 undergo subsequent reactivity with protons. Notably, our recent work examining the case of a
187 [Cp^{*}Rh] complex bearing the hybrid 8-(diphenylphosphino)quinoline (PQN) ligand suggests that
188 the first reduction of [Cp^{*}Rh^{III}(PQN)Cl]PF₆ is rhodium-centered, and leads to ejection of the
189 chloride ligand at the Rh^{II} oxidation state.²⁶ The electrochemical behavior of the [Cp^{*}Rh] complex
190 supported by the dimethyldipyridylmethane (Me₂dpma) ligand is also consistent with initial
191 metal-centered reduction.⁴⁰

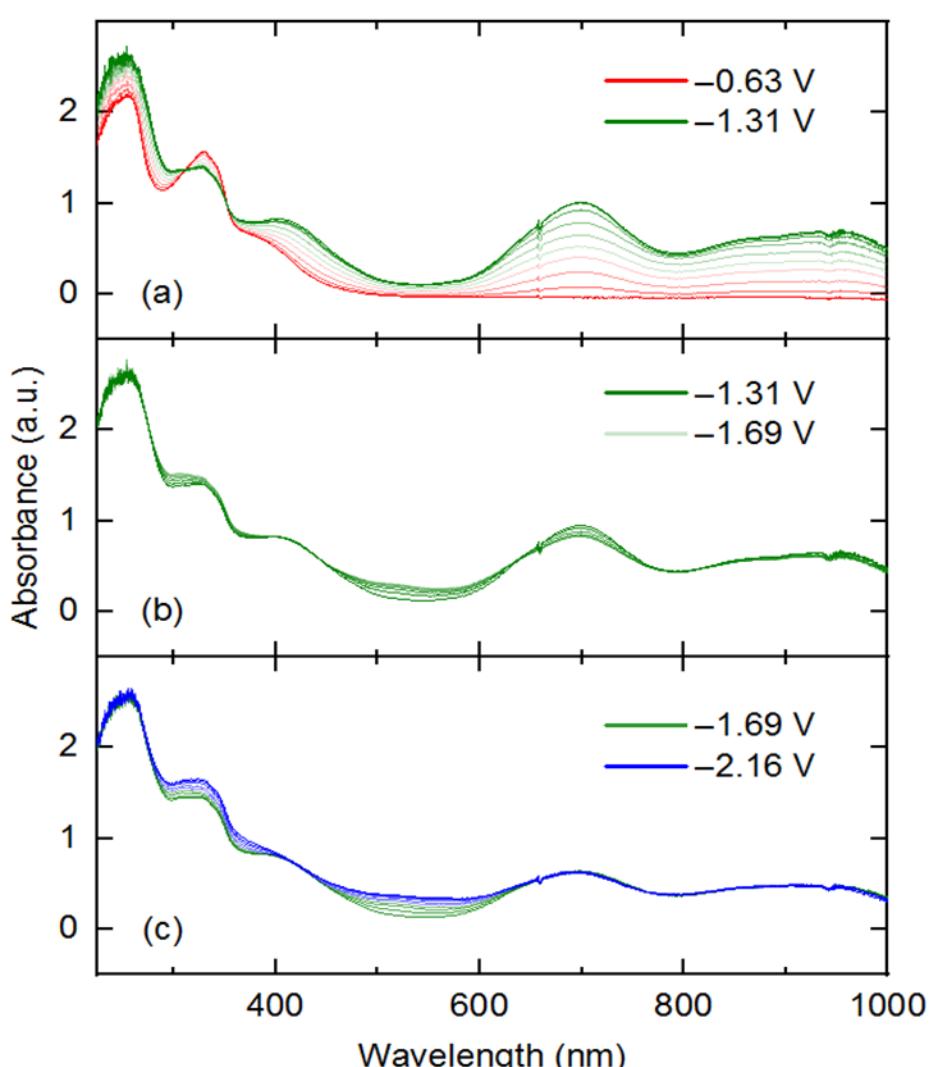
192 Therefore, to investigate the nature of the first reduction of **3**, we targeted preparation of the
193 singly reduced product. In accord with the clean, one-electron reduction of **3** observed by cyclic
194 voltammetry, treatment of a THF suspension of **3** with cobaltocene ($E^{\circ} \approx -1.3$ V,⁴⁹ 2 equiv.) results
195 in an immediate color change from bright yellow to a deep shade of forest green. Following stirring
196 for 10 minutes and subsequent removal of all volatiles under vacuum, the reduction product **4** was
197 extracted with THF and isolated as a dark green solid. Characterization of **4** by ¹H NMR (Figure S5)
198 reveals a loss of all resonances associated with **3**, including those of the [κ^2 -dnbpy] ligand in the
199 aromatic region and that associated with [η^5 -Cp^{*}] in the aliphatic region. The disappearance of
200 these resonances and lack of new peaks associated with diamagnetic material is consistent with
201 generation of a paramagnetic complex, as would be expected for a 1e⁻ reduction of **3** as observed in
202 cyclic voltammetry. A small impurity of [Cp₂Co]⁺ ($\delta = 5.66$ ppm) is observed in NMR spectra of
203 isolated samples from the reduction of **3**, but could not be removed due to the similar solubility
204 profiles of **4** and cobaltocenium.


205 To further characterize **4**, we turned to electron paramagnetic resonance spectroscopy. Prior to
206 reduction, **3** is a low-spin rhodium(III) complex with a d^6 configuration and $S = 0$. The cobalt(II)
207 reductant (Cp₂Co) used to generate **4** has a d^7 configuration and is a $S = 1/2$ species, displaying the
208 distinctive spectrum (consistent with literature) shown as the purple line in Figure 3. This spectrum
209 displays hyperfine coupling to the $I = 7/2$ cobalt nucleus. In contrast, the spectrum of **4** isolated as
210 described above reveals a relatively narrow and isotropic signal with a center crossing point at $g =$
211 2.006 ($H = 3341$ G). Although **4** could be considered to be a formal rhodium(II) species, the sharp
212 and isotropic spectrum is instead consistent with an organic radical—in this case, predominant
213 localization of unpaired electron density on the dnbpy ligand. Thus, **4** can be most appropriately
214 considered as a rhodium(III) complex with a bound dnbpy^{•-}. Retention of this ligand radical in the
215 first coordination sphere of the rhodium center is consistent with both the quasi-reversible CV
216 studies (vide supra) and spectroelectrochemical work that confirms the chemically reversible
217 interconversion of **3** and **4** (vide infra) on the seconds to minutes timescale. Moreover, the lack of
218 resolved hyperfine coupling to the $I = 1/2$ ¹⁰³Rh nucleus (100% abundance) in **4** corroborates
219 assignment of the reduced metal species as having unpaired electron density that is localized
220 primarily on dnbpy. Notably, the trace impurity of [Cp₂Co]⁺ present in samples of isolated **4** does
221 not contribute to the EPR spectrum shown in Figure 3, as [Cp₂Co]⁺ is an $S = 0$ low-spin cobalt(III)
222 complex.

