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ABSTRACT

There is significant interest in the technical and policy com-
munities regarding the extent, scope, and consumer harm
of persistent interdomain congestion. We provide empiri-
cal grounding for discussions of interdomain congestion by
developing a system and method to measure congestion on
thousands of interdomain links without direct access to them.
We implement a system based on the Time Series Latency
Probes (TSLP) technique that identifies links with evidence of
recurring congestion suggestive of an under-provisioned link.
We deploy our system at 86 vantage points worldwide and
show that congestion inferred using our lightweight TSLP
method correlates with other metrics of interconnection
performance impairment. We use our method to study inter-
domain links of eight large U.S. broadband access providers
from March 2016 to December 2017, and validate our in-
ferences against ground-truth traffic statistics from two of
the providers. For the period of time over which we gath-
ered measurements, we did not find evidence of widespread
endemic congestion on interdomain links between access
ISPs and directly connected transit and content providers,
although some such links exhibited recurring congestion pat-
terns. We describe limitations, open challenges, and a path
toward the use of this method for large-scale third-party
monitoring of the Internet interconnection ecosystem.
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1 INTRODUCTION

In its strictest definition—demand exceeds capacity of a
resource—congestion is a widespread phenomenon on the
Internet, and central to the proper functioning of TCP. An
endpoint of a TCP connection induces congestion as a means
to ascertain its most appropriate sending rate, increasing its
packet sending rate until it detects a failure of the other
end to acknowledge receipt of a packet. Other common oc-
currences, including traffic management transitions, router
operating system overheads, network configuration errors,
flash crowds (e.g., software releases), and malicious attacks
can induce isolated episodes of network congestion. These
are inevitable and inherent aspects of packet switched public
IP-based networks, and are not the focus of this work.

Our interest is in persistent congestion due to a long-
term mismatch between installed capacity and actual traffic,
particularly at points of interconnection between networks.
In this context, congestion manifests as an increase in the
latency of packet delivery due to the time that the packet
waits in a router buffer, and potentially dropped packets,
which may be an impairment itself but also causes a sender
to slow its sending rate, and poses a risk to the user quality
of experience (QoE). Although of regulatory interest in the
U.S. for years [37], there have thus far been no methods or
tools for execution of lightweight measurement from the
edge that is capable of detecting this type of congestion.

Several recent peering disputes covered in the press [10,
17-19, 31, 32, 69] elicited various claims by involved parties
regarding the causes of congestion and poor performance.
However, there is a dearth of publicly available data that
can shed light on interconnection issues. In isolated cases,
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providers have volunteered limited, anonymized informa-
tion that reveals congestion at interconnection points [66].
In 2014 and 2015, the Measurement Lab (M-Lab) consortium
released reports that inferred congestion at interconnection
points between large content and access networks in the U.S.
using crowd-sourced Network Diagnostic Tests (NDT) by
end users [9, 51]. Some content providers release end-to-end
performance data (e.g., video quality reports) that provide
aggregate information about performance between them-
selves and access providers [42, 54]. However, end-to-end
statistics cannot accurately map congestion to specific in-
terconnection points, and the coverage of crowd-sourced
measurements is low [65]. In 2016, seven access providers
volunteered anonymized and aggregated statistics of interdo-
main link utilization, but the level of aggregation prevented
inference of congestion on individual links [35]. The U.S.
broadband ecosystem (access and transit ISPs as well as edge
providers) is at a daunting crossroads—without clear regula-
tory oversight, and without transparency into performance
of critical components of the infrastructure.

We report the results of an effort in which we developed,
validated, and operationalized a method to detect congestion
at interconnection points between networks at a link-level
granularity. Our system identifies all the interdomain links
visible from a vantage point (VP) in a given access ISP [49],
and uses latency measurements to infer congestion on those
links [48]. This paper provides the following contributions:

(1) We describe the design and implementation of
a system that conducts ongoing congestion measure-
ments of thousands of interdomain links from a set
of topologically and geographically diverse vantage
points. Since March 2016, we have collected measurements
from 86 vantage points in 47 ISPs. For every link we measure,
we infer whether that link shows evidence of congestion,
and report the duration that congestion was present.

(2) We validate our inferences of congestion using
other approaches and with direct operator feedback.
We show that inferences of congestion using the TSLP tech-
nique are consistent with those obtained from more inva-
sive active measurements (loss rate, throughput, and video
streaming performance). We also use direct operator valida-
tion to confirm that our specific inferences about congestion
match their proprietary data on link utilization.

(3) We report results of a longitudinal measurement
study of interdomain congestion in eight broadband
access networks in the U.S. Our focus on the U.S. broad-
band ecosystem is motivated by a history of public peering
disputes between large U.S. broadband access providers and
content providers [10, 17-19, 31, 32, 69], and the concentra-
tion of our measurement VPs in the U.S. For the period of
time over which we gathered measurements, we did not find
evidence of widespread endemic congestion of interdomain
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links between U.S. access ISPs and directly connected transit
and content providers. We did find evidence of congestion
between specific parties, in some cases quite severe, e.g.,
exceeding half the day for many days.

(4) We are publicly releasing our analysis scripts,
and the underlying datasets via an interactive visu-
alization interface and query API to encourage re-
producibility of our results. Our data management sys-
tem, based on the InfluxDB [2] time-series database and
Grafana [1] visualization front-end, allows interactive data
exploration, near real-time views of interdomain links, and
longitudinal views. While this paper focuses on data from
U.S. broadband access providers, we are publicly releasing
measurements from VPs outside the U.S. as well.

2 RELATED WORK

Interdomain interconnection is one of the classic tussles in
the Internet [27], as networked organizations must intercon-
nect to provide connectivity, but those networks may have
misaligned interests. In 2009, Bauer et al. [16] presented an
overview of the evolution of Internet congestion, arguing
that recent increases in edge traffic demands and changes
in user expectations have forced network operators to use
non-TCP congestion control mechanisms, such as volume-
based limits and active traffic management. At the same time,
the Internet’s interconnection structure has evolved [29, 41],
most notably the proliferation of Internet Exchanges (IXes)
as anchor points in the mesh of interconnection [7]. In 2010,
Labovitz et al. [46] reported that the majority of interdo-
main traffic was exchanged directly between content and
consumer networks, and by 2013 Netflix accounted for a
third of peak downstream traffic [63]. These changes have
resulted in heated disputes (e.g. [10, 17-19, 31, 32, 69]) over
the provision and management of interdomain links, as no
single operator has complete control of the link’s operation.
Characterizing these disputes is challenging due to scant
publicly available data on interconnection.

