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Abstract—Matrix multiplication is one of the key operations in
various engineering applications. Outsourcing large-scale matrix
multiplication tasks to multiple distributed servers or cloud is
desirable to speed up computation. However, security becomes
an issue when these servers are untrustworthy. In this paper,
we study the problem of secure distributed matrix multiplication
from distributed untrustworthy servers. This problem falls in
the category of secure function computation and has received
significant attention in the cryptography community. However,
characterizing the fundamental limits of information-theoretically
secure matrix multiplication remain an open problem. We focus
on information-theoretically secure distributed matrix multiplica-
tion with the goal of characterizing the minimum communication
overhead. The capacity of secure matrix multiplication is defined
as the maximum possible ratio of the desired information and
the total communication received from /N distributed servers. In
particular, we study the following two models where we want to
multiply two matrices A € F"*" and B € F"*?: (a) one-sided
secure matrix multiplication with ¢ colluding servers, in which B
is a public matrix available at all servers and A is a private matrix.
(b) fully secure matrix multiplication with ¢ colluding servers, in
which both A and B are private matrices. The goal is to securely
multiply A and B when any / servers can collude. For model
(a), we characterize the capacity as C'') .. = (N —{)/N by
providing a secure matrix multiplication scheme and a matching
converse. For model (b), we propose a novel scheme that lower

bounds the capacity, i.e., C\5 > ([VN — €])2/([VN — €] + 0)2.
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I. INTRODUCTION

In the era of Big Data, performing computationally inten-
sive operations on a local machine becomes challenging and
inefficient. Relying on powerful distributed servers is desirable
for improving efficiency. As clients, users can upload their data
onto servers, and let servers perform computationally expen-
sive tasks for them. However, if the servers are untrustworthy
and the data contain sensitive information, it raises security
concerns. Therefore, designing algorithms to take advantage
of the powerful untrusted servers while keeping them from
learning anything about input data is of significant interest.

Cryptography community has looked at this problem under
the secure multi-party computation framework, also known as
secure function computation. In a secure function computation
problem, parties want to jointly compute a function without
revealing their respective input to other parties. For example,
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Alice, who has input z, wants to compute f(z,y) without
leaking x to Bob, who has input y, where f is some function
they want to compute jointly. Similarly, Bob does not want
to reveal y to Alice. Alice and Bob should not learn anything
about each other’s input from the result of the computation,
either. Some previous works include secure two-party compu-
tation [1] which proposed using one-way functions to achieve
security, and secure multi-party computation [2], [3] to name a
few. A class of encryption schemes called Fully Homomorphic
Encryption guarantees that any unencrypted items, including
the inputs, any intermediate values and the outputs will not
be leaked to unintended party. Naturally, it is often used as
a solution to secure function computation problems and other
types of security problems [4], [5].

Matrix multiplication is a fundamental building block of
many science and engineering fields, such as machine learning,
image and signal processing, wireless communication, and
optimization. In this paper, we focus on the problem of secure
distributed matrix multiplication. Secure matrix multiplication
is particularly important in scenarios where one wants to
train a machine learning model distributedly using gradient
descent based algorithms while keeping the training data and
the model parameters private. Secure matrix multiplication
has been studied in cryptography community, and different
approaches have been proposed, including a weaker version of
fully homomorphic encryption, namely partially homomorphic
encryption [6]—[8].

In contrast to the focus of cryptography community, there
are not many works on distributed matrix multiplication with
information-theoretic secrecy constraints. There has been sig-
nificant recent work [9]-[11] in speeding up computation
and reducing communication overhead using codes when it
comes to distributed matrix multiplication in information the-
ory community. These works speed up matrix multiplication
and reduce communication overhead by adding redundancy
to the computation using codes. This controlled redundancy
introduced by codes allows the distributed system to efficiently
tolerate servers who do not respond in a timely manner and
mitigate stragglers. Several other recent works that studied
secure distributed computing problems that are similar to ours
include [12]-[14].