223
 224 **Figure 3.** X-band CW EPR spectrum of **4** (green line) and cobaltocene (purple line). Conditions: $T =$
 225 10 K; modulation amplitude = 2.0 G; time constant = 20.5 ms; $[4] = 10^{-3}$ M.
 226

227 Few examples of formal rhodium(II) complexes have been observed by EPR.⁵⁰ Localization of
 228 unpaired electron density in orbitals with increased Rh(II) character would be expected to result in
 229 a significantly more anisotropic spectrum than that observed for **4**, with larger g-value shifts and
 230 resolved hyperfine coupling to the metal nucleus. The experimental data for **4** compare well with
 231 data that we have recently obtained on $[\text{Cp}^*\text{Rh}(\text{bpy}^{\bullet-})\text{Me}]^0$ and $[\text{Cp}^*\text{Ir}(\text{bpy}^{\bullet-})\text{Me}]^0$ compounds.⁴¹
 232 Specifically, these methyl complexes display narrow rhombic spectra centered near $g \approx 2.0$. This
 233 greater rhombicity arises from hyperfine couplings to the $I = 1/2$ Rh^{III} and $I = 3/2$ Ir^{III} centers in these
 234 compounds, contrasting with the case of virtually ligand-centered **4**. Thus, we conclude that the
 235 unpaired electron density on dnbpy^{•-} is contained in molecular orbitals with very little character
 236 arising from rhodium, a phenomenon likely driven by the presence of the strongly
 237 electron-withdrawing nitro groups on dnbpy.
 238

239 To gain further insight into the dnbpy-localization of electron density arising from the first
 240 reduction of **3**, we turned to electronic absorption spectroscopy (see Figure 4 and SI, Figure S8). The
 241 spectrum of **3** is unremarkable and displays features consistent with most rhodium(III) complexes;
 242 **3** is a yellow solid, and the UV-visible absorption spectrum reflects this with a relatively intense (ca.
 243 $5000 \text{ M}^{-1} \text{ cm}^{-1}$) band trailing into the visible around 400 nm. Isolated **4** displays a very different
 244 profile, with distinctive new features in the visible-NIR region (λ_{max} values at 694 nm, 860 nm, and
 245 945 nm with molar absorptivities of 13000, 6100, and $7800 \text{ M}^{-1} \text{ cm}^{-1}$, respectively). Consistent with
 246 the observed forest-green color of **4**, a weaker absorption band is retained at lower wavelength (420
 247 nm, $5200 \text{ M}^{-1} \text{ cm}^{-1}$) and thus transmits predominantly green light between these bands. The
 248 absorption bands in the 800-1000 nm range are similar to examples of both free bpy^{•-} and metal
 249 complexes ligated by [bpy^{•-}].^{51,52} Analogous data is not available from prior work for dnbpy^{•-},
 250 although similar features are measured for the doubly reduced form of complex **2**, which possesses
 251 significant reduced-ligand character.⁹ Thus, both EPR and electronic absorption data are consistent
 with assignment of dnbpy-centered reduction in **4**.



252
 253 **Figure 4.** Electronic absorption spectra of **3** (black line) and **4** (green line). Conditions: $[3] \approx [4] \approx$
 254 10^{-5} ; solvent: tetrahydrofuran.

255 Metal-centered reduction of $[\text{Cp}^*\text{Rh}^{\text{III}}]$ complexes is associated with ejection of monodentate
 256 ligands such as chloride from the first coordination sphere. This phenomenon is driven by
 257 formation of transient, 19e⁻ Rh^{II} intermediates upon reduction that release the monodentate ligand
 258 to form more stable 17e⁻ species.²⁶ The assignment of ligand-centered reduction of **3** thus prompted
 259 us to explore whether analogous reactivity takes place here. To test this, we performed cyclic
 260 voltammetry on **3** in acetonitrile containing 0.1 M $[\text{NBu}_4]\text{Cl}$ as supporting electrolyte. The first
 261 reduction of **3** remains unchanged from the case of $[\text{NBu}_4]\text{PF}_6$, showing a quasi-reversible
 262 appearance. However, the appearance of the second reduction of **3** (or reduction of **4**) is different,
 263 showing two peaks on the cathodic sweep ($\Delta E \approx 175$ mV) and a single peak on the anodic sweep
 264 (see SI, Figure S11). This is consistent with the formation of both the cationic solvento complex
 265 $[\text{Cp}^*\text{Rh}(\text{dnbpy}^{\bullet-})(\text{NCMe})]\text{PF}_6$ and a neutral chloride complex $\text{Cp}^*\text{Rh}(\text{dnbpy}^{\bullet-})\text{Cl}$ following the first
 266 reduction, when the electrolyte contains a 100-fold excess of chloride. Thus, under conditions where
 267 chloride is not found in excess (Figure 2), we propose that reduction of **3** leads exclusively to
 268 generation of the 18e⁻, cationic $[\text{Cp}^*\text{Rh}(\text{dnbpy}^{\bullet-})(\text{NCMe})]\text{PF}_6$ complex. Consistent with this
 269 significant coupled chemical reaction, the peak-to-peak separation ($\Delta E_p \approx 200$ mV in THF, 90 mV in
 270 MeCN) associated with reduction of **3** to **4** in $[\text{NBu}_4]\text{PF}_6$ is significantly larger than those
 271 associated with the following two reductions (180, 170 mV in THF; 70, 70 mV in MeCN) (see Table 1
 272 and Table S1 in SI). Completing our proposed model for the electrochemistry, reduction of **4** leads
 273 to a single product, on the basis of the single anodic wave observed at -1.35 V in THF (Figure 2) and
 274 -1.19 V in MeCN (see SI, Figure S10). As this species is rather electron-rich, we speculate that the
 275 reduction of **4** produces $[\text{Cp}^*\text{Rh}(\text{dnbpy})]^0$; however, further assignments regarding this compound
 276 are beyond the scope of this study.

