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SYMMETRIZED IMPORTANCE SAMPLERS
FOR STOCHASTIC DIFFERENTIAL EQUATIONS

ANDREW LEACH, KEVIN K. LIN AND MATTHIAS MORZFELD

We study a class of importance sampling methods for stochastic differential
equations (SDEs). A small noise analysis is performed, and the results suggest
that a simple symmetrization procedure can significantly improve the perfor-
mance of our importance sampling schemes when the noise is not too large. We
demonstrate that this is indeed the case for a number of linear and nonlinear
examples. Potential applications, e.g., data assimilation, are discussed.

1. Introduction

Consider a stochastic differential equation (SDE)

d X t = f (X t) dt + σ d Bt , X t ∈ RD, (1-1)

where f :RD
→RD and Bt is D-dimensional Brownian motion. Suppose we make

noisy observations of the system at times t = T, 2T, 3T, . . . , J T (T > 0, fixed),
obtaining a sequence of measurements Y j = m(X jT )+ η j , where m : RD

→ Rd

(d 6 D) is the quantity being measured (the “observable”), η j are independent
identically distributed (IID) random variables modeling measurement errors, and
j = 1, . . . , J . What is the conditional distribution of X t for t ∈ [0, J T ] given
Y1, Y2, . . . , YJ ? This problem of “nonlinear filtering” or “data assimilation” arises
in many applications; see, e.g., [7; 8; 5; 27]. A variety of algorithms have been de-
veloped to address it, but efficient data assimilation, especially in high-dimensional
nongaussian problems, remains a challenge [25].

This paper concerns an approach to data assimilation known as “particle filtering”
(see, e.g., [8] for more details) based on sampling the conditional distributions. We
present an asymptotic analysis of certain sampling algorithms designed to improve
the efficiency of particle filtering, and based on this analysis, we propose a general
way to improve their performance. The analysis relies on taking a small noise
limit, but the algorithms do not require a small noise to operate (but may not be as
efficient when the noise is not small). We focus on one step of the filtering problem;
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i.e., we set J = 1 in the above, as this is sufficient to capture the computational
difficulty we wish to address. For simplicity, we assume η∼N(0, r I ), where r > 0
is a scalar and I is the d × d identity matrix; we also assume σ > 0 is a scalar.
These assumptions can be relaxed if needed.

To take one step of particle filtering, one begins by discretizing (1-1) using, e.g.,
the Euler scheme, to obtain

Xn+1 = Xn+1t f (Xn)+
√
1tσ · ξn, X0 = x0 ∈ RD, n = 0, . . . , N − 1, (1-2)

where N1t = T and the ξn are IID standard normal random variables. A straight-
forward application of Bayes’ theorem tells us that the conditional distribution of
interest satisfies
p(x1, . . . , xN | y) ∝

exp
(

1
2σ 21t

N−1∑
n=0

‖xn+1− xn − f (xn)1t‖2+
‖m(xN )− y‖2

2r

)
. (1-3)

One then tries to design a Monte Carlo algorithm to generate discrete time sample
paths (X1, . . . , X N ) from (1-3), conditioned on the observation y. We refer to the
distribution in (1-3) as the target distribution. They are the discrete time analogs of
the conditional distributions introduced above, with J = 1 observation.

Without the last term in the exponent in (1-3), the target distribution is just the
distribution of the discretized SDE, and one can generate sample paths by carrying
out the recursion in (1-2). When the last term is included, however, it is generally not
feasible to sample directly from the target distribution. A solution to this problem
is importance sampling: instead of drawing samples from the target distribution,
we draw sample paths (Z1, . . . , Z N ) from an approximation q, usually called the
“proposal distribution”. Any statistics we compute based on sample paths from q
will be biased. We compensate for this bias by associating a weight W (k) > 0 to the
k-th sample path (Z (k)1 , . . . , Z (k)N ), with

∑
kW (k)

= 1, so that the weighted sample
paths (Z (k),W (k)) again have the correct statistics (in a sense we make precise later).

Vanden-Eijnden and Weare [28; 29] proposed an algorithm for sampling dis-
tributions like (1-3). They showed that their algorithm is efficient in the sense
that in the limit of small dynamical and observation noise, the relative variance
of the weights vanishes (see [29] for precise definitions and statements). The
basic idea of the sampler is to look for the most likely sample path of the target
distribution (1-3) and use this information to modify the dynamics so that samples
from the proposal remain close to the target distribution. In this paper, by a
combination of formal asymptotic analysis and numerical examples, we show that a
symmetrization procedure proposed in [17] can be applied to SDEs to improve the
efficiency of importance samplers. The symmetrization and “small noise analysis”
has also been discussed in the context of implicit sampling [6; 23]; see [17].
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While our primary motivation here is data assimilation for SDEs, our symmetriza-
tion procedure may be effective for sequential Monte Carlo sampling of more general
types of systems. As well, the class of importance sampling algorithms studied
here are closely related to algorithms proposed in [12; 13; 10; 9; 11] and in [28]
for sampling “rare events” in SDEs, though there are some significant differences
between the two applications. We plan to explore some of these connections in
future work.

Paper organization. The remainder of this paper is organized as follows. We state
our main results in Section 2. Section 3 briefly reviews the linear map method
and its symmetrization, as well as the small noise theory [17]. We explain a new
sampling method, the dynamic linear map, in Section 4. We study its efficiency in
the small noise regime and show how to use symmetrization to improve its efficiency
in small noise problems. Several numerical examples are provided in Section 5 that
illustrate our asymptotic results as well as the efficiency of our dynamic approach
in multimodal problems. The continuous time limit of the dynamic linear map is
discussed in Section 6, and we present conclusions in Section 7.

2. Problem statement and summary of results

We now formulate the problem more precisely and summarize our key findings.
We consider a discretized SDE in the small noise regime

Xn+1 = Xn +1t f̃ (Xn,1t)+
√
1t
√
εσ · ξn, X0 = x0 ∈ RD, (2-1)

where f̃ (x,1t)= f (x)+ O(1t) corresponds to a numerical discretization of ẋ =
f (x) (for most of this paper, we assume the Euler discretization f̃ (x,1t)= f (x)),
and ε� 1 is the “small noise parameter”. Throughout this paper we assume that
the D-dimensional vector field f̃ is smooth, and that the process starts at a given
initial position x0 and proceeds for N time steps of size 1t each. The transitions
are made with independent gaussian samples ξn ∼ N(0, I ). We denote the path as
x1:N , a sequence of positions x1, . . . , xN , and its likelihood in the process with the
path distribution ρ(x1:N | x0).