In 2008, Deng et al. [28] introduced a method for detect-
ing interdomain congestion using latency measurements.
Because their pong tool requires cooperative endpoints, i.e.,
a system on the other side of an interdomain link, the ap-
proach is challenging to deploy at scale. In 2014, Luckie et
al. [48] introduced the Time Series Latency Probes (TSLP)
technique, which sends probe packets toward an address
across a link, with TTLs set to expire at the near and far
routers attached to the link. The TSLP approach is appeal-
ing because of its lightweight nature and the feasibility of
implementing measurements from the edge of the network,
without cooperation from operators or direct access to bor-
der routers (unlike [30]). Luckie et al. [48] identified several
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challenges in applying TSLP at scale, including the topo-
logical problem of accurately identifying interdomain links,
and that replies might travel along an asymmetric reverse
path. While they evaluated TSLP on a single operational link
from a research network, that link did not have persistent
congestion, and they did not conduct systematic validation.

In 2016, Luckie et al. [49] tackled the interdomain border-
mapping challenge, developing and validating the bdrmap
algorithm to infer interdomain links of an access provider
at the IP-link level granularity. This work expanded on the
then state-of-the-art in characterizing interdomain (AS-level)
connectivity [24, 56-58, 62]. Recently, Fanou et al. [33] used
bdrmap and TSLP to detect and analyze the causes of con-
gestion at IXP infrastructure in Africa. Chandrasekaran et
al. [23] and Fontugne et al. [39] used traceroute data — be-
tween pairs of CDN servers and from RIPE Atlas, respectively
- to analyze routing changes, forwarding anomalies, and ele-
vated latencies due to congestion. Both efforts used existing
traceroute measurements to characterize observed paths. In
contrast, our work uses focused measurements targeted at
all visible interdomain links of the network hosting our VPs,
and we conducted systematic validation.

Work on characterizing interdomain congestion in the U.S.
is sparse, largely due to the proprietary nature of the data
required to validate inferences. Different stakeholders are
willing to publish reports, aggregated data, or end-to-end
throughput measurements, but none of these approaches
allow insight into individual interconnections. The Measure-
ment Lab studies [9, 51] did not have path information, with-
out which it is challenging to conclude that observed conges-
tion is at the interconnection (it could be internal to ASes).
Futhermore, the crowd-sourced nature of NDT tests used in
these studies make it difficult to conclude that observed diur-
nal variations are due to congestion as opposed to variations
due to a different testing sample [65]. In 2017, Sundaresan
et al. [64] proposed a technique that uses TCP connection
statistics to determine if a TCP flow experienced self-induced
or external congestion. While the technique provides more
information than a regular speed test about what limits a
TCP flow, it still cannot localize where the bottleneck lies.

The methods we use in this paper enable fine-grained
link-level congestion inferences, which can be aggregated to
higher levels of granularity such as region and provider-wide.
We hope that our systematic validation of the method yields
an opportunity for the FCC and other regulators, as well as
third-parties, to augment existing measurement fabrics with
a lightweight method for capturing potential interconnection
performance issues.
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Figure 1: Our system for interdomain link discovery,
active measurements, and congestion inference.

3 SYSTEM AND METHODS

Figure 1 provides an overview of the measurement system
we built to operationalize the TSLP method and execute it
at scale. The system utilizes a set of Vantage Points (VPs)
to execute a diverse set of measurements: TSLP (§3.1) and
bdrmap (§3.2) measurements which form the core of the
method, and three separate measurement efforts to validate
the TSLP method and to provide context on measurable
impacts of congestion: high-frequency loss measurements
(§3.3), throughput measurements (§3.4), and video streaming
performance tests (§3.5). The backend system is responsible
for maintaining an up-to-date TSLP probing state and man-
aging time-series data, for which we use InfluxDB [2]. We
have set up a Grafana [1] frontend to provide interactive vi-
sualization of our data via a web browser. Since March 2016,
our system has used 86 VPs in 47 networks in 24 countries.
Due to the volunteer-based nature of Ark VP hosting, there
is churn in the set of usable VPs. As of December 2017, our
measurements spanned 63 VPs in 39 networks in 22 coun-
tries. In §6 we report on results from 29 VPs in 8 broadband
access networks in the United States. To encourage repro-
ducibility of our results, we will provide public access to the
Grafana interface and API access to the data in InfluxDB.

3.1 Time-Series Latency Probing method

The Time-Series Latency Probing (TSLP) method [48] builds
on a basic intuition: if the offered load at a link approaches
(or exceeds) capacity, then packets are buffered, leading to
an increase in measured latency through that link. Given a
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Figure 2: The Time-series latency probing (TSLP)
method sends TTL-limited packets expiring at border
routers #A and #B to measure link delay patterns.

vantage point (VP) inside a network, we use ICMP probes to
measure latencies over time to the two ends of an identified
interdomain link (near and far end, BR #A and BR #B in
Figure 2). If the latency to the far end of the link is elevated
but that to the near end is not, then a possible cause of
the increased latency is congestion at the interdomain link.
Because packets sent directly fo routers are often processed
differently (e.g., in a less-optimized code path) from those
sent through them, TSLP sends ICMP probes to a destination
behind the target link, with TTLs such that the packets expire
at the near and far interfaces.

