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Abstract

Listeners use talker-specific phonetic structure to facilitate language comprehension. This study 1 

tests whether sensitivity to talker-specific phonetic variation also facilitates talker identification. 2 

During training, two listener groups learned to associate talkers’ voices with cartoon pseudo-3 

faces. For one group, each talker produced characteristically different voice-onset-time values; 4 

for the other group, no talker-specific phonetic structure was present. After training, listeners 5 

were tested on talker identification for trained and novel words, which was improved for those 6 

who heard structured phonetic variation compared to those who did not. These findings suggest 7 

an additive benefit of talker-specific phonetic variation for talker identification beyond 8 

traditional indexical cues. 9 

© 2018 Acoustical Society of America  10 
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1. Introduction 11 

In order to map the acoustic signal to meaning, listeners must solve the lack of invariance 12 

problem for speech, which can arise, for example, because multiple acoustic forms are produced 13 

for a given speech sound, or because one or more phonemes of the canonical form may be 14 

omitted in a given word. There is a rich literature demonstrating that some variability in speech 15 

acoustics is highly structured, including variability associated with talkers’ idiolects. For 16 

example, talkers show differences in their production of formant frequencies for vowels 17 

(Hillenbrand, Getty, Clark, & Wheeler, 1995), spectral center of gravity for fricatives (Newman, 18 

Clouse, & Burnham, 2001), and voice-onset-time (VOT) for word-initial stop consonants (Allen, 19 

Miller, & DeSteno, 2003; Hullebus, Tobin, & Gafos, 2018 (German); Theodore, Miller, & 20 

DeSteno, 2009). In other words, talkers have characteristic idiolectal patterns for acoustic-21 

phonetic properties of speech, including VOT. Listeners can track talkers’ characteristic 22 

productions (Theodore & Miller, 2010) and dynamically modify the mapping to speech sounds 23 

to reflect talker-specific phonetic distributions (e.g., Clayards, Tanenhaus, Aslin, & Jacobs, 24 

2008; Theodore, Myers, & Lomibao, 2015). Listeners also show increased word transcription 25 

accuracy for familiar compared to unfamiliar talkers (Nygaard & Pisoni, 1998). Collectively, 26 

these findings demonstrate that listeners derive talker-specific mappings to speech sounds that 27 

serve to facilitate language comprehension.1 28 

 The interplay between talker processing and linguistic processing is also observed in the 29 

domain of voice processing. Listeners show increased talker identification for talkers speaking a 30 

 

1 Unless otherwise indicated in parentheses following each citation, the examined language in 

cited studies was American English. In English, there is a two-way phonological voicing contrast 

between short-lag VOTs that cue voiced stops and long-lag VOTS that cue voiceless stops 

(Lisker & Abramson, 1964). 
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familiar compared to an unfamiliar language [e.g., Goggin, Thompson, Strube, & Simental, 1991 31 

(English, German, Spanish)]. There is some evidence to suggest that experience with the 32 

linguistic sound structure plays an important role in talker identification, consistent with 33 

frameworks that outline a priori computational expectations that talker-specific phonetic 34 

variation should facilitate voice processing (Kleinschmidt & Jaeger, 2015). For example, 35 

listeners who have regular exposure to a nonnative language show increased talker identification 36 

for that language compared to listeners without regular exposure (Orena, Theodore, & Polka, 37 

2015). Other studies have shown that listeners can identify native-language voices from sine-38 

wave speech analogs (Remez, Fellowes, & Rubin, 1997), a signal manipulation that removes 39 

traditional indexical properties (e.g., fundamental frequency) but preserves some idiosyncratic 40 

phonetic variation, and that listeners can learn to use VOT as a cue to talker identity for voices 41 

that are otherwise identical (Francis & Driscoll, 2006). 42 

Neuroimaging findings have shown that brain regions responsible for mapping sound to 43 

meaning are sensitive to speaker information in addition to lexical information (Chandrasekaran, 44 

Chan, & Wong, 2011). Listeners show sensitivity to voice information at early, pre-attentive 45 

stages of processing, challenging the view that cues to voice identity are discarded in the process 46 

of mapping speech to meaning (Knösche, Lattner, Maess, Schauer, & Friederici, 2002 (German); 47 