The observation of the state at time N1t gives rise to the likelihood

θ(xN ) := exp
(
−

1
ε

g(xN )
)
, (2-2)

where g is assumed to be a smooth, nonnegative function. For example, for ob-
servations y = m(xN )+ η, η ∼ N(0, εr I ), we have g(xN )= (2r)−1

‖m(xN )− y‖2.
Hereafter we will sometimes refer to g as the “log-likelihood”, in a slight abuse of
standard terminology. By Bayes’ theorem, the target distribution then has the form

p(x1:N | x0)∝ ρ(x1:N | x0) · θ(xN ). (2-3)
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Importance sampling methods generate samples using a proposal distribution q,
and attach weights

W (k)
= w(X (k)

1:N | x0)= p(X (k)
1:N | x0)/q(X

(k)
1:N | x0) (2-4)

to each sample, so that the weighted samples can be used to compute unbiased
statistical estimates with respect to the target distribution. To measure the efficiency
of the sampling methods, we evaluate the relative variance of the weights

Q :=
Var[W ]
E[W ]2

. (2-5)

Here the expected values are computed with respect to the proposal distribution q .
This relative variance Q is connected to a standard heuristic called the “effective
sample size”, defined by

Neff :=
Ne

1+ Q
, (2-6)

where Ne is the number of weighted samples (see, e.g., [4; 21; 8]). The effective
sample size is meant to measure the size of an unweighted ensemble that is equivalent
to the weighted ensemble of size Ne. All else being equal, the smaller the Q, the
more efficient the importance sampling algorithm, and if all the samples were
independent, we would have Q = 0 and Neff = Ne. The quantity Q is convenient
because it is not tied to any specific observable; recent work [1] has also given it
a more precise meaning. Other quantities that can assess effective sample sizes
are discussed in [22]. We note that in practice, p and q are only known up to a
constant. The algorithms we describe do not require knowing the normalization
constants. Likewise, Q is invariant under rescaling of p or q by a constant.

We study two types of importance sampling methods in this paper. The first
method, called the “linear map” (LM), uses a gaussian proposal distribution centered
at the most likely path. The second method, called “dynamic linear map” (DLM),
reapplies the linear map after each time step between t = 0 and t = N1t given the
previous moves. Note that the linear map can be viewed as a version of implicit
sampling [6; 23] applied to the path distribution of an SDE. The dynamic linear
map applies this implicit sampling step repeatedly to transition densities and is also
closely linked to the continuous time control method of Vanden-Eijnden and Weare
[28; 29] (see also Section 6). For each method, we perform a symmetrization and
exploit symmetries of the proposal distributions to increase sampling efficiency.
Symmetrization was previously studied for the LM in a more general context in [17].
Here we adapt this procedure to problems involving SDE and to the dynamic linear
map. Following the approach taken in [17], we show that under suitable assumptions
(see Section 4), the relative variances of the various methods are as follows:
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method Q(ε) scaling

linear map (LM) O(ε)
symmetrized LM O(ε2)

dynamic LM (DLM) O(ε)
symmetrized DLM O(ε2)

We also present examples showing that the leading coefficient of the DLM can
be smaller than that of LM, suggesting that DLM may be more effective in some
situations (see Section 5). We discuss the continuous time limit of LM and DLM for
scalar SDE, and calculate the leading coefficient of Q(ε) in an asymptotic expansion
in ε. In doing so, we show that, under additional assumptions, the sampling method
discussed in [28] is recovered in the 1t→ 0 limit of the DLM (see Section 6).

Notes.

(i) The ε-expansions we will consider are formally justified as the relevant quan-
tities; e.g., relative weight variance, are gaussian integrals.

(ii) The insertion of the small noise parameter ε into the problem is mainly to enable
asymptotic analysis. In specific problems, there is not always an identifiable
small parameter, and in any case our methods do not require a small parameter
to operate.

3. Background

We simplify notation and write x := x1:N , and F(x) := F(x1:N | x0), and consider
the small noise target distribution defined in (2-3) which can be written as p(x)∝
exp(−F(x)/ε), where

F(x)=
1t
2σ 2

N−1∑
n=0

∥∥∥ xn+1− xn

1t
− f̃ (xn,1t)

∥∥∥2
+ g(xN ), (3-1)

for g, a scalar function as in (2-2). If we assume that F has a unique, nondegenerate
minimum, and let

ϕ = arg min
x∈RD·N

F(x), (3-2)

i.e., ϕ is the optimal path with prescribed initial condition x0, we can employ
Laplace asymptotics to expand the target distribution around ϕ. (See, e.g., [24] for
a general formulation of Laplace asymptotics.) After a change of variables

z = ε−1/2
· (x −ϕ) (3-3)

the expansion is

F(z)= F(ϕ)+ zT H z/2+ ε1/2C3(z)+ εC4(z)+ O(ε3/2), (3-4)
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Calculate ϕ and H starting from x0.
for m = 1 to M do

Sample X ∼ N(ϕ, εH−1).
Calculate W = p(X)/q(X).

Return M weighted samples X,W .

Algorithm 1. Linear map.

where H is the Hessian evaluated at ϕ and Ck are the higher-order terms in the
Taylor series. Here and below, we use the shorthand F(z) := F(ϕ + ε1/2z), and
similarly write w(z) for w(ϕ+ε1/2z), etc. Note that while we will continue to refer
to z := {z1, . . . , zn} as a “path” after the change of coordinates, x = ϕ+

√
εz is the

actual solution of (2-1).
The small noise analysis of LM, and other methods to follow will make frequent

use of this expansion, as well as the “variance lemma” [17].

Lemma (variance lemma). For a function u(z, ε) that can be expanded in ε at least
to the terms

u(z)= 1+ εr u1(z)+ ε2r u2(z)+ O(ε3r ), (3-5)

the relative variance of u with respect to a probability density q is

Q = ε2r Varq [u1(z)] + O(ε3r ). (3-6)

3.1. Linear map. The proposal distribution of the linear map (LM) sampling
method, summarized in Algorithm 1, is gaussian and proportional to

q(z)∝ exp(−zT H z/2). (3-7)

The weights are the ratio of target and proposal distribution, and can be expanded as

w(z)= 1− ε1/2C3(z)+ O(ε). (3-8)

Using the variance lemma we thus find that

Q = εVarq [C3(z)] + O(ε3/2), (3-9)

i.e., the relative variance of the weights is linear in ε (see [17] for more details).

3.2. Symmetrized linear map. It is shown in [17] that the linear map can be “sym-
metrized” to improve the scaling of Q from linear to quadratic in ε. This stems from
the observation that the leading-order term in the weight is an odd function with
respect to the random variable z, whose probability distribution function is even.
The symmetrized sampler uses a proposal distribution which reweights equally
likely samples from the gaussian distribution of the linear map such that the resulting
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weights have even symmetry. The odd leading-order terms in the weight expansions
then cancel, which results in a quadratic scaling of Q in ε.

