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Abstract—Matrix multiplication is one of the key operations in
various engineering applications. Outsourcing large-scale matrix
multiplication tasks to multiple distributed servers or cloud is
desirable to speed up computation. However, security becomes
an issue when these servers are untrustworthy. In this paper,
we study the problem of secure distributed matrix multiplication
from distributed untrustworthy servers. This problem falls in
the category of secure function computation and has received
significant attention in the cryptography community. However,
characterizing the fundamental limits of information-theoretically
secure matrix multiplication remain an open problem. We focus
on information-theoretically secure distributed matrix multiplica-
tion with the goal of characterizing the minimum communication
overhead. The capacity of secure matrix multiplication is defined
as the maximum possible ratio of the desired information and
the total communication received from N distributed servers. In
particular, we study the following two models where we want to
multiply two matrices A ∈ F

m×n and B ∈ F
n×p: (a) one-sided

secure matrix multiplication with � colluding servers, in which B
is a public matrix available at all servers and A is a private matrix.
(b) fully secure matrix multiplication with � colluding servers, in
which both A and B are private matrices. The goal is to securely
multiply A and B when any � servers can collude. For model
(a), we characterize the capacity as C

(�)
one-sided = (N − �)/N by

providing a secure matrix multiplication scheme and a matching
converse. For model (b), we propose a novel scheme that lower
bounds the capacity, i.e., C(�)

fully ≥ (�√N − ��)2/(�√N − ��+ �)2.
Keywords – Matrix Multiplication, Security, Secret Sharing.

I. INTRODUCTION

In the era of Big Data, performing computationally inten-

sive operations on a local machine becomes challenging and

inefficient. Relying on powerful distributed servers is desirable

for improving efficiency. As clients, users can upload their data

onto servers, and let servers perform computationally expen-

sive tasks for them. However, if the servers are untrustworthy

and the data contain sensitive information, it raises security

concerns. Therefore, designing algorithms to take advantage

of the powerful untrusted servers while keeping them from

learning anything about input data is of significant interest.

Cryptography community has looked at this problem under

the secure multi-party computation framework, also known as

secure function computation. In a secure function computation

problem, parties want to jointly compute a function without

revealing their respective input to other parties. For example,
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Alice, who has input x, wants to compute f (x, y) without

leaking x to Bob, who has input y, where f is some function

they want to compute jointly. Similarly, Bob does not want

to reveal y to Alice. Alice and Bob should not learn anything

about each other’s input from the result of the computation,

either. Some previous works include secure two-party compu-

tation [1] which proposed using one-way functions to achieve

security, and secure multi-party computation [2], [3] to name a

few. A class of encryption schemes called Fully Homomorphic

Encryption guarantees that any unencrypted items, including

the inputs, any intermediate values and the outputs will not

be leaked to unintended party. Naturally, it is often used as

a solution to secure function computation problems and other

types of security problems [4], [5].

Matrix multiplication is a fundamental building block of

many science and engineering fields, such as machine learning,

image and signal processing, wireless communication, and

optimization. In this paper, we focus on the problem of secure

distributed matrix multiplication. Secure matrix multiplication

is particularly important in scenarios where one wants to

train a machine learning model distributedly using gradient

descent based algorithms while keeping the training data and

the model parameters private. Secure matrix multiplication

has been studied in cryptography community, and different

approaches have been proposed, including a weaker version of

fully homomorphic encryption, namely partially homomorphic

encryption [6]–[8].

In contrast to the focus of cryptography community, there

are not many works on distributed matrix multiplication with

information-theoretic secrecy constraints. There has been sig-

nificant recent work [9]–[11] in speeding up computation

and reducing communication overhead using codes when it

comes to distributed matrix multiplication in information the-

ory community. These works speed up matrix multiplication

and reduce communication overhead by adding redundancy

to the computation using codes. This controlled redundancy

introduced by codes allows the distributed system to efficiently

tolerate servers who do not respond in a timely manner and

mitigate stragglers. Several other recent works that studied

secure distributed computing problems that are similar to ours

include [12]–[14].

Main Contributions: In this work, we wish to combine the

desirable features of works in both communities, and devise
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Fig. 1: (a) One-sided secure matrix multiplication. (b) Fully secure matrix multiplication.

schemes that are both (a) information-theoretically secure; and

(b) have the smallest communication overhead. We consider a

system including one user connected to N servers. We assume

that servers are honest, but curious. The user wishes to multiply

A ∈ F
m×n and B ∈ F

n×p. We consider this problem under

two different models.

