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Figure1:Dataprocessingandanalysislow,startingfrom(1)acorpusofreal-worlddatasets,proceedingto(2)featureextrac-
tion,(3)mappingextractedfeaturestogroundtruthsemantictypes,and(4)modeltrainingandprediction.

ABSTRACT

Correctlydetectingthesemantictypeofdatacolumnsiscrucialfor
datasciencetaskssuchasautomateddatacleaning,schemamatch-
ing,anddatadiscovery.Existingdatapreparationandanalysissys-
temsrelyondictionarylookupsandregularexpressionmatchingto
detectsemantictypes.However,thesematching-basedapproaches
oftenarenotrobusttodirtydataandonlydetectalimitednumber
oftypes.WeintroduceSherlock,amulti-inputdeepneuralnetwork
fordetectingsemantictypes.WetrainSherlockon686,765data
columnsretrievedfromtheVizNetcorpusbymatching78seman-
tictypesfromDBpediatocolumnheaders.Wecharacterizeeach
matchedcolumnwith1,588featuresdescribingthestatisticalprop-
erties,characterdistributions,wordembeddings,andparagraph
vectorsofcolumnvalues.Sherlockachievesasupport-weighted
F1scoreof0.89,exceedingthatofmachinelearningbaselines,dic-
tionaryandregularexpressionbenchmarks,andtheconsensusof
crowdsourcedannotations.

CCSCONCEPTS

•Computingmethodologies→ Machinelearning;Knowl-
edgerepresentationandreasoning;•Informationsystems
→ Datamining.

Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalor
classroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributed
forproitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitation
ontheirstpage.Copyrightsforcomponentsofthisworkownedbyothersthanthe
author(s)mustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,or
republish,topostonserversortoredistributetolists,requirespriorspeciicpermission
and/orafee.Requestpermissionsfrompermissions@acm.org.

KDD’19,August4–8,2019,Anchorage,AK,USA

©2019Copyrightheldbytheowner/author(s).PublicationrightslicensedtoACM.
ACMISBN978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330993

KEYWORDS

Tabulardata,typedetection,semantictypes,deeplearning

ACMReferenceFormat:

MadelonHulsebos,KevinHu,MichielBakker,EmanuelZgraggen,Arvind
Satyanarayan,TimKraska,ÇağatayDemiralp,andCésarHidalgo.2019.
Sherlock:ADeepLearningApproachtoSemanticDataTypeDetection.In

The25thACMSIGKDDConferenceonKnowledgeDiscoveryandDataMining
(KDD’19),August4–8,2019,Anchorage,AK,USA.ACM,NewYork,NY,USA,
9pages.https://doi.org/10.1145/3292500.3330993

1 INTRODUCTION

Datapreparationandanalysissystemsrelyoncorrectlydetecting
typesofdatacolumnstoenableandconstrainfunctionality.For
example,automateddatacleaningfacilitatesthegenerationofclean
datathroughvalidationandtransformationrulesthatdependon
datatype[15,26].Schemamatchingidentiiescorrespondencesbe-
tweendataobjects,andfrequentlyusesdatatypestoconstrainthe
searchspaceofcorrespondences[25,35].Datadiscoverysurfaces
datarelevanttoagivenquery,oftenrelyingonsemanticsimilarities
acrosstablesandcolumns[6,7].
Whilemostsystemsreliablydetectatomictypessuchasstring,

integer,andboolean,semantictypesaredisproportionatelymore
powerfulandinmanycasesessential.Semantictypesprovideiner-
graineddescriptionsofthedatabyestablishingcorrespondences
betweencolumnsandreal-worldconceptsandassuch,canhelp
withschemamatchingtodeterminewhichcolumnsrefertothe
samereal-worldconcepts,ordatacleaningbydeterminingthe
conceptualdomainofacolumn.Insomecases,thedetectionofa
semantictypecanbeeasy.Forexample,anISBNorcreditcard
numberaregeneratedaccordingtostrictvalidationrules,lending
themselvestostraightforwardtypedetectionwithjustafewrules.
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Table1:Datavaluessampledfromreal-worlddatasets.

Type Sampledvalues

location TBA|Chicago,Ill.|Detroit,Mich.|Nashville,Tenn.
location UNIVERSITYSUITES|U.S.27;NA|NORSEHALL
location Away|Away|Home|Away|Away
date 27Dec1811|1852|1855|-|1848|1871|1877
date ––,1922|––,1902|––,1913|––,1919
date December06|August23|None
name Svenack|Svendd|Sveneldritch|Svengöran
name HOUSE,BRIAN|HSIAO,AMY|HSU,ASTRID
name D.Korb|K.Moring|J.Albanese|l.dunn

Butmosttypes,includinglocation,birthdate,andname,donot
adheretosuchstructure,asshowninTable1.
Existingopensourceandcommercialsystemstakematching-

basedapproachestosemantictypedetection.Forexample,regular
expressionmatchingcapturespatternsofdatavaluesusingpre-
deinedcharactersequences.Dictionaryapproachesusematches
betweendataheadersandvalueswithinternallook-uptables.
Whilesuicientfordetectingsimpletypes,thesematching-based
approachesareoftennotrobusttomalformedordirtydata,sup-
portonlyalimitednumberoftypes,andunder-performfortypes
withoutstrictvalidations.Forexample,Figure2showsthatTableau
detectsacolumnlabeled“ContinentName”asstring.Afterre-
movingcolumnheaders,nosemantictypesaredetected.Notethat
missingheadersorincomprehensibleheadersarenotuncommon.
Forexample,SAP’ssystemtableT005containscountryinformation
andcolumnNMFMTisthestandardnameield,whereasINTCA
referstotheISOcodeorXPLZS

Country/Region String Latitude LongitudeCountry/RegionString

String String Decimal Decimal String String

Detected Types Without Column Headers

Detected Types With Column Headers

Remove Headers

tozip-code.

Figure2:DatatypesdetectedbyTableauDesktop2018.3for
adatasetofcountrycapitals,withandwithoutheaders.