Specifically, the symmetrized linear map draws a sample z from the proposal
distribution q . It returns z with probability w+/(w−+w+), and−z with probability
w−/(w−+w+), where

w+ =
p(−z)
q(z)

, w− =
p(z)
q(z)

. (3-10)

Samples generated in this way have a nonsymmetric distribution, but even weights:

qs(z)= q(z)
2w+

w−+w+
, ws(z)=

w−+w+

2
. (3-11)

The Taylor expansion of the symmetrized weight is

ws(z)= 1+ ε
( 1

2C3(z)2−C4(z)
)
+ O(ε2), (3-12)

which, together with the variance lemma shows that

Qs = ε
2 Varq

[1
2C3(z)2−C4(z)

]
+ O(ε4). (3-13)

The symmetrization therefore improves the linear scaling of Q in ε of LM, to a
quadratic scaling of Q for SLM (see [17] for more details).

4. Dynamic linear map and its symmetrization

4.1. A multimodal example. The linear map can be efficient when the hypothe-
ses underlying its derivation are satisfied, i.e., when the pathspace distribution is
unimodal and a gaussian approximation is appropriate. However, when there are
multiple modes, LM can become inefficient. To see how this might happen, consider
the simple random walk

Xn+1 = Xn +
√
1t
√
εξn, (4-1)

i.e., Xn = X0 +
√
1t
√
εWn where Wn is standard Wiener process. Suppose we

have a bimodal likelihood function e−g(x)/ε whose graph is as shown in Figure 1;
this type of situation can arise when multiple states can give the same measurement,
so that observations may have ambiguous interpretation. In this case, the high
probability paths will be those that reach the vicinity of x =±1 at t = 1; effectively,
the high probability paths are sample paths of Brownian motion, conditioned to be
near x =±1 at t = 1. The probability of this occurring by chance is exponentially
small as ε→ 0, and direct sampling is unlikely to ever produce such a path.

A straightforward calculation shows that the optimal path ϕ approaches a straight
line in the x-t plane as ε→ 0, going to the right bump if X0 > 0 and to the left if
X0 < 0 (and undefined if X0 = 0). With a bimodal likelihood function, the target
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Figure 1. Brownian motion with bimodal likelihood. Here, the initial condition is X0 =
0.01, and ε = 0.1. Shown are a sample path X and the optimal path ϕ starting from X0.

distribution p(x) is bimodal as well. If the initial condition is sufficiently to the
right of x = 0, one of the two modes will dominate, and LM can be expected to be
effective. As X0 moves closer to x = 0, however, the other mode will begin to make
a greater contribution; at X0 = 0, the two modes carry exactly the same weight.
But LM will always pick the mode on the right when X0 > 0, no matter how close
X0 is to x = 0. So LM will produce essentially no sample paths going to the left,
leading to a large weight variance. See Section 5 for detailed numerical results.

This is a well known problem with importance sampling algorithms. Similar
issues arise in rare event simulation, and a standard solution is to dynamically
recompute the optimal path. See, e.g., the discussion of Siegmund’s algorithm
in [2]. In our context, this leads to an algorithm we call the dynamic linear map,
which is similar to the algorithms proposed in [28; 13]. We will also discuss
symmetrization in this context.

4.2. Dynamic linear map. Roughly speaking, the dynamic linear map (DLM)
consists of computing the optimal path ϕ starting from the current state Xn , taking
one step (so that Xn+1 = ϕn+1) and then repeating. See Algorithm 2 for details.
The DLM thus requires redoing LM at every step, and is therefore more expensive.1

However, it can avoid some of the issues arising from multimodal target distributions.
One can see this heuristically in the above example (Section 4.1): suppose we start
with X0 slightly to the right of x = 0, so that the optimal path ϕ goes to the right
bump. After a few steps, we may end up in a state Xn closer to the left bump. At
this point, the DLM would start steering the sample path towards the left bump.
Unlike LM, repeated sampling using DLM would yield sample paths that end at
both the left and the right bumps (see Section 5.1).

1Suppose each cost function evaluation requires CPU time ∝ N , the number of steps, and each
optimization requires k function evaluations. Then all else being equal, LM has running time O(k N )
and DLM O(k N 2).
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for m = 1 to M do
for n = 0 to N − 1 do

Calculate ϕ and H starting from Xn .
Calculate 6n+1 = (H−1)1,1/1t .
Sample Xn+1 ∼ N(ϕn+1,1tε6n+1).
Calculate Wn = p(Xn+1 | Xn)/q(Xn+1 | Xn).

Calculate W =WN−1 · · ·W0.
Return M weighted samples X,W .

Algorithm 2. Dynamic linear map.

To make use of DLM, we need an expression for the associated weights. This,
in turn, requires an expression for the proposal distribution q associated with DLM,
which one can derive by first noting that in general, transition densities are marginals
of the pathspace distribution:

ρ(xn+1 | xn)=

∫
ρ(xn+1:N | xn) dxn+2:N .

(Here we abuse notation slightly and use p and q to denote both pathspace distribu-
tions as well as their marginals.) The DLM transition density arises from making a
gaussian approximation of the target distribution at each step and then taking its
marginal. This leads to

q(xn+1 | xn)=

∫
q(xn+1:N | xn) dxn+2:N

∝ exp
(
−(x −ϕ)Tn+16

−1
n+1(x −ϕ)n+1/(21t)

)
. (4-2)

Here ϕ is the optimal path from xn to xN and we omit its dependence on xn for
readability of the equations; we also remind the reader that x = xn, . . . , xN is a
path. We denote the Hessian of F(x) evaluated at the optimal path ϕ by H . We
view a path from xn to xn+k as a point in Rk D, arranged in k blocks of D entries.
Accordingly, the matrix H can be viewed as an element of R(N−n)D×(N−n)D and
can be subdivided into (N − n)× (N − n) blocks of dimension D× D each. The
matrix 6n+1 in (4-2) is (H−1)1,1/1t , the first block of the inverse of the Hessian H
(after rescaling).

In Algorithm 2, going from step n to n+1 requires optimizing over the (N−n)D
remaining variables in the path. This is done independently at every step and for
every sample path. The weights for the proposal distribution of DLM can be
calculated as described in Algorithm 2, or as the product of the incremental weights

w =

N−1∏
n=0

wn, wn ∝
p(xn+1 | xn)

q(xn+1 | xn)
. (4-3)
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Relation to Hamilton–Jacobi equation and regularity of “value functions”. In the
definitions above, it is assumed that q(xn+1 | xn) is well defined for all (xn, xn+1).
This is actually not always the case. To see this, consider again the example from
Section 4.1. If xn = 0 at some n, there are two optimal paths pointing in opposite
directions. At this point, because there is not a single optimal path, q(xn+1 | xn) is
undefined. This behavior is actually rather common, and not at all confined to the
Brownian motion example. It is closely connected with regularity of solutions of a
partial differential equation of Hamilton–Jacobi (HJ) type. As we do not make use
of the theory of HJ equations in this paper, we do not go into details here. Instead,
we provide a brief summary below, and refer interested readers to, e.g., [29] or [12;
13; 10; 9], for more information.