Tuninetti, Chládková, Peter, Schiller, & Escudero, 2017 (Dutch, Australian English)). Moreover, 48 

brain regions associated with voice processing are also sensitive to talker-specific phonetic 49 

variation (Knösche et al., 2002; Myers & Theodore, 2017). In Myers and Theodore (2017), 50 

listeners heard two talkers produce characteristically different VOTs for word-initial voiceless 51 

stops during a brief exposure phase. Following exposure, neural activation was measured using 52 

fMRI while listeners completed a phonetic categorization task for VOTs that were either 53 
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consistent or inconsistent with their exposure. Of interest to the current work, right 54 

temporoparietal regions implicated in voice processing showed sensitivity to the consistency 55 

between VOT variant and talker exposure as reflected by increased activation for VOTs that 56 

were atypical compared to typical of the speaker based on previous exposure. The observed 57 

sensitivity to talker-specific VOT in voice processing neural regions is striking because the 58 

talkers’ voices differed on a host of traditional indexical properties (e.g., fundamental frequency) 59 

in addition to their characteristic difference in VOT production, suggesting that talker-specific 60 

phonetic structure can be exploited for voice processing. 61 

Here we test this hypothesis directly. In two experiments, two groups of listeners 62 

completed a training phase where they heard /ɡ/- and /k/-initial words produced by three female 63 

speakers and learned to associate each voice with a cartoon pseudo-face. For one group, there 64 

was a structured relationship between VOT and talker, but for the other group, no talker-specific 65 

structure was provided. For both groups, the talkers’ voices differed with respect to traditional 66 

indexical properties and thus sensitivity to phonetic variation was not required to perform the 67 

talker identification task (cf. Francis & Driscoll, 2006). After training, both groups completed a 68 

talker identification test phase for trained and novel words. The duration of the training phase 69 

was very brief (Experiment 1) or relatively longer (Experiment 2). If listeners can in principle 70 

use structured phonetic variation to facilitate voice processing over and above the benefit of 71 

traditional indexical cues, then we would expect to observe heightened talker identification at 72 

test for listeners in the structured compared to the unstructured training group. 73 

2. Experiment 1 74 

2.1 Participants and stimuli 75 

Forty monolingual speakers of American English (mean = 20 years, SD = 2 years, 28 women, 12 76 



Ganugapati, JASA-EL 

 6 

men) were recruited from the University of Connecticut community. No participant had a history 77 

of speech, language, or hearing disorder per self-report. All participants passed a hearing screen 78 

administered at 25 dB for octave frequencies between 500 and 4000 Hz. Listeners received 79 

partial course credit or monetary compensation ($5) for their participation and were randomly 80 

assigned to either the structured (n = 20) or unstructured (n = 20) exposure condition. 81 

Stimuli consisted of single-word utterances produced by three female speakers of 82 

American English with perceptually distinct voices. Stimuli were drawn from four VOT continua 83 

(goal-coal, gain-cane, bowl-pole, bane-pain) that were created for each talker following methods 84 

outlined in Allen and Miller (2004); word duration was equivalent across continua and talkers 85 

(ranging between 501 and 511 ms). For each talker and each voiced endpoint (i.e., goal, gain, 86 

bowl, bane), a VOT continuum was created based on the voiced endpoint by successively 87 

changing voiced cycles to voiceless cycles using a speech synthesizer (ASL, KayPENTAX, 88 

Montvale, NJ), increasing VOT by 4-5 ms with each iteration of the synthesis procedure. This 89 

procedure yielded continua that perceptually ranged from voiced to voiceless minimal pairs  90 

(e.g., goal-coal), with many VOT variants cueing each member of the pair.  91 

As shown in Fig. 1, tokens from these continua were selected to form three sets, two for 92 

use during training (i.e., structured and unstructured exposure groups) and one for use during 93 

test. Both the structured and unstructured training sets contained 72 tokens drawn from the   94 

goal-coal and gain-cane continua that included six repetitions of each voiced-initial word (6 95 

repetitions X 2 voiced-initial words X 3 talkers = 36 voiced-initial items) in addition to 36 96 

voiceless-initial items. The same voiced-initial items were used in both the structured and 97 

unstructured sets, and consisted the voiced endpoints of each continuum; VOTs were equivalent 98 

across talker and word (ranging between 35 and 40 ms). For the structured set, the voiceless-99 
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initial items consisted of three repetitions of two VOT variants for each word and each talker (3 100 

repetitions X 2 VOT variants X 2 words X 3 talkers = 36 voiceless-initial items). The VOT 101 

variants were selected so that each talker had a characteristic VOT, with talker 1 producing 102 

VOTs of 75 and 85 ms, talker 2 producing VOTs of 115 and 125 ms, and talker 3 producing 103 

VOTs of 155 and 165 ms. These ranges span the range of VOTs observed in the literature for 104 

American English stops (e.g., Theodore et al., 2009). For the unstructured set, the voiceless-105 

initial items consisted of one repetition of six VOT variants for each talker, corresponding to the 106 

