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Abstract—A localized privacy protection notion: local informa-
tion privacy (LIP) is studied in this paper. As a context-aware
notion that considers prior knowledge, the LIP notion is shown
to provide increased utility than local differential privacy (LDP).
Within the scope of LIP, we further consider scenarios with
uncertainty on the prior knowledge, i.e., the prior is bounded
within a certain range or the prior is arbitrary. The former
case is defined as bounded-prior LIP (BP-LIP), and the latter as
worst-case LIP (WC-LIP).

The contributions of this paper are three-fold: We first provide
theoretical results which show the connections of these new
definitions with LDP; Secondly, we present an optimization
framework for privacy-preserving data collection, with the goal of
minimizing the expected squared error while satisfying BP-LIP
and WC-LIP privacy constraints. Utility-privacy tradeoffs are
obtained in closed-form. At last, we validate our conclusions by
numerical analysis and real-world data simulation. Our results
show that the notion of bounded-prior LIP can achieve better
utility-privacy tradeoff compared to context free notion of LDP.

I. INTRODUCTION

Privacy-preserving data collection methods have various
real-world applications, such as data analytics [1], frequency
estimation [2], and itemset mining [3]. In the data privacy
research community, differential privacy (DP) [4] has been
accepted as the de facto standard as it provides a rigours
privacy guarantee which is measured explicitly by the privacy
budget €. There are two widely studied notions of DP: central-
ized DP, which relies on a trusted server that manipulates the
perturbation and gives noisy output for certain queries; and
local DP (LDP) [5], in which users are allowed to directly
publish perturbed data to untrusted curator. “Localized” means
the data perturbation is run at the user rather than at the
server. Nowadays, The increasing popularity of LDP can be
attributed to two factors: a) first, a trusted server may not
always exist in certain application scenarios; and even if a
curator is supposedly trusted, various privacy breaches in
practice could occur due to internal compromises or other
reasons; and b) aggregated data from multiple users may itself
limit local utility that an individual user can provide. In fact,
most individuals’ data are collected directly, and hence, LDP
notion has led to various privacy preserving mechanisms, such
as [6]-[8], and Google’s RAPPOR (randomized aggregatable
privacy-preserving ordinal response) [9]. Even though LDP
based mechanisms have already been widely applied, either
they provide limited utility or the privacy is not well protected.
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For instance, Tang et al. show that, in Apple’s LDP mechanism
[10], the privacy budget is too large to provide any useful
privacy protection [11]. In 2017, Wang et al. provide a variety
of LDP protocols for frequency estimation [2] and compare
their performance with Google’s RAPPOR. However, includ-
ing RAPPOR, none of these protocols provides considerable
estimation accuracy under a reasonable small e.

The main reason why it is hard for LDP to achieve an
ideal utility-privacy tradeoff is because the definition provides
a rigours privacy guarantee against worst-case (context-free)
adversary that can possess arbitrary background knowledge.
A promising way to increase utility beyond the definition of
LDP is to introduce prior information into the picture, which
allows an explicit measurement over the adversary’s ability.
The prior knowledge can be obtained through many ways in
reality, such as the theoretical research results can be used as
the prior knowledge for clinical treatment; past survey results
can be used as prior for future data gathering; the classification
from neural network trained by previous data can be used
as prior for prediction. The privacy notions considering prior
knowledge are usually referred to as “context-aware” notions.
Information theoretic privacy notions [1], [12], [13] fall into
this category, such as mutual information privacy (MIP) [14],
which limits the average information leakage between the raw
data and the perturbed data. However, MIP is a relatively
weak notion compared to LDP, as mutual-information is the
expected KL (Kullback Leibler) divergence between prior and
posterior (where expectation is over all outcomes of data). In
[15], the notion of local information privacy (LIP) is presented,
which bounds on the ratio between the prior and posterior of
the data after taking observations. Since the privacy notion
is tailored to the specific prior knowledge adversary has,
the privacy guarantee can be viewed as relaxed, and data
perturbation can be done in a prior related manner to increase
the data utility.

We next use a toy example of concrete mechanisms to recap
and reinforce the intuition behind introducing prior.

Example 1. Consider a one to one (one curator and one
user) privacy preserving binary data collection model, where
user’s data is denoted as X, which takes O or 1 with certain
probability Py = Pr(X = 1). The raw data X is randomly
perturbed to an output Y, with certain probabilities, the set
of which is called perturbation parameter of the mechanism
and is denoted as q (context-free) and qo,qq (context-aware)
in Fig. 1. This model allows the curator to make an estimation
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Fig. 1. An illustration of binary randomize response perturbation mechanism.

on X by taking observations on Y.