Main Contributions: In this work, we wish to combine the
desirable features of works in both communities, and devise
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Fig. 1: (a) One-sided secure matrix multiplication. (b) Fully secure matrix multiplication.

schemes that are both (a) information-theoretically secure; and
(b) have the smallest communication overhead. We consider a
system including one user connected to N servers. We assume
that servers are honest, but curious. The user wishes to multiply
A € F"™*™ and B € F"*P, We consider this problem under
two different models.

o We first study the model where B is a public matrix
available at all servers, and A is private. The goal is to
compute AB securely when any ¢ servers may collude.
We devise a capacity achieving scheme based on Shamir’s
secret sharing scheme [15]. We derive an information-
theoretic converse proof and show that the capacity is
(N — ¢)/N. This result shows that for a scheme to be
secured against any ¢ colluding servers, the price we have
to pay is ¢/N.

o We next study the model where both A and B are private
matrices with the same goal when any ¢ servers can col-
lude. We devise a novel achievable scheme inspired by the
recent works, [9], [10], which show how to leverage codes
for distributed matrix multiplication. For this model, our
scheme achieves a rate of ([v/N —£])2/([V N — €] +0)2.
We also show that there is room for improvement and
provide an example of the improved scheme using the
idea of aligned secret sharing.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a problem where there are N servers, and a
user who wants to compute the product of two input matrices
A € F"™*" and B € F"*P securely, i.e., AB, using N servers,
for some integer m,n and p, and a sufficiently large field
F. The user is connected to each server through a private
link (Fig. 1) and we assume that the servers are honest,
but curious. In order to prevent servers from learning about
input matrices, the user sends securely encoded versions of
input matrices to servers. We define the encoding functions as
F=(fos-..,fn) and g = (g1, g2, - -, gn ), where f; and g;
are the encoding functions for server ¢ for the matrices A and
B, respectively. The encoded matrices for server 7 are denoted
by A and B; for two input matrices for i = 1,2,..., N,
ie, A; = fi(A) and B; = ¢;(B). We denote the answer

from server i as Z;. From all answers 71, Zs,...,Zy, the
user must be able to decode the desired result AB, i.e
AB = d(Z1,Z,...,ZN), where d(.) denotes the decoding
function. Hence, decodability constraint can be written as,

H(AB|Zy,Zs,...,Z5) = 0. (1)

In this paper, we study the following two models:
(a) One-Sided Secure Matrix Multiplication with ¢ Colluding
Servers: In this model, B is a public arbitrary constant matrix
available at all servers, where A is a private random matrix at
the user. Our goal is to securely multiply A and B without
revealing anything about A even when any ¢ servers may
collude (see Fig. 1(a)), i.e., colluding servers can gather their
respective received matrix A; and attempt to learn about A. The
user does not know which ¢ servers may collude. We use the
index set £ = {iy,i2,. .., z’g} C [1: NJ,|£| = ¢ to denote a
subset of ¢ servers, and Az 2 (A;,, Ay, ..., A;,) to denote the
corresponding encoded version of A sent to servers in the set
L. For a scheme in this setting to be information-theoretically
secure, the encoded matrices Az, VL C [1: NJ,|£] = ¢ must
not leak anything about A. Thus, a scheme for this model must
satisfy the following information-theoretic security constraint,

I(A; Ag) = 0,YL C [L: N],|L] = . &)

We say that the rate R is achievable if there exists a scheme

satisfying the decodability and security constraints, i.e., (1) and

(2). The rate is characterized by the number of desired bits per
download bit. The rate is defined as,

= 114D

. A3)
:231 H(Z;)

The capacity C’(Eng <ideq for the one-sided model is the supremum
of R over all feasible schemes.

(b) Fully Secure Matrix Multiplication with ¢ Colluding
Servers: In this model, both A and B are private matrices
at the user. Our goal is to multiply them securely when any ¢
servers may collude (see Fig. 1(b)). Hence, encoded matrices
Az and B.,VL C [1: N],|£| = ¢ must not reveal anything
about A and B. The security constraint for this model is,



I(A,B; Az, Br) =0,YL C[1: N],|L| = 2. “4)

We say that the rate R is achievable if there exits a scheme
for which it satisfies both (1) and (4). Similarly, Cf(ﬁy is defined
as the supremum of achievable rates for the fully secure matrix
multiplication problem. It is clear that C’éﬁg_sided > Cf(f]%y. In
the next two sections, we present our main results towards
characterizing these capacities.