Machinelearningmodels,coupledwithlarge-scaletrainingand
benchmarkingcorpora,haveprovenefectiveatpredictivetasks
acrossdomains.ExamplesincludetheAlexNetneuralnetwork
trainedonImageNetforvisualrecognitionandtheGoogleNeural
MachineTranslationsystempre-trainedonWMTparallelcorpora
forlanguagetranslation.Inspiredbytheseadvances,weintroduce
Sherlock,adeeplearningapproachtosemantictypedetection
trainedonalargecorpusofreal-worldcolumns.

Tobegin,weconsider78semantictypesdescribedbyT2Dv2
GoldStandard,1whichmatchespropertiesfromtheDBpediaon-
tologywithcolumnheadersfromtheWebTablescorpus.Then,we
useexactmatchingbetweensemantictypesandcolumnheaders
toextract686,765datacolumnsfromtheVizNetcorpus[14],a
large-scalerepositoryofrealworlddatasetscollectedfromtheweb,
popularvisualizationsystems,andopendataportals.
Weconsidereachcolumnasamappingfromcolumnvalues

toacolumnheader. Wethenextract1,588featuresfromeach
column,describingthedistributionofcharacters,semanticcontent
ofwordsandcolumns,andglobalstatisticssuchascardinalityand
uniqueness.Treatingcolumnheadersasgroundtruthlabelsofthe
semantictype,weformulatesemantictypedetectionasamulticlass
classiicationproblem.
Amulti-inputneuralnetworkarchitectureachievesasupport-

weightedF1-scoreof0.89,exceedingthatofdecisiontreeandran-
domforestbaselinemodels,twomatching-basedapproachesthat
representtypedetectionapproachesinpractice,andtheconsensus
ofcrowdsourcedannotations.Wethenexaminetypesforwhich
theneuralnetworkdemonstrateshighandlowperformance,inves-
tigatethecontributionofeachfeaturecategorytomodelperfor-
mance,extractfeatureimportancesfromthedecisiontreebaseline,
andpresentanerror-rejectcurvesuggestingthepotentialofcom-
bininglearnedmodelswithhumanannotations.
Toconclude,wediscusspromisingavenuesforfutureresearch

insemantictypedetection,suchasassessingtrainingdataquality
atscale,enrichingfeatureextractionprocesses,andestablishing
sharedbenchmarks.Tosupportbenchmarksforfutureresearch
andintegrationintoexistingsystems,weopensourceourdata,
code,andtrainedmodelathttps://sherlock.media.mit.edu.

Keycontributions:

(1)Data(§3):Demonstratingascalableprocessformatch-
ing686,675columnsfromVizNetcorpusfor78semantic
types,thendescribingwith1,588featureslikeword-and
paragraphembeddings.

(2)Model(§4):Formulatingtypedetectionasamulticlass
classiicationproblem,thencontributinganovelmulti-
inputneuralnetworkarchitecture.

(3)Results(§5):Benchmarkingpredictiveperformanceagainst
adecisiontreeandrandomforestbaseline,twomatching-
basedmodels,andcrowdsourcedconsensus.

2 RELATEDWORK

Sherlockisinformedbyexistingcommercialandopensourcesys-
temsfordatapreparationandanalysis,aswellaspriorresearch
workonontology-based,feature-based,probabilistic,andsynthesized
approachestosemantictypedetection.

Commercialandopensource.Semantictypedetectionenhances
thefunctionalityofcommercialdatapreparationandanalysissys-
temssuchasMicrosoftPowerBI[20],Trifacta[31],andGoogle
DataStudio[12].Tothebestofourknowledge,thesecommercial
toolsrelyonmanuallydeinedregularexpressionpatternsdictio-
narylookupsofcolumnheadersandvaluestodetectalimitedsetof

1http://webdatacommons.org/webtables/goldstandardV2.html
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semantictypes.Forinstance,Trifactadetectsaround10types(e.g.,
genderandzipcode)andPowerBIonlysupportstime-relatedse-
mantictypes(e.g.,date/timeandduration).Opensourcelibraries
suchasmessytables[10],datalib[9],andcsvkit[13]similarlyuse
heuristicstodetectalimitedsetoftypes.Benchmarkingdirectly
againstthesesystemswasinfeasibleduetothesmallnumberof
supportedtypesandlackofextensibility.However,wecompare
againstlearnedregularexpressionanddictionary-basedbench-
marksrepresentativeoftheapproachestakenbythesesystems.

Ontology-based.Priorresearchwork,withrootsinthesemantic
webandschemamatchingliterature,providealternativeapproaches
tosemantictypedetection.Onebodyofworkleveragesexisting
dataontheweb,suchasWebTables[5],andontologies(or,knowl-
edgebases)suchasDBPedia[2],Wikitology[30],andFreebase[4].
Venetisetal.[33]constructadatabaseofvalue-typemappings,
thenassigntypesusingamaximumlikelihoodestimatorbasedon
columnvalues.Syedetal.[30]usecolumnheadersandvaluesto
buildaWikitologyquery,theresultofwhichmapscolumnsto
types.Informedbytheseapproaches,welookedtowardsexisting
ontologiestoderivethe275semantictypesconsideredinthispaper.

Feature-based.Severalapproachescaptureandcompareprop-
ertiesofdatainawaythatisontology-agnostic.Ramnandanet
al.[27]useheuristicstoirstseparatenumericalandtextualtypes,
thendescribethosetypesusingtheKolmogorov-Smirnov(K-S)
testandTermFrequency-InverseDocumentFrequency(TF-IDF),
respectively.Phametal.[23]useslightlymorefeatures,including
theMann-WhitneytestfornumericaldataandJaccardsimilarity
fortextualdata,totrainlogisticregressionandrandomforestmod-
els.Weextendthesefeature-basedapproacheswithasigniicantly
largersetoffeaturesthatincludescharacter-leveldistributions,
wordembeddings,andparagraphvectors.Weleverageordersof
magnitudemorefeaturesandtrainingsamplesthanpriorworkin
ordertotrainahigh-capacitymachinelearningmodel,adeepneu-
ralnetwork.Weincludeadecisiontreeandrandomforestmodelas
benchmarkstorepresentthese“simpler”machinelearningmodels.