• We first study the model where B is a public matrix

available at all servers, and A is private. The goal is to

compute AB securely when any � servers may collude.

We devise a capacity achieving scheme based on Shamir’s

secret sharing scheme [15]. We derive an information-

theoretic converse proof and show that the capacity is

(N − �)/N . This result shows that for a scheme to be

secured against any � colluding servers, the price we have

to pay is �/N .

• We next study the model where both A and B are private

matrices with the same goal when any � servers can col-

lude. We devise a novel achievable scheme inspired by the

recent works, [9], [10], which show how to leverage codes

for distributed matrix multiplication. For this model, our

scheme achieves a rate of (�√N − ��)2/(�√N − ��+ �)2.

We also show that there is room for improvement and

provide an example of the improved scheme using the

idea of aligned secret sharing.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a problem where there are N servers, and a

user who wants to compute the product of two input matrices

A ∈ F
m×n and B ∈ F

n×p securely, i.e., AB, using N servers,

for some integer m,n and p, and a sufficiently large field

F. The user is connected to each server through a private

link (Fig. 1) and we assume that the servers are honest,

but curious. In order to prevent servers from learning about

input matrices, the user sends securely encoded versions of

input matrices to servers. We define the encoding functions as

f = (f1, f2, . . . , fN ) and g = (g1, g2, . . . , gN ), where fi and gi
are the encoding functions for server i for the matrices A and

B, respectively. The encoded matrices for server i are denoted

by Ãi and B̃i for two input matrices for i = 1, 2, . . . , N ,

i.e., Ãi = fi(A) and B̃i = gi(B). We denote the answer

from server i as Zi. From all answers Z1, Z2, . . . , ZN , the

user must be able to decode the desired result AB, i.e.,

AB = d(Z1, Z2, . . . , ZN ), where d(.) denotes the decoding

function. Hence, decodability constraint can be written as,

H(AB|Z1, Z2, . . . , ZN ) = 0. (1)

In this paper, we study the following two models:

(a) One-Sided Secure Matrix Multiplication with � Colluding
Servers: In this model, B is a public arbitrary constant matrix

available at all servers, where A is a private random matrix at

the user. Our goal is to securely multiply A and B without

revealing anything about A even when any � servers may

collude (see Fig. 1(a)), i.e., colluding servers can gather their

respective received matrix Ãi and attempt to learn about A. The

user does not know which � servers may collude. We use the

index set L = {i1, i2, . . . , i�} ⊆ [1 : N ], |L| = � to denote a

subset of � servers, and ÃL � (Ãi1 , Ãi2 , . . . , Ãi�
) to denote the

corresponding encoded version of A sent to servers in the set

L. For a scheme in this setting to be information-theoretically

secure, the encoded matrices ÃL, ∀L ⊆ [1 : N ], |L| = � must

not leak anything about A. Thus, a scheme for this model must

satisfy the following information-theoretic security constraint,

I(A; ÃL) = 0, ∀L ⊆ [1 : N ], |L| = �. (2)

We say that the rate R is achievable if there exists a scheme

satisfying the decodability and security constraints, i.e., (1) and

(2). The rate is characterized by the number of desired bits per

download bit. The rate is defined as,

R =
H(AB)
N∑

i=1

H(Zi)

. (3)

The capacity C
(�)

one-sided for the one-sided model is the supremum

of R over all feasible schemes.

(b) Fully Secure Matrix Multiplication with � Colluding
Servers: In this model, both A and B are private matrices

at the user. Our goal is to multiply them securely when any �
servers may collude (see Fig. 1(b)). Hence, encoded matrices

ÃL and B̃L, ∀L ⊆ [1 : N ], |L| = � must not reveal anything

about A and B. The security constraint for this model is,



I(A,B; ÃL, B̃L) = 0, ∀L ⊆ [1 : N ], |L| = �. (4)

We say that the rate R is achievable if there exits a scheme

for which it satisfies both (1) and (4). Similarly, C
(�)

fully is defined

as the supremum of achievable rates for the fully secure matrix

multiplication problem. It is clear that C
(�)

one-sided ≥ C
(�)

fully. In

the next two sections, we present our main results towards

characterizing these capacities.

III. ONE-SIDED SECURE MATRIX MULTIPLICATION WITH �
COLLUDING SERVERS

We first study the model where B is public and known

at all servers, and the user wants to securely compute AB
without revealing A to any � colluding servers. We present our

proposed scheme, followed by a converse proof to show that

the scheme is information-theoretically optimal.