For each inferred interdomain link (§3.2), the TSLP target
selection module identifies up to three destinations such that
both the near and far ends of the target link are on the for-
ward path toward those destinations. We prefer destinations
in the address space of the neighbor network; however, this
is not possible for all inferred interdomain links. For each
measured link, TSLP uses all three destinations to probe both
endpoints of the link every five minutes. While probing the
near and far endpoints of a link using the same destination,
we maintain the flow identifier of our probes constant by
using the same ICMP checksum, so as to force the same
forward path toward the link in the presence of per-flow
load balancing (ECMP) [13]. Additionally, since June 2017
we have implemented a feature that uses the same flow iden-
tifiers across all bdrmap runs used to discover interdomain
links (§3.2). Using three destinations provides some redun-
dancy in case the route toward a destination changes to no
longer traverse the target link. When periodically updating
the probing set (§3.2), we do not change the destination used
to probe a link unless that destination has lost visibility of
the link. This ensures that over time the set of destinations
(and thus the forward paths to the link through the VP’s
network) are constant to the extent possible. To minimize
load on the VP’s host, each VP limits its overall probing TSLP
rate to 100 packets per second (pps).

3.2 bdrmap: Identifying links to probe

Each VP runs bdrmap [49] to infer the interdomain links be-
tween the host network and neighbor networks visible from
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the VP. The interdomain links that bdrmap infers represent
IP-level links between the border routers of the host network
and neighbor network. bdrmap uses an efficient variant of
traceroute to trace the path to every routed prefix observed
in BGP, and also performs alias resolution measurements
on the set of discovered interfaces (using Ally and Mercator,
see [49] for details). The border mapping data collection runs
continuously in the background on the VP at a low probing
rate (100 packets per second). The bdrmap analysis module
processes this raw topology data, applying a set of heuris-
tics [49] to infer interdomain links of the network hosting
the VP. It uses as input a prefix-to-AS mapping constructed
from public BGP data (RouteViews [55] and RIPE RIS [5]),
a set of AS-relationships from CAIDA’s AS-relationship al-
gorithm [20, 50], a list of IXP prefixes curated from Packet
Clearing House (PCH) [59] and peeringDB [4] data, WHOIS
data from RIR delegation files [6, 11, 12, 47, 61], and a list of
sibling ASes of the network hosting the VP.

We create sibling lists based on CAIDA’s AS-to-
organization dataset [21], which is generated quarterly by
automatically parsing WHOIS data. However, automatic pro-
cessing of WHOIS data is inherently error-prone, and we
need an accurate list of siblings of the network hosting the
VP, or we risk mis-identifying the boundaries of the organiza-
tion corresponding to the hosting network. We undertook a
manual effort, reviewing WHOIS information to add missing
siblings of the network hosting the VP and remove spurious
ones. We are releasing our list of AS siblings used for this
study along with other datasets and code.

Over time, the interdomain links visible from a VP, as
well as the interdomain link traversed from a VP toward a
destination may change. To keep the probing set up-to-date,
we use the bdrmap traceroutes to continuously update the
mapping between destinations and visible interdomain links.
Currently, we use a full cycle of bdrmap traceroutes (which
takes approximately 1-3 days depending on the monitor) to
update the probing set. We found that this process is effective
at keeping the probing set up to date: the response rate to
our TSLP probes was greater than 90% for many of our VPs.
We may still incur delays up to three days in correcting the
loss of visibility due to a routing change in the network. In
future work, we plan to make the probing update process
reactive, updating the probing set as soon as we observe that
a destination has lost visibility of an interdomain link.

3.3 Packet loss measurement

As with TSLP latency measurements, the loss measurement
module sends TTL-limited ICMP echo probes toward both
the near and far ends of interdomain links, set to expire
at the target interfaces. Using an overall probing budget
of 150pps from each VP, this module probes each target
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interface every second. This probing rate generates 300 data
points per link in a 5-minute window, in contrast to the TSLP
probing described above, which generates 1-3 data points
per link in a 5-minute window. Due to the high probing rate
required to sample all interfaces once per second, this module
performs loss measurements on only a subset of links probed
with TSLP, specifically those that satisfy two conditions:
(1) they interconnect to networks that are either providers
or peers (not customers) of the network hosting the VP,
as inferred by CAIDA’s AS-relationship algorithm [20, 50],
or to networks on a static list of ASes representing large
transit and content providers; and (2) in a previous week they
experienced at least one episode of congestion as inferred
by one of the two methods described in §4.

3.4 Throughput measurements

We use the Network Diagnostic Tool (NDT) to measure
upload and download TCP throughput to M-Lab NDT
servers [3]. Given the invasive nature of the NDT test, and
to ensure that its results can be used for validation, we iden-
tify appropriate M-lab NDT servers using traceroutes from
VPs to NDT servers so that the tested path crosses an inter-
domain link that shows evidence of congestion. The NDT
measurement performs upload and download throughput
tests from the selected NDT server, each for 10 seconds. After
the throughput tests, this module performs a traceroute to-
ward the NDT server to obtain the forward path from the VP
to the NDT server, from which it identifies the interdomain
link traversed in the forward path. We also use traceroutes
from the NDT servers toward our VPs, which the M-lab plat-
form performs toward every client that conducts an NDT
throughput test, for visibility into the reverse path.

3.5 YouTube streaming measurements

We measure YouTube streaming performance by download-
ing YouTube videos using the YouTube-test tool [8]. The
tool first downloads the webpage of a given video to extract
the video’s manifest, which contains metadata such as the
video/audio bitrate, encoding scheme, and URL for down-
loading the video from the selected cache. It then streams
the video with the highest supported bitrate. We selected
popular videos, at least 1-minute long. To evaluate video
streaming performance, the tool emulates the playback pro-
cess by buffering and decoding the video data. After the test
completes, we perform a traceroute toward the IP address of
the video cache to obtain the forward path. We then correlate
the YouTube data collected from the VPs to the interdomain
links by using the traceroute collected during the tests to
match the hops to the near and far IPs of the links as seen
from the VPs using bdrmap. Although asymmetric paths are
possible during these tests, most connections to Google are
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via a front end across a direct peering link [22, 25], so the
video traffic likely crosses that peering link.

Both NDT throughput tests and YouTube streaming tests
are invasive measurements, so we perform them at low
frequency—every 15 minutes from 5pm to 11pm local time
at the VP, and hourly at other times.

