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Abstract

We investigate neural models’ ability to cap-
ture lexicosyntactic inferences: inferences
triggered by the interaction of lexical and syn-
tactic information. We take the task of event
factuality prediction as a case study and build
a factuality judgment dataset for all English
clause-embedding verbs in various syntactic
contexts. We use this dataset, which we make
publicly available, to probe the behavior of
current state-of-the-art neural systems, show-
ing that these systems make certain systematic
errors that are clearly visible through the lens
of factuality prediction.

1 Introduction

The formal semantics literature has long been con-
cerned with the complex array of inferences that
different open class lexical items trigger (Kiparsky
and Kiparsky, 1970; Karttunen, 1971a,b; Horn,
1972; Karttunen and Peters, 1979; Heim, 1992; Si-
mons, 2001, 2007; Simons et al., 2010; Abusch,
2002, 2010; Gajewski, 2007; Anand and Hac-
quard, 2013, 2014). For example, why does (1a)
give rise to the inference (2a), while the struc-
turally identical (1b) triggers the inference (2b)?

(1) a. Jo doesn’t believe that Bo left.
b. Jo doesn’t know that Bo left.

(2) a. Jo believes that Bo didn’t leave.
b. Bo left.
c. Bo didn’t leave.

A major finding of this literature is that lexically
triggered inferences are conditioned by surprising
aspects of the syntactic context that a word occurs
in. For example, while (3a), (3b), and (4a) trigger
the inference (2b), (4b) triggers the inference (2c).

(3) a. Joremembered that Bo left.
b. Jo didn’t remember that Bo left.

(4) a. Boremembered to leave.
b. Bo didn’t remember to leave.
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Accurately capturing such interactions — e.g. be-
tween clause-embedding verbs, negation, and em-
bedded clause type — is important for any system
that aims to do general natural language inference
(MacCartney et al. 2008 et seq; cf. Dagan et al.
2006) or event extraction (see Grishman and Sund-
heim 1996 et seq), and it seems unlikely to be
a trivial phenomenon to capture, given the com-
plexity and variability of the inferences involved
(see, e.g., Karttunen, 2012, 2013; Karttunen et al.,
2014; van Leusen, 2012; White, 2014; Baglini and
Francez, 2016; Nadathur, 2016, on implicatives).

In this paper, we investigate how well current
state-of-the-art neural systems for a subtask of
general event extraction — event factuality predic-
tion (EFP; Nairn et al., 2006; Sauri and Puste-
jovsky, 2009, 2012; de Marneffe et al., 2012; Lee
etal., 2015; Stanovsky et al., 2017; Rudinger et al.,
2018) — capture inferential interactions between
lexical items and syntactic context — lexicosyntac-
tic inferences — when trained on current event fac-
tuality datasets. Probing these particular systems
is useful for understanding neural systems’ behav-
ior more generally because (i) the best performing
neural models for EFP (Rudinger et al., 2018) are
simple instances of common baseline models; and
(i1) the task itself is relatively constrained.

To do this, we substantially extend the
MegaVeridicalityl dataset (White and Rawlins,
2018) to cover all English clause-embedding verbs
in a variety of the syntactic contexts covered by
recent psycholinguistic work (White and Rawl-
ins, 2016), and we use the resulting dataset —
MegaVeridicality2 — to probe these models’ be-
havior. We focus on clause-embedding verbs be-
cause they show effectively every possible pattern-
ing of lexicosyntactic inference (Karttunen, 2012).

We discuss three findings: (i) Tree biLSTMs (T-
biLSTMs) are better able to correctly predict lexi-
cosyntactic inferences than linear-chain biLSTMs
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(L-biLSTMs); (ii) L-biLSTMs and T-biLSTMs
capture different lexicosyntactic inferences, and
thus ensembling their predictions can reliably im-
prove performance; and (iii) even when ensem-
bled, these models show systematic errors — e.g.
performing well when the polarity of the matrix
clause matches the polarity of the true inference,
but poorly when these polarities mismatch.