III. ONE-SIDED SECURE MATRIX MULTIPLICATION WITH ¢
COLLUDING SERVERS

We first study the model where B is public and known
at all servers, and the user wants to securely compute AB
without revealing A to any /¢ colluding servers. We present our
proposed scheme, followed by a converse proof to show that
the scheme is information-theoretically optimal.

Theorem 1. For the (N, () one-sided secure matrix multiplica-
tion problem, in which B is known everywhere and A is kept
hidden from any ¥ colluding servers while computing AB, the
capacity is given by

one-sided — N . (5)

Before presenting the achievable scheme, we first show an
example to highlight the intuition behind the scheme.

Example 1. (N = 4,/ = 2) Consider a one-sided secure
matrix multiplication problem with 4 servers, and any 2 of
them can collude. The user partitions A into

_ A
] 0

where Ay, Ay € F0/2X" The original matrix multiplication
can be rewritten as,

)

AB = {AlB} .

AyB
The goal is now to compute A1 B and A3 B. The user generates
2 random matrices, i.e., K1, Ky € F(m/2)Xn \whose entries are

i.i.d. uniform random variables from the field IF, and encodes
the matrix for server i as,

A= Ay +idy + 2Ky + P Ko, ®)

where each A; has the same dimension as Ay and Aj for all
1=1,2,3,4. Server i computes A;B and returns the result to
the user. The results received at the user are,

71 =AB=A,B+ AyB + KB + KB,

Zo = AsB = A1B + 245B + 4K, B + 8K> B,
Z3=AsB = A1B +3A2B + 9K, B + 27TK» B,
Zy=A4B=AB+44,B + 16K,B + 64K,B.  (9)

Clearly, the results can be viewed as a system of 4 equations
in 4 matrices, and rewritten in matrix form as,

Z 10 11 12 13] [A,B
Zs 20 2t 922 93| | A,B
Zy| T (30 3t 32 33| |k B| (10)
Z |10 4t 2 g |K,B

Since the coefficient matrix is a Vandermonde matrix, the
system 1is invertible with a unique solution. The user can
multiply the inverse of the coefficient matrix on both sides and
solve for A1 B and A;B. However, for any 2 servers, they see
a system of 2 equations in 4 matrices, hence, they will not be
able to solve for A1 B and As B. The user is able to recover 2
desired items from a total of 4 items, hence, achieving a rate

of 1/2.

Proof of Theorem 1

We next present the general achievable scheme. We show
that the capacity can be achieved by a modified Shamir’s secret
sharing scheme, and we then derive an information-theoretic
converse proof to show its optimality.

A. Achievable Scheme

For the achievable scheme, the user first divides A into N —/
submatrices vertically, i.e.,

A=A Ay... An_o)T, (11)

where A; € ]F(m/(N*Z))X”,Vi, and m is divisible by N — /.
Then the matrix multiplication can be written as

AB=[AB ... Ax_,B]". (12)

The goal is to recover A1B,...,Ay_¢B. The user then
encodes the submatrices of A into the following form,

N—¢ 0
A= " Al 43T Ky PO (13)
j=1 k=1

where the dimension of /L is the same as any A;, and z; is a
distinct non-zero element in F assigned to server i. Each entry
of the random matrices, K1,..., Ky € F(m/(N=0)xnare i.d.
uniform random variables from the field F. The encoded matrix
A; in (13) can be seen as a polynomial evaluated at point z;.
Servers then multiply their received A;’s with B and return
the following polynomial,

N—¢ ‘
h(z) =Y A;Ba?™' 4+ KyBakt V=01, (14)
j=1 k=1
at x = x;,¢ = 1,..., N. Recall that the goal is to recover

A1B,...,Ay_¢B from all Z,, i.e., h(z;),i = 1,...,N. As
shown in the example, due to the design of the scheme,
the answers can be seen as a system of N equations in NV
matrices. Since the coefficient matrix is a Vandermonde matrix,
the user can multiply the inverse of the coefficient matrix
and solve for the desired items. However, a more efficient
decoding method is to view each answer Z; as a degree N — 1
polynomial evaluated at point z;. The coefficients of a degree
N — 1 polynomial can be recovered with N evaluations by



polynomial interpolation. Since we can recover N — ¢ desired
items from N answers, we achieve a rate of (N — ¢)/N.