Theorem 1. For the (N, �) one-sided secure matrix multiplica-
tion problem, in which B is known everywhere and A is kept
hidden from any � colluding servers while computing AB, the
capacity is given by

C
(�)

one-sided =
N − �

N
. (5)

Before presenting the achievable scheme, we first show an

example to highlight the intuition behind the scheme.

Example 1. (N = 4, � = 2) Consider a one-sided secure
matrix multiplication problem with 4 servers, and any 2 of
them can collude. The user partitions A into

A =

[
A1

A2

]

, (6)

where A1, A2 ∈ F
(m/2)×n. The original matrix multiplication

can be rewritten as,

AB =

[
A1B
A2B

]

. (7)

The goal is now to compute A1B and A2B. The user generates
2 random matrices, i.e., K1,K2 ∈ F

(m/2)×n, whose entries are
i.i.d. uniform random variables from the field F, and encodes
the matrix for server i as,

Ãi = A1 + iA2 + i2K1 + i3K2, (8)

where each Ãi has the same dimension as A1 and A2 for all
i = 1, 2, 3, 4. Server i computes ÃiB and returns the result to
the user. The results received at the user are,

Z1 = Ã1B = A1B +A2B +K1B +K2B,

Z2 = Ã2B = A1B + 2A2B + 4K1B + 8K2B,

Z3 = Ã3B = A1B + 3A2B + 9K1B + 27K2B,

Z4 = Ã4B = A1B + 4A2B + 16K1B + 64K2B. (9)

Clearly, the results can be viewed as a system of 4 equations
in 4 matrices, and rewritten in matrix form as,

⎡

⎢
⎢
⎣

Z1

Z2

Z3

Z4

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

A1B
A2B
K1B
K2B

⎤

⎥
⎥
⎦
. (10)

Since the coefficient matrix is a Vandermonde matrix, the
system is invertible with a unique solution. The user can
multiply the inverse of the coefficient matrix on both sides and
solve for A1B and A2B. However, for any 2 servers, they see
a system of 2 equations in 4 matrices, hence, they will not be
able to solve for A1B and A2B. The user is able to recover 2
desired items from a total of 4 items, hence, achieving a rate
of 1/2.

Proof of Theorem 1
We next present the general achievable scheme. We show

that the capacity can be achieved by a modified Shamir’s secret

sharing scheme, and we then derive an information-theoretic

converse proof to show its optimality.

A. Achievable Scheme

For the achievable scheme, the user first divides A into N−�
submatrices vertically, i.e.,

A = [A1 A2 . . . AN−�]
T , (11)

where Ai ∈ F
(m/(N−�))×n, ∀i, and m is divisible by N − �.

Then the matrix multiplication can be written as

AB = [A1B . . . AN−�B]T . (12)

The goal is to recover A1B, . . . , AN−�B. The user then

encodes the submatrices of A into the following form,

Ãi =

N−�∑

j=1

Ajx
j−1

i
+

�∑

k=1

Kkx
k+(N−�)−1

i
, (13)

where the dimension of Ãi is the same as any Ai, and xi is a

distinct non-zero element in F assigned to server i. Each entry

of the random matrices, K1, . . . ,K� ∈ F
(m/(N−�))×n, are i.i.d.

uniform random variables from the field F. The encoded matrix

Ãi in (13) can be seen as a polynomial evaluated at point xi.

Servers then multiply their received Ãi’s with B and return

the following polynomial,

h(x) =

N−�∑

j=1

AjBxj−1 +

�∑

k=1

KkBxk+(N−�)−1, (14)

at x = xi, i = 1, . . . , N . Recall that the goal is to recover

A1B, . . . , AN−�B from all Zi, i.e., h(xi), i = 1, . . . , N . As

shown in the example, due to the design of the scheme,

the answers can be seen as a system of N equations in N
matrices. Since the coefficient matrix is a Vandermonde matrix,

the user can multiply the inverse of the coefficient matrix

and solve for the desired items. However, a more efficient

decoding method is to view each answer Zi as a degree N −1
polynomial evaluated at point xi. The coefficients of a degree

N − 1 polynomial can be recovered with N evaluations by



polynomial interpolation. Since we can recover N − � desired

items from N answers, we achieve a rate of (N − �)/N .