4 CONGESTION INFERENCE

We next present two time-series analysis methods we used to
infer congestion. The first, level-shift, analyzes time series in
weekly chunks to find episodes of elevated latency (§4.1). We
used this method for nine months to trigger reactive loss rate
probing (3.3) from March to December 2017. We developed
a second method that uses autocorrelation (§4.2) on a longer
time window and is more effective at identifying links that
show evidence of consistently recurring congestion, which
are the primary focus of this work. Our system uses these
methods to identify congestion windows represented as start
and end timestamps of each inferred congestion event.

4.1 Level-shift

The level-shift detection heuristic is based on CUSUM [67].
As a pre-processing step, we select the minimum latency in
a time bin to filter outliers, e.g., due to slow ICMP responses
from target routers or transient queuing. Given a parameter [
(termed the cut-off length), the algorithm detects level-shifts
of duration at least [/2. The algorithm first estimates the
average variance 012 of the entire time series, calculated as
the average variance in a moving window of length I. It then
determines the minimum difference A between the means
of two adjacent regimes of length [ that is statistically signif-
icant according to the Student’s t-test (at the 95% confidence
level), to infer a level-shift. To handle outliers in the time
series, the algorithm employs Huber’s weight function [43]
with an adjustable parameter P where higher values of P
accommodate more deviation, e.g., P=5 tolerates outliers up
to 5 standard deviations. We use the algorithm with /=12 and
P=1 (each data point representing the minimum latency in a
5-minute bin), i.e., the algorithm detects level shifts lasting
at least 30 minutes.

4.2 Autocorrelation method

Autocorrelation finds patterns of similarity between elements
of a time series separated by a repeating interval, in this case
24 hours. We use autocorrelation to find multi-day repeti-
tion of elevated delays at the same times of day that imply
congestion driven by diurnal demand. An autocorrelation
scheme must look at multiple days; we use a 50-day window.

The autocorrelation algorithm aggregates the raw TSLP
measurements into 15-minute intervals. Our TSLP measure-
ments capture latency to the near and far side of each link
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in 5-minute intervals, for up to three destinations, yielding
between three and nine measurements over a 15-minute
interval. As with level-shift, the autocorrelation function
selects the minimum latency in a 15-minute interval to fil-
ter outliers. We test for elevated latencies to the near side
(which indicates possible congestion within the access net-
work) and exclude those times so that we can focus on the
interconnection link itself.

For each 15 minute interval in the day, we look across all
50 days in the current sample and count the number of days
for which the RTTs in that interval were above our threshold
of elevation, which we currently set at (min RTT + 7 ms).
The more days that contribute elevated latency in the same
interval, the more likely it is that the event that triggered the
elevated RTTs is a recurring one. Once we find the interval
where the most days have evidence of congestion, we then
look for adjacent 15 minute intervals that also have sufficient
elevated days, and declare that recurring congestion has
occurred in that part of the day, which we call the window
of recurring congestion.

To filter out false positives, we reject the hypothesis that
a link manifests recurring diurnal congestion during the 50-
day window if we cannot disambiguate candidate recurring
congestion windows distributed across the day (as opposed to
a single peak that suggests recurring diurnal congestion), or
if different days contribute to different peaks. The algorithm
then looks separately at each day, and counts the number of
15-minute intervals within that recurring congestion win-
dow in which the RTT is elevated above our threshold. The
algorithm uses the number of elevated 15-minute intervals as
the estimate of congestion on that day. For example, if a link
had one elevated 15-minute interval on a day, the algorithm
infers a congestion level of 1.04% (1/96).

To avoid making false inferences of congestion, we then
manually inspect the results of the algorithm in cases where
it asserts evidence of congestion, to confirm that the asser-
tion is appropriate. If interdomain congestion was rampant,
this task would be overwhelming, but in our data it was
manageable. We manually examined all the asserted conges-
tion in this paper as looking reasonable, in addition to the
measurement-based validation of our methods (§5.4). The
current tuning parameters of the autocorrelation algorithm
are based on this experience examining traces and assertions.

The final stage of the scheme merges estimates from all
VPs that observe a given interdomain link to derive an overall
inference. Congestion inferences for the same link based
on data from different VPs are typically similar. Significant
differences may reflect an asymmetric return path (§7).
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Figure 3: Time series of TSLP latency (top) and packet
loss percentage (bottom) for an interdomain link be-
tween Verizon and Google on Dec. 7-9, 2017. Periods
we infer as congested are shaded in gray.

5 VALIDATION

Given the politically loaded nature of interdomain conges-
tion inferences, we undertook as many different approaches
to validation as were feasible. We gathered three separate
sources of data to validate our congestion inference methods:
packet loss (§5.1), video streaming performance (§5.2), and
throughput measurements (§5.3). We also obtained direct
operator feedback from two large access ISPs (§5.4).

At a high level, our validation approach is to use the
binary temporal classification of each 15-minute interval
(either “congested” or “uncongested”) produced by the au-
tocorrelation algorithm to compare packet loss, YouTube
streaming performance and NDT throughput statistics for
the congested and uncongested periods.

5.1 Correlation with loss rate

We collected loss rate measurements using the reactive ap-
proach described in Section 3.3 from 15 Ark VPs from March-
December 2017. In December 2017, after we had operational-
ized the autocorrelation technique (§4.2), we started a fo-
cused collection of loss data based on autocorrelation anal-
ysis of TSLP data from November 2017. We ran this data
collection from 15 VPs from 12-31 December 2017.

To illustrate the correlation intuitively, Figure 3 shows
TSLP and loss rate measurements for a link between Verizon
and Google from Dec 7-9, 2017. The latency pattern to the
far end was elevated during peak hours every day, and our
autocorrelation method flags this link as congested during
the periods shaded gray. The lower panel of Figure 3 shows
the loss rate (computed over 5-minute intervals) during con-
gested and uncongested intervals. We observe that a) loss
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Far-end Far-end # Month- % Month-
Higher During Higher than Links Links
Congestion Near-end

True True 117 81%
True False 12 8%
False - 16 11%

Table 1: Correlation between congestion inferences
and loss measurements for months-links that had a
statistically significant difference in the far-end loss
rate between congested and uncongested periods. For
145 such month-links, 129 had loss measurements
consistent with the presence of congestion, and 117 of
those passed the localization test.

rate to the far end was higher during congested periods than
during uncongested periods and b) loss rate to the far end
was higher than that to the near end during congested peri-
ods. Based on this intuition, we devised two statistical tests
to analyze whether we can attribute an increased far-end
loss rate to congestion on the interdomain link:

(1) Far-end test: is the far-end loss rate during congested
periods significantly higher than during uncongested
periods?