We next prove that the scheme is information-theoretically
secure, i.e., the security constraint (2) is satisfied. We start from
the following sequence of inequalities:

I(A,Aﬁ) = I(A,All, .. ,Aié)

:H(Ailw"agi[{)_H(gil,...,giAA)

(i) (Ailﬂ"'vgi[)—H(Kl,...,KZ)

@ (Avin"'?fz{ig)_ZNmf€10g|F|

(¢) ~ ~

< H(Ay) 4o+ H(A) — (5 log [F
(d) mn mn

< - =

< by 108 [F| — b log[F| =0, (15)

where (a) follows from (13) and the fact that all random
matrices K;’s are independent of A, and (b) is due to the
entropy of a uniformly distributed random variable being
log |F| and the dimension of each one of the ¢ random matrices
K being mn /(N —/), (c) follows by upper bounding the joint
entropy using the sum of individual entropies and (d) follows
from upper bounding the entropy of each element of Aim’s
by log |F|. Since mutual information is non-negative and from
(15), it is upper bounded by zero, we conclude that the scheme
is information-theoretically secure.

B. Converse

We start the converse proof from the following sequence of
inequalities:

H(AB) = H(AB) — H(AB|Z,,..., Zy)
+ H(AB|Zy,..., Zy)
=0
W I(AB; 24,... Zy)
= H(Zy,....2x) = H(Zy,..., Zn|AB)
®)
< H(Zy,...,2x) — H(Zi,, ..., 2| AB)
(QH(Zla"wZN)iH(ZL')? (16)

where (a) is due to decodability constraint (1), (b) follows
by lower bounding the joint entropy of N items using the
joint entropy of ¢ items, (c) follows from the Markov Chain
A — A — Z; and the fact that from data-processing
inequality, we know I(A; Az) > I(A; Z.), which is greater
than I(AB; Z.). This along with the secrecy constraint (2),
shows that I(AB;Z;) = 0, hence, we get H(Z;|AB) =
H(Z),VL C {1,...,N},|£] = (. Since there are (JZ)
possible subsets £ of servers of size £, we sum up their entropy

and have,

(JZ)H(AB) < (7)1{(21,...,2@
- > H(Zp).

|c|=¢
LC{1,...,N}

a7

Dividing (17) by (]Z ) we have,

H(AB) < H(Z1,...,2Zx)
| H(Ze)
Y.
() o= ¢
L£CA{1,....,N}
(a)
< H(Zlava)_EH(Zl,N ’ZN>

= (1_ ]f]) H(Zy,...,ZN)
(%) <NN£> ZN:H(Zi),

i=1

(18)

where in (a) we apply Han’s inequality [16, Chapter 17] to
bound the second term, and (b) follows by bounding the joint
entropy using the sum of entropies. From (18), we get
0 _ H(AB) N —/¢
Rone—sided - N < :

;H(Zi)

Hence, from the upper bound in (19) and a matching scheme in
Section III-A, we conclude that the capacity for the one-sided
matrix multiplication problem is Céﬁi_sided = (N —{¢)/N. This
completes the proof of Theorem 1.

19)

IV. FULLY SECURE MATRIX MULTIPLICATION WITH ¢
COLLUDING SERVERS

We next investigate the case where the user wants to com-
pute AB securely while keeping both A and B information-
theoretically secure from any ¢ colluding servers. We next
present our main result for the fully secure matrix multipli-
cation problem in the following Theorem.