In the DLM method, the optimal path minimizes a version of the function F in
(3-1), but starting with state xn at time n rather than always at time 0. In the limit
as 1t→ 0, the value function u(x, t) achieved with initial condition xn = x at step
n1t = t solves an HJ equation of the form ∂t u = H(x, Du), with Hamiltonian
H(x, p)= (σ 2/2)|p|2+ p· f (x); this is the Legendre transformation of the Freidlin–
Wentzell Lagrangian L(x, v)= |v− f (x)|2/(2σ 2) [14]. For the HJ equation to be
well posed, one prescribes the final condition that u(x, T )= g(x), where g is the
likelihood in (2-2) and T > 0. The HJ equation is then solved backwards in time.
The time derivative ϕ̇ of the optimal path starting at position x and time t is given
by the gradient of u(x, t) where it is differentiable. At locations (x, t) where there
are multiple optimal paths, the value function u(x, t) is generally continuous but
not differentiable. At such singular points x , q(xn+1, x) has jump discontinuities
(as x varies) and is therefore undefined.

Though very much relevant to the efficacy of the type of methods discussed in
this paper, the analysis of singularities of HJ equations can be highly nontrivial. As
our main goal is to assess whether some version of the symmetrization procedure
proposed in [17] can be extended to SDEs, we have opted to focus on the simplest
possible setting, leaving more general analysis to future work. For the remainder of
the paper, we make the following standing assumption:

q(xn+1 | xn) is defined everywhere, and is as smooth as needed.

The analytical results described below should therefore be interpreted as a best-case
scenario. We also note that while the numerical algorithm is unlikely to produce an
xn exactly in the set of singular points in actual practice, the presence of singularities
does mean that the performance of the algorithm may be worse than predicted
by our analysis. We have therefore designed our numerical examples to test the
extent to which the algorithms behave as predicted even when q(xn+1 | xn) is not
differentiable everywhere.
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4.3. Small noise analysis. To find the scaling of the relative variance of the weights
of DLM with the small noise parameter ε, we apply the same change of variables
as in (3-3) to each transition density and expand the incremental weights wn as

wn =w(zn+1 | zn)= 1+ε1/2
·w1,n(zn+1 | zn)+ε ·w2,n(zn+1 | zn)+O(ε3/2), (4-4)

where

w1,n(zn+1 | zn)=

∫
C3(z) exp(−zT H z/2) dzn+2:N∫

exp(−zT H z/2) dzn+2:N
, (4-5)

w2,n(zn+1 | zn)=

∫
(C3(z)2/2−C4(z)) exp(−zT H z/2) dzn+2:N∫

exp(−zT H z/2) dzn+2:N

−

∫
(C3(z)2/2−C4(z)) exp(−zT H z/2) dzn+1:N , (4-6)

noting that (4-4) relies strongly on our standing assumption that q(xn+1 | xn) is
differentiable. Since the weight of a sample is the product of the incremental
weights, we have

w(z)= 1+ ε1/2
·w1+ ε ·w2+ O(ε3/2),

where

w1 =

N−1∑
n=0

w1,n, w2 =

N−1∑
n=0

w2,n +

N−1∑
n=0

N−1∑
m=0

w1,n ·w1,m . (4-7)

The scaling of Q in ε now follows from the variance lemma:

Qε
= ε ·Varq [w1] + O(ε2). (4-8)

Thus, the relative variance of DLM scales linearly in ε, the same asymptotic scaling
as LM. However, we will show in numerical examples below that the dynamic
approach can be more effective in practice than LM, especially when the target
distribution has multiple modes.

4.4. Symmetrization. The leading-order term in the weight for DLM has an odd
symmetry, just like the LM, and a symmetrization procedure can be applied to DLM
to improve the scaling of Q in ε. The reason is that, at each time step, Xn+1 is
generated by a composition of the previous state Xn and a new gaussian sample ξn .
While this procedure leads to a proposal distribution that is not necessarily even,
the paths are constructed incrementally from gaussian samples which are even.

More specifically, the recursive composition forms a map h from the N ·D dimen-
sional gaussian to the path X =h(ε1/2ξ), and for every sampled path X+=h(ε1/2ξ),
there is a path X− = h(−ε1/2ξ) which is equally likely. Following the algorithm
described in Algorithm 3, we sample X+ with probability W+/(W++W−), and
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for m = 1 to M do
Sample ξ ∼ N(0, I ).
Calculate X+ = h(ε−1/2ξ) and X− = h(−ε−1/2ξ).
Calculate W+ = p(X+)/q(X+) and W− = p(X−)/q(X−).
Sample X = X+ with probability W+/(W++W−) and X = X− with probability

W−/(W++W−).
Calculate W = (W++W−)/2.

Return M weighted samples X,W .

Algorithm 3. Symmetrization.

X− with probability W−/(W++W−); the resulting proposal is a “symmetrized”
distribution with even weights (see (3-11)).

The symmetrized weights can be written in terms of the map as

ws(h(ε1/2ξ))=
w(h(ε1/2ξ))+w(h(−ε1/2ξ))

2
. (4-9)

Recall the expansion of the weights in (4-4), and note that

z = ε−1/2(h(ε1/2ξ)− h(0)),

since the most likely path ϕ can be written in terms of the map as ϕ = h(0).
If ϕ is unique (at each time step), h can be expanded around the most likely path as

h(ε1/2ξ)= ϕ+ ε1/2(Dh)(0) · ξ + O(ε), (4-10)

h(−ε1/2ξ)= ϕ− ε1/2(Dh)(0) · ξ + O(ε). (4-11)

We thus have that

w(h(ε1/2ξ))= 1+ ε1/2w1(ε
1/2(Dh)(0) · ξ, ϕ)

+ εw2(ε
1/2(Dh)(0) · ξ, ϕ)+ O(ε3/2), (4-12)

w(h(−ε1/2ξ))= 1− ε1/2w1(ε
1/2(Dh)(0) · ξ, ϕ)

+ εw2(ε
1/2(Dh)(0) · ξ, ϕ)+ O(ε3/2) (4-13)

which results in the cancellation of the leading-order term in ε of the symmetrized
weight

ws(h(ε1/2ξ))= 1+ εw2(ε
1/2(Dh)(0) · ξ, ϕ)+ O(ε3/2). (4-14)

Applying the variance lemma completes the proof for the quadratic scaling of Qs

in ε:

Qs = ε
2
·Varqs [w2] + O(ε4). (4-15)
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5. Numerical examples

We now examine a number of concrete examples, both to illustrate the scaling of the
proposed algorithms and to test their limitations. The source code for all examples
in this section can be found on GitHub.2

5.1. Examples with linear SDE. We begin with the Brownian motion example
from Section 4.1:

Xn+1 = Xn +
√
1t
√
εξn, (5-1)

with initial condition X0 = x0 and with likelihood θ = e−g(X N )/ε for two different
choices for g. We first consider the case of a unimodal target distribution for which
the assumptions made during the small noise analysis are satisfied. We then violate
the assumption of a unique optimal path to indicate limitations of DLM and our
small noise analysis. For the examples below, the time step is 1t = 10−2. The
observation is collected at step N = 100 (i.e., T = 1). Computing the optimal
paths is straightforward to do analytically, and we use the analytic formulas in our
implementation of the various samplers.