(2) Localization test: is the far-end loss rate during con-
gested periods significantly higher than the near-end
loss rate?

To apply these tests, we divided our data into month-links,
each of which represents a month of data for one interdomain
link probed from a single VP. Monthly blocks of data allow
sufficient samples during congested and uncongested periods
to distinguish loss rates. After filtering out month-links that
were not significantly congested (at least one day during
the month with at least 4% congestion, see §6), or where
either the far or near end did not respond to our probes,
we had 380 month-links, distributed across 162 interdomain
links between 6 access providers and 31 transit providers. We
further restricted our analysis to month-links that showed
a statistically significant difference (irrespective of sign) in
the far-end loss rate between congested and uncongested
periods. We were left with 145 links after this filtering. We
used the binomial proportion test (requiring p < 0.05) to
evaluate these 145 month-links against the two tests, the
results of which are summarized in Table 1.

Of these, 129 (89%, sum of first two rows) month-links
passed the far-end test, i.e., loss rates significantly increased
during congested periods. For 117 (81%, top row) month-
links, the localization test also passed, i.e., far-end loss rate
significantly exceeded near-end loss rate during periods of
congestion; hence, we can attribute the increase in loss rate
to the interdomain link. Of these 117 month-links, 5 had a
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suspiciously high loss rate (between 64-85%) to the far end
at all times, suggesting a measurement artifact or ICMP rate
limiting by the routers; however, the far-end loss rate still
increased significantly during congested periods, and we
therefore retain their classification in the top row of Table 1.

For 16 (11%, bottom row) of the 145 month-links in Table 1,
the far-end loss rate decreased during congested periods as
compared to uncongested periods. While these month-links
seemingly contradict our hypothesis that congested periods
would exhibit higher far-end loss rate, we find plausible
explanations for 14 of them: episodes of high far-end loss
uncorrelated with latency spikes, sometimes also with near-
end loss (7 instances); high far-end loss (60-90%) at all times
(3); large increases in the far-end loss in the last 3 days of the
month with no elevated latency (2); high latency between
near- and far-side routers suggesting an error in our border
mapping (1); and insufficient data to infer congestion periods
for most of the month (1).

5.2 Correlation with YouTube performance

We investigated how our inferences of interdomain con-
gestion correlate with application performance metrics by
studying YouTube video streaming, using both archived and
new measurements taken with the YouTube-test tool [8].
We used 6 Ark VPs in the U.S. (the same VPs running NDT
measurements) to run the YouTube performance measure-
ments (§3.5) from October 2017 to the end of December 2017.
To expand the scope of YouTube measurements, we used
data from the same YouTube test deployed on 12 SamKnows
VPs [14, 15] in the U.S. from May 2016 to July 2017.

We matched the interdomain links seen in traceroutes
toward YouTube servers with those measured using TSLP
per the bdrmap-based method used in [53], and selected
interdomain links for which we had at least 50 YouTube
streaming tests during periods that we inferred as congested
using TSLP and the autocorrelation method. We identified
a total of 17 congested interdomain links to Google from 7
SamKnows VPs connected to Comcast (16 links) and 1 Ark
VP connected to CenturyLink (1 link).

We compared three streaming performance metrics dur-
ing congested and uncongested periods. The first metric is
ON-period throughput, which refers to the average instan-
taneous download rate of a video flow. After establishing a
network connection to the YouTube server, a client starts fill-
ing its video buffer by downloading data using all available
bandwidth. In steady state, traffic shows an ON-OFF pat-
tern where during each ON-period, the client downloads a
burst of packets from the video cache [40, 60]. We computed

ON-period throughput as Ton = Y where Sy is the
Zi:O dON

total number of bytes of video data, N is the total number
of ON periods in the steady state, dg) y is the duration of
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0.3f BCongested ||

© MUncongested
2y
£ 0.2r 1
IS
g5
= =017 1
N

0

VType A S SSSSSSSSSSSSSSS
VPID las-us30 30 30 32 32 36 36 36 44 44 60 60 61 67 67 67
LnkD 1 2 3 4 5 6 5 7 6 5 6 5 6 8 5 9 6

Figure 5: Median streaming failure rates for Ark (A)
and SamKnows (S) VPs. The IDs of the VP and the in-
terdomain link (labeled according to the far IP) are
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initial buffering phase, and dé N Yi > 0is the duration of
the i ON period. Figure 4a shows the CDFs of ON-period
throughput measured across the selected interdomain links.
During congested periods, the median throughput decreased
25.4% from 12.4 Mbps to 9.2 Mbps.

The second metric we considered is the startup delay,
defined as the time to establish the connection and stream
the first two seconds of video. The CDFs of the startup delay
(Figure 4b) show that the median startup delay was inflated
by 20.0% during congested periods. Further, only 67.9% of
tests during congested periods (vs. 91.2% during uncongested
periods) could start streaming within 2 seconds. This long
delay could cause users to abandon the video [45].

Apart from degraded streaming performance, congestion
could cause streaming failure, such as failing to download the
next video segment during streaming. These failure events
can manifest as rebuffering events on a viewer’s player if
the video buffer depleted before the YouTube video player
could resume the download. Figure 5 shows that except for
SamKnows VP 36, failure rates were generally higher during
congested periods. For tests across link 5 from SamKnows VP
60, the failure rate was 13.7 times higher during congested
periods than uncongested ones. For the Ark VP, almost 30%
of the tests failed during congested periods.
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In summary, we found that interdomain congestion in-
ferred by TSLP correlated with lower ON-throughput, higher
startup delay, and higher failure rate of YouTube tests, all of
which provide validation of our congestion inferences.