277 To gain further insight into the reductions of **3** that are readily accessible via electrochemical
 278 methods, we turned to UV-visible spectroelectrochemistry. We took the approach of *in situ*
 279 generation and detection of **4** and other reduced forms of **3** by use of a short-pathlength cuvette cell
 280 placed in the beam path of a UV-visible spectrophotometer for real-time data collection during
 281 working electrode polarization. With the working electrode polarized at -0.63 V vs. Fc^{+0} , the
 282 spectrum of **3** contained in the cell (electrolyte: 0.1 M $[\text{NBu}_4]\text{PF}_6$ in THF) is virtually identical to

283 that of **3** in pure THF free from supporting electrolyte. However, upon polarization at -1.31 V, the
 284 spectrum changes dramatically (Figure 5, panel a), with new features appearing that correspond to
 285 those of rhodium(III) bound to reduced dnbpy $^{+}$. Notably, isosbestic points were measured at 312
 286 and 352 nm (Figure S22), consistent with clean conversion of **3** to **4** in THF solution under the
 287 spectroelectrochemical conditions. However, close comparison of the spectroelectrochemical data
 288 (collected in THF electrolyte containing 0.1 M $[\text{NBu}_4]\text{[PF}_6]$) and the earlier UV-visible data collected
 289 on **4** (in pure THF) reveals that the λ_{max} values are slightly shifted in the two cases (417 vs. 418, 699
 290 vs. 693, 865 vs. 860, 946 vs. 944 nm, respectively) (see SI, Figure S28). These minor differences are
 291 consistent with ligand exchange of chloride in favor of THF, facilitated by 0.1 M $[\text{NBu}_4]\text{[PF}_6]$, as
 292 similar spectral changes accompany exchange of halide ligands for coordinated solvent (e.g.,
 293 MeCN) in other rhodium(III) complexes.^{21,26}
 294

295
 296 **Figure 5.** UV-visible-NIR absorption spectra obtained during spectroelectrochemical studies as
 297 described in the main text. Initial potentials for each experiment were -0.63 V (panel a), -1.31 V
 298 (panel b), and -1.69 V (panel c). Final potentials were -1.31 V (panel a), -1.69 V (panel b), and -2.16
 299 V (panel c). Final potential was held until no spectral changes were reached, indicating full
 300 conversion of the thin-layer region to the desired form of the complex.
 301

302 To confirm the apparent chemical reversibility observed in cyclic voltammetry for
 303 transformation of **3** to **4** (Figure 2) and **4** to **3** (see SI, Figure S16), an experiment was also carried out
 304 with an initial potential of -1.31 V and final potential of -0.63 V in an electrolyte solution prepared
 305 with **4** (see SI, Figure S26). In this experiment, the evolution of the spectral features detected in the

306 experiment shown in Figure 1a were essentially reversed. This is consistent with clean regeneration
307 of complex **3** from **4** upon electrochemical re-oxidation (isosbestic points at 312 and 352 nm).

308 Further potential excursions show spectral changes associated with the further reductions of **3**.
309 A potential jump from -1.31 to -1.69 V results in fairly minor changes to the UV-visible spectrum
310 (Figure 5b). Clear isosbestic points were observed at 437, 638, and 800 nm for this reduction event,
311 corresponding to increased spectral absorption toward the blue region (522 nm) and slightly
312 attenuated absorption intensity (peak at 699 nm) toward the longer wavelengths. A further
313 potential excursion to -2.16 V (Figure 5c) results in further increases in absorption toward shorter
314 wavelengths (325 and 522 nm), and virtually no changes in absorption at the longer wavelengths
315 (isosbestic point at 420 nm). Based on the isosbestic behavior, we confirm the interconversion of
316 single species implied by the electrochemical studies carried out in $[\text{NBu}_4][\text{PF}_6]$.^{25,8}

317 However, final potential excursion to -2.56 V results in non-isosbestic spectral evolution
318 (Figures 5c and SI, Figure S25), suggesting formation of multiple speciation products or
319 decomposition of the four-electron reduced species generated from **3**. This behavior is consistent
320 with the irreversible reduction observed at -2.36 V in the voltammetry of **3** and confirms that the
321 quadruply reduced form of **3** is unstable under electrochemical and spectroelectrochemical
322 conditions. Study of the electronic structure of these further reduced intermediates is deserving of
323 future work, especially focusing on the localization of each reduction (metal, ligand, both) and
324 coordination geometry of rhodium (presence or absence of bound chloride or solvent).
325 Computational approaches could be of great use here, as well as further spectroscopic and
326 synthetic/structural investigations.

327 As reduction of most $[\text{Cp}^*\text{Rh}]$ complexes bearing diimine-type ligands in the presence of acid
328 can give rise to catalytic H_2 production, we examined electrochemical reduction of **3** in the presence
329 of acid to check for formation of H_2 (as has been measured for both **1** and **2**). We conducted these
330 studies with **3** in MeCN electrolyte (in order to rely on the well-defined pK_a scale that is available in
331 this solvent).^{18,39} Addition of 1 atm of H_2 gas to the headspace of the electrochemical cell results in
332 no major changes to the voltammetric profile, confirming that **3** does not readily serve as a catalyst
333 for H_2 oxidation (see SI, Figure S17). However, addition of 15 equiv. of buffered $\text{Et}_3\text{NH}^+/\text{Et}_3\text{N}$ results
334 in a fully irreversible voltammetric profile, and a modest increase in current density across a broad
335 potential range from -1 V to around -2 V (see SI, Figure S17). Beyond -2 V, there is a significant
336 enhancement in the current flowing in the voltammetry, although at these potentials similar current
337 enhancement is also observed for a rhodium-free electrolyte solution containing only buffered acid.

338 Bulk electrolysis was then carried out to ascertain the fate of the reducing equivalents
339 transferred to the solution under these acidic conditions. Electrolysis was carried out at -1.75 V,
340 prior to the onset of significant background currents, to reveal the behavior of the reduced metal
341 complexes with acid. In a rhodium-free control experiment, 17.2 C of charge were passed through
342 the electrochemical cell, and a fairly significant amount of H_2 was generated corresponding to 87%
343 Faradaic efficiency (product H_2 measured by gas chromatography). The analogous electrolysis
344 carried out with **3** (Figure S18) leads to passage of only 8.2 C of charge, corresponding to 1.95 e⁻ per
345 Rh center. A Faradaic yield of H_2 of only 5% was measured by gas chromatography, confirming
346 that **3** does not serve as an effective (pre)catalyst for H_2 evolution under these conditions.