Brownian motion with unimodal likelihood. We first consider a likelihood defined by

g(x)= 1
24 x4
+

1
6 x3
+

1
2 x2.

The likelihood is asymmetric in x and leads to a nongaussian and unimodal target
distribution. In this example, the assumptions made in our small noise analysis are
satisfied.

We apply LM, SLM, DLM, and SDLM to sample the target distribution over a
wide range of ε, and compute the relative variance Q for each of these methods.
For each ε and method (LM, SLM, DLM, and SDLM), we draw 1200 samples.
The results are shown in Figure 2. As can be seen, the results show the predicted
scalings for Q for a wide range of ε for all four methods: both LM and DLM are
O(ε), while SLM and SDLM are both O(ε2). Perhaps this is no surprise, as all
assumptions that lead to the small noise theory are valid in this example. We also
see that the dynamic methods (DLM and SDLM) have smaller relative variance Q
at each value of ε, though they also cost more per sample.

Brownian motion with bimodal likelihood. Next, we examine

g(x)= 100 ·
( 1

4 x4
−

1
2 x2).

As explained in Section 4.1, this leads to a bimodal target distribution. We fix
ε = 10−1, and leave all other parameters as above. We apply LM and DLM to

2https://github.com/AndrewLeach/SDE_Importance_Sampling

https://github.com/AndrewLeach/SDE_Importance_Sampling


228 ANDREW LEACH, KEVIN K. LIN AND MATTHIAS MORZFELD

0

10
-5

10
-4

10
-3

10
-2

10
-1

Q
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

slope 1

slope 2

LM

DLM

SLM

SDLM

Figure 2. Brownian motion with asymmetric unimodal likelihood. The scaling of Q in ε
for LM, SLM, DLM, and SDLM are plotted.
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Figure 3. Final-time marginal distributions for Brownian motion with bimodal likelihood.
Left: we plot the marginal distribution p(xN | x0) estimated by weighted histograms of
12000 samples generated using LM. Also shown is the target distribution. Right: we plot
the same information for DLM.

compute the final-time distribution p(X N | X0), using 1.2×104 (weighted) samples.
The results are shown in Figure 3, along with the target distribution∝ e−(g(x)+x2/2)/ε.

As expected, LM essentially ignores one of the two modes, while DLM captures
both modes. As explained before, even though both samplers should reproduce the
target distribution in the large-sample-size limit, in practice LM produces almost no
sample paths that go to the left bump. In contrast, DLM readily generates sample
paths ending at both bumps, leading to a more effective sampling of the target
distribution. We have experimented with increasing the sample size for LM, but
even the largest sample sizes we consider did not lead to weighted samples that
represent both modes.

Finally, note that empirical estimates of Q are insufficient to detect this problem:
even though the true value of Q for LM should be quite large in this case, empirical
estimates of Q for LM are actually quite small because none of the sample paths go
to the left bump. Indeed, for Figure 3, the empirical Q for LM is ∼ 3×10−3, while
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Figure 4. DLM applied to the overdamped Langevin equation with bimodal likelihood.
Left: the scaling of Q versus ε for x0 approaching x = 0. Right: we plot the average
number of x = 0 crossings against ε.

that of DLM is ∼ 1. The example thus shows that for nongaussian and possibly
multimodal distributions, DLM can be more reliable despite the same scaling of Q.

Overdamped Langevin equation with bimodal likelihood. The scaling arguments
for DLM and its symmetrized version rely on the assumption that the most likely
path ϕ is unique at every time step. We now consider an example for the DLM in
which we deliberately violate this assumption. The model is

Xn+1 = Xn −1tα · Xn +
√
1t
√
εξn, (5-2)

the Euler discretization of the overdamped Langevin equation Ẋ =−αX +
√
ε Ḃ.

We use the log-likelihood

g(x)= 10 ·
(1

4 x4
−

1
2 x2).

As in the previous example, the optimal path goes to the right bump when X0 > 0
and to the left when X0 < 0. At X0 = 0 there is no unique optimal path.

The linear drift makes it likely that DLM sample paths encounter the x = 0 line
and the small noise results may not hold in this case. To illustrate the behavior and
efficiency of the methods in this situation, we perform experiments with varying
values of ε and x0. Specifically, for a fixed ε, we take N = 103 time steps with
DLM, starting from initial conditions ranging from x0 = 10−1 to x0 = 10−5. We
compute the averaging number of x = 0 crossings for each experiment. Figure 4
shows the results as well as the computed values of Q.

As can be seen in Figure 4, left, the predicted asymptotic scaling of Q only
emerges for small ε; the critical value of ε at which the Q curve crosses over into
the asymptotic regime decreases as x0 approaches 0, making crossings more likely.
Comparing Figure 4, left and right, we see that the asymptotic regime corresponds
to values of ε small enough that the average number of crossings per sample is
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Figure 5. The Gissinger model and its phase space geometry. Shown are trajectories of
the deterministic model (light gray) projected to the x2-x3 plane. The dashed line is the
most likely path with initial condition marked by “•” and measured state at time t = 10
marked by “+”; this trajectory undergoes a “pole reversal” (Case (a)). The solid blue line
represents the most likely path with initial condition “◦” and observation “×” at t = 10,
and does not exhibit a pole reversal (Case (b)). The symbols “�” and “�” are the times at
which we computed the histograms in Figure 6.

near zero. Closer examination of the data suggests that this critical ε scales roughly
linearly with distance of the initial condition x0 to x = 0. The example thus suggests
that the efficiency of DLM may suffer if one encounters nonunique optimal paths
while constructing the proposal distribution q sequentially, but the predicted Q
scaling again holds if ε is small enough.

Finally, we note that even in the preasymptotic regime, the values of Q are O(1),
meaning the effective number of samples is ≈ Ne/2, which is still a significant
improvement over direct sampling.