5.3 Correlation with NDT throughput

As a third independent source of validation of the TSLP
method, we ran a controlled experiment of the Network Di-
agnostic Test (NDT) from 6 Ark VPs from 15 Nov to 31 Dec,
2017. To select NDT test servers, we ran traceroutes from
each VP toward a list of 104 U.S. M-lab NDT servers [3] in Oc-
tober 2017, used bdrmap inferences to identify interdomain
links in the traceroutes, and TSLP data to infer congestion on
these links (using the level-shift method, as the autocorrela-
tion method was not operational at the time). If a congested
interdomain link was on the path to multiple NDT servers,
we chose the server closest to our VP in terms of RTT. We
found seven M-lab NDT servers where a traceroute from the
VP traversed links that showed some evidence of congestion
in October 2017.

Of these seven cases, the autocorrelation method detected
evidence of recurring congestion on three links during the
NDT data collection period: Comcast-Tata (Link I), Comcast-
Tata (Link 2), and CenturyLink-Cogent (Link 3). For these
links, we analyzed traceroutes from M-lab in November and
December 2017, along with DNS names and bdrmap infer-
ences to investigate path symmetry. We inferred that our
NDT tests traversed Link 1 (in New York) and Link 3 (in Los
Angeles) on both the forward and reverse path, but did not
traverse Link 2 (in Chicago) on the reverse path.

Table 2 shows NDT metrics during congested and uncon-
gested periods for these 3 links, and also the p-value of the
Student’s t-test, indicating whether the difference between
throughput in congested and uncongested periods was sta-
tistically significant. For Link 1 and Link 3, periods that TSLP
identified as congested correspond to lower throughput with
statistical significance. The difference was particularly stark
for Link 1(Comecast-Tata in New York), which showed a clear
pattern of diurnal congestion (See Figure 6). Tests cross-
ing Link 3 (CenturyLink-Cogent in Los Angeles) showed a
smaller (but statistically significant) difference between con-
gested and uncongested throughput. Link 3 showed evidence
of congestion during only 21 of the 45 days of NDT data
collection, and was only congested for 2.5% of the day (36
minutes) on average. This explains the small difference in
throughput observed for this link. For Link 2 (Comcast-Tata
in Chicago), the difference in throughput during congested
and uncongested periods was not statistically significant. As
mentioned previously, the forward path from the Ark VP to
the NDT server traversed Link 2 in Chicago but the reverse
path traversed an interdomain link between Comcast and
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Figure 6: Time-series of TSLP latency and NDT
throughput (Comcast-Tata, Link 1) on Dec 7-11, 2017.
Periods identified as congested are shaded in gray.

Tata in Ashburn, VA that was not visible from any of our
VPs. Our hypothesis is that the path from the NDT server to
the Ark VP was not congested.

Link [VP AS - Server AS] Uncong. Cong.  t-test

Tput Tput p-value
Link 1 [Comcast-Tata] 26.79 7.85  <0.001
Link 2 [Comcast-Tata] 23.75 2355 0324
Link 3 [CentLink-Cogent] 23.92 23.04 <0.001

Table 2: Average download throughput from NDT
servers during congested and uncongested periods.

To summarize, drops in NDT throughput during periods
we inferred as congested provided additional validation for
our inferences. We note some caveats with correlating NDT
and TSLP measurements. First, factors beyond interdomain
link congestion could affect end-to-end throughput, e.g.,
home network congestion, server load, and congestion else-
where on the end-to-end path [65]. For this reason, we do
not use NDT throughput to infer interdomain link conges-
tion. The second challenge is finding the right set of VPs and
NDT servers to test congested links. Despite its large server
footprint, M-lab covers a small fraction of interdomain links
of large U.S. access ISPs [65], and running throughput mea-
surements frequently can congest the VP’s home network.

5.4 Operator feedback

We validated the inferences from our method directly with
the operators of two large U.S. broadband access networks.

With the first operator, we shared our inferences for seven
links to three transit providers and one content provider,
and asked them if they observed recurring patterns of high
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link utilization. For six links we used data from one week in
October 2017; for one link we observed recurring congestion
in May 2017 that dissipated by October 2017, so we included
data from both May and October. The operator confirmed
that all our inferences were correct.

The second operator provided us confidential access to
utilization data from their routers, which we used to validate
our inferences on 20 links to two transit and two content
providers in 2017. Of the 20 links, our method classified
10 as showing recurring congestion and 10 as uncongested
at various times in 2017. In each case, the link utilization
was consistent with our congestion inference for that link.
Specifically, when our method flagged a link as experiencing
recurring congestion, we observed the utilization of the link
approach or reach 100% (true positives). For links where
our method did not find evidence of congestion, the link
utilization did not approach or reach 100% (true negatives).

6 U.S.INTERDOMAIN CONGESTION

Our probing system generates a large volume of data. Using
Comcast (one of the largest ISPs in our dataset) as an example,
and AS-relationships inferred by CAIDA’s AS-relationship
algorithm [50], we discovered links with 1353 customers, 108
peers, and 2 transit providers. We focused on measurements
of interdomain links to peers and transit providers collected
from March 2016 to December 2017, and for tractability lim-
ited our analysis to major peers and content providers. There
were 34 ASes in this reduced set for Comcast. Further limit-
ing our analysis to links we observed for at least seven days
yielded a total of 973 links to those peers since March 2016.
The population of links varies, as our visibility of interdo-
main links is dynamic. In December 2017, there were 345
visible links to this reduced set of peers.

The congestion numbers we report derive from our au-
tocorrelation analysis method (§4.2). For each day for each
link (which we refer to as a day-link), the algorithm classifies
the day as congested or uncongested. If congested, it computes
the duration of the congestion episode as a percentage of
the day; a metric we call the day-link congestion percent-
age. We restrict our attention to links where the day-link
congestion percentage was more than 4%, corresponding
to approximately one hour of congestion per day. This re-
striction excluded from subsequent analysis 35.24% of the
day-links that showed any congestion.