We furthermore release MegaVeridicality2 at
MegaAttitude.io as a benchmark for probing the
ability of neural systems — whether for factuality
prediction or for general natural language infer-
ence — to capture lexicosyntactic inference.

2 Data collection

We substantially extend the MegaVeridicalityl
dataset (White and Rawlins, 2018), which con-
tains factuality judgments for all English clause-
embedding verbs that take tensed subordinate
clauses. In White and Rawlins’s annotation pro-
tocol, all verbs that are grammatical with such
subordinate clauses — based on the MegaAttitude
dataset (White and Rawlins, 2016) — are slotted
into contexts either like (5a) or (5b), depending on
whether they take a direct object or not.

(5) a. Someone {knew, didn’t know} that a par-
ticular thing happened.
b. Someone {was, wasn’t} told that a particu-
lar thing happened.

For each sentence generated in this way, 10 differ-
ent annotators are asked to answer the question did
that thing happen?: yes, maybe or maybe not, no.

There are two important aspects of these con-
texts to note. First, all lexical items besides the
embedding verbs are semantically bleached to en-
sure that the measured lexicosyntactic inferences
are only due to interactions between the embed-
ding predicate — e.g. know or tell — and the syntac-
tic context. Second, the matrix polarity — i.e. the
presence or absence of not as a direct dependent
of the embedding verb — is manipulated to create
two sentences for each verb-context pair.

Our extension, MegaVeridicality2, includes
judgments for a variety of infinitival subordinate
clause types, exemplified in (6).! We investigate
infinitival clauses because they can give rise to dif-

'We also explicitly manipulate two aspects of the sub-
ordinate clause in our extension of the MegaVeridicality
dataset: (i) how NP embedded subjects are introduced; and
(ii) whether the embedded clause contains an eventive predi-
cate (do, happen) or a stative predicate (have). See Appendix
A for details on the reasoning behind these manipulations.

Syntactic context #verbs #sents Ex.
NP _ed that S 375 750  (5a)
NP was _ed that S 169 338 (5b)
NP _ed for NP to VP 184 368  (6a)
NP _ed NP to VP[+ev] 197 394 (6b)
NP _ed NP to VP[-ev] 128 256 (6¢)
NP was _ed to VP[+ev] 278 556 (6d)
NP was _ed to VP[-ev] 256 512 (6e)
NP _ed to VP[+ev] 217 434 (6f)
NP _ed to VP[-ev] 165 330 (6g)
Total 1,969 3,938

Table 1: Contexts and number of verbs for which annota-
tions were collected: S = something happened, NP = some-
one, VP = happen, VP[+ev] = do something, VP[-ev] = have
something. First two rows: MegaVeridicalityl. All rows:
MegaVeridicality2. The number of sentences is always twice
the number of verbs, since matrix polarity is manipulated.

ferent lexicosyntactic inferences than finite subor-

dinate clauses — e.g. compare (3) and (4).

(6) a. Someone {needed, didn’t need} for a par-

ticular thing to happen.

b. Someone {wanted, didn’t want} a particu-
lar person to do, have a particular thing.

c. Someone {wanted, didn’t want} a particu-
lar person to have a particular thing.

d. A particular person {was, wasn’t} over-
joyed to do a particular thing.

e. A particular person {was, wasn’t} over-
joyed to have a particular thing.

f. A particular person {managed, didn’t man-
age} to do a particular thing.

g. A particular person {managed, didn’t man-
age} to have a particular thing.

For each sentence, we also collect judgments from
10 different annotators, using the same question as
White and Rawlins for context (6a) and modified
questions for contexts (6b)-(6g): did that person
do that thing? for (6b), (6d), and (6f); and did that
person have that thing? for for (6¢), (6e), and (6g).
Table 1 shows the number of verb types for each
syntactic context. With the polarity manipulation,
this yields a total of 3,938 sentences.

To build a factuality prediction test set from
these sentences, we combine MegaVeridicalityl
with our dataset and replace each instance of a
particular person or a particular thing with some-
one or something (respectively). Then, follow-
ing White and Rawlins, we normalize the 10 re-
sponses for each sentence to a single real value us-
ing an ordinal mixed model-based procedure. We
refer to the resulting dataset as MegaVeridicality?2.