VOTs of 75, 85, 115, 125, 155, and 165 ms (1 repetition X 6 VOT variants X 2 words X 3 107 

talkers = 36 voiceless-initial items). Accordingly, both the structured and unstructured training 108 

sets contained equal numbers of voiced- and voiceless-initial items, and there were equal 109 

numbers of each voiceless-initial VOT variant. The critical difference between the two training 110 

sets is that a talker-specific structure for voiceless-initial VOTs was present in the structured but 111 

not the unstructured training sets.  112 

The test set was identical for the two exposure groups and contained the four words used 113 

during training (goal, gain, coal, cane) and four novel words (bowl, bane, pole, pain) for each 114 

talker (3 talkers X 2 repetitions X 8 words = 48 test tokens). The voiced-initial tokens (goal, 115 

gain, bowl, bane) were the voiced endpoints of each continuum; as for the goal and gain tokens, 116 

VOTs for the bowl and bane tokens were equivalent across talker and word (ranging between 15 117 

and 20 ms). The voiceless-initial tokens (coal, cane, pole, pain) included the VOTs intermediate 118 

to those used in the structured exposure set (talker 1 = 80 ms, talker 2 = 120 ms, talker 3 = 160 119 

ms) and corresponding VOT tokens from the bowl-pole and bane-pain continua (talker 1 = 60 120 

ms, talker 2 = 100 ms, talker 3 = 140 ms). The shorter VOTs of the labial compared to the velar 121 

tokens are consistent with how place of articulation influences VOT (Lisker & Abramson, 1964). 122 
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 123 

Fig. 1 (Color online) The top panel shows histograms of VOTs presented during training for the 124 

structured and unstructured exposure conditions. For the structured exposure condition, each 125 

talker (i.e., T1, T2, T3) shows a characteristic VOT production. For the unstructured exposure 126 

condition, there is no characteristic relationship between talker and VOT. The bottom panel 127 

shows histograms of VOTs presented at test for the trained and novel words; the same test 128 

stimuli were used for both exposure groups. For illustration purposes, voiced tokens are plotted 129 

as 40 ms VOT (the trained, velar-initial words) or 20 ms VOT (the novel, labial-initial words); as 130 

described in the main text, the exact VOTs of the voiced-initial words were within 5 ms of these 131 

values. 132 

2.2 Procedure 133 

All testing was completed in a sound-attenuated booth. Auditory stimuli were presented via 134 

headphones at a comfortable listening level held constant across participants. Participants 135 

completed three phases: familiarization, training, and test. Familiarization consisted of 12 trials 136 

(2 repetitions X 2 words X 3 talkers) using the (voiced-initial) goal and gain tokens that were 137 

selected for the training (and test) phases. On a single trial, the auditory stimulus was presented 138 

along with the cartoon pseudo-face. Participants were told, “Your job is to listen, look, and try to 139 
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remember what that voice sounds like.” No responses were collected during familiarization. The 140 

training phase was of fixed length, consisting of one randomization of the 72 items appropriate 141 

for the specific exposure group (Fig. 1). On each trial, an auditory stimulus was presented 142 

simultaneously with a visual array of three cartoon pseudo-faces. Participants were directed to 143 

select the cartoon associated with the talker’s voice by pressing an appropriately labeled button 144 

on the response box. Feedback was provided in the form of “Yes!” for correct responses and 145 

“No.” for incorrect responses. Trials were separated by an ISI of 2000 ms. The test phase 146 

consisted of one randomization of the 48 test stimuli. The procedure was identical to that during 147 

training except that no feedback was provided during test. Participants were given a brief break 148 

between the training and test phases, and the entire session lasted approximately 15 minutes. 149 

2.3 Results 150 

The raw data and analysis script for all results presented in this manuscript can be retrieved at 151 

https://osf.io/jt37x/?view_only=d682f75915cb4ad4960688d695abcc35. Mean proportion correct 152 

talker identification responses for training and test is shown in Fig 2(a). It appears that both 153 

groups learned to identify the talkers, given above chance performance at both training and test, 154 

and that the magnitude of learning is comparable between conditions. For the training phase, 155 

trial-level responses (0 = incorrect, 1 = correct) were analyzed using a generalized linear mixed-156 

effects model (GLMM) with the binomial response family specifying exposure as a fixed effect 157 

(structured = 1, unstructured = -1) and random intercepts by subject and talker, implemented 158 

using the lme4 package (Bates et al., 2014). The model showed no relationship between 159 

exposure condition and talker identification accuracy during training (𝛽̂ = -0.154, SE = 0.146, z = 160 