We next prove that the scheme is information-theoretically

secure, i.e., the security constraint (2) is satisfied. We start from

the following sequence of inequalities:

I(A; ÃL) = I(A; Ãi1
, . . . , Ãi�

)

= H(Ãi1
, . . . , Ãi�

)−H(Ãi1
, . . . , Ãi�

|A)

(a)

= H(Ãi1
, . . . , Ãi�

)−H(K1, . . . ,K�)

(b)

= H(Ãi1
, . . . , Ãi�

)− �
mn

N − �
log |F|

(c)

≤ H(Ãi1
) + · · ·+H(Ãi�

)− �
mn

N − �
log |F|

(d)

≤ �
mn

N − �
log |F| − �

mn

N − �
log |F| = 0, (15)

where (a) follows from (13) and the fact that all random

matrices Kj’s are independent of A, and (b) is due to the

entropy of a uniformly distributed random variable being

log |F| and the dimension of each one of the � random matrices

Kj being mn/(N−�), (c) follows by upper bounding the joint

entropy using the sum of individual entropies and (d) follows

from upper bounding the entropy of each element of Ãi(.)
’s

by log |F|. Since mutual information is non-negative and from

(15), it is upper bounded by zero, we conclude that the scheme

is information-theoretically secure.

B. Converse

We start the converse proof from the following sequence of

inequalities:

H(AB) = H(AB)−H(AB|Z1, . . . , ZN )

+H(AB|Z1, . . . , ZN )
︸ ︷︷ ︸

=0

(a)

= I(AB;Z1, . . . ZN )

= H(Z1, . . . , ZN )−H(Z1, . . . , ZN |AB)

(b)

≤ H(Z1, . . . , ZN )−H(Zi1 , . . . , Zi�
|AB)

(c)

= H(Z1, . . . , ZN )−H(ZL), (16)

where (a) is due to decodability constraint (1), (b) follows

by lower bounding the joint entropy of N items using the

joint entropy of � items, (c) follows from the Markov Chain

A → ÃL → ZL and the fact that from data-processing

inequality, we know I(A; ÃL) ≥ I(A;ZL), which is greater

than I(AB;ZL). This along with the secrecy constraint (2),

shows that I(AB;ZL) = 0, hence, we get H(ZL|AB) =
H(ZL), ∀L ⊆ {1, . . . , N}, |L| = �. Since there are

(
N

�

)

possible subsets L of servers of size �, we sum up their entropy

and have,
(
N

�

)

H(AB) ≤
(
N

�

)

H(Z1, . . . , ZN ) (17)

−
∑

|L|=�

L⊆{1,...,N}

H(ZL).

Dividing (17) by
(
N

�

)
, we have,

H(AB) ≤ H(Z1, . . . , ZN )

− �
1

(
N

�

)

∑

|L|=�

L⊆{1,...,N}

H(ZL)
�

(a)

≤ H(Z1, . . . , ZN )− �
H(Z1, . . . , ZN )

N

=

(

1− �

N

)

H(Z1, . . . , ZN )

(b)

≤
(
N − �

N

) N∑

i=1

H(Zi), (18)

where in (a) we apply Han’s inequality [16, Chapter 17] to

bound the second term, and (b) follows by bounding the joint

entropy using the sum of entropies. From (18), we get

R
(�)

one-sided =
H(AB)
N∑

i=1

H(Zi)

≤ N − �

N
. (19)

Hence, from the upper bound in (19) and a matching scheme in

Section III-A, we conclude that the capacity for the one-sided

matrix multiplication problem is C
(�)

one-sided = (N − �)/N . This

completes the proof of Theorem 1.

IV. FULLY SECURE MATRIX MULTIPLICATION WITH �
COLLUDING SERVERS

We next investigate the case where the user wants to com-

pute AB securely while keeping both A and B information-

theoretically secure from any � colluding servers. We next

present our main result for the fully secure matrix multipli-

cation problem in the following Theorem.

Theorem 2. For the (N, �) fully secure matrix multiplication
problem, in which both A and B must be kept secure from any �
colluding servers while computing AB, we have the following
lower bound on the capacity:

C
(�)

fully ≥ (�√N − ��)2
(�√N − ��+ �)2

. (20)

Before presenting the proposed scheme, we first compare

the achievable rate of the proposed fully secure scheme to the

capacity of the one-sided secure matrix multiplication problem.