6.1 Overview of congested day-links

Table 3 provides a summary of the overall state of conges-
tion during our 22-month observation window between U.S.
access ISPs and the set of their interconnected ASes as de-
fined above. It shows the number of peer/provider ASes (the
reduced set selected as above) for each access ISP we probe,



SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

Access Obs. Peers  Cong. Peers %Cong.
Network & Providers & Providers Day-Links
CenturyLink 28 7 1.39
AT&T 34 7 2.58
Cox 20 5 8.41
Comcast 34 5 4.46
Charter 18 4 1.36
TWC 25 4 3.73
Verizon 26 3 3.09
RCN 19 1 0.52

Table 3: Observed (U.S.) transit and content providers,
congested T&CPs, and % of congested day-links (to any
T&CP) for each access network (Mar 2016 - Dec 2017).

the number of peer ASes that showed evidence of conges-
tion during our measurement window, and the percentage
of day-links that were congested. The numbers in Table 3
indicate that during our measurement period, congestion
was not widespread on the peer/provider interdomain links
we observed. Only a small fraction (between 5% and 25%) of
peers/providers of each AP showed evidence of congestion
at any time in our 22-month measurement study, and the
overall fraction of congested day-links was also small — less
than 5% for all ISPs except Cox (8.4%).

Table 4 provides a more detailed view of the data in Table
3, focusing on the transit and content providers that more
commonly exhibited evidence of significant congestion. We
computed the percentage of day-links showing evidence
of congestion (% congested day-links) between each access
provider (AP) and each transit/content provider (T&CP). To
explore whether some T&CPs exhibited frequently congested
day-links with many access providers, we ranked T&CPs
based on the average % congested day-links to each of their
connected APs. The T&CPs in Table 4 ranked at the top of
that list, but these 9 T&CPs showed different congestion
profiles to different APs. For instance, our system classified
as congested 94% of the observed day-links between Cen-
turyLink and Google, but only 1% of those between Cox
and Google. Furthermore, APs exhibited different conges-
tion profiles to different T&CPs: Comcast and Google had
22% of day-links classified as congested, whereas that num-
ber was only 1% for Comcast and Netflix. The prominence
of Google in Table 4 is unsurprising, given their efforts to
actively maintain high peering link utilization [71].

While no AP showed significant congestion to most of
their interconnecting T&CPs, some showed significant con-
gestion to specific T&CPs, particularly CenturyLink (to
Google) and AT&T (to Tata). Finally, our system inferred
as uncongested the vast majority (always over 90%) of ob-
served day-links for each AP.
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6.2 Temporal evolution of congestion

Tables 3 and 4 provide no insight into the dynamics of con-
gestion over time. Figure 7 shows how congestion between
specific APs and T&CPs evolved over an almost two-year pe-
riod. Most patterns of congestion lasted less than six months,
although some providers had a high percentage of day-links
with congestion for prolonged periods, such as Comcast to
Tata and NTT, or AT&T to Tata and XO. Other providers
experienced congestion that dissipated later in the observa-
tion period. For example, congestion between Comcast and
Google decreased from March 2016 to June 2016, peaked in
December 2016, and dissipated in July 2017 until the end of
our study. Interestingly, the dissipation of Comcast-Google
congestion coincided with the rise of congestion on Comcast-
Tata and Comcast-NTT links in the latter half of 2017. Pat-
terns of rising and declining congestion were also evident
for Verizon and AT&T to Google, and Cox to Netflix and
Level3. TWC showed congestion to Tata, Vodafone, XO and
Telia in 2016, all of which dissipated by December 2016.

6.3 Degree of congestion

Figure 7 summarizes the number of day-links that were con-
gested more than 4% of the time. However, it masks an im-
portant question — how congested were those day-links? A
day-link that is congested 5 or 10% of the time is less likely
to contribute to degradation of the user experience than a
day-link congested 50% or more. We define mean conges-
tion between two networks over a month as the average
percentage congestion on all day-links between those net-
works where any congestion was detected. Figure 8 plots
this mean congestion metric for each month from each AP
to two T&CPs — Google and Tata — that showed the most
significant evidence of congestion. Even for the more fre-
quently congested interdomain pairs seen in Figure 7, the
mean congestion for each month was typically limited to a
few hours per day (less than 5 hours, or 20%). However, we
observed a high degree of variability between different pairs
of APs and T&CPs. The links between Google and Centu-
ryLink had a mean congestion percentage between 20-40%
(approximately 5-10 hours per day) for 13 months, whereas
other APs to Google were generally below 20%. Tata showed
evidence of synchronized congestion upswings: in the latter
half of 2016, multiple APs (AT&T, TWC, Comcast) experi-
enced increases in mean congestion to Tata. In general, Tata
exhibited mean congestion over 20% to one or more APs
during the entire study period. As in Figure 7, we find trends
over time in the mean congestion — notably for AT&T to
Tata, which peaked in January 2017 and declined thereafter.
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Transit/Access Provider Comcast Verizon CenturyLink AT&T Cox TWC Charter RCN
Google 21.63 25.47 94.09 15.05 1.36 - 3.01 zZ
Tata 39.82 1.68 7.07 51.46 - 26.95 - -
NTT 29.16 Z zZ 1159  7.06 - zZ zZ
XO 6.33 0.35 5.25 15.27 - 8.17 4.82 -
Netflix 1.01 4.42 11.18 213  19.24 2775 4.64 Z
Level3 1.29 0.63 3.69 380 3228 1.81 Z 0.12
Vodafone 2.65 5.30 6.76 - Z 2.09 - -
Telia 2.37 0.90 0.60 11.89 zZ 3.58 zZ zZ
Zayo 0.34 0.11 0.39 Z 1.63  0.04 - 16.07

Table 4: Percentage of congested day-links for each pair of providers. These T&CPs represent 19% of U.S. networks
studied, but represent 89% of all observed congested day-links. Z: congested day-links < 0.01%. —: No observations.
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exception of CenturyLink. In general, Tata exhibits
higher mean congestion to more APs than Google.
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Figure 9: Distribution of recurring 15-minute conges-
tion periods from 2017 as seen from VPs in Comcast.

