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Abstract: Swimming bell kinematics and hydrodynamic wake structures were documented during
multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly
linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses
of the momentum flux in these wake structures demonstrated that vortex dynamics related directly
to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the
wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar
thrust-producing wake structures have been described in models of fish swimming, which posit vortex
rings as vehicles for energy transport from locations of body bending to regions where interacting
pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings
support efforts toward soft robotic biomimetic propulsion.
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1. Introduction

Medusae present an important opportunity for understanding animal propulsion because they
were likely the earliest animal phyla to develop muscular swimming. Cnidarians are one of the most
ancient animal lineages [1,2] and medusan fossils very similar in morphology to extant medusan clades
have been described from marine environments as old as 505 million years ago [3]—probably before
the evolution of vertebrate fish or other animal groups invaded terrestrial and aerial environments. A
fundamental limitation of medusan muscle arrays is that cnidarian muscle fibers are housed solely
within epitheliomuscular cells. The single-cell thick nature of epithelial cells limits the thickness of
swimming muscle arrays within cnidarians and, consequently, force production during medusan
swimming. As aresult, effective medusan propulsion must operate within phylogenetically-constrained
limits on force production. The very basic level of their swimming machinery points to a question
that may be insightful for understanding both biological and biologically-inspired propulsive
systems—how can a set of comparatively simple biological components be organized into such
a successful propulsive system?

The early focus of medusan swimming mechanics centered on jet-propelled species. Early
descriptions of jet propulsion depended upon contraction of muscular fibers encircling the swimming
bell to eject fluid that is accelerated into a thrust-generating jet as it passes through a narrow aperture,
the velum. A model of this process [4], involving the change in swimming bell volume and velar
aperture width during bell contraction, yielded kinematic estimates of swimming motion that were
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consistent with observed jet-propelled medusan swimming [5]. Further examination of medusan
swimming expanded the range of propulsive modes used by medusae—beyond simple jetting—to
include the use of flexible bell margins by oblate species in a type of rowing motion [6-9]. These
studies, in common with research on other animal swimmers (e.g., [10,11]) and fliers (e.g., [12,13])
have identified energy transfer through vortex ring formation within animal wakes as an essential
process for understanding animal propulsion in inertial fluid regimes. Although essential traits of wake
structure have been clarified for medusae [14], the generation of vortex rings and their interactions
during thrust production have remained only vaguely understood. A clearer empirical understanding
of these interactions would benefit animal biology and is essential for replicating animal propulsion by
engineered vehicles [15].

One obstacle to documenting flows of swimming medusae is that flow initiation occurs within the
subumbrellar cavity, a region often surrounded by body tissue with limited transparency. Measurements
of these flows are hindered when the medusa’s body wall obscures the ability to observe flow patterns.
This limitation can be at least partially overcome by using target species possessing a highly transparent
body that permits imaging through the body wall and into the enclosed subumbrellar fluids. The
hydromedusa Eutonina indicans is such a species which, in combination with digital particle imaging
velocimetry methods [14,15], provides an opportunity to quantify the fluid interactions underlying
propulsion by medusae. This new knowledge can be used to inspire biomimetic propulsion by means
of soft robotic actuation techniques that have recently been developed [8].

Eutonina indicans is a jetting medusa. However, unlike some other hydromedusae, it does not
possess a pronounced velum at the oral end of its body. This reduced velar component facilitates the
aforementioned optical access to the flow in the subumbrellar cavity. Moreover, the oblate fineness
ratio (i.e., the height to diameter ratio) of its body relative to other jetters made it a compelling scientific
focus for this study, as its body plan is intermediate between many jetters and rowers [14]. Thus, the
fluid mechanics revealed in this study have the potential to inform biomimetic designs that aim to
replicate both classes of medusae.

2. Materials and Methods

Eutonina indicans medusae (0.7-1.3 cm relaxed bell diameter) were obtained from the New England
Aquarium and maintained in 20 L aquaria at 20 C. Swimming kinematics and fluid interactions during
swimming were measured for individuals placed into a glass filming vessel seeded with neutrally
buoyant, hollow glass spheres (10 um). Only recordings of animals swimming upwards were used in
the analysis to eliminate the possibly of gravitational force from aiding forward motion of the animal
between pulses. One swimming sequence with multiple pulsation cycles (n = 5) was selected for
detailed study of kinematic and fluid dynamic data.