347 During electrolysis, the solution of **3** remains homogeneous, but turns a dark red color. To
348 investigate, aliquots of the working solution were removed from the cell following electrolysis, the
349 solvent removed *in vacuo*, and ^1H NMR data collected in CD_3CN to ascertain the identity of
350 products formed by reaction of reduced **3** with acid. The ^1H NMR data reveal that several (≥ 3)
351 diamagnetic dnbpy containing species are generated, based on the presence of multiple sets of
352 dnbpy-like resonances in the aromatic region (see SI, Figure S19). However, no metal hydride
353 signals were observable in the upfield region near -10 ppm (Figure S20),^{25,26} nor were the
354 characteristic signals corresponding to formation of $[\text{Cp}^*\text{H}]$ (e.g., a doublet near 0.5 ppm) detected
355 (Figures S19b and S19c in SI).²⁴ Thus, we conclude that decomposition accompanies reduction and
356 protonation of **3**, resulting in formation of multiple products but no H_2 .

358 **3. Discussion**

359 The observation of four one-electron reduction events with complex **3** contrasts with the single
360 two-electron, ECE-type reduction¹⁴ events measured for most other diimine and diphosphine
361 complexes of [Cp^{*}Rh].^{7,8,9,25,26} Results from our laboratory suggest that the first reduction is rhodium
362 metal-centered in most of these cases.⁴⁰ Thus, initial metal-centered reduction generates a transient
363 19e⁻ rhodium(II) complex that undergoes subsequent ligand dissociation (to a 17e⁻ species) and
364 further reduction. **3** circumvents this more common reactivity by undergoing a first,
365 ligand-centered reduction that leads only to *exchange* of bound chloride or solvent. As a side note,
366 we have recently chemically prepared an analogous formal rhodium(II) complex bearing a
367 bis(pyridyl) ligand; this complex is a metal-centered radical that circumvents further reduction
368 through use of the bis(pyridyl) ligand that enforces a six-membered metallocyclic ring.⁴⁰ Here, we
369 conclude that inclusion of the easily reduced dnbpy ligand and retention of a monodentate ligand
370 in **4** contribute to the ability of the complexes to undergo sequential, one-electron reductions.

371 Our formulation of **4** as a ligand-centered radical is consistent with prior work from
372 Yellowlees's group⁵³ on the nature of reduced species formed by reduction of nitrated bpy
373 complexes of Pt^{II}. Specifically, their group found that the LUMO of Pt(dnbpy)Cl₂ is localized on the
374 dnbpy ligand; on the basis of exhaustive EPR spectroelectrochemistry and computational studies,
375 they further assigned the radical in Pt(dnbpy[•])Cl₂ to be localized on a single 4-NO₂-pyridyl ring.
376 The Pt compounds in their study displayed rich hyperfine structure in EPR spectra, enabling this
377 assignment. In our EPR data for **4**, however, no such fine structure is observable. Thus, further
378 work is needed to distinguish details of the exact localization of unpaired electron density within
379 the conjugated dnbpy system.

380 Cp^{*}Rh(bpy) undergoes reaction with protons to form [Cp^{*}H] species that are active
381 intermediates in catalytic H₂ production.^{22,23} Therefore, the observation of virtually no
382 H₂-generating reactivity of reduced forms of **3** with protons is interesting from the perspective of
383 understanding the structure and bonding features that engender catalysis involving H-atom
384 transfer^{24,25} from [Cp^{*}Rh] complexes. In the chemistry of most [Cp^{*}Rh] complexes, apparently
385 metal-centered reduction is followed by reactivity with protons to form either [Cp^{*}H] complexes²⁴
386 or stable rhodium(III) hydride species.^{25,26} Based on electrochemical studies of **3** in the presence of
387 Et₃NH⁺, we conclude that one or more of the reduced forms of **3** undergo reaction with protons, but
388 these do not lead to effective H₂ generation.

389 However, involvement in ligand orbitals in reduction events does not necessarily preclude
390 proton reactivity in [Cp^{*}Rh] complexes; rather, our results suggest that the electron-donating and
391 -withdrawing character of ligands on these frameworks must be carefully balanced to
392 accommodate the intermediates that may arise during catalysis. This conclusion is well supported
393 by the prior work implicating a delocalized HOMO across the metal and ligands in most
394 Cp^{*}Rh(diimine) complexes, and the reactivity of the doubly reduced forms of **1** and **2** with protons
395 towards hydrogen evolution.⁹

396 **4. Conclusions**

397 We have described the preparation, characterization, and electrochemical properties of
398 [Cp^{*}Rh^{III}(dnbpy)Cl]PF₆ (**3**). This complex displays four one-electron reduction events in organic
399 electrolytes, contrasting with prior work on a similar complex that showed no reductions in
400 aqueous electrolyte. Spectroscopic studies show that the singly reduced complex **4** generated from **3**
401 is best formulated as [Cp^{*}Rh^{III}(dnbpy[•])(L)]⁺ where L = chloride or solvent, depending upon the
402 conditions of the experiment. Spectroelectrochemical studies suggest clean interconversion of the
403 various reduced forms, as isosbestic behavior is obtained in the UV-visible spectra associated with
404 controlled potential excursions. However, in contrast to other [Cp^{*}Rh] complexes bearing diimine
405 ligands, electrochemical studies of **3** in the presence of excess Et₃NH⁺ show that reduction in the
406 presence of this weak acid does not lead to H₂ production. Taken together, these studies show that
407 [Cp^{*}Rh] complexes, and the reactions that they undergo upon electron transfer, are readily tunable

408 by judicious selection of supporting ancillary ligands. Our ongoing work is examining this strategy
409 to harness the useful properties of this family of compounds.

410 5. Materials and Methods

411 5.1. General Considerations

412 All manipulations were carried out in dry N₂-filled gloveboxes (Vacuum Atmospheres Co.,
413 Hawthorne, CA) or under N₂ atmosphere using standard Schlenk techniques unless otherwise
414 noted. All solvents were of commercial grade and dried over activated alumina using a PPT Glass
415 Contour (Nashua, NH) solvent purification system prior to use, and were stored over molecular
416 sieves. All chemicals were from major commercial suppliers and used as received after extensive
417 drying. [Cp*RhCl₂]₂ was prepared according to the literature procedure.¹⁰ The
418 4,4'-dinitro-2,2'-bipyridyl ligand (dnbpy) was prepared with literature methods from
419 2,2'-bipyridine (bpy).^{42,43,44} Deuterated NMR solvents were purchased from Cambridge Isotope
420 Laboratories; CD₃CN was dried over molecular sieves. ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were
421 collected on 400 or 500 MHz Bruker spectrometers and referenced to the residual protio-solvent
422 signal in the case of ¹H and ¹³C.⁵⁴ Heteronuclear NMR spectra were referenced to the appropriate
423 external standard following the recommended scale based on ratios of absolute frequencies (Ξ).⁵⁵
424 ¹⁹F NMR spectra are reported relative to CCl₃F, and ³¹P NMR spectra are reported relative to H₃PO₄.
425 Chemical shifts (δ) are reported in units of ppm and coupling constants (J) are reported in Hz.
426 Elemental analyses were performed by Midwest Microlab, Inc. (Indianapolis, IN).