5.2. Example with a nonlinear SDE. Our second example is a stochastic version
of an idealized geomagnetic pole reversal model due to Gissinger [16]:

ẋ1
= 0.119x1

− x2x3
+
√
ε Ḃ1,

ẋ2
=−0.1x2

+ x1x3
+
√
ε Ḃ2,

ẋ3
= 0.9− x3

+ x1x2
+
√
ε Ḃ3.

(5-3)

(In this section, xk refers to the k-th component of a vector x .) The ε = 0 system
of ordinary differential equations has 3 unstable fixed points: (0, 0, 0.9) and p± ≈
(∓0.96,±1.05,−0.109). It has a chaotic attractor on which trajectories circulate
around either p+ or p− many times before making a quick transition to the other
fixed point. See Figure 5. Following [16], we refer to these transitions as “pole
reversals”, since the second component x2(t) can be thought of as a proxy for the
geomagnetic dipole field, and it changes signs at these transitions.
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Figure 6. Final-time marginal distributions for the Gissinger model. Left: Case (a). Right:
Case (b). In each panel, the diagonal plots are histograms for the final-time marginal
proposal distributions for of x1, x2, and x3 (solid= LM and dashed= DLM). The times at
which the marginals are computed are marked by “�” in Figure 5 for Case (a), and “�” for
Case (b). Plots on the lower-triangular submatrix are two-dimensional marginal proposal
distributions computed by LM, while two-dimensional marginal proposal distributions
computed by DLM form the upper-triangle (see text for details).

Here, we consider (5-3) with ε > 0. We start with an initial condition near p+,
and after N = 100 steps make an observation with log-likelihood g(x)=‖x−y‖2/2,
where x = (x1, x2, x3). We view y ∈ R3 as the outcome of a “measurement” made
at step N .

We consider two cases:

(a) the measured value y is near p−, i.e., on the opposite “lobe” from the initial
condition, or

(b) y is near p+, i.e., on the same “lobe” as the initial condition.

Figure 5 illustrates the initial conditions, data, and optimal paths for the two cases.
Shown are trajectories of the deterministic model (light gray), representing the
chaotic attractor. The dashed line is the most likely path with initial condition
marked by “•” and with measured state at time t = 10 marked by “+”; this
trajectory undergoes a “pole reversal” (Case (a)). The solid blue line represents
the most likely path with initial condition “◦” and observation “×,” and does not
exhibit a pole reversal (Case (b)).

To see how the two cases differ, we fix ε = 10−2 and apply the LM and DLM to
generate 1200 sample paths in each case and plot marginals of the proposal distribu-
tions at two different times. In Case (a), we plot histograms of the marginal distribu-
tions at time j1t as marked by “�” in Figure 5; in Case (b), we plot histograms of the
marginal distributions at time j1t as marked by “�”. For each method, the resulting
“triangle plot” consists of histograms of the one-dimensional marginals, q(X k

j | X0)

for k ∈ {1, 2, 3}, and the two-dimensional marginals, q(X k
j , X`

j | X0), k 6= `, of the
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Figure 7. Relative variance Q as a function of ε for the Gissinger model. Case (a) (left)
involves a pole reversal, whereas Case (b) (right) does not.

proposal distributions. The triangle plots are shown in Figure 6. In each panel, the
diagonal plots are the one-dimensional marginal distributions. The lower-triangular
parts of each panel are the two-dimensional marginal distributions generated by
LM, while the upper-triangular parts show marginals generated by DLM.

In Case (a), the marginal distributions of the DLM proposal are multimodal,
possibly related to the underlying geometry of the strange attractor. In contrast, the
LM proposal distribution misses this complexity altogether (as one might expect).
Moving now to Case (b), which involves starting and end points on the same lobe
connected by a shorter optimal path, the marginals are unimodal, and LM and
DLM give more similar answers (though there is still significant deviation from
gaussianity in the DLM proposal distribution).

Finally, we vary ε in Cases (a) and (b) and apply LM, SLM, DLM, and SDLM.
For each value of ε, we estimate Q for each of the 4 methods. The results are
shown in Figure 7. Not surprisingly, LM breaks down for Case (a), in which the
target distribution is likely multimodal. In contrast, both DLM and SDLM exhibit
the predicted scaling. For Case (b), because the target distribution is unimodal, all
four methods behave as predicted by the small noise theory.

Numerical details. The Gissinger model requires attention to numerical implemen-
tation when we compute its statistics. We describe our numerical implementation
in detail.

(i) Time-stepping. The Euler scheme for the Gissinger model requires small time
steps because of numerical instabilities. To improve stability, we discretize the
drift part of (5-3) using a standard fourth-order Runge–Kutta (RK4) method
and then adding IID N(0,

√
ε
√
1t I ) normal random vectors at each step. This

yields a model of the form (2-1), where f̃ (x,1t) now represents one step of
the RK4 scheme. In all the examples shown above, the time step is 1t = 10−1.
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(ii) Estimation of Q. In Figure 7, because of their different variances, we use 1200
sample paths to estimate Q for DLM and for SDLM, and 12000 paths for LM
and for SLM.

(iii) Computing optimal paths. Our methods requires computing optimal paths.
For the Gissinger model, we use Newton’s method. Since explicit analytical
expressions for the gradient and the Hessian are available, this is relatively
straightforward to program. To reduce the (fairly significant) computational
cost of computing ϕ at each time step, we “guess” a good initialization for the
optimization procedure using the solution from the previous time step using
the linearized dynamics. See [20] for details.

6. Continuous time limit of dynamic linear map

So far, we have focused on time discretizations of SDEs. A natural question is
what happens to the proposed algorithms in the limit 1t→ 0. In this section, we
sketch some analytical arguments aimed at addressing these questions for scalar
SDE. Though restrictive, we believe these results yield useful insights. A more
complete and rigorous analysis is left for future work, as it is expected to be more
involved.