Medusae were illuminated using a 680-nm wavelength laser sheet and recorded at 1000 frames
s~ 1 using a high-speed digital video camera (Fastcam 1024PCl; Photron, San Diego, CA, USA) placed
perpendicular to the laser sheet. The laser sheetilluminated a two-dimensional sheet of the glass spheres
around the medusae and the cross-section through the center of the medusan bell. Velocities of particles
illuminated in the sheet were determined using digital particle image velocimetry (DPIV) software
(Lavision Inc., Ypsilanti, MI, USA) that analyzed sequential video frames using a cross-correlation
algorithm. Image pairs separated in time by 6 ms were analyzed with shifting, 50% overlapping
interrogation windows of decreasing size (i.e., 32 x 32 pixels, followed by 16 x 16 pixels). Prior testing
with these interrogation window settings and interval duration demonstrated >2 pixel average particle
motion between image pairs, as well as the most consistent velocity and vorticity estimates at the
experimental seeding density and magnification. This analysis generated a 128 x 128 gird of velocity
vectors around the swimming medusae.

Bell kinematics, such as subumbrellar volume and velar aperture diameter, were quantified from
the cross-sectional images of the bell and were analyzed using Image J software (NIH, Bethesda, MD,
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USA). The bell and swimming kinematics were quantified using previously reported methods [5].
Changes in bell shape were quantified as the fineness ratio, f, where

_ bell height
" Dbell diameter

(1)

and swimming speed, U, as:

2 2. 172
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where x and y are the coordinates of the apex of the bell in successive images. Pixel discretization
errors were filtered by neglecting bell position changes of less than 33 um. This was <20% of average
position changes occurring during periods of bell contraction and forward swimming.

Analyses of wake structures were performed from DPIV velocity vector fields. The contribution
of different fluid regions to the starting vortex rings during bell contraction was measured as the
momentum flux (pg,y) of fluid across transects positioned across the velar diameter at the fluid exit
from the subumbrellar cavity. The video frames were re-oriented so that the trajectory of swimming
medusae was parallel to the y-axis (i.e., vertical). With this orientation, the velocity of the jet of
fluid emerging from the subumbrellar cavity had a predominant y-component (uy). The momentum
flux [15,16] was estimated for a linear transect across the jet emerging from the velar aperture (psux)
using the fluid velocity vector (u), the direction perpendicular to the linear transection (n), and the
y-component of the jet (uy):

TpuZ
Prux =  exitly(u -n)dA = 4 3)

where p is the density of seawater and / is the length of the horizontal transect. Estimation of total
momentum flux through the velar aperture assumed a circular velar aperture area with a diameter of
the transect line.

Circulation (') within starting vortex rings on either side of the bell margin was quantified as:

Fr = wxy, Hdxdy (4)

where w is the out-of-plane vorticity of the fluid. The wake circulation is subsequently reported as
the sum of the magnitude of vortex ring circulation on both sides of the bell margin, in order to
account for measurement variability due to the laser sheet being potentially offset from the symmetry
plane of the wake vortices. Dividing this total circulation magnitude by two gives the average vortex
ring circulation.

3. Results

3.1. Body Kinematics and Vortex Development

Swimming Eutonina indicans medusae generated a characteristic series of opposite-sign vortex
rings during bell pulsation. Starting from rest (Figure 1A), the bell contracted, driving the bell margins
towards the central axis of the medusae. Movement of the bell margin towards the central axis was
accompanied by formation of a starting vortex ring along the bell margin (Figure 1B). Simultaneously,
a stopping vortex ring, characterized by rotational flow in the opposite direction to that of the starting
vortex, was initiated near the middle of the bell, primarily along the mid-exumbrellar surface. When
swimming in a linear direction, the formation of this starting—stopping pair of vortices was largely
synchronous around the bell and resulted in symmetrical, opposite-sign circulation on either side
of the bell, as documented by two-dimensional DPIV measurements. Both sides of the bell acted
symmetrically during the bell pulsation cycles of linear swimming. As the bell contracted further, the
starting vortex ring continued development along the bell margin and came into contact with residual
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at the bell margin (Figures 1B and 4A). The two fluid parcels of opposite-sense rotation did not mix
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4. Discussion

4.1. Evaluation of Thrust Estimation Methods

The medusan swimming patterns were consistent with  momentum flux measurements from
the near-body wake of the medusa (e.g., Figure 2C,D). Additionally, if the medusan mass can be
represented as a sphere of the observed medusan diameter which is neutrally-buoyant in seawater,
then predicted average velocities during bell contraction closely approximated observed velocities
(average swimming speeds of 3.9vs. 4.2mm s~ for predicted and observed values, respectively,
Table 1). The general agreement between the observed and computed patterns of animal motion
confirms the expectation that propulsion by an E. indicans medusa can be predicted based on analysis
of the momentum flux in the symmetry plane of its wake, despite the complex vortex interactions
that occur downstream. The similarities between thrust force estimates based on wake momentum
flux and those of an alternative, kinematically-based hydrodynamic model (Figure 10) suggest that
momentum flux studies can be an effective surrogate in species other than E. indicans medusae, where
subumbrellar kinematics may not be as accessible.