Probabilistic.Thethirdcategoryofpriorworkemploysaprob-
abilisticapproach.Goeletal.[11]useconditionalrandomields
topredictthesemantictypeofeachvaluewithinacolumn,then
combinethesepredictionsintoapredictionforthewholecolumn.
Limayeetal.[19]useprobabilisticgraphicalmodelstoannotate
valueswithentities,columnswithtypes,andcolumnpairswith
relationships.Thesepredictionssimultaneouslymaximizeapo-
tentialfunctionusingamessagepassingalgorithm.Probabilistic
approachesarecomplementarytoourmachinelearning-basedap-
proachbyprovidingameansforcombiningcolumn-speciicpre-
dictions.However,aswithpriorfeature-basedmodels,codefor
retrainingthesemodelswasnotmadeavailableforbenchmarking.

Synthesized.Puranik[24]proposesa“specialistapproach”com-
biningthepredictionsofregularexpressions,dictionaries,andma-
chinelearningmodels.Morerecently,YanandHe[34]introduced
asystemthat,givenasearchkeywordandsetofpositiveexam-
ples,synthesizestypedetectionlogicfromopensourceGitHub
repositories.Thissystemprovidesanovelapproachtoleveraging
domain-speciicheuristicsforparsing,validating,andtransforming

semanticdatatypes.Whilebothapproachesareexciting,thecode
underlyingthesesystemswasnotavailableforbenchmarking.

3 DATA

Wedescribethesemantictypesweconsider,howweextracteddata
columnsfromalargerepositoryofreal-worlddatasets,andour
featureextractionprocedure.

3.1 DataCollection

OntologieslikeWordNet[32]andDBpedia[2]describesemantic
concepts,propertiesofsuchconcepts,andrelationshipsbetween
them.Toconstrainthenumberoftypesweconsider,weadoptthe
typesdescribedbytheT2Dv2GoldStandard,1theresultofastudy
matchingDBpediaproperties[29]withcolumnsfromtheWeb
Tableswebcrawlcorpus[5].These275DBpediaproperties,such
ascountry,language,andindustry,representsemantictypes
commonlyfoundindatasetsscatteredthroughouttheweb.
Toexpeditethecollectionofreal-worlddatafromdiversesources,

weusetheVizNetrepository[14],whichaggregatesandcharacter-
izesdatafromtwopopularonlinevisualizationplatformsandopen
dataportals,inadditiontotheWebTablescorpus.Forfeasibility,
werestrictedourselvestotheirst10MWebTablesdatasets,but
consideredtheremainderoftherepositoryinitsentirety.Wethen
matchdatacolumnsfromVizNetthathaveheaderscorresponding
toour275types.Toaccomodatevariationincasingandformatting,
singlewordtypesmatchedcase-alteredmodiications(e.g.,name
=Name=NAME)andmulti-wordtypesincludedconcatenationsof
constituentwords(e.g.,releasedate=releaseDate).
Thematchingprocessresultedin6,146,940columnsmatching

the275consideredtypes.Manualveriicationindicatedthatthe
majorityofcolumnswereplausiblydescribedbythecorrespond-
ingsemantictype,asshowninTable1.Inotherwords,matching
columnheadersasgroundtruthlabelsofthesemantictypeyielded
highqualitytrainingdata.

3.2 FeatureExtraction

Tocreateixed-lengthrepresentationsofvariable-lengthcolumns,
aidinterpretationofresults,andprovide“hints”toourneuralnet-
work,weextractfeaturesfromeachcolumn.Tocapturediferent
propertiesofcolumns,weextractfourcategoriesoffeatures:global
statistics(27),aggregatedcharacterdistributions(960),pretrained
wordembeddings(200),andself-trainedparagraphvectors(400).

Globalstatistics.Theirstcategoryoffeaturesdescribeshigh-
levelstatisticalcharacteristicsofcolumns.Forexample,the“column
entropy”featuredescribeshowuniformlyvaluesaredistributed.
Suchafeaturehelpsdiferentiatebetweentypesthatcontainmore
repeatedvalues,suchasgender,fromtypesthatcontainmany
uniquevalues,suchasname.Othertypes,likeweightandsales,
mayconsistofmanynumericalcharacters,whichiscapturedbythe
“meanofthenumberofnumericalcharactersinvalues.”Acomplete
listofthese27featurescanbefoundinTable8intheAppendix.

Character-leveldistributions.Preliminaryanalysisindicatedthat
simplestatisticalfeaturessuchasthe“fractionofvalueswithnu-
mericalcharacters”providesurprisingpredictivepower.Motivated
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bytheseresultsandtheprevalenceofcharacter-basedmatchingap-
proachessuchasregularexpressions,weextractfeaturesdescribing
thedistributionofcharactersinacolumn.Speciically,wecompute
thecountofall96ASCII-printablecharacters(i.e.,digits,letters,
andpunctuationcharacters,butnotwhitespace)withineachvalue
ofacolumn.Wethenaggregatethesecountswith10statistical
functions(i.e.,any,all,mean,variance,min,max,median,sum,
kurtosis,skewness),resultingin960features.Examplefeatures
include“whetherallvaluescontaina‘-’character”andthe“mean
numberof‘/’characters.”

Wordembeddings. Forcertainsemantictypes,columnsfrequently
containcommonlyoccurringwords.Forexample,thecitytype
containsvaluessuchasNewYorkCity,Paris,andLondon.Tochar-
acterizethesemanticcontentofthesevalues,weusedwordembed-
dingsthatmapwordstohigh-dimensionalixed-lengthnumeric
vectors.Inparticular,weusedapre-trainedGloVedictionary[22]
containing50-dimensionalrepresentationsof400KEnglishwords
aggregatedfrom6Btokens,usedfortaskssuchastextsimilar-
ity[16].Foreachvalueinacolumn,ifthevalueisasingleword,
welookupthewordembeddingfromtheGloVedictionary.We
omitatermifitdoesnotappearintheGloVedictionary.Forvalues
containingmultiplewords,welookedupeachdistinctwordand
representedthevaluewiththemeanofthedistinctwordvectors.
Then,wecomputedthemean,mode,medianandvarianceofword
vectorsacrossallvaluesinacolumn.