427 Electronic absorption spectra were collected with an Ocean Optics Flame spectrometer or a
428 Shimadzu 3600 UV-vis-NIR spectrometer, in 1-cm pathlength quartz cuvettes.

429 Continuous-wave electron paramagnetic resonance were collected at X-band with a Bruker
430 EMX spectrometer using a high-sensitivity perpendicular-mode cavity (4119HS-W1). Temperature
431 control was achieved with an Oxford ESR 900 flow-through cryostat.

432 5.2. X-ray crystallography

433 Single-crystal diffraction data were collected with a Bruker APEX-II CCD diffractometer. CCDC
434 entry 1842459 contains the supplementary crystallographic data for compound 3. These data can be
435 obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
436 data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12,
437 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

438 5.3. Electrochemistry

439 Electrochemical experiments were performed in a N₂-filled glovebox in dry, degassed THF or
440 MeCN. 0.10 M tetra(n-butyl)ammonium hexafluorophosphate ([ⁿBu₄N]⁺[PF₆]⁻; Sigma-Aldrich,
441 electrochemical grade) served as the supporting electrolyte. Measurements were carried out with
442 Gamry Reference 600+ Potentiostat/Galvanostat using a standard three-electrode configuration. The
443 working electrode was the basal plane of highly oriented pyrolytic graphite (HOPG)
444 (GraphiteStore.com, Buffalo Grove, Ill.; surface area: 0.09 cm²), the counter electrode was a platinum
445 wire (Kurt J. Lesker, Jefferson Hills, PA; 99.99%, 0.5 mm diameter), and a silver wire immersed in
446 electrolyte solution served as a pseudo-reference electrode (CH instruments). The reference was
447 separated from the working solution by a Vycor frit (Bioanalytical Systems, Inc.). Ferrocene
448 (Sigma-Aldrich; twice-sublimed) was added to the electrolyte solution at the end of each
449 experiment; the midpoint potential of the ferrocenium/ferrocene couple (denoted as Fc^{+/-}) was used
450 as an external standard for comparison of the recorded potentials.

451 Concentrations of the analytes for cyclic voltammetry were typically 1 mM. Experiments were
452 typically conducted by first scanning cathodically, then anodically on the return sweep.

453 Bulk electrolysis experiments were performed in a custom two-chamber electrochemical cell
454 equipped with connections to achieve gas-tight operation. The working electrode was an HOPG

455 plate (Graphitestore.com, Buffalo Grove, Ill.; surface area: 10 cm²). 10 equiv. of ferrocene served as
456 the sacrificial reductant.

457 *5.4. Spectroelectrochemistry*

458 Spectroelectrochemistry was carried out in the same glovebox as described above (N₂
459 atmosphere), with 0.10 M [^tBu₄N][PF₆] in THF as electrolyte. A thin layer quartz cell was used with
460 a Teflon cap for housing the electrodes (ALS Co., Ltd., path length: 1.0 mm). The working electrode
461 was a platinum mesh/flag electrode covered with a PTFE shrink tube up to the flag, and the counter
462 electrode was a platinum wire (ALS Co., Ltd.).

463 *5.5. Gas Chromatography*

464 Gas chromatography were collected with a Shimadzu GC-2014 CustomGC. The instrument
465 was calibrated with a standard checkout gas mixture (Agilent 5190-0519) prior to experimental runs
466 to obtain quantitative data for H₂ and other gases. Calibration curves over a range of 100-10,000
467 ppm were constructed with prepared mixture of H₂ and N₂ to enable H₂ quantification.

468 *5.6. Preparation of [Cp^{*}Rh(4,4'-dinitro-2,2'-bipyridyl)Cl]PF₆ (3)*

469 THF solutions of dnbpyp (0.0249 g, 0.101 mmol, 2 equiv.) and AgPF₆ (0.026 g, 0.103 mmol, 2
470 equiv.) were added in sequence to a suspension of [Cp^{*}RhCl₂]₂ (0.0314 g, 0.051 mmol, 1 equiv.) in
471 THF. A gradual color change occurred over 20 minutes from dark red to bright yellow and a
472 precipitate appeared. This suspension was filtered over Celite, and a homogeneous yellow solution
473 was obtained. Trituration with approximately 50 mL Et₂O resulted in formation of a bright yellow
474 solid. The solution was decanted and excess solvent pumped off to obtain **3** (0.0294 g, 44% yield).
475 Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion of Et₂O into a
476 solution of **3** in acetonitrile. ¹H NMR (500 MHz, CD₃CN) δ 9.31 (d, ⁴J_{H,H} = 2.3 Hz, 2H), 9.23 (d, ³J_{H,H} =
477 6.0, 2H), 8.52 (dd, ⁴J_{H,H} = 2.2, ³J_{H,H} = 6.0 Hz, 2H), 1.73 (s, 15H) ppm. ¹³C{¹H} NMR (126 MHz, CD₃CN)
478 δ 156.90, 156.49, 155.49, 123.01, 119.36, 99.69 (d, ¹J_{C,Rh} = 8.26 Hz), 9.26 ppm. ³¹P{¹H} NMR (162 MHz,
479 CD₃CN) δ -146.88 (sept, ¹J_{P,F} = 706.3 Hz). ¹⁹F NMR (376 MHz, CD₃CN) δ -72.9 (d, ¹J_{F,P} = 707.0 Hz).
480 Electronic absorption spectrum (THF): 239 (36400), 323 (13000), 365 nm (5300 M⁻¹ cm⁻¹). ESI-MS
481 (positive) *m/z*: 519.03 [3 - PF₆]⁺.

482 Elemental analysis for a sample of **3** found 37.20% carbon, 4.43% hydrogen, and 7.78%
483 nitrogen. Calculated values were 36.14%, 3.18%, and 8.43% respectively. Inclusion of trace THF
484 associated with the isolated powder (0.3 eq.) provides the appropriate analysis values of 37.20%,
485 3.46%, and 8.13% respectively. These are within 0.4% error of the analytical results and are
486 consistent with isolation of solid **3** from THF.