6.1. Dynamic linear map. For scalar SDE, the DLM can be defined through the
recursion

X1t
n+1 = ϕ

1t
n+1(X

1t
n , n)+

√
1t
√
ε

√
61t

n+1(X
1t
n , n)ξn, (6-1)

where ϕ1t
n (x0,m), n ∈ {m,m+1, . . . , N }, is the optimal path (3-2) with prescribed

initial condition xm = x0 ∈ R, 61t
n+1(X

1t
n , n) is the (1, 1)-th entry of the Hessian

of F1t (see (3-1) and (4-2)), and the ξn are independent standard normal random
variables. Keeping in mind that ϕn(x, n)= x for all n, the above can be written as

X1t
n+1=X1t

n +1t
ϕ1t

n+1(X
1t
n , n)−ϕ1t

n (X1t
n , n)

1t
+
√
1t
√
ε

√
61t

n+1(X
1t
n , n)ξn. (6-2)

Our goal in this subsection is to sketch an argument suggesting that as 1t → 0,
solutions of (6-2) converge weakly [19] to those of

d X t = ϕ̇t(X t , t) dt +
√
εσ · d Bt (6-3)

with X0 = x0. Since we consider “continuous time” and “discrete time” cases, we
mark the discrete time case by a 1t superscript (i.e., in this section, the function
in (3-1) is called F1t ). In (6-3), “ϕ̇s(x, t)” denotes ∂s(ϕs(x, t)), and the path
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s 7→ ϕs(x0, t) (t 6 s 6 T ) minimizes the action functional [14]

F(xt :T | xt = x0)=
1

2σ 2

∫ T

t
(ẋs − f (xs))

2 ds+ g(xT ), ϕt(x0, t)= x0. (6-4)

This is the continuous time analog of (3-1).
Equation (6-3) was derived in [28] as the proposal for an importance sampling

algorithm. This was later used in [29] for data assimilation in the small noise regime.
We assume minimizers ϕ of the action functional are twice-differentiable in the
time parameter and satisfy the Euler–Lagrange equations; this can be justified via
standard results from the calculus of variations (see, e.g., Section 3.1 of [15]). In
what follows, we also assume that the action functional has a single global minimum
for all initial positions x and initial time t ∈ [0, T ]. This unique optimal paths
assumption (the continuous time analog of the unimodality of p(x)) implies that
ϕ̇t(x, t) is defined everywhere. Without unique optimal paths, any analysis will
require more care; see, e.g., [28] and references therein for a discussion of these
and related issues. The assumption is natural for linear systems with unimodal
likelihood functions e−g/ε, and may hold (approximately) in nonlinear systems
when T is small.

We now sketch our argument. We begin by recalling that a numerical approx-
imation of an SDE converges weakly with weak order k if, for all test functions
ψ ∈ Ck+1 with at most polynomial growth,∣∣E(ψ(X1t

N ) | X0)−E(ψ(XT ) | X0)
∣∣= O(1tk) (6-5)

as1t→0. By standard results in the numerical analysis of SDEs, weak convergence
is implied by “weak consistency” plus some mild polynomial growth conditions;
see, e.g., Section 14.5 in [19] for details.

In this context, consistency means that the factors (ϕ1t
n+1(x, n)−ϕ1t

n (x, n))/1t
and 61t

n+1(x, n) in (6-2) approximate the corresponding factors in (6-3) (ϕ̇t(x, n1t)
and σ 2, respectively). These we now prove:

Proposition. Under the unique optimal path assumption, we have

ϕ1t
n+1(x, n)−ϕ1t

n (x, n)

1t
= ϕ̇n1t(x, n1t)+ O(1t)

for all n = 1, . . . , N and x ∈ R, (6-6)

61t
n+1(x, n)= σ 2

+ O(1t). (6-7)

Proof of (6-6). We begin by proving that ϕ and ϕ1t satisfy the first variational
equations for F and F1t , respectively (see (6-4) and (3-1)). Without loss of
generality, set t = 0 and n = 0, and write ϕ(s) := ϕs(x0, 0) for a given x0. Then
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the first variational equation of F is the boundary value problem

−ϕ̈(s)+ f ′(ϕ(s)) f (ϕ(s))= 0, (6-8)

ϕ(0)− x(0)= 0, (6-9)

ϕ̇(T )− f (ϕ(T ))+ σg′(ϕ(T ))= 0, (6-10)

and the first variational equation for F1t is

−
ϕ1t

k−1− 2ϕ1t
k +ϕ

1t
k+1

1t2 + f ′(ϕ1t
k ) f (ϕ1t

k )

+
f (ϕ1t

k )− f (ϕ1t
k−1)

1t
− f ′(ϕ1t

k )
ϕ1t

k+1−ϕ
1t
k

1t
= 0, (6-11)

ϕ1t
0 − x0 = 0, (6-12)

ϕ1t
N −ϕ

1t
N−1

1t
− f (ϕ1t

N−1)+ σg′(ϕ1t
N )= 0. (6-13)

By the unique optimal path assumption, (6-8) is well posed. Equation (6-8) is
equivalent to the system

−v̇+ f ′(ϕ) f (ϕ)= 0, ϕ̇ = v (6-14)

with boundary conditions ϕ(0) = 0 and v(T )− f (ϕ(T ))+ σg′(ϕ(T )) = 0, and
(6-11) is equivalent to the first-order-accurate finite difference approximation

−
vk − vk−1

1t
+ f ′(ϕ1t

k ) f (ϕ1t
k )+

f (ϕ1t
k )− f (ϕ1t

k−1)

1t
− f ′(ϕ1t

k ) vk = 0,

vk =
ϕ1t

k+1−ϕ
1t
k

1t
.

Convergence results for numerical approximations of two-point boundary value
problems tell us that for first-order-accurate finite difference schemes, pointwise
errors are uniformly bounded by C1t for some C > 0 (see, e.g., [18] and references
therein). In particular, we have (ϕ1t

n+1 − ϕ
1t
n )/1t = vn = ϕ̇(n1t)+ O(1t) for

each n, as claimed. �

Proof of (6-7). To prove (6-7), we consider the second variational equations of F
and F1t . For F , we obtain a Sturm–Liouville boundary value problem

(Lu)(s)= 0,

u(0)= 0,

u′(T )+ (− f ′(ϕ(s))+ σg′′(ϕ(T )))u(T )= 0,

(6-15)

where the operator L is defined by

Lu =−u′′(s)+ ( f ′(ϕ(s))2+ f ′′(ϕ(s)) f (ϕ(s)))u(s),
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ϕ is the solution to the first variational equation, and u is a test function. The second
variational equation for F1t is

(H/1t)u1t
= 0,

u1t
0 = 0,

u1t
N − u1t

N−1

1t
− f ′(ϕ1t

N−1)u
1t
N−1+ σg′′(ϕ1t

N )u
1t
N = 0,

where H is the Hessian of F1t , and

(H/1t)u1t
=−

u1t
k−1− 2u1t

k + u1t
k+1

1t2 + ( f ′(ϕ1t
k )2+ f (ϕ1t

k ) · f ′′(ϕ1t
k ))u1t

k

+
f ′(ϕ1t

k )u1t
k − f ′(ϕ1t

k−1)u
1t
k−1

1t
−

u1t
k+1− u1t

k

1t
· f ′(ϕ1t

k )−
ϕ1t

k+1−ϕ
1t
k

1t
· f ′′(ϕ1t

k )u1t
k .

Note that the discrete equations can also be obtained by applying a first-order
discretization scheme to the continuous equations.