6.4 Case study of Comcast

We conclude with a case study highlighting time-of-
day and day-of-week effects in congestion inferred on
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peers/providers of Comcast. Figure 9 shows the hourly dis-
tribution of 15-minute periods from 2017 inferred as show-
ing recurring congestion according to our autocorrelation
method. The top two histograms plot the fraction of elevated
15-minute periods that fall in each hourly bin for all links
measured from two VPs (one on the East coast and one on
the West coast of the U.S.) using local time at the VP. The
bottom histogram plots the same fraction aggregated for all
links measured from all VPs in Comcast. While our conges-
tion inference methods do not use time of day information
in making inferences, the autocorrelation-generated conges-
tion periods occurred during peak hours as defined by the
F.C.C’s Measuring Broadband America program [34] (7pm
to 11pm local time). Note that the mode of the pdf for the
East coast VP is at 8pm local time while that for the West
coast is 7pm local time. It is tempting to speculate about
whether the East and West coasts experience peak Internet
traffic demands at different times, but a further effect is in
play here: each VP measures interdomain links in other time
zones as well as its own. Without access to accurate router
geolocation data, we defer an analysis of this phenomenon
to future work. The figure also shows that weekends have
similar congestion patterns as weekdays, in contrast to the
FCC’s classification of weekends as off-peak periods.!

7 LIMITATIONS

We are aware of several limitations of our methodology.
Router Queueing Behavior: Our method relies on routers
queueing ICMP probe packets similarly to regular traffic. A
router that de-prioritizes ICMP responses or generates them
in the slow-path could inflate observed latencies. In practice
we have found that such latency patterns lack an identifiable
diurnal pattern, and hence are not classified as congestion.
Another possibility is that ISPs game our technique by prior-
itizing ICMP responses, which could cause our technique to
mis-identify congested links as non-congested.
Incompleteness: Our current system does not provide visi-
bility of all interdomain links of U.S. access providers, and
the links we measured may not be representative of all such
links. Observing all interdomain links requires numerous
VPs in geographically diverse locations within the same net-
work [49], which Ark does not provide. We plan to address
this limitation by expanding our set of VPs (§9).

Root causes unknown: Determining the root cause of a
congested interdomain link, or attributing responsibility to
a specific network is not possible with the data we collect.
Congestion could be due to a peering dispute, due to one
network operating the link at high utilization [71], or due to
traffic engineering by networks sourcing traffic.

The technical appendix of [34] states that “At peak hours, defined for this
study as the period on weekdays between 7:00 pm and 11:00 pm local time.”
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Link capacity information: Our methods do not measure
link utilization or capacity. We give all links between two
networks equal weight, although they may have different
capacities, and hence different impact when congested.
Asymmetric routes: Asymmetric routes (§4.2) may cause
responses to our probes to traverse a different link than the
targeted interdomain link. In the case of hot-potato routing,
our probes will normally follow a symmetric path back to
the VP. While the path to the ultimate destination may be
asymmetric, for a probe that terminates at the far end of an
interconnection, the closest path back to the VP is across
that same link. The case where we see evidence that our
probes follow an asymmetric path is a neighbor network
that delivers packets (including responses to our probes) to
the VP using the interconnection point that is closest to the
VP. Our initial exploration of this case suggests it is rare. We
have several potential techniques to detect these cases, in-
cluding identifying significant differences in baseline delays
to the near and far sides of the link, and use of the IP record
route option. Another approach to determine the return path
relies on extracting a long-term congestion signature of the
path from our data. We have found that a simple correlation
between two TSLP time-series provides a good indication
that return traffic from those two targets traversed the same
congested path. We plan to further explore means to detect
and characterize asymmetric paths.

8 POLICY IMPLICATIONS

Our original motivation for this work was an increase in
heated peering disputes between powerful players in the
U.S. which raised questions about intentional degradation
of performance as a business strategy to obtain (or avoid)
interconnection fees [70]. The prevalence of these public
disputes dropped around the time of the FCC’s 2015 Open
Internet Order, in which the FCC asserted authority over
interconnection, sending a signal to industry to resolve dis-
putes or trigger regulatory oversight.>? However, our mea-
surements reveal indications of persistently congested transit
links, which - regardless of cause — implies clear motivation
for large players to engage in direct peering negotiations.

The FCC recognized that they lacked sufficient understand-
ing of interconnection to impose any regulations [37]. In part
to close this gap in understanding, during the next merger
between an access and content provider (AT&T and DirecTV
[36]), the FCC imposed interconnection measurement and
reporting conditions, for 4 years, under NDA agreements
[26]. Like other sources of interconnection data, this data
tells a partial story, but in this case, a secret one [44].

2We cannot prove causation there; commercial players may have realized
independent motivations to resolve the peering disputes.
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Thus, the most important contribution of this work is ad-
dressing this decades-long gap in an objective third-party’s
ability to study peering disputes in an open, objective, sci-
entifically validated way. Especially in today’s deregulatory
political climate, we consider such measurement to be the
most promising strategy for incentivizing good ISP behavior.

9 FUTURE DIRECTIONS

We will support community use of our raw data and tools,
and solicit feedback on our web interface and API access to
the raw congestion measurements. We hope to eventually
provide an interface where interested parties can make more
complicated queries against this and related network-level
topology data, hopefully leveraging infrastructure geoloca-
tion capabilities (albeit sparse).

We hope to address the incompleteness in our coverage by
expanding our VPs to use the FCC’s Measuring Broadband
America (MBA) infrastructure [38] consisting of thousands
of home routers. Improving the quality of data, as well as
expanding to thousands of additional FCC MBA VPs will
bring new challenges in system scale and data processing.

Our current system limits congestion measurements to
interdomain links identified by bdrmap, which only identifies
immediate neighbors of the network hosting a measurement
VP. Recently, Marder et al. [52] introduced the MAP-IT tool
to identify interdomain links in a set of collected traceroutes.
We will investigate whether the combination of bdrmap and
MAP-IT can enable measurement of interdomain links farther
than one AS hop away from the network hosting our VP.

As we demonstrated in Section 6, interdomain conges-
tion shows temporal effects over timescales of weeks and
months. Such effects could be the result of complex traffic
engineering and capacity augmentation by the involved net-
works. In future work we will investigate whether we can
correlate temporal variations in congestion with routing and
topological changes observable in BGP.

Finally, while we demonstrated that the TSLP technique
can identify congested links, the impact of congestion on user
QoE remains a largely open question. In our ongoing work,
we are building a system to crowd-source QoE measurements
such as video streaming performance and webpage loads
(similar to the Eyeorg platform [68]), and correlate those
with congestion inferences from TSLP.
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