Theorem 2. For the (N, /) fully secure matrix multiplication
problem, in which both A and B must be kept secure from any ¢
colluding servers while computing AB, we have the following
lower bound on the capacity:

o o (VN-0)
o = (VN + 07

Before presenting the proposed scheme, we first compare
the achievable rate of the proposed fully secure scheme to the
capacity of the one-sided secure matrix multiplication problem.
Clearly, due to a stronger security requirement, it is clear
that the rate of the proposed fully secure scheme to be lower
than the capacity of the one-sided secure matrix multiplication
problem, when the number of colluding servers ¢ is fixed at
a certain value. In Fig. 2, we let £ = 1 and increase the
number of total servers N. It can be seen that the rate of
the the proposed scheme of Theorem 2 is lower, compare to
the rate of Theorem 1. Notably, both schemes converge to
1 asymptotically as N — oo, however, the convergence for
the one-sided case is significantly faster than the convergence
for the fully secure case. We also note that for the standard
unsecure distributed matrix multiplication, the capacity is 1.
We can also see from Fig. 3, that the rate of the proposed

(20)
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scheme decreases a lot faster than the capacity of the one-
sided secure matrix multiplication problem when N is fixed to
100 and ¢ is changing. This indicates that our proposed scheme
cannot tolerate too many colluding servers due to the v/ N term
in (20). We next present the proposed scheme in detail.

A. Proof of Theorem 2

For the (N, /) fully secure matrix multiplication problem,
the user wishes to compute AB securely without revealing A
and B when any ¢ servers may collude. The user breaks the
input matrices into ~ submatrices, where 7 = [\/N — ¢]. The
reason for choosing this value of r will become clear when we

fully describe the scheme next. The submatrices are,
A=A As...A] and B= By B:...B,], (1)

where A; € F("/")*" and B; € F»*(®/7) Vi and m and p
are divisible by r. Hence, we can write AB as,

A1 Bl A1 BQ A1 B,«
AQ Bl A2 B2 A2Br

AB=| . : - (22)
A.B1 A.Bs A B,

where the original matrix multiplication can be seen as com-
posed of r? smaller matrix multiplications.

Similar to one-sided secure matrix multiplication problem,
the user generates ¢ random matrices K EA), o K éA) €
F(m/m)xn for A, and ¢ random matrices KfB), cee éB) €
Fnx(®/7) for B, where each of their entries is an i.i.d. uniform
random variable. The user encodes A and B for server i as:

T )4
A=At YK ekt (23)
j=1 k=1

r 4
Ei _ Z Bjitgj_l)(r+z) + ZKéB)$§k+r—l)(r+2)’ (24)
j=1 k=1

where A; € F(M/")*n and B; € F**(/7)_ The degrees of (23)
and (24) are chosen in a way that each item is guaranteed to
be the only item at a certain degree after multiplication. This
methodology is similar to the one proposed in [9], [10] for
distributed matrix multiplication problem. Essentially, comput-
ing A;B; is equivalent to evaluating the following polynomial
with 4 different types of terms:

1 , , , ,
== One-sided Secure Matrix Multiplication (Theorem 1
=#=Fully Secure Matrix iplication (Theorem 2)
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Fig. 3: The impact of number of colluding servers on the
communication rate when N = 100.

h(z) =Y A;jByaltE -0

j=1j'=1
desired
r 4
F 30D AP0
j=1k'=1
0 r
303 KByt Do
k=1j'=1
T
+ Z Z K}gA)K]gfg)xk+7’+(k/+r—1)(r+é)—1. (25)
k=1k'=1

Due to the design of the scheme, each degree has exactly
one item as its coefficient in (25). Note that the polynomial has
degree (r+£)?—1, hence, evaluations at (r+¢)? distinct points
are sufficient to solve for all coefficients of the polynomial.
This indicates that we need at least (r + £)? responses, one
from each server to recover the desired result, i.e., N > (r +
E)Q. However, the user is only interested in the first double
summation term in (25), which has a total of 72 items in the
form of A;Bj/. Since the user can recover r items out of
(r + ¢)? items, the achievable scheme yields a rate of 72/(r +
02 = ([VN = 0)2/([VN — €] + 0)*.