487 *5.7. Generation and isolation of [Cp^{*}Rh(4,4'-dinitro-2,2'-bipyridyl)(L)]⁺ (4)*

488 A solution of cobaltocene (0.0142, 0.075 mmol, 2 equiv.) in THF was added dropwise to a THF
489 solution of **3** (0.0250 g, 0.037 mmol, 1 equiv.) while stirring. The color immediately changed from a
490 light yellow to a dark green. After stirring for 10 minutes, the solution was pumped down to obtain
491 a dark solid. This was washed with pentane and Et₂O. The resulting solid was again dissolved in
492 THF and filtered over Celite to obtain a dark green homogeneous solution. Removal of volatiles
493 gave **4** as a dark green solid (0.0156 g, 62% yield). Electronic absorption spectrum (THF): 264
494 (28500), 304 (6000), 418 (5200), 693 (13000), 860 (6000), 944 (7800 M⁻¹ cm⁻¹).

495 **Supplementary Materials:** Supporting information is available online at www.mdpi.com/xxx/s1, and includes:
496 NMR spectra; crystallographic details; electronic absorption spectra; electrochemical, spectroelectrochemical,
497 and gas chromatography data (PDF); cartesian coordinates (XYZ).

498 **Author Contributions:** Conceptualization, W.C.H., D.L. and J.D.B.; Data curation, V.W.D.; Investigation,
499 W.N.G.M.; Supervision, W.C.H., D.L., and J.D.B.; Writing – original draft, J.D.B.; Writing – review & editing,
500 W.N.G.M, D.L., and J.D.B..

501 **Funding:** This work was supported by the US National Science Foundation through award OIA-1833087.
502 Support for preparation of 4,4'-dinitro-2,2'-bipyridyl was provided by the KU Hall Chemical Research Fund.
503 W.N.G.M. acknowledges the Center for Undergraduate Research at the University of Kansas for support in the
504 form of Undergraduate Research Awards. Support for the NMR instrumentation was provided by NIH Shared
505 Instrumentation Grants (S10OD016360, S10RR024664) and NSF MRI funding (CHE-1625923). EPR spectra were
506 collected at the Caltech EPR Facility.

507 **Acknowledgments:** The authors thank Keaton Prather for assistance with preparation of
508 4,4'-dinitro-2,2'-bipyridyl, Dr. Paul Oyala and Prof. Emmanuelle Despagnet-Ayoub for assistance with EPR
509 spectroscopy, and Dr. Justin Douglas and Sarah Neuenschwander for assistance with NMR spectroscopy.

510 **Conflicts of Interest:** The authors declare no conflict of interest.

511 **Sample Availability:** Samples of compounds **1**, **2**, and **3** are available from the authors upon request.

512 © 2018 by the authors. Submitted for possible open access publication under the terms
513 and conditions of the Creative Commons Attribution (CC BY) license
514 (<http://creativecommons.org/licenses/by/4.0/>).

515

References

- ¹ Meyer, T. J., Chemical approaches to artificial photosynthesis. *Acc. Chem. Res.* **1989**, *22*, 163-170.
- ² Sattler, A.; VanderVelde, D. G.; Labinger, J. A.; Bercaw, J. E., Lewis Acid Promoted Titanium Alkylidene Formation: Off-Cycle Intermediates Relevant to Olefin Trimerization Catalysis. *J. Am. Chem. Soc.* **2014**, *136*, 10790-10800.
- ³ Vaska, L., Reversible activation of covalent molecules by transition-metal complexes. The role of the covalent molecule. *Acc. Chem. Res.* **1968**, *1*, 335-344.
- ⁴ Costentin, C.; Robert, M.; Saveant, J.-M., Catalysis of the electrochemical reduction of carbon dioxide. *Chem. Soc. Rev.* **2013**, *42*, 2423-2436.
- ⁵ (a) Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. *Proc. Nat. Acad. Sci. U.S.A.* **2006**, *103*, 15729-15735. (b) Mayer, J. M., Understanding Hydrogen Atom Transfer: From Bond Strengths to Marcus Theory. *Acc. Chem. Res.* **2011**, *44*, 36-46.
- ⁶ Grills, D. C.; Polyansky, D. E.; Fujita, E., Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis. *ChemSusChem* **2017**, *10*, 4359-4373.
- ⁷ Kölle, U.; Grätzel, M., Organometallic Rhodium(III) Complexes as Catalysts for the Photoreduction of Protons to Hydrogen on Colloidal TiO₂. *Angew. Chem. Int. Ed. Engl.* **1987**, *26*, 567-570.
- ⁸ Kölle, U.; Kang, B. S.; Infelta, P.; Comte, P.; Grätzel, M., Electrochemical and pulse-radiolytic reduction of (pentamethylcyclopentadienyl)(polypyridyl)rhodium complexes. *Chem. Ber.* **1989**, *122*, 1869-80.
- ⁹ Henke, W. C.; Lionetti, D.; Moore, W. N. G.; Hopkins, J. A.; Day, V. W.; Blakemore, J. D., Ligand Substituents Govern the Efficiency and Mechanistic Path of Hydrogen Production with [Cp^{*}Rh] Catalysts. *ChemSusChem* **2017**, *10* (22), 4589-4598.
- ¹⁰ White, C.; Yates, A.; Maitlis, P. M., (η^5 -Pentamethylcyclopentadienyl)Rhodium and -Iridium Compounds. *Inorg. Synth.* **1992**, *29*, 228-234.
- ¹¹ Nutton, A.; Bailey, P. M.; Maitlis, P. M., Pentamethylcyclopentadienylrhodium and -iridium complexes. Part 29. Syntheses and x-ray structure determinations of tri-micro -hydroxybis[(h-pentamethylcyclopentadienyl)rhodium] hydroxide undecahydrate and -iridium acetate tetradecahydrate and related complexes. *J. Chem. Soc. Dalton Trans.* **1981**, 1997-2002.
- ¹² Chardon-Noblat, S.; Cosnier, S.; Deronzier, A.; Vlachopoulos, N., An International Journal Devoted to all Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological ElectrochemistryElectrochemical properties of [(C₅Me₅)RhIII(L)Cl]⁺ complexes (L = 2,2'-bipyridine or 1,10-phenanthroline derivatives) in solution in related polypyrrolic films. Application to electrocatalytic hydrogen generation. *J. Electroanal. Chem.* **1993**, *352*, 213-228.
- ¹³ Ruppert, R.; Herrmann, S.; Steckhan, E., Efficient indirect electrochemical in situ regeneration of NADH: electrochemically driven enzymatic reduction of pyruvate catalyzed by D-LDH. *Tet. Lett.* **1987**, *28*, 6583-6586.
- ¹⁴ Saveant, J.-M., *Elements of Molecular and Biomolecular Electrochemistry*. Wiley: Hoboken, NJ, 2006.