-1.052, p = 0.293). For the test phase, trial-level responses (0 = incorrect, 1 = correct) were 161 

analyzed using a GLMM with the fixed effects of exposure group (structured = 1, unstructured = 162 

https://osf.io/jt37x/?view_only=d682f75915cb4ad4960688d695abcc35
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-1), item type (trained = 1, novel = -1), and their interaction, in addition to random slopes by 163 

subject for item type and random intercepts by subject and talker. Accuracy was higher for 164 

trained compared to novel words (𝛽̂ = 0.210, SE = 0.066, z = 3.186, p = 0.001). There was no 165 

main effect of exposure condition (𝛽̂ = -0.023, SE = 0.154, z = -0.148, p = 0.883), nor an 166 

interaction between item type and exposure condition (𝛽̂ = 0.023, SE = 0.064, z = 0.358, p = 167 

0.720). 168 

 169 

Fig. 2 (Color online) The top panel shows mean proportion correct talker identification for the 170 

structured and unstructured exposure groups during training (left) and test (right) for Experiment 171 

1. The bottom panel shows mean proportion correct talker identification during training (left) and 172 

test (right) for the two exposure conditions in Experiment 2. Error bars indicate bootstrapped 173 

95% confidence intervals calculated over by-subject means. 174 

 175 

3. Experiment 2 176 

In experiment 1, listeners successfully learned to identify voices with brief exposure to single-177 



Ganugapati, JASA-EL 

 11 

word productions; however, there was no additional benefit given exposure to structured versus 178 

unstructured phonetic variation. Experiment 2 tests whether a facilitative effect of structured 179 

phonetic variation on talker identification would emerge given a longer exposure period. 180 

3.1 Methods 181 

The participants were 40 monolingual speakers of American English (mean = 20 years, 182 

SD = 1 years, 26 women, 14 men) who did not participate in experiment 1 following the criteria 183 

outlined previously. Participants were compensated with partial course credit or $10. Listeners 184 

were randomly assigned to either the structured (n = 20) or unstructured (n = 20) exposure 185 

condition. The stimuli and procedure for experiment 2 were identical to those used in experiment 186 

1 with one critical exception; instead of one block of training (72 trials), listeners completed 187 

exactly three blocks of training (216 trials). Each of the three training blocks was a unique 188 

randomization of the 72 training items appropriate for each exposure condition, as described for 189 

experiment 1. The entire procedure lasted approximately 30 minutes. 190 

3.2 Results 191 

Performance during the training and test phases is shown in Fig. 2. Visual inspection suggests 192 

that compared to the unstructured group, the structured group showed (1) greater improvement 193 

over the three blocks of training and (2) improved talker recognition at test. Separate GLMMs 194 

were constructed for the training and test data, with trial-level accuracy (0 = incorrect, = correct) 195 

as the predicted value in each model. The training model contained fixed effects of condition 196 

(structured = 1, unstructured = -1) and block (treatment-coded with two contrasts; block 1 as the 197 

reference level in each), random slopes by subject for block, and random intercepts by subject 198 

and talker. The results showed a main effect of block for both the block 2 vs. block 1 contrast (𝛽̂ 199 

= 0.410, SE = 0.080, z = 5.139, p < 0.001) and the block 3 vs. block 1 contrast (𝛽̂ = 0.583, SE = 200 
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0.087, z = 6.735, p < 0.001), indicating that talker identification accuracy improved across the 201 

training blocks. There was no main effect of condition (𝛽̂ = -0.128, SE = 0.128, z = -1.005, p = 202 

0.315), nor an interaction between condition and block for the block 2 vs. block 1 contrast (𝛽̂ = 203 

0.143, SE = 0.078, z = 1.841, p = 0.066). However, a robust interaction was observed between 204 

condition and block for the block 3 vs. block 1 contrast (𝛽̂ = 0.308, SE = 0.085, z = 3.614, p < 205 

0.001), indicating that those in the structured exposure group improved to a greater degree in 206 

block three compared to block one than those in the unstructured exposure group. 207 

The test model contained the fixed effects of exposure condition (structured = 1, 208 

unstructured = -1), item type (trained = 1, novel = -1), and their interaction. Random effects 209 

included random slopes by subject for exposure and item type, and random intercepts by subject 210 

and talker. There was a main effect of exposure (𝛽̂ = 0.354, SE = 0.121, z = 2.932, p = 0.003), 211 

with increased accuracy for the structured compared to the unstructured exposure group, a main 212 

effect of item type (𝛽̂ = 0.311, SE = 0.062, z = 5.044, p < 0.001), with increased accuracy for 213 

trained compared to novel items, and an interaction between exposure and item type (𝛽̂ = 0.138, 214 