Paragraphvectors.Torepresenteachcolumnwithaixed-length
numericalvector,weimplementedtheDistributedBagofWords
versionofParagraphVector(PV-DBOW)[18].Paragraphvectors
wereoriginallydevelopedtonumericallyrepresentthe“topic”of
piecesoftexts,buthaveprovenefectiveformoregeneraltasks,
suchasdocumentsimilarity[8].Inourimplementation,eachcol-
umnisa“paragraph”whilevalueswithinacolumnare“words”:
boththeentirecolumnandconstituentvaluesarerepresentedby
one-hotencodedvectors.
Afterpoolingtogetherallcolumnsacrossallclasses,thetraining

procedureforeachcolumninthesame60%trainingsetusedbythe
mainSherlockmodelisasfollows.Werandomlyselectawindow
ofvaluevectors,concatenatethecolumnvectorwiththeremaining
valuevectors,thentrainasinglemodeltopredicttheformerfrom
thelatter.UsingtheGensimlibrary[28],wetrainedthismodel
for20iterations.Weusedthetrainedmodeltomapeachcolumn
inboththetrainingandtestsetstoa400-dimensionalparagraph
vector,whichprovidedabalancebetweenpredictivepowerand
computationaltractability.

3.3 FilteringandPreprocessing

CertaintypesoccurmorefrequentlyintheVizNetcorpusthan
others.Forexample,descriptionandcityaremorecommon
thancollectionandcontinent.Toaddressthisheterogeneity,
welimitedthenumberofcolumnstoatmost15Kperclassand
excludedthe10%typescontaininglessthan1Kcolumns.
Othersemantictypes,especiallythosedescribingnumericalcon-

cepts,areunlikelytoberepresentedbywordembeddings.Tocon-
tendwiththisissue,weilteredoutthetypesforwhichatleast
15%ofthecolumnsdidnotcontainasinglewordthatispresentin

theGloVedictionary.Thisilterresultedinainaltotalof686,765
columnscorrespondingto78semantictypes,ofwhichalistis
includedinTable7intheAppendix.Thedistributionofnumberof
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columnspersemantictypeisshowninFigure3.

Figure3:Numberofcolumnspersemantictypeextracted
fromVizNetafterilteringoutthetypeswithmorethan15%
ofthecolumnsnotpresentintheGloVedictionary,orwith
lessthan1Kcolumns.

Beforemodeling,wepreprocessourfeaturesbycreatinganad-
ditionalbinaryfeatureindicatingwhetherwordembeddingswere
successfullyextractedforagivencolumn.Includingthisfeature
resultsinatotalof1,588features.Then,weimputemissingvalues
acrossallfeatureswiththemeanoftherespectivefeature.

4 METHODS

Wedescribeourdeeplearningmodel,randomforestbaseline,two
matching-basedbenchmarks,andcrowdsourcedconsensusbench-
mark.Then,weexplainourtrainingandevaluationprocedures.

4.1 Sherlock:AMulti-inputNeuralNetwork

Priormachinelearningapproachestosemantictypedetection[19,
33]trainedsimplemodels,suchaslogisticregression,onrelatively
smallfeaturesets.Weconsiderasigniicantlylargernumberof
featuresandsamples,whichmotivatesouruseofafeedforward
neuralnetwork.Speciically,giventhediferentnumberoffeatures
andvaryingnoiselevelswithineachfeaturecategory,weusea
multi-inputarchitecturewithhyperparametersshowninFigure4.
Atahigh-level,wetrainsubnetworksforeachfeaturecategory

exceptthestatisticalfeatures,whichconsistofonly27features.
Thesesubnetworks“compress”inputfeaturestoanoutputofixed
dimension.Wechosethisdimensiontobeequaltothenumberof
typesinordertoevaluateeachsubnetworkindependently.Then,
weconcatenatetheweightsofthethreeoutputlayerswiththe
statisticalfeaturestoformtheinputlayeroftheprimarynetwork.
Eachnetworkconsistsoftwohiddenlayerswithrectiiedlinear

unit(ReLU)activationfunctions.Experimentswithhiddenlayer
sizesbetween100and1,000(i.e.,ontheorderoftheinputlayer
dimension)indicatethathiddenlayersizesof300,200,and400
forthecharacter-level,wordembedding,andparagraphvector
subnetworks,respectively,providesthebestresults.Toprevent
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overitting,weincludeddropoutlayersandweightdecayterms.
Theinalclasspredictionsresultfromtheoutputoftheinalsoftmax
layer,correspondingtothenetwork’sconidenceaboutasample
belongingtoeachclass,thepredictedlabelthenistheclasswith
thehighestconidence.Theneuralnetwork,whichwerefertoas

Primary Network

Batch Norm
(size=128)

Concatenate

ReLU (500 units)

ReLU (500 units)

Output (78 units)

Softmax

Input Features

ReLU (x units)

Batch Norm

Dropout

ReLU (x units)

Output (78 units)

Softmax

Feature-specific
Subnetwork

Dropout
(rate=0.3)

Output

Character

Output

Word

Output

Paragraph

Statistical

Metric
Accuracy

Loss Function
Cross-Entropy

Optimizer
Adam

Epochs
100

Early Stopping Patience
5

Hyperparameters

Learning Rate
1e-4

Weight Decay Rate
1e-4

“Sherlock,”isimplementedinTensorFlow[1].

Figure4: Architectureoftheprimarynetworkandits
feature-speciicsubnetworks,andthe hyperparameters
usedfortraining.

4.2 Benchmarks

TomeasuretherelativeperformanceofSherlock,wecompare
againstfourbenchmarks.