The model described above is usually referred to as a
randomized response perturbation mechanism. To achieve an
ideal accuracy, no matter what estimator the curator uses,
the desired probabilities to perturb: ¢, g1 and go should be
designed as small as possible, however, they can not be too
small in order to satisfy the privacy constraints. Based on
different privacy definitions, the minimal requirements of the
perturbation probabilities are different. For the context-free
LDP model, likelihood ratio is bounded by e€, and we have
ming = ﬁ The context-aware LIP model, on the other
hand, requires that the ratio between prior and posterior is
bounded by €€, thus ¢y and ¢; are designed according to the
priors: mingo = Pr(Y = 1|X =0) = £&1 ming; = Pr(Y =
0]X = 1) = =L [15]. After observing Y, the curator is able
to make a further estimation on X. The estimator of LDP:
Xpp is a function of q: Kppp = (1 —q)Y + 2 [2]; while
in the LIP model, X rrp is designed with gg, ¢1 as a function
of P1Z XLIP = (1 — %)Y—F %(1 — Y) [15]

Fig. 2 shows the mean square errors of the estimation under
three cases: “Context-free”, “P; = 0.5” and “P; = 0.8”. We
can observe an obvious increment in the accuracy of the case
when P; = 0.8 comparing with other two cases, which shows
the usefulness of prior knowledge. Notice that when P; = 0.5,
the prior knowledge does not help for data collecting, however,
there’s still an increasing gap between LIP when P; = 0.5 and
the LDP. This is because the privacy guarantee is relatively
relaxed than the LDP (for more details, see Sec. II).

While the context-aware LIP provides increased utility than
LDP, it can be difficult to implement in real-world applications,
as it assumes that the exact prior knowledge is available for
both the users and curator. In the above example, P; = 0.5 or
P; = 0.8 is a common knowledge so that user and curator can
design prior related mechanism. However, more often than not,
the prior knowledge exists but with uncertainty. We study this
uncertain prior LIP notion, and present two other LIP notions
with bounded prior knowledge and arbitrary prior knowledge.
Then we develop explicit connections to LDP.

The main contributions of this paper are three-fold:

(1) Motivated by the above discussion, we propose and
study two variations of LIP: worst-case LIP (WC-LIP) and
bounded-prior LIP (BP-LIP). We formally show the relation-
ships between them and LDP: e-WC-LIP is equivalent to e-
LDP; e-BP-LIP is sandwiched between 2¢-LDP and e-LDP as
a function of the uncertainty of the prior knowledge.
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Fig. 2. The comparison of MSEs under different privacy notions and priors.

(2) We study a binary data perturbation and estimation
model which achieves optimality for single user collection and
multiple users data aggregation simultaneously. This binary
model has applications in privacy-preserving survey and fre-
quency estimation problems. We formulate optimization prob-
lems to minimize the mean square of estimation error subject
to proposed privacy constraints. The perturbation parameters
are derived in closed-form.

(3) We use both the theoretical results and simulations to
compare with the utility privacy tradeoffs between BP-LIP,
WC-LIP notions and LDP notions, and show the advantages
of BP-LIP and WC-LIP notions.

II. PRIVACY DEFINITIONS

Next, we recap the related localized privacy definitions,
including LDP and LIP, and briefly discuss the intuitions
behind each notion. Then we introduce definitions of the
proposed variants of LIP, including WC-LIP and BP-LIP, and
investigate the relationships between them.

Local Differential Privacy: As a localized version of
differential privacy, LDP provides context-free privacy guar-
antee against the worst-case adversary. It requires any two
different inputs within the data range have similar probabilities
(measured by €) to result in a same output:

Definition 1. (e-Local Differential Privacy (LDP)) [5] A
mechanism M which takes input X and outputs Y satisfies
€-LDP for some € € R, if Vo, 2’ € D and Vy € Range(M):
Pr(Y =yl X=2) _
Pr(Y =y|X =1/) se. &
The definition of LDP does not allow the mechanism to
depend on knowledge of prior. To explicitly introduce prior
knowledge, Local information privacy is proposed in [15].
Local Information Privacy: We first define the distri-
bution over a dataset: Let D = {1,2,...,|D|}, and define
P = {Py, P, ..., Pp|} as a prior distribution over the dataset
D, ie., P, = Pr(X = z), where x € D. For a given
distribution P, the notion of LIP is defined by bounding the
ratio between the prior and the posterior, which guarantees
that after observing the output, an adversary cannot infer too
much additional information other than its prior.

Definition 2. (e-Local Information Privacy (LIP)) [15] A

mechanism M which takes input X with prior distribution P

and outputs Y satisfies e-LIP for some € € RY, if Vx,y € D:
e Pr(X =x) .
<— > _<e".

€ 7P7‘(X:.’L’|Y:y)7e @




In [15], it is shown that LIP is a weaker notion than LDP. In
particular, if a mechanism M satisfies e-LDP, it also satisfies
e-LIP; If M satisfies e-LIP, it satisfies 2¢-LDP.