SE = 0.060, z = 2.320, p = 0.020). Simple effects analyses showed that the item type effect was 215 

reliable for both the structured (𝛽̂ = 0.449, SE = 0.091, z = 4.921, p < 0.001) and unstructured 216 

exposure groups (𝛽̂ = 0.173, SE = 0.080, z = 2.128, p = 0.030), and that the exposure effect was 217 

robust for the trained words (𝛽̂ = 0.492, SE = 0.153, z = 3.210, p = 0.001) but not for the novel 218 

words (𝛽̂ = 0.216, SE = 0.113, z = 1.917, p = 0.055). Thus, the interaction observed in the full 219 

model can be attributed a greater difference between the structured and unstructured exposure 220 

groups for the trained compared to the novel items. 221 

4. Conclusions 222 

Here we examined whether listeners can use structured phonetic variation to facilitate voice 223 
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processing. Given brief exposure to talkers’ voices, access to structured phonetic variation did 224 

not show any additional benefit to talker identification beyond the traditional indexical cues (e.g., 225 

fundamental frequency) available to both exposure groups. However, given a more extended 226 

period of exposure, listeners who heard talkers produce characteristic VOTs showed improved 227 

talker identification compared to listeners who were not exposed to talker-specific phonetic 228 

variation. The facilitative effect of talker-specific phonetic variation resulted in an increased rate 229 

of learning across the exposure period and increased talker identification accuracy at test 230 

primarily for trained words, given the marginal influence of exposure condition on talker 231 

identification for novel words. Generalization of talker-specific VOT patterns to a novel place of 232 

articulation for talker identification would parallel patterns observed for phonetic processing 233 

(Theodore & Miller, 2010) and be consistent with findings showing that talker differences in 234 

VOT production are stable across place of articulation (Theodore et al., 2009); however, no 235 

robust evidence in support of generalization was observed in the current work.  236 

Because the current paradigm provided feedback during training, it may have encouraged 237 

explicit learning of the mapping between VOT and talker; as a consequence, the incentive for 238 

learning this relationship (for trained items) might be exaggerated compared to more implicit 239 

learning paradigms. Though feedback was provided during training, the talkers’ voices differed 240 

in traditional indexical properties (e.g., fundamental frequency) in addition to the phonetic 241 

manipulation, and thus sensitivity to talker-specific phonetic cues was not required in order to 242 

learn to identify the talkers’ voices.  This manipulation is in contrast to Francis and Driscoll 243 

(2006), where a difference in within-category VOT was the only cue available to distinguish 244 

talkers’ voices. Thus, listeners can use talker-specific phonetic variation to facilitate talker 245 

identification not only when it is the only cue available (Francis & Driscoll, 2006; Remez et al., 246 
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1997), but also when it co-occurs with variation in fundamental frequency and vocal quality. In 247 

the current work, the facilitative influence of talker-specific phonetic variation on talker 248 

identification was only observed given the longer exposure period provided in experiment 2, 249 

suggesting that (1) listeners may require exposure in order to learn talker-specific phonetic 250 

structure on a time course that was present in experiment 2 but not in experiment 1, and/or (2) 251 

traditional indexical cues to voice identity may be weighted more heavily during initial exposure 252 

compared to phonetic cues. One avenue for future research is to examine whether nonnative 253 

listeners receive the same benefit for structured phonetic variation as the native listeners tested 254 

here; doing so would shed light on potential mechanisms that contribute to the native language 255 

benefit for talker identification. Specifically, it may be the case that when perceiving speech in 256 

the native language, listeners can use their knowledge of the linguistic sound structure to help 257 

parse phonetic variation in the input as a language-general cue versus a talker-specific cue 258 

(Kleinschmidt & Jaeger, 2015), but in the absence of expertise with linguistic sound structure, 259 

the listener may not be able to determine which aspects of the phonetic stream are licensed by 260 

the phonological system versus being attributable to a talker’s idiolect (Perrachione & Wong, 261 

2007).  262 

To conclude, it is well established that there are tight, bi-directional influences between 263 

the phonetic processing and indexical processing mechanisms, which are observed behaviorally 264 

(Creel & Bregman, 2011; Nygaard & Pisoni, 1998; Theodore & Miller, 2010) and in the neural 265 

response to speech input (e.g., Chandrasekaran et al., 2011; Knösche et al., 2002; Myers & 266 

Theodore, 2017; Tuninetti et al., 2017). The current results further demonstrate that listeners’ 267 

sensitivity to talker differences in phonetic properties of speech is one aspect of representational 268 

knowledge that mediates the relationship between speech perception and voice processing. 269 
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