Machinelearningclassiiers.Theirstbenchmarkisadecision
tree,anon-parametricmachinelearningmodelwithreasonable
“out-of-the-box”performanceandstraightforwardinterpretation.
Weusethedecisiontreetorepresentthesimplermodelsfound
inpriorresearch,suchasthelogisticregressionusedinPhamet
al.[23].Learningcurvesindicatedthatdecisiontreeperformance
plateauedbeyondadepthof50,whichwethenusedasthemaxi-
mumdepth.Wealsoaddarandomforestclassiierwebuiltfrom
10suchtrees,whichoftenyieldssigniicantlybetterperformance.
Forallremainingparameters,weusedthedefaultsettingsinthe
scikit-learnpackage[21].

Dictionary.Dictionariesarecommonlyusedtodetectseman-
tictypesthatcontainainitesetofvalidvalues,suchascountry,
day,andlanguage.Theirstmatching-basedbenchmarkisadic-
tionarythatmapscolumnvaluesorheaderstosemantictypes.For

eachtype,wecollectedthe1,000mostfrequentlyoccurringvalues
acrossallcolumns,resultingin78,000{value:type}pairs.For
example,Figure5showsexamplesofentriesmappedtothegrades
type.Givenanunseendatacolumnattesttime,wecompare1,000
randomlyselectedcolumnvaluestoeachentryofthedictionary,

Dictionary Entries (20 out of 1000)

Learned Regular Expression

\w\w \-(?: \w\w)*+|[06PK][A-Za-z]*+\-\w|\w\w\w\w\w\w \w\w \w\w\w \w\w

9-12
K-5
PK - 05
09 - 12

KG - 05
PRESCHOOL-5
6-8
KG-06

06 - 08
PK -
PRESCHOOL-8
PK - 8

KG - 12
K-8
06 - 12
K-̂

KG - 08
- 12
PK - 12
PK - 08

thenclassifythecolumnasthemostfrequentlymatchedtype.

Figure5:Examplesofdictionaryentriesandalearnedregu-
larexpressionforthegradestype.

Learnedregularexpressions.Regularexpressionsarefrequently
usedtodetectsemantictypeswithcommoncharacterpatterns,such
asaddress,birthdate,andyear.Thesecondmatching-based
benchmarkusespatternsofcharactersspeciiedbylearnedregular
expressions.Welearnregularexpressionsforeachtypeusingthe
evolutionaryprocedureofBartolietal.[3].Consistentwiththe
originalsetup,werandomlysampled50“positivevalues”fromeach
type,and50“negative”valuesfromothertypes.Anexampleofa
learnedregularexpressioninJavaformatforthegradestypeis
showninFigure5.Aswiththedictionarybenchmark,wematch
1,000randomlyselectedvaluesagainstlearnedregularexpressions,
thenusemajorityvotetodeterminetheinalpredictedtype.

Crowdsourcedannotations.Toassesstheperformanceofhuman
annotatorsatpredictingsemantictype,weconductedacrowd-
sourcedexperiment.Theexperimentbeganbydeiningtheconcepts
ofdataandsemantictype,thenscreenedoutparticipantsunableto
selectaspeciiedsemantictype.Aftertheprescreen,participants
completedthreesetsoftenquestionsseparatedbytwoattention
checks.Eachquestionpresentedalistofdatavalues,asked“Which
oneofthefollowingtypesbestdescribesthesedatavalues?”,and
requiredparticipantstoselectasingletypefromascrollingmenu
with78types.Questionswerepopulatedfromapoolof780samples
containing10randomlyselectedvaluesfromall78types.
WeusedtheMechanicalTurkcrowdsourcingplatform[17]to

recruit390participantsthatwerenativeEnglishspeakersandhad
≥95%HITapprovalrating,ensuringhigh-qualityannotations.Par-
ticipantscompletedtheexperimentin16minutesand22secondson
averageandwerecompensated2USD,arateslightlyexceedingthe
UnitedStatesfederalminimumwageof7.25USD.Detailedworker
demographicsaredescribedinAppendixA.2.Overall,390partic-
ipantsannotated30sampleseach,resultinginatotalof11,700
annotations,oranaverageof15annotationspersample.Foreach
sample,weusedthemostfrequent(i.e.,themode)typefromthe15
annotationsasthecrowdsourcedconsensusannotation.

4.3 TrainingandEvaluation

Toensureconsistentevaluationacrossbenchmarks,wedividedthe
datainto60/20/20training/validation/testingsplits.Toaccountfor
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classimbalances,weevaluatemodelperformanceusingtheaverage
F1-score=2×(precision×recall)/(precision+recall),weighted
bythenumberofcolumnsperclassinthetestset(i.e.,thesupport).
Toestimatethemeanand95%percentileerrorofthecrowdsourced
consensusF1score,weconducted10

5bootstrapsimulationsby
resamplingannotationsforeachsamplewithreplacement.
Computationalefortandspacerequiredatpredictiontimeare

alsoimportantmetricsformodelsincorporatedintouser-facing
systems.Wemeasuretheaveragetimeinsecondsneededtoextract
featuresandgenerateapredictionforasinglesample,andreport
thespacerequiredbythemodelsinmegabytes.

5 RESULTS

Wereporttheperformanceofourmulti-inputneuralnetworkand
compareagainstbenchmarks.Then,weexaminetypesforwhich
Sherlockdemonstratedhighandlowperformance,thecontribution
ofeachfeaturecategoryinisolation,decisiontreefeatureimpor-
tances,andtheefectofrejectionthresholdonperformance.

5.1 BenchmarkResults

WecompareSherlockagainstdecisiontree,randomforest,dictionary-
based,learnedregularexpression,andcrowdsourcedconsensus
benchmarks.Table2presentstheF1scoreweightedbysupport,
runtimeinsecondspersample,andsizeinmegabytesofeachmodel.

Table2:Support-weightedF1score,runtimeatprediction,
andsizeofSherlockandfourbenchmarks.