Table 1. Comparison of predicted and observed average velocity values during bell pulsation cycles
1-3. The time interval for each cycle was 0.18 s, and the mass of the medusa was estimated as a sphere
of the medusa’s bell diameter (1 cm) having a density equivalent to seawater (1.04 g cm™).

Cycle 1 2 3 Average

Peak Force (kg mm s72) 0.0116 0.0105 0.0146 0.0122

Impulse (kg mm s~ 0.0021 0.0019 0.0026 0.0022
Predicted Velocity (mm s™') 3.7 3.3 46 39
Observed Velocity (mm s™") 3.8 4.1 438 42

4.2. Mechanical Basis of Jet Thrust Production

One important contribution of this study is the documentation of vortex interactions that provide
the fluid mechanical basis of thrust production by E. indicans medusae. The model by Daniel [4] used
kinematic changes in water parcels ejected from the subumbrellar cavity of a medusa to estimate
swimming force production. That model effectively described empirical patterns of swimming by a
variety of jet-propelled medusan species [5]. Results reported here are consistent with that model but
focus on vortex interactions (e.g., VIAs) involved during fluid jet production rather than estimating
changesin subumbrellar fluid volumes during jet production. This focus on the details of fluid
interactions complements previous work by explaining how vortices interact to form the jets powering
medusan swimming. Maximum jet velocities during contraction produce flows with Reynolds numbers

>102 (Re based on jet velocities and velar aperture diameter), indicating that inertial forces strongly
influence the wake dynamics and jet formation. DPIV imaging allowed us to link the kinematics of
bell motion to generation of rotational flows (Figure 1), jet production (Figure 4), momentum transfer
(Figures 5 and 10), and, ultimately, forward body motion (Figure 2B,C). The resulting thrust force
estimates are similar to a kinematically-based hydrodynamic model (Figure 10) but, being based on
direct flow measurements, provide a more mechanistic understanding of how body-fluid interactions
generate thrust. In this way, the results are potentially more generalizable than classical jet propulsion
models, which cannot be extended to rowing propulsion [6].

Wake structure patterns demonstrate that momentum transfer from animal to surrounding fluids
does not occur evenly through the wake. Instead, momentum in the wake is concentrated at interfaces
between opposite-rotation vortices generated by the medusa (Figure 5). While the elevated momentum
transfer in the VIAs has been described numerically [17] and visually demonstrated [18], its utility for
quantifying thrust to propel and maneuver swimming animals has been largely ignored in the literature.
Some exceptions include the model by Ahlborn et al. [19,20] for interactions involving opposite-rotation
vortex rings formed by a robotic caudal fin. Ahlborn etal. argued that the rapid dissipation of rotational
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kinetic energy by interacting opposite-rotation vortices was approximately an order of magnitude
more rapid than simple viscous dissipation of the vortices. Hence, the collision of these vortices greatly
accelerates energy dissipation from each of the participating vortices. They argued that bending of the
fish body generated vortices that transported kinetic energy as rotational momentum, which was then
released as linear jets at vortex interfaces by controlled motions of the caudal fin. This energy release
depended upon positioning of opposite-rotation vortices for favorable jet thrust production [19,20].
Likewise, Wolfgang et al. [21] found that, through precise body actuation, fish regulate the formation
and controlled release of body-generated vorticity, resulting in the production of counter-rotating
vortex rings and, hence, a thrust jet. A similar theme has emerged from computational fluid dynamic
studies that have documented the alignment of such vortex pairs to create large pressure differences
around fish caudal fins that contribute substantially to forward thrust production [22]. Our description
of VIA-dominated momentum flux shares common elements with these broader patterns described for
swimming fish. The common feature of these different types of swimmers centers on the use of body
kinematics to transmit energy into rotation flows within vortex rings. Circulation within these vortex
rings is augmented during transport along the swimmer ’s body to regions such as the medusan bell
margins or fish caudal fins, where the vortex-bound energy is released as linear flows.

Direct measurement of momentum flux away from the swimmer ’s body permits evaluation of
both thrust force magnitude and direction. Because the VIA jets are strongly linearly directed, their
orientation relative to the medusan central axis provides information about the resulting directionality
of body motion, as well as its magnitude. For the swimming sequence used within this study, the
VIA jet directions at either bell margin were directed slightly away from the medusa’s central axis,
generating primarily straight swimming with a small deviation of body motion in the opposite direction
of VIA jets (Figure 9). The ability to manipulate VIA jet directionality by vortex positioning plays an
important role in fish turning [21] and may also be important for jellyfish maneuvering. In this case,
detailed quantitative evaluation of vortex generation and positioning for more specimens than the
single one studied here will be essential for developing a rigorous understanding of jellyfish swimming
performance. With these detailed mechanisms well quantified, we can leverage advances in soft
robotic actuation to create biomimetic vehicles with more efficient jet propulsion than propeller-based
analogs [8].
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