Clearly, due to a stronger security requirement, it is clear

that the rate of the proposed fully secure scheme to be lower

than the capacity of the one-sided secure matrix multiplication

problem, when the number of colluding servers � is fixed at

a certain value. In Fig. 2, we let � = 1 and increase the

number of total servers N . It can be seen that the rate of

the the proposed scheme of Theorem 2 is lower, compare to

the rate of Theorem 1. Notably, both schemes converge to

1 asymptotically as N → ∞, however, the convergence for

the one-sided case is significantly faster than the convergence

for the fully secure case. We also note that for the standard

unsecure distributed matrix multiplication, the capacity is 1.

We can also see from Fig. 3, that the rate of the proposed



Number of Servers (N)

C
o
m
m
u
n
ic
a
t
io
n

R
a
t
e
(R

)

Fig. 2: Comparison between the communication rates of one-sided
and fully secure schemes for � = 1 as N is varied.

scheme decreases a lot faster than the capacity of the one-

sided secure matrix multiplication problem when N is fixed to

100 and � is changing. This indicates that our proposed scheme

cannot tolerate too many colluding servers due to the
√
N term

in (20). We next present the proposed scheme in detail.

A. Proof of Theorem 2

For the (N, �) fully secure matrix multiplication problem,

the user wishes to compute AB securely without revealing A
and B when any � servers may collude. The user breaks the

input matrices into r submatrices, where r = �√N − ��. The

reason for choosing this value of r will become clear when we

fully describe the scheme next. The submatrices are,

A =
[
A1 A2 . . . Ar

]T
and B =

[
B1 B2 . . . Br

]
, (21)

where Ai ∈ F
(m/r)×n and Bi ∈ F

n×(p/r), ∀i, and m and p
are divisible by r. Hence, we can write AB as,

AB =

⎡

⎢
⎢
⎢
⎣

A1B1 A1B2 . . . A1Br

A2B1 A2B2 . . . A2Br

...
...

. . .
...

ArB1 ArB2 . . . ArBr

⎤

⎥
⎥
⎥
⎦
, (22)

where the original matrix multiplication can be seen as com-

posed of r2 smaller matrix multiplications.

Similar to one-sided secure matrix multiplication problem,

the user generates � random matrices K
(A)

1
, . . . ,K

(A)

�
∈

F
(m/r)×n for A, and � random matrices K

(B)

1
, . . . ,K

(B)

�
∈

F
n×(p/r) for B, where each of their entries is an i.i.d. uniform

random variable. The user encodes A and B for server i as:

Ãi =

r∑

j=1

Ajx
j−1

i
+

�∑

k=1

K
(A)

k
xk+r−1

i
, (23)

B̃i =

r∑

j=1

Bjx
(j−1)(r+�)

i
+

�∑

k=1

K
(B)

k
x
(k+r−1)(r+�)

i
, (24)

where Ãi ∈ F
(m/r)×n and B̃i ∈ F

n×(p/r). The degrees of (23)

and (24) are chosen in a way that each item is guaranteed to

be the only item at a certain degree after multiplication. This

methodology is similar to the one proposed in [9], [10] for

distributed matrix multiplication problem. Essentially, comput-

ing ÃiB̃i is equivalent to evaluating the following polynomial

with 4 different types of terms:

Number of Colluding Servers (�)

C
o
m
m
u
n
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a
t
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n

R
a
t
e
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)

Fig. 3: The impact of number of colluding servers on the
communication rate when N = 100.

h(x) =

r∑

j=1

r∑

j′=1

AjBj′x
j+(j

′−1)(r+�)−1

︸ ︷︷ ︸
desired

+

r∑

j=1

�∑

k′=1

AjK
(B)

k′ xj+(k
′
+r−1)(r+�)−1

+

�∑

k=1

r∑

j′=1

K
(A)

k
Bj′x

k+r+(j
′−1)(r+�)−1

+

�∑

k=1

�∑

k′=1

K
(A)

k
K

(B)

k′ xk+r+(k
′
+r−1)(r+�)−1. (25)

Due to the design of the scheme, each degree has exactly

one item as its coefficient in (25). Note that the polynomial has

degree (r+�)2−1, hence, evaluations at (r+�)2 distinct points

are sufficient to solve for all coefficients of the polynomial.

This indicates that we need at least (r + �)2 responses, one

from each server to recover the desired result, i.e., N ≥ (r +
�)2. However, the user is only interested in the first double

summation term in (25), which has a total of r2 items in the

form of AjBj′ . Since the user can recover r2 items out of

(r+ �)2 items, the achievable scheme yields a rate of r2/(r+
�)2 = (�√N − ��)2/(�√N − ��+ �)2.