Method F1Score Runtime(s) Size(Mb)

MachineLearning

Sherlock 0.89 0.42(±0.01) 6.2
Decisiontree 0.76 0.26(±0.01) 59.1
Randomforest 0.84 0.26(±0.01) 760.4

Matching-based

Dictionary 0.16 0.01(±0.03) 0.5
Regularexpression 0.04 0.01(±0.03) 0.01

CrowdsourcedAnnotations

Consensus 0.32(±0.02) 33.74(±0.86) −

Weirstnotethatthemachinelearningmodelssigniicantlyout-
performthematching-basedandcrowdsourcedconsensusbench-
marks,intermsofF1score.Therelativelylowperformanceof
crowdsourcedconsensusisperhapsduetothevisualoverloadof
selectingfrom78types,suchthatperformancemayincreasewitha
smallernumberofcandidatetypes.Handlingalargenumberofcan-
didateclassesisabeneitofusinganML-basedormatching-based
model.Alternatively,crowdsourcedworkersmayhavediiculties
diferentiatingbetweenclassesthatareunfamiliarorcontainmany
numericvalues.Lastly,despiteourimplementingbasictraining
andhoneypotquestions,crowdsourcedworkerswilllikelyimprove
withlongertrainingtimesandstricterqualitycontrol.
Inspectionofthematching-basedbenchmarkssuggeststhatdic-

tionariesandlearnedregularexpressionsareproneto“overitting”
onthetrainingset.Feedbackfromcrowdsourcedworkerssuggests

thatannotatingsemantictypeswithalargenumberoftypesisa
challengingandambiguoustask.
Comparingthemachinelearningmodels,Sherlocksigniicantly

outperformsthedecisiontreebaseline,whiletherandomforest
classiieriscompetitive.Forcasesinwhichinterpretabilityoffea-
turesandpredictionsareimportantconsiderations,thetree-based
benchmarksmaybeasuitablechoiceofmodel.
Despitepoorpredictiveperformance,matching-basedbench-

marksaresigniicantlysmallerandfasterthanbothmachinelearn-
ingmodels.Forcasesinwhichabsoluteruntimeandmodelsizeare
critical,optimizingmatching-basedmodelsmaybeaworthwhile
approach.Thistrade-ofalsosuggestsahybridapproachofcombin-
ingmatching-basedmodelsfor“easy”typeswithmachinelearning
modelsformoreambiguoustypes.

5.2 PerformanceforIndividualTypes

Table3displaysthetopandbottomivetypes,asmeasuredbythe
F1scoreachievedbySherlockforthattype.Highperformingtypes
suchasgradesandindustryfrequentlycontainainitesetof
validvalues,asshowninFigure5forgrades.Othertypessuchas
birthdateandISBN,oftenfollowconsistentcharacterpatterns,
asshowninTable1.

Table3:TopiveandbottomivetypesbyF1score.

Type F1Score Precision Recall Support

Top5Types

Grades 0.991 0.989 0.994 1765
ISBN 0.986 0.981 0.992 1430
BirthDate 0.970 0.965 0.975 479
Industry 0.968 0.947 0.989 2958
Affiliation 0.961 0.966 0.956 1768

Bottom5Types

Brand 0.685 0.760 0.623 574
Person 0.630 0.654 0.608 579
Director 0.537 0.700 0.436 225
Sales 0.514 0.568 0.469 322
Ranking 0.468 0.612 0.349 439

Table4:Examplesoflowprecisionandlowrecalltypes.

Examples Truetype Predictedtype

LowPrecision

81,13,3,1 Rank Sales
316,481,426,1,223 Plays Sales
$,$$,$$$,$$$$,$$$$$ Symbol Sales

LowRecall

#1,#2,#3,#4,#5,#6 Ranking Rank
3,6,21,34,29,36,54 Ranking Plays
1st,2nd,3rd,4th,5th Ranking Position

TounderstandtypesforwhichSherlockperformspoorly,we
includeincorrectlypredictedexamplesforthelowestprecision
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type(sales)andthelowestrecalltype(ranking)inTable4.From
thethreeexamplesincorrectlypredictedassales,weobservethat
purelynumericalvaluesorvaluesappearinginmultipleclasses(e.g.,
currencysymbols)presentachallengetotypedetectionsystems.
Fromthethreeexamplesofincorrectlypredictedrankingcolumns,
weagainnotetheambiguityofnumericalvalues.

5.3 ContributionbyFeatureCategory

Wetrainedfeature-speciicsubnetworksinisolationandreport
theF1scoresinTable5.Wordembedding,characterdistribution,
andparagraphvectorfeaturesetsdemonstrateroughlyequalper-
formancetoeachother,andsigniicantlyabovethatoftheglobal
statisticsfeatures,thoughthismaybeduetofewerfeatures.Each
featuresetinisolationperformssigniicantlyworsethanthefull
model,supportingourcombiningofeachfeatureset.

Table5:Performancecontributionofisolatedfeaturesets.

Featureset Num.Features F1Score

Wordembeddings 201 0.79
Characterdistributions 960 0.78
Paragraphvectors 400 0.73
Globalstatistics 27 0.25

5.4 FeatureImportances

WemeasurefeatureimportancebythetotalreductionoftheGini
impuritycriterionbroughtbythatfeaturetothedecisiontreemodel.
Thetop10mostimportantfeaturesfromtheglobalstatisticsand
character-leveldistributionssetsareshowninTable6.Whileword
embeddingandparagraphvectorfeaturesareimportant,theyare
diiculttointerpretandarethereforeomitted.
InspectingTable6a,weindthatthe“numberofvalues”ina

columnisthemostimportantfeature.Certainclasseslikename
andrequirementstendedtocontainfewervalues,whileothers
likeyearandfamilycontainedsigniicantlymorevalues.The
secondmostimportantfeatureisthe“maximumvaluelength”in
characters,whichmaydiferentiateclasseswithlongvalues,such
asaddressanddescription,fromclasseswithshortvalues,such
asgenderandyear.
Thetopcharacter-leveldistributionfeaturesinTable6bsuggest

theimportanceofspeciiccharactersfordiferentiatingbetween
types.Thethirdmostimportantfeature,the“minimumnumberof
‘-’characters”,likelyhelpsdeterminedatetime-relatedtypes.The
ifthmostimportantfeature,“whetherallvalueshavea‘,’charac-
ter”mayalsodistinguishdatetime-relatedorname-relatedtypes.
Furtherstudyoffeatureimportancesforsemantictypedetectionis
apromisingdirectionforfutureresearch.