We next show that the proposed scheme is information-
theoretically secure:

I(A,B; Az, Br) = I(A,B; Az) + I(A, B; Br|Ay)
= H(Ar) — H(A|A, B)
+ H(Bg|Az) — H(Bg| Az, A, B)
9 mAg) - HEW, . KM
+H(Bg) - HKP .. KP)

© H(Ag) — K@ log |F| + H(B) — E? log |FF|

(¢) ~ ~

< H(Ay)+ -+ H(A,) = 07 log F|
+ H(Bi,)+- -+ H(B;,) - £~ log |F|
(d)
< (7~ (log [F| - log |F|) + £ (log |F| - log F|) = 0,
(26)



where (a) follows from (23), (24) and the fact that random
matrices are independent of A and B, and B is independent
of Az, (b) follows by summing the entropy of each uniformly
distributed random variable in all K j(.A) and K ](,B ), (c) follows
by upper bounding the joint entropy using the sum of individ-
ual entropies, (d) follows from upper bounding the entropy of
each element of A; | and B; | by log |F'|. Hence, the proposed
scheme is information-theoretically secure. This completes the
proof of Theorem 2.

B. Improving Theorem 2 by Aligned Secret Sharing

Due to the design of our proposed scheme, each item is
the coefficient of a distinct degree. However, in a fully secure
matrix multiplication problem, only items with the form of
A;Bj are useful. Hence, if we can ensure that each item with
the form of A;B; is the only coefficient of some distinct
degrees while aligning the other undesired items, we can
potentially achieve a better rate. We present the following
example to demonstrate the idea of aligned secret sharing.

Example 2. Consider the (N,{) = (8,1) fully secure matrix
multiplication problem where there are 8 servers, and none
of them collude. For this example, from Theorem 2, we can
achieve a rate of ([\/N — £))2/([V'N — ] +0)* = 22/(2 +
1)2 = 4/9. We now show how to improve upon this rate
through the aligned secret sharing scheme.

The user partitions A and B into the following

A= Lﬁ;] and B = [B; B,], 27
where Ay, Ay € FM/2Xn qnd By, By € F"*®/2) The
user generates one random matrix for each A and B, i.e.,
KW e Fm/2)xn gpd K(B) ¢ F*(0/2) Instead of following
the proposed scheme in Section IV-A, we align the undesired
terms in the forms of AjK(B)7K(A)Bj/ and KK (B) py
selecting different degrees for the encoding polynomial. For
each server, the encoding of the user is:

Avi = A1 + AQ.TZ' + K(A).’lfg
Ei = Bl + ng? + K(B)J??,

(28)
(29)

where g,» and El have the same dimension as A; and B; for
1 =1,...,8. Each server i evaluates the polynomial

h(I,) = AlBl —+ Aglei —+ K(A)B1I72 + AlBQIf + AAQBQJT;L

+ (KWBy 4+ A KPNad 4 Ay K P8 4 KA KB T
(30)

for i = 1,...,8. Clearly, the desired items are the only
coefficients of their respective degrees, consequently, the user
can decode them using polynomial interpolation. Since the
degree of the polynomial is now 7, evaluation at 8 points
are sufficient and there are 4 desired items. The rate is now
4/8 = 1/2 which is larger than 4/9.

V. CONCLUSIONS

In this paper, we studied one-sided and fully secure matrix
multiplication problems. We proposed a secret sharing based

scheme for the one-sided secure matrix multiplication model,
where B is a public matrix and A is a private matrix that must
be kept information-theoretically secure while computing AB
when any ¢ servers may collude. We completely characterized
the capacity for this model as (N —¢)/N. We also presented a
novel achievable scheme for the fully secure matrix multiplica-
tion model, where both A and B are private matrices that must
be kept information-theoretically secure against any ¢ colluding
servers. We also presented an improvement for this general
scheme through the idea of aligned secret sharing. There are
several interesting open problems: (a) finding a converse (up-
per bound) for the fully secure matrix multiplication problem;
and (b) generalizing these ideas for other secure distributed
computation tasks.
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