3 Model and evaluation

We use MegaVeridicality2 to evaluate the perfor-
mance of three state-of-the-art neural models of
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event factuality (Rudinger et al., 2018): a linear-
chain biLSTM (L-biLSTM), a dependency tree
biLSTM (T-biLSTM), and a hybrid biLSTM (H-
biLSTM) that ensembles the two. To predict the
factuality of the event referred to by a particular
predicate, these models pass the output state of the
biLSTM at that predicate through a two-layer re-
gression. In the case of the H-biLSTM, the out-
put state of both the L- and T-biLSTMs are simply
concatenated and passed through the regression.”

Following the multi-task training regime de-
scribed by Rudinger et al. (2018), we train these
models on four standard factuality datasets — Fact-
Bank (Sauri and Pustejovsky, 2009, 2012), UW
(Lee et al., 2015), MEANTIME (Minard et al.,
2016), and UDS (White et al., 2016; Rudinger
et al., 2018) — with tied biLSTM weights but re-
gression parameters specific to each dataset. We
then use these trained models to predict the factu-
ality of the embedded predicate in our dataset.

To understand how much of these models’ per-
formance on our dataset is really due to a cor-
rect computation of lexicosyntactic inferences, we
also generate predictions for the sentences in our
dataset with the embedding verbs UNKed. In this
case, the model can rely only on the syntactic con-
text surrounding the predicate to make its infer-
ences. We refer to the models with lexical infor-
mation as the LEX models and the ones without
lexical information as the UNK models.

Each model produces four predictions, corre-
sponding to the four different datasets it was
trained on. We consider three different ways of en-
sembling these predictions using a cross-validated
ridge regression: (i) ensembling the four predic-
tions for each specific model (LEX or UNK); (ii)
ensembling the predictions for the LEX version of
a particular model with the UNK version of that
same model (LEX+UNK); and (iii) ensembling
the predictions across all models (LEX, UNK, or
LEX+UNK). Each ensemble is evaluated in a 10-
fold/10-fold nested cross-validation (see Cawley
and Talbot, 2010). In each iteration of the outer
cross-validation, a 10% test set is split off, and a
10-fold cross-validation to tune the regularization
is conducted on the remaining 90%.

4 Results

Figure 1 shows the mean correlation between
model predictions and true factuality on the outer

2See Appendix B for further details.
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Figure 1: Mean correlation between model predictions and
true factuality in nested cross-validation. Error bars show
bootstrapped (iter=1,000) 95% confidence intervals for mean
correlation across 10 outer folds.
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fold test sets of the nested cross-validation de-
scribed in §3. We note three aspects of this plot.
First, among the LEX models, the T-biLSTM
performs best, followed by the L-biLSTM, then
the H-biLSTM. This is somewhat surprising, since
Rudinger et al. find the opposite pattern of per-
formance: the L- and H-biLSTMs vie for dom-
inance, both outperforming the T-biLSTM. This
indicates that T-biLSTMs are better able to repre-
sent the lexicosyntactic inferences relevant to this
dataset, even though they underperform on more
general datasets. This possibility is bolstered by
the fact that, in contrast to the L- and H-biLSTMs,
the LEX version of the T-biLSTMs performs sig-
nificantly better than the UNK version, suggesting
that the T-biLSTM is potentially more reliant on
the lexical information than the other two.
Second, when the LEX and UNK version of
each model is ensembled (LEX+UNK), we find
comparable performance for all three biLSTMs
— each outperforming the LEX version of the T-
biLSTM. This indicates that each model captures
similar amounts of information about lexicosyn-
tactic inference, but this information is captured in
the models’ parameterizations in different ways.
Finally, when all three models are ensem-
bled, we find that both the LEX and UNK ver-
sion perform significantly better than any specific
LEX+UNK model. This may indicate two things:
(i) the models that only have access to syntax can
perform just as well as ones that have access to
both lexical information and syntax; but (ii) these
models appear to capture different aspects of in-
ference, since an ensemble of all models (All-
LEX+UNK) performs significantly better than ei-
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Someone ... True  Pred.
faked that something happened -3.15 0.86
was misinformed that something happened -2.62 1.37
neglected to do something -3.07  -0.02
pretended to have something -2.96 0.05
was misjudged to have something -2.46 0.55
forgot to have something -3.18  -0.17
neglected to have something -2.93 0.07
pretended that something happened -2.11 0.86
declined to do something -3.18 -0.22
was refused to do something -3.16  -0.22
refused to do something -3.12 -0.20
pretended to do something -3.02 -0.11
disallowed someone to do something -2.56 0.34
was declined to have something -2.36 0.55
declined to have something -3.12 -023
did n’t hesitate to have something 1.84  -0.96
ceased to have something -2.22 0.57
did n’t hesitate to do something 1.86  -0.92
lied that something happened -1.99 0.78
feigned to have something -3.07 -0.31