5.5 RejectionCurves

Givenunseendatavalues,Sherlockassessestheprobabilityofthose
valuesbelongingtoeachtype,thenpredictsthetypewiththehigh-
estprobability.Interpretingprobabilitiesasameasureofconidence,
wemaywanttoonlylabelsampleswithhighconidenceofbelong-
ingtoatype.Tounderstandtheefectofconidencethresholdon

Table6:Top-10featuresforthedecisiontreemodel.“Score”
denotesnormalizedginiimpurity.

(a)Top-10globalstatisticsfeatures(outof27).

Rank FeatureName Score

1 NumberofValues 1.00
2 MaximumValueLength 0.79
3 Mean#AlphabeticCharactersinCells 0.43
4 FractionofCellswithNumericCharacters 0.38
5 ColumnEntropy 0.35
6 FractionofCellswithAlphabeticalCharacters 0.33
7 NumberofNoneValues 0.33
8 MeanLengthofValues 0.28
9 ProportionofUniqueValues 0.22
10 Mean#ofNumericCharactersinCells 0.16

(b)Top-10character-leveldistributionfeatures(outof960).

Rank FeatureName Score

1 Sumof‘D’acrossvalues 1.00
2 Meannumberof‘M’ 0.77
3 Minimumnumberof‘-’ 0.69
4 Skewnessof‘,’ 0.59
5 Whetherallvalueshavea‘,’ 0.47
6 Maximumnumberof‘g’ 0.45
7 Skewnessof‘]’ 0.45
8 Meannumberof‘,’ 0.40
9 Meannumberof‘z’ 0.37
10 Sumof‘n’ 0.36
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Figure6:Rejectioncurvesshowingperformancewhilere-
jectingallbutthetopx%highestconidencesamples.

predictiveperformance,wepresenttheerror-rejectioncurvesof
SherlockandthedecisiontreemodelinFigure6.
Byintroducingarejectionthresholdof10%ofthesamples,Sher-

lockreachesanF1scoreof∼0.95.Thissigniicantincreaseinpre-
dictiveperformancesuggestsahybridapproachinwhichlowcon-
idencesamplesaremanuallyannotated.Notethatthehigherre-
jectionthreshold,thelowertheerrorwemakeinpredictinglabels,
atthecostofneedingmoreexpertcapacity.
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6 DISCUSSION

Webeganbyconsideringasetofsemantictypesdescribedby
priorworkthatidentiiescorrespondencesbetweenDBPedia[2]
andWebTables[5].Then,weconstructedadatasetconsistingof
matchesbetweenthosetypeswithcolumnsintheVizNet[14]
corpus.Inspectionofthesecolumnssuggeststhatsuchanapproach
yieldstrainingsampleswithfewfalsepositives.Afterextracting
fourcategoriesoffeaturesdescribingthevaluesofeachcolumn,
weformulatetypedetectionasamulticlassclassiicationtask.
Amulti-inputneuralnetworkdemonstrateshighpredictiveper-

formanceattheclassiicationtaskcomparedtomachinelearning,
matching-based,andcrowdsourcedbenchmarks.Wenotethatusing
real-worlddataprovidestheexamplesneededtotrainmodelsthat
detectmanytypes,atscale.Wealsoobservethatthetestexamples
frequentlyincludedirty(e.g.,missingormalformed)values,which
suggeststhatreal-worlddataalsoafordsadegreeofrobustness.
Measuringandoperationalizingthesetwobeneits,especiallywith
out-of-distributionexamples,isapromisingdirectionofresearch.
DevelopershavemultipleavenuestoincorporatingML-based

semantictypedetectionapproachesintosystems.Tosupportthe
useofSherlock“out-of-the-box,”wedistributeSherlockasaPython
library3thatcanbeeasilyinstalledandincorporatedintoexisting
codebases.Fordevelopersinterestedinadiferentsetofseman-
tictypes,weopensourceourtrainingandanalysisscripts.2The
repositoryalsosupportsdeveloperswishingtoretrainSherlock
usingdatafromtheirspeciicdataecologies,suchasenterpriseor
researchsettingswithdomain-speciicdata.
Toclose,weidentifyfourpromisingavenuesforfutureresearch:

(1)enhancingthequantityandqualityofthetrainingdata,(2)
increasingthenumberofconsideredtypes,(3)enrichingtheset
offeaturesextractedfromeachcolumn,and(4)developingshared
benchmarks.

Enhancingdataquantityandquality.Machinelearningmodel
performanceislimitedbythenumberoftrainingexamples.Sher-
lockisnoexception.ThoughtheVizNetcorpusaggregatesdatasets
fromfoursources,thereisanopportunitytoincorporatetrain-
ingexamplesfromadditionalsources,suchasKaggle,2datasets
includedalongsidetheRstatisticalenvironment,3andtheClueWeb
webcrawlofExcelspreadsheets.4Weexpectincreasesintraining
datadiversitytoimprovetherobustnessandgeneralizabilityof
Sherlock.
Modelpredictionsqualityisfurtherdeterminedbythecorre-

spondencebetweentrainingdataandunseentestingdata,suchas
datasetsuploadedbyanalyststoasystem.Ourmethodofmatching
semantictypeswithcolumnsfromreal-worlddatarepositoriesaf-
fordsboththeharvestingoftrainingsamplesatscaleandtheability
touseaspectsofdirtydata,suchasthenumberofmissingvalues,
asfeatures.Whileweveriiedthequalityoftrainingdatathrough
manualinspection,thereisanopportunitytolabeldataqualityat
scalebycombiningcrowdsourcingwithactivelearning.Byassess-
ingthequalityofeachtrainingdataset,suchanapproachwould
supporttrainingsemantictypedetectionmodelswithcompletely
“clean”dataatscale.