The differential operator L has an associated Green’s function

K (t, s)=
1

y′1(0)y2(0)

{
y1(t)y2(s), 0< t < s,
y2(t)y1(s), 0< s 6 t,

where y1 is a solution that satisfies the left Dirichlet boundary condition, while the
solution y2 satisfies the mixed boundary condition on the right. The analog of the
Green’s function for the discretized problem is H−1. Specifically, the first element
of the first row of H−1 is a second-order approximation of the Green’s function
K (1t,1t):

(H−1)1,1 = K (1t,1t)+ O(1t2). (6-16)

A Taylor expansion of K at the origin gives

K (1t,1t)= σ 21t +1t2 y′2(0)
y2(0)

+ O(1t3). (6-17)

Combined, we thus have

(H−1)1,1 = σ
21t + O(1t2). (6-18)

Since 61t
n+1(x, n)= (H−1)1,1/1t , this shows that 61t

n+1(x, n)= σ 2
+ O(1t). �

6.2. Small noise analysis for the continuous time limit of DLM. We investigate
how the efficiency of the dynamic linear map, as measured by the quantity Q
(see (2-5)), is affected by taking the 1t→ 0 limit, and apply the theory presented
in [26] to show that Q scales linearly in the small noise parameter ε even as1t→ 0.
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First, we note that the weights of the continuous limit of the DLM follow from
the Cameron–Martin–Girsanov theorem [14]

w(X)∝ exp
(
−

1
√
ε

∫ T

0
v(Xs, s) ·d Bs−

1
2ε

∫ T

0
v(Xs, s)2 ds−

1
ε

g(XT )

)
(6-19)

where v(x, t)= σ−1
· (ϕ′t(x, t)− f (x)). The relative variance of the weights can

be written as
Q = e−(V (0,x0)−2G(0,x0))/ε − 1, (6-20)

where
G(x, t)=−ε log(Eq [w | xt = x]),

V (x, t)=−ε log(Eq [(w)
2
| xt = x]).

In [26], it was shown that V can be expanded in powers of ε when the minimizer ϕ
of (6-4) is unique for all (x, t) in the domain. A calculation shows that G can also
be expanded in powers of ε, with similar coefficients. In summary, we have

G(x, t)= G0(x, t)+ ε ·G1(x, t)+ ε2
·G2(x, t)+ O(ε3), (6-21)

V (x, t)= V0(x, t)+ ε · V1(x, t)+ ε2
· V2(x, t)+ O(ε3), (6-22)

where the coefficients Gi , Vi , i = 0, 1, 2, satisfy the following system of PDEs:

∂t G0+ f ∂x G0−
σ 2

2
(∂x G0)

2
= 0, G0(x, T )= g(x),

∂t V0+( f+σ 2∂x G0) · ∂x V0−
σ 2

2
(∂x V0)

2
−σ 2(∂x G0)

2
= 0, V0(x, T )= 2g(x),

∂t G1+ f · ∂x G1+
σ 2

2
∂xx G0− σ

2∂x G0 · ∂x G1 = 0, G1(x, T )= 0,

∂t V1+( f+σ 2∂x G0) · ∂x V1+
σ 2

2
∂xx V0−σ

2∂x V0 · ∂x V1 = 0, V1(x, T )= 0,

∂t G2+ f · ∂x G2+
σ 2

2
∂xx G1− σ

2∂x G0 · ∂x G2

−
σ 2

2
(∂x G1)

2
= 0, G2(x, T )= 0,

∂t V2+( f+σ 2∂x G0) · ∂x V2+
σ 2

2
∂xx V1−σ

2∂x V0 · ∂x V2

−
σ 2

2
(∂x V1)

2
= 0, V2(x, T )= 0.

(These equations are similar in structure to those of the WKB approximation [3],
with the leading-order term given by a nonlinear PDE of Hamilton–Jacobi type and
a hierarchy of linear transport equations for the higher-order terms.) One can check
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that V0 = 2G0 and V1 = 2G1, but V2 6= 2G2. Combining the expansions (6-21) and
(6-22) we thus have

V (x0, 0)− 2G(x0, 0)= ε2K2+ O(ε3), (6-23)

where K2 = V2− 2G2 satisfies

∂t K2+ f · ∂x K2− σ
2∂x G0 · ∂x K2− σ

2(∂x G1)
2
= 0, K2(x, T )= 0. (6-24)

Using (6-23) in the expression of the relative variance Q in (6-20), and expanding
in ε results in

Q = ε · K2(x0, 0)+ O(ε2). (6-25)

Thus, the performance criterion Q for this continuous time method scales linearly
with ε.

7. Concluding discussion

In this paper, we study a class of importance samplers for SDEs designed for
data assimilation tasks in the small (observation and dynamic) noise regime. We
have extended a small noise analysis for implicit samplers [17] to importance
sampling for SDEs. We have also shown that a symmetrization procedure, originally
proposed in [17], can be applied effectively to obtain higher-order samplers for
SDEs. Moreover, we have shown that a dynamic version of the importance sampler
retains the same asymptotic performance but is more robust in problems with
multimodal distributions.

Our work also points to a number of directions for future research:

(i) Multimodal distributions. Our analysis is limited to unimodal target distri-
butions, but multimodal distributions do occur in practice. We believe an
analysis for such problems (which necessarily means dealing with q(xn+1 | xn)

with jump discontinuities), possibly on concrete examples, would yield useful
insights into the performance of DLM in more general situations than the ones
examined here. One use for such an analysis is to compare DLM with other
data assimilation methods, e.g., the ensemble Kalman filter, which may require
less computation in nearly gaussian problems.

(ii) Continuous time limits. In discrete time, the dimension of the sampling problem
we consider is equal to the dimension of a discretized path of an SDE and,
thus, equal to the product of the state dimension and the number of time steps
of the path. Our continuous time limit of the DLM for scalar SDE indicates
that a large dimension due to a small time step is unproblematic, but our results
do not indicate how the efficiency of DLM degrades when the dimension of
the SDE is large.
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(iii) Symmetrization in continuous time. Our results with symmetrized methods in
discrete time are encouraging, but we currently do not have theoretical results
on symmetrization in continuous time.

(iv) Long time scales. As mentioned in Section 1, the methods discussed in this
paper bear a close resemblance to methods proposed in [28] and [13] for rare
event simulation. However, in this paper we have assumed a fixed final time T ,
whereas for many (if not most) rare event problems of interest, the relevant
time scale tends to∞ as ε→ 0 (e.g., T = O(1/ε)), and our methods are not
expected to perform well on such long time scales. It would be of theoretical
and practical interest to extend the ideas described here to the setting of rare
event simulation, particularly the idea of symmetrization.

(v) Problems that do not come from SDEs. Also mentioned in Section 1 is the pos-
sibility of extending the methods proposed here, in particular symmetrization,
to more general sequential Monte Carlo sampling problems.
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