Table 2: Sentences with the highest prediction errors.

ther the AlI-LEX or AIl-UNK ensembles alone.

Interestingly, however, even this ensemble per-
forms more than 10 points worse than each model
alone on FactBank, UW, and UDS. This raises the
question of which lexicosyntactic inferences these
models are missing — investigated below.

5 Analysis

We investigate two questions: (i) which inferences
do all models do poorly on?; and (ii) what drives
the differing strengths of each model?

Where do all models fail? Table 2 shows the 20
sentences with the highest prediction errors under
the All-LEX+UNK ensemble. There are two inter-
esting things to note about these sentences. First,
most of them involve negative lexicosyntactic in-
ferences that the model predicts to be either posi-
tive or near zero. Second, when the true inference
is not positive, the matrix polarity of the original
sentence is negative. This suggests that the models
are not able to capture inferences whose polarity
mismatches the matrix clause polarity.

One question that arises here is whether this in-
ability affects all contexts equally. To answer this,
we regress the absolute error of the predictions
from this same ensemble (logged and standard-
ized) against true factuality, matrix polarity, and
context (as well as all of their two- and three-way
interactions).> We find that the three-way interac-
tions in this regression are reliable (x%(8)=27.97,
p < 0.001) — suggesting that there are nontriv-
ial differences in these state-of-the-art factuality
systems’ ability to capture inferential interactions
across verbs and syntactic contexts. The differ-
ences can be verified visually in Figure 2, which

3See Appendix C for further details, including a summary
of the regression on which the above discussion is based.

NP _ed that S NP was _ed that S NP _ed for NP to VP
NP _ed NP to VP[+ev] NP _ed NP to VP[-ev] NP _ed to VP[+ev]

NP _ed to VP[-ev] NP was _ed to VP[+ev] )| NP was _ed to VP[-ev]

/.

Predicted factuality

%

True factuality

Polarity - Positive - Negative

Figure 2: Factuality by syntactic context and polarity,
each point a verb. Diagonals show perfect prediction.

plots the factuality predicted by this ensemble
against the true factuality from MegaVeridicality?2.

To elaborate, the ensemble does best overall on
contexts like (7a) and (7b), and worst overall on
contexts like (7¢). The contrast between (7b) and
(7c) is particularly interesting because (i) (7c) is
just the passivized form of (7b); and (ii) we do
not observe similar behavior for contexts (7d) and
(7e), which are analogous to (7b) and (7c¢), but re-
place the stative have with the eventive do.

(7) Someone...
a. {_ed, didn’t _} for something to happen.
b. {_ed, didn’t _} someone to have something.
c. {was _ed, wasn’t _ed} to have something.
d. {_ed, didn’t _} someone to do something.
e. {was _ed, wasn’t _ed} to do something.
f. {_ed, didn’t _} that something happened.

An additional nuance is that the ensemble does re-
liably better on the negative matrix polarity ver-
sion of (7b) than on the positive, with the oppo-
site true for (7e). This suggests these models do
not capture an important inferential interaction be-
tween passivization and eventivity.