¹⁵ Polyansky, D. E.; Muckerman, J. T.; Rochford, J.; Zong, R.; Thummel, R. P.; Fujita, E., Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates. *J. Am. Chem. Soc.* **2011**, *133*, 14649-14665.

¹⁶ Grills, D. C.; Polyansky, D. E.; Fujita, E., *ChemSusChem* **2017**, *10*, 4359-4373.

¹⁷ Warren, J. J.; Tronic, T. A.; Mayer, J. M., Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. *Chem. Rev.* **2010**, *110*, 6961-7001.

¹⁸ Appel, A. M.; Helm, M. L., Determining the Overpotential for a Molecular Electrocatalyst. *ACS Catalysis* **2013**, *4*, 630-633.

¹⁹ Ladwig, M.; Kaim, W., Electronic structure of catalytic intermediates for production of hydrogen: (C₅Me₅)Ir(bpy) and its conjugated acid. *J. Organomet. Chem.* **1992**, *439*, 79-90.

²⁰ Kaim, W.; Reinhardt, R.; Waldhoer, E.; Fiedler, J., Electron transfer and chloride ligand dissociation in complexes [(C₅Me₅)ClM(bpy)]⁺/[(C₅Me₅)M(bpy)]ⁿ (M = Co, Rh, Ir; n = 2+, +, 0, -): A combined electrochemical and spectroscopic investigation. *J. Organomet. Chem.* **1996**, *524*, 195-202.

²¹ Blakemore, J. D.; Hernandez, E. S.; Sattler, W.; Hunter, B. M.; Henling, L. M.; Brunschwig, B. S.; Gray, H. B., Pentamethylcyclopentadienyl rhodium complexes. *Polyhedron* **2014**, *84*, 14-18.

²² Pitman, C. L.; Finster, O. N. L.; Miller, A. J. M., Cyclopentadiene-mediated hydride transfer from rhodium complexes. *Chem. Commun.* **2016**, *52*, 9105-9108.

²³ Quintana, L. M. A.; Johnson, S. I.; Corona, S. L.; Villatoro, W.; Goddard, W. A.; Takase, M. K.; VanderVelde, D. G.; Winkler, J. R.; Gray, H. B.; Blakemore, J. D., Proton-hydride tautomerism in hydrogen evolution catalysis. *Proc. Nat. Acad. Sci. U.S.A.* **2016**, *113*, 6409-6414.

²⁴ Peng, Y.; Ramos-Garcés, M. V.; Lionetti, D.; Blakemore, J. D., Structural and Electrochemical Consequences of [Cp^{*}] Ligand Protonation. *Inorg. Chem.* **2017**, *56*, 10824-10831.

²⁵ Boyd, E.A.; Lionetti, D.; Henke, W.C.; Day, V.W.; Blakemore, J.D., Preparation, Characterization, and Electrochemical Activation of a Model [Cp^{*}Rh] Hydride, *Inorg. Chem.* **2018**, Article ASAP, doi: 10.1021/acs.inorgchem.8b02160

²⁶ Hopkins, J.A., Lionetti, D., Day, V.W., and Blakemore, J.D., Chemical and Electrochemical Properties of [Cp^{*}Rh] Complexes Supported by a Hybrid Phosphine-Pyridine Ligand, **2018**, *in peer review*

²⁷ Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Roddy, J. P.; Peters, J. C., Catalytic N₂-to-NH₃ Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. *ACS Central Science* **2017**, *3*, 217-223.

²⁸ Pal, S.; Kusumoto, S.; Nozaki, K., Dehydrogenation of Dimethylamine-Borane Catalyzed by Half-Sandwich Ir and Rh Complexes: Mechanism and the Role of Cp^{*} Noninnocence. *Organometallics* **2018**, *37*, 906-914.

²⁹ Hansch, C.; Leo, A.; Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters. *Chem. Rev.* **1991**, *91*, 165-195.

³⁰ Hildebrand, F.; Kohlmann, C.; Franz, A.; Luetz, S., Synthesis, characterization and application of new rhodium complexes for indirect electrochemical cofactor regeneration. *Adv. Synth. Catal.* **2008**, *350*, 909-918.

³¹ Ziessel, R., Photocatalysis of water gas shift reactions under normal conditions with cationic iridium(III) complexes. *Angew. Chem.* **1991**, *103*, 863-866.

³² Ziessel, R., Photocatalysis. Mechanistic studies of homogeneous photochemical water gas shift reaction catalyzed under mild conditions by novel cationic iridium(III) complexes. *J. Am. Chem. Soc.* **1993**, *115*, 118-27.

³³ Brereton, K. R.; Bellows, S. M.; Fallah, H.; Lopez, A. A.; Adams, R. M.; Miller, A. J. M.; Jones, W. D.; Cundari, T. R., Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water. *J. Phys. Chem. B* **2016**, *120*, 12911-12919.

³⁴ Ribeiro, P. E. A.; Donnici, C. L.; Dos Santos, E. N., Cationic rhodium(I) complexes containing 4,4'-disubstituted 2,2'-bipyridines: A systematic variation on electron density over the metal center. *J. Organomet. Chem.* **2006**, *691*, 2037-2043.

³⁵ Peng, Q.; Yan, H.; Zhang, X.; Wu, Y.-D., Conjugate Addition vs Heck Reaction: A Theoretical Study on Competitive Coupling Catalyzed by Isoelectronic Metal (Pd(II) and Rh(I)). *J. Org. Chem.* **2012**, *77*, 7487-7496.

³⁶ Pahls, D. R.; Groves, J. T.; Gunnoe, T. B.; Cundari, T. R., Theoretical Study of Reductive Functionalization of Methyl Ligands of Group 9 Complexes Supported by Two Bipyridyl Ligands: A Key Step in Catalytic Hydrocarbon Functionalization. *Organometallics* **2014**, *33*, 1936-1944.

³⁷ O'Reilly, M. E.; Pahls, D. R.; Cundari, T. R.; Gunnoe, T. B., Reductive Functionalization of a Rhodium(III)-Methyl Bond in Acidic Media: Key Step in the Electrophilic Functionalization of Methane. *Organometallics* **2014**, *33*, 6504-6510.

³⁸ Farrell, K.; Melle, P.; Gossage, R. A.; Muller-Bunz, H.; Albrecht, M., Transfer hydrogenation with abnormal dicarbene rhodium(III) complexes containing ancillary and modular poly-pyridine ligands. *Dalton Trans.* **2016**, *45*, 4570-4579.