2https://www.kaggle.com/datasets
3https://github.com/vincentarelbundock/Rdatasets
4http://lemurproject.org/clueweb09.php

Increasingnumberofsemantictypes.Togroundourapproachin
priorwork,thispaperconsidered78semantictypesdescribedby
theT2Dv2GoldStandard.While78semantictypesisasubstantial
increaseoverwhatissupportedinexistingsystems,itisasmall
subsetofentitiesfromexistingknowledgebases:theDBPediaon-
tology[2]covers685classes,WordNet[32]contains175Ksynonym
sets,andKnowledgeGraph5containsmillionsofentities.Theenti-
tieswithintheseknowledgebases,andhierarchicalrelationships
betweenentities,provideanabundanceofsemantictypes.
Inlieuofarelevantontology,researcherscancountfrequency

ofcolumnheadersinavailabledatatodeterminewhichsemantic
typestoconsider.Suchadata-drivenapproachwouldensurethe
maximumnumberoftrainingsamplesforeachsemantictype.Addi-
tionally,thesesurfacedsemantictypesarepotentiallymorespeciic
tousecaseanddataecology,suchasdatascientistsintegrating
enterprisedatabaseswithinacompany.

Enrichingfeatureextraction.Weincorporatefourcategoriesof
featuresthatdescribediferentaspectsofcolumnvalues.Apromis-
ingapproachistoincludefeaturesthatdescriberelationshipsbe-
tweencolumns(e.g.,correlation,numberofoverlappingvalues,
andnamesimilarity),aspectsoftheentiredataset(e.g.,numberof
columns),andsourcecontext(e.g.,webpagetitleforscrapedtables).
Additionally,whileweusedfeaturestoaidinterpretationofresults,
neuralnetworksusingrawdataasinputareapromisingdirection
ofresearch.Forexample,acharacter-levelrecurrentneuralnetwork
couldclassifyconcatenatedcolumnvalues.

Developingsharedbenchmarks.Despiterichpriorresearchinse-
mantictypedetection,wecouldnotindabenchmarkwithpublicly
availablecodethataccommodatesalargersetofsemantictypes.
Wethereforeincorporatedbenchmarksthatapproximatedstate-
of-the-artdatasystems,tothebestofourknowledge.However,
domainssuchasimageclassiicationandlanguagetranslationhave
beneitedfromsharedbenchmarksandtestsets.Towardsthisend,
wehopethatopen-sourcingthedataandcodeusedinthispaper
canbeneitfutureresearch.

7 CONCLUSION

Correctlydetectingsemantictypesiscriticaltomanyimportant
datasciencetasks.Machinelearningmodelscoupledwithlarge-
scaledatarepositorieshavedemonstratedsuccessacrossdomains,
andsuggestapromisingapproachtosemantictypedetection.Sher-
lockprovidesastepforwardtowardsthisdirection.
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A APPENDIX

A.1 SupplementalTables

Table7:78semantictypesincludedinthisstudy.

SemanticTypes
Address Code Education Notes Requirement

Ailiate Collection Elevation Operator Result

Ailiation Command Family Order Sales
Age Company Filesize Organisation Service

Album Component Format Origin Sex

Area Continent Gender Owner Species
Artist Country Genre Person State

Birthdate County Grades Plays Status
Birthplace Creator Industry Position Symbol

Brand Credit ISBN Product Team

Capacity Currency Jockey Publisher Teamname
Category Day Language Range Type

City Depth Location Rank Weight

Class Description Manufacturer Ranking Year
Classiication Director Name Region

Club Duration Nationality Religion

Table8:Descriptionofthe27globalstatisticalfeatures.As-
terisks(*)denotefeaturesincludedinVenetisetal.[33].

Featuredescription

Numberofvalues.
Columnentropy.
Fractionofvalueswithuniquecontent.*
Fractionofvalueswithnumericalcharacters.*
Fractionofvalueswithalphabeticalcharacters.
Meanandstd.ofthenumberofnumericalcharactersinvalues.*
Meanandstd.ofthenumberofalphabeticalcharactersinvalues.*
Meanandstd.ofthenumberspecialcharactersinvalues.*
Meanandstd.ofthenumberofwordsinvalues.*
{Percentage,count,only/has-Boolean}oftheNonevalues.
{Stats,sum,min,max,median,mode,kurtosis,skewness,
any/all-Boolean}oflengthofvalues.

A.2 MechanicalTurkDemographics

Ofthe390participants,57.18%weremaleand0.43%female.1.5%
completedsomehighschoolwithoutattainingadiploma,while
othershadassociates(10.5%),bachelor’s(61.0%),master’s(13.1%),or
doctorateorprofessionaldegree(1.8%)inadditiontoahighschool
diploma(12.3%).26.4%ofparticipantsworkedwithdatadaily,33.1%
weekly,17.2%monthly,and11.0%annually,while12.3%neverwork
withdata.Intermsofage:10.0%ofparticipantswerebetween18-23,
24-34(60.3%),35-40(13.3%),41-54(12.6%),andabove55(3.8%).

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1508

https://doi.org/10.14778/1453856.1453916
https://doi.org/10.1109/ICDE.2018.00093
http://vega.github.io/datalib
http://vega.github.io/datalib
https://pypi.org/project/messytables
https://pypi.org/project/messytables
https://datastudio.google.com
https://csvkit.readthedocs.org
https://csvkit.readthedocs.org
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://www.trifacta.com
https://wordnet.princeton.edu
https://wordnet.princeton.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	3.1 Data Collection
	3.2 Feature Extraction
	3.3 Filtering and Preprocessing

	4 Methods
	4.1 Sherlock: A Multi-input Neural Network
	4.2 Benchmarks
	4.3 Training and Evaluation

	5 Results
	5.1 Benchmark Results
	5.2 Performance for Individual Types
	5.3 Contribution by Feature Category
	5.4 Feature Importances
	5.5 Rejection Curves

	6 Discussion
	7 Conclusion
	References
	A Appendix
	A.1 Supplemental Tables
	A.2 Mechanical Turk Demographics



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 36.68, 717.60 Width 538.64 Height 30.39 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         5
         AllDoc
         5
              

       CurrentAVDoc
          

     36.6779 717.5964 538.6406 30.3903 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     9
     8
     9
      

   1
  

 HistoryList_V1
 qi2base