This suggestion is further bolstered by the fact
that the ensemble’s ability to predict cases where
the matrix polarity mismatches the true factuality
are reliably poorer in context (7c) but not in its
minimal pairs (7¢) and (7b), where the ensemble
performs reliably poorer when the two match. In-
deed, it is contexts (7c) and (7f) that drive the po-
larity mismatch effect evident in Table 2.

What drives differences between models? In
84, we noted two ways that the biLSTMs we in-
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Figure 3: Canonical correlations between embedding
verb embeddings and embedded verb hidden states.
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vestigate differ: (i) the T-biLSTM appears to be
more reliant on lexical information than L- and H-
biLSTMs; and (ii) each model appears to encode
information about lexicosyntactic inference in its
parameterizations in different ways. We hypothe-
size that these two differences are related — specifi-
cally, that the T-biLSTM’s heavier reliance on lex-
ical information comes about as a consequence of
stronger entanglement between lexical and syntac-
tic information in its hidden states.

To probe this, we ask to what extent the embed-
ding verb’s embedding can be recovered from the
embedded verb’s hidden state using linear func-
tions. If the lexical information is more strongly
entangled with the syntactic information, it should
be more difficult to construct a homomorphic (lin-
ear) function to decode the embedding verb’s em-
bedding from the embedded verb’s hidden state.
To measure this, we conduct a Canonical Corre-
lation Analysis (CCA; Hotelling, 1936) between
these two vector space representations for every
sentence in our dataset. Given two matrices X
(the embedding verb embeddings column stacked)
and Y (the embedded verb hidden states column
stacked), CCA constructs matrices A and B, such
that a;,b; = arg, pmax corr(a’X,b’Y) and
corr(a; X, a;X) = corr(b;Y,b;Y) = 0,Vi < j.
This guarantees that the canonical correlation at
component ¢, corr(a;X,b;Y), is nonincreasing
in 4, and thus the linearly decodable information
about Y in X can be assessed using this function.

Figure 3 plots the canonical correlations for
the first 50 components for each of the biLSTMs
we investigated. We find that the canonical cor-
relations associated with the T-biLSTM are sub-
stantially lower than those associated with the L-
and H-biLSTMs across these first 50 components.
This suggests that the T-biLSTM more strongly
entangles lexical and syntactic information, per-

haps explaining its apparently heavier reliance on
lexical information, observed in §4.

Of note here is that the pattern seen in Figure 3
is probably at least partly a consequence of the dif-
ferent nonlinearities used for the L-biLSTM (tanh)
and T-biLSTM (ReLU), and not the architectures
themselves. But whether or not this pattern is due
to the architectures, nonlinearities, or both, the en-
tanglement hypothesis may still help explain the
pattern of results discussed in §4.

6 Related work

This work is inspired by recent work in recasting
various semantic annotations into natural language
inference (NLI) datasets (White et al., 2017; Po-
liak et al., 2018a,b; Wang et al., 2018) to gain a
better understanding of which phenomena stan-
dard neural NLI models (Bowman et al., 2015;
Conneau et al., 2017) can capture — a line of work
with deep roots (Cooper et al., 1996). The experi-
mental setup — specifically, the idea of UNKing the
embedding verb — was inspired by recent work that
uses hypothesis-only baselines for a similar pur-
pose (Gururangan et al., 2018; Poliak et al., 2018c;
Tsuchiya, 2018). This work is also related to the
broader investigation of sentence representations
— particularly, tasks aimed at probing these rep-
resentations’ content (Pavlick and Callison-Burch,
2016; Adi et al., 2016; Conneau et al., 2018; Con-
neau and Kiela, 2018; Dasgupta et al., 2018).

7 Conclusion

We investigated neural models’ ability to capture
lexicosyntactic inference, taking the task of event
factuality prediction (EFP) as a case study. We
built a factuality judgment dataset for all English
clause-embedding verbs in various syntactic con-
texts and used this dataset to probe current state-
of-the-art EFP systems. We showed that these
systems make certain systematic errors that are
clearly visible through the lens of factuality.
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