³⁹ Muckerman, J. T.; Skone, J. H.; Ning, M.; Wasada-Tsutsui, Y., Toward the accurate calculation of pKa values in water and acetonitrile. *Biochim. Biophys. Acta Bioenerg.* **2013**, *1827*, 882-891.

⁴⁰ Lionetti, D.; Day, V. W.; Lassalle-Kaiser, B.; Blakemore, J. D., Multiple binding modes of an unconjugated bis(pyridine) ligand stabilize low-valent [Cp^{*}Rh] complexes. *Chem. Comm.* **2018**, *54*, 1694-1697.

⁴¹ Lionetti, D.; Day, V. W.; Blakemore, J. D., Synthesis and Electrochemical Properties of Half-Sandwich Rhodium and Iridium Methyl Complexes. *Organometallics* **2017**, *36*, 1897-1905.

⁴² Simpson, P. G.; Vinciguerra, A.; Quagliano, J. V., The donor properties of 2,2'-bipyridine N,N'-dioxide. *Inorg. Chem.* **1963**, *2*, 282-286.

⁴³ (a) Maerker, G.; Case, F. H., The Synthesis of Some 4,4'-Disubstituted 2,2'-Bipyridines1. *J. Am. Chem. Soc.* **1958**, *80*, 2745-2748. (b) Kavanagh, P.; Leech, D., Improved synthesis of 4,4'-diamino-2,2'-bipyridine from 4,4'-dinitro-2,2'-bipyridine-N,N'-dioxide. *Tet. Lett.* **2004**, *45*, 121-123. (c) Zhang, D.; Telo, J. P.; Liao, C.; Hightower, S. E.; Clennan, E. L., Experimental and Computational Studies of Nuclear Substituted 1,1'-Dimethyl-2,2'-Bipyridinium Tetrafluoroborates. *J. Phys. Chem. A* **2007**, *111*, 13567-13574.

⁴⁴ (a) Wenkert, D.; Woodward, R. B., Studies of 2,2'-bipyridyl N,N'-dioxides. *J. Org. Chem.* **1983**, *48*, 283-289. (b) ten Brink, G.-J.; Arends, I.W.C.E.; Hoogenraad, M.; Verspui, G.; Sheldon, R.A., Catalytic Conversions in Water. Part 22: Electronic Effects in the (Diimine)palladium(II)-Catalysed Aerobic Oxidation of Alcohols. *Adv. Synth. Catal.* **2003**, *345*, 497-505.

⁴⁵ Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C., The Cambridge Structural Database. *Acta Cryst. Sec. B* **2016**, *72*, 171-179.

⁴⁶ Pilkington, M.; Capelli, S.; Hauser, J.; Hoffmann, C.; Burgi, H.-B., 4,4'-Dinitro-2,2'-bipyridine. *Acta Cryst. Sec. C* **1997**, *53*, 1719-1721.

⁴⁷ (a) Kinnunen, T.-J. J.; Haukka, M.; Nousiainen, M.; Patrikka, A.; Pakkanen, T. A., Electron withdrawing and electron donating effects of 4,4'[prime or minute]-bipyridine substituents on ruthenium mono(bipyridine) complexes. *J. Chem. Soc. Dalton Trans.* **2001**, 2649-2654. (b) Moore, M.; Knight, D. A.; Zabetakis, D.; Deschamps, J. R.; Dressick, W. J.; Chang, E. L.; Lascano, B.; Nita, R.; Trammell, S. A., Electronic effects on the reactivity of copper mono-bipyridine complexes. *Inorg. Chem. Acta* **2012**, *388*, 168-174. (c) McKeown, B. A.; Gonzalez, H. E.; Friedfeld, M. R.; Brosnahan, A. M.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M., Platinum(II)-Catalyzed Ethylene Hydrophenylation: Switching Selectivity between Alkyl- and Vinylbenzene Production. *Organometallics* **2013**, *32* (9), 2857-2865. (d) S. Parsons, L. Yellowlees, P.A. Wood CCDC 247862: Experimental Crystal Structure Determination, **2014**, DOI: 10.5517/cc89xk0. (e) A.Yu. Kovalevsky, P. Coppens CCDC 179657: Experimental Crystal Structure Determination, **2014**, DOI: 10.5517/cc60ydj. (f) Weber, M. D.; Viciana-Chumillas, M.; Armentano, D.; Cano, J.; Costa, R. D., [sigma]-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(I) complexes. *Dalton Trans.* **2017**, *46*, 6312-6323.

⁴⁸ There is a slight shift of the measured reduction potentials to more positive values (ca. 150-200 mV versus $\text{Fc}^{+/-}$) for all four redox events (see SI, Figure S10). Such solvent-dependent potential shifts are difficult to interpret reliably, although this shift may be explained by solvation effects that affect the $\text{Fc}^{+/-}$ couple in these two solvents (+0.40 V vs. SCE in MeCN vs. +0.56 V vs. SCE in THF). See reference 49 for further discussion.

⁴⁹ Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877-910.

⁵⁰ De Bruin, B.; Hetterscheid, D. G. H.; Koekkoek, A. J. J.; Grützmacher, H. In *Progress in Inorganic Chemistry*; John Wiley & Sons, Inc.: 2008; Vol. 55, p 247-354.

⁵¹ (a) Creutz, C., Bipyridine radical ions. *Comments Inorg. Chem.* **1982**, *1*, 293-311. (b) Shida, T. *Electronic Absorption Spectra of Radical Ions*; Elsevier: Amsterdam ; New York, 1988.

⁵² Coombe, V. T.; Heath, G. A.; MacKenzie, A. J.; Yellowlees, L. J., Spectroelectrochemical studies on tris(bipyridyl)iridium complexes: ultraviolet, visible and near-infrared spectra of the series $[\text{Ir}(\text{bipyridyl})_3]^{3+/2+/+/-}$. *Inorg. Chem.* **1984**, *23*, 3423-3425.

⁵³ Murray, P. R.; Crawford, S.; Dawson, A.; Delf, A.; Findlay, C.; Jack, L.; McInnes, E. J. L.; Al-Musharafi, S.; Nichol, G. S.; Oswald, I.; Yellowlees, L. J., On the electronic structure of nitro-substituted bipyridines and their platinum complexes. *Dalton Trans.* **2012**, *41*, 201-207.

⁵⁴ Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176-2179.

⁵⁵ (a) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; Granger, P., NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001). *Pure Appl. Chem.* **2001**, *73*, 1795-1818. (b) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Granger, P.; Hoffman, R. E.; Zilm, K. W., Further conventions for NMR shielding and chemical shifts: (IUPAC recommendations 2008). *Pure Appl. Chem.* **2008**, *80*, 59-84.