We next show that the proposed scheme is information-

theoretically secure:

I(A,B; ÃL, B̃L) = I(A,B; ÃL) + I(A,B; B̃L|ÃL)

= H(ÃL)−H(ÃL|A,B)

+H(B̃L|ÃL)−H(B̃L|ÃL, A,B)

(a)

= H(ÃL)−H(K
(A)

1
, . . . ,K

(A)

�
)

+H(B̃L)−H(K
(B)

1
, . . . ,K

(B)

�
)

(b)

= H(ÃL)− �
mn

r
log |F|+H(B̃L)− �

np

r
log |F|

(c)

≤ H(Ãi1
) + · · ·+H(Ãi�

)− �
mn

r
log |F|

+H(B̃i1
) + · · ·+H(B̃i�

)− �
np

r
log |F|

(d)

≤ �
mn

r
(log |F| − log |F|) + �

np

r
(log |F| − log |F|) = 0,

(26)



where (a) follows from (23), (24) and the fact that random

matrices are independent of A and B, and B̃L is independent

of ÃL, (b) follows by summing the entropy of each uniformly

distributed random variable in all K
(A)

j
and K

(B)

j′ , (c) follows

by upper bounding the joint entropy using the sum of individ-

ual entropies, (d) follows from upper bounding the entropy of

each element of Ãi(.)
and B̃i(.)

by log |F|. Hence, the proposed

scheme is information-theoretically secure. This completes the

proof of Theorem 2.

B. Improving Theorem 2 by Aligned Secret Sharing

Due to the design of our proposed scheme, each item is

the coefficient of a distinct degree. However, in a fully secure

matrix multiplication problem, only items with the form of

AjBj′ are useful. Hence, if we can ensure that each item with

the form of AjBj′ is the only coefficient of some distinct

degrees while aligning the other undesired items, we can

potentially achieve a better rate. We present the following

example to demonstrate the idea of aligned secret sharing.

Example 2. Consider the (N, �) = (8, 1) fully secure matrix
multiplication problem where there are 8 servers, and none
of them collude. For this example, from Theorem 2, we can
achieve a rate of (�√N − ��)2/(�√N − �� + �)2 = 22/(2 +
1)2 = 4/9. We now show how to improve upon this rate
through the aligned secret sharing scheme.

The user partitions A and B into the following

A =

[
A1

A2

]

and B =
[
B1 B2

]
, (27)

where A1, A2 ∈ F
(m/2)×n, and B1, B2 ∈ F

n×(p/2). The
user generates one random matrix for each A and B, i.e.,
K(A) ∈ F

(m/2)×n and K(B) ∈ F
n×(p/2). Instead of following

the proposed scheme in Section IV-A, we align the undesired
terms in the forms of AjK

(B),K(A)Bj′ and K(A)K(B) by
selecting different degrees for the encoding polynomial. For
each server, the encoding of the user is:

Ãi = A1 +A2xi +K(A)x2

i
(28)

B̃i = B1 +B2x
3

i
+K(B)x5

i
, (29)

where Ãi and B̃i have the same dimension as Ai and Bi for
i = 1, . . . , 8. Each server i evaluates the polynomial

h(xi) = A1B1 +A2B1xi +K(A)B1x
2

i
+A1B2x

3

i
+A2B2x

4

i

+ (K(A)B2 +A1K
(B))x5

i
+A2K

(B)x6

i
+K(A)K(B)x7

i
,
(30)

for i = 1, . . . , 8. Clearly, the desired items are the only
coefficients of their respective degrees, consequently, the user
can decode them using polynomial interpolation. Since the
degree of the polynomial is now 7, evaluation at 8 points
are sufficient and there are 4 desired items. The rate is now
4/8 = 1/2 which is larger than 4/9.

V. CONCLUSIONS

In this paper, we studied one-sided and fully secure matrix

multiplication problems. We proposed a secret sharing based

scheme for the one-sided secure matrix multiplication model,

where B is a public matrix and A is a private matrix that must

be kept information-theoretically secure while computing AB
when any � servers may collude. We completely characterized

the capacity for this model as (N−�)/N . We also presented a

novel achievable scheme for the fully secure matrix multiplica-

tion model, where both A and B are private matrices that must

be kept information-theoretically secure against any � colluding

servers. We also presented an improvement for this general

scheme through the idea of aligned secret sharing. There are

several interesting open problems: (a) finding a converse (up-

per bound) for the fully secure matrix multiplication problem;

and (b) generalizing these ideas for other secure distributed

computation tasks.
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