The notion of LIP is context-aware and allows for designing
perturbation mechanisms that provide higher utility than LDP
by leveraging the prior. However, the assumption that the
curator and the users possess the exact prior knowledge
prohibits this notion from real world applications, since, the
available knowledge about the prior may not be accurate.
Depending on different amount of knowledge about the prior,
we propose two new definitions.

Worst-Case Local Information Privacy: Worst-case LIP
means that the privacy definition (2) must be satisfied for
all possible priors, which is defined as R,. = {P : P, €
0,1], 3 ,cp P> = 1}, meaning that in the RIP! space, the dis-
tribution P can take any point on the plane of ) P, = 1.

Definition 3. (e-Worst-Case Local Information Privacy (WC-
LIP)) A mechanism M which takes input X and outputs Y
satisfies e-WC-LIP for some € € R, if Vo,y € D, VP € Ry,
(2) is satisfied.

Next, we show WC-LIP is equivalent to LDP.

Theorem 1. A mechanism satisfies e-WC-LIP if and only if it
satisfies €-LDP.

Proof. To prove the "if” part, consider a M that takes any
two inputs X = z, X = x’ and outputs the same Y = y.
If M satisfies e-LDP, we have:
Pr(Y =y|X =2') <ePr(Y = y|X = z).
On the other hand:
Pr(Y =y) = Z Pr(Y =y|X =2 )Pr(X =1)
z'eD
<e‘Pr(Y =y|X =1) Z Pr(X =a")
z/ €D
=e°Pr(Y = y|X = z),VP € Ry..
By switching inputs, we can also get:
Pr(Y =y)>e “Pr(Y =ylX =1),VP; € [0,1].

which means that M also satisfies e-WC-LIP.
For the “only if” part, if M satisfies e-WC-LIP, VP € R,
by Bayes rule and looking at one side:
Yoo Pr(Y =y|X =2 )Pr(X =a') 2

Pr(Y =y|X =2x) S @)

As P, € P can take any value from O to 1 in the worst-case.

Thus when P, =1, P, = 0,Vz # 2/, there is:
Pr(Y =yl X =1') :

Pr(Y =yl X =2) — & @

which means the definition of LDP is also satisfied. O

The equivalence of these two definitions means that in a
worst-case setting, the LIP privacy notion (if satisfied among
all possible priors), is equivalent to LDP.

Bounded-Prior Local Information Privacy: On the other
hand, in reality, the common prior knowledge available for
user and the adversary usually lies within a range. For ex-
ample, if it is a common knowledge that something is more

likely to happen than not. We know, 0.5 < P < 1, where
P is the prior to happen. Similarly, we define the feasible
region of the bounded prior as Ry, which is a subset of R,,.:
Ry = {P : Py € [as,bs], Y ,ep Pr = 1}. Ry defines a
convex region on the plane of ), P, =1 in RIPI,

Definition 4. (e-Bounded Prior Local Information Privacy
(BP-LIP)) A mechanism M which takes input X and out-
puts Y satisfies e-BP-LIP for some ¢ € RT, if Vx,y €D,
VP € Ry, (2) is satisfied.

The next theorem states the relationship between BP-LIP
and LDP:

Theorem 2. If a mechanism M satisfies e-BP-LIP, then the
privacy strength of M is sandwiched by e-LDP and 2¢-LDP.

Proof. The first part means e-LDP implies e-BP-LIP: By
Theorem 1, we know e-LDP is equivalent to e-WC-LIP, and
e-WC-LIP implies e-BP-LIP, as Ry, is a subset of R,..

The second part means e-BP-LIP implies 2e-LDP: from
[15], we know e-LIP implies 2¢-LDP, where e-LIP can be
viewed as a special case of e-BP-LIP (any possible P belongs
to Ryp), Thus, e-BP-LIP implies e-LIP which further implies
e-LDP. O

We next investigate how Ry, influences the relationship
between e-BP-LIP and e-LDP under a binary model: D =
{0,1}, P, = Pr(X = 1). Define the feasible region Ry, as
Py € [a,b], where 0 < a < b < 1. When the prior of P; is
fixed, Pr(X = 0) is also fixed. Thus P; € [a,b] is sufficient
to represent Ryp,. By Definition 4, if M satisfies e-BP-LIP,
then VP € [a,b], (2) is satisfied. Suppose M also satisfies
LDP for some € > 0, for a fixed [a, b], we have:

Theorem 3. In the binary model, if M satisfies e-BP-LIP with
Py € [a,b], it also satisfies €'-LDP, where € corresponds to
the following values under each case:

When a +b <1:

ife<lIn 17_1’: ¢ =1In efffa : otherwise, € = In —8/4}5’_1;

When a +b>1:

if e <Inq: € = In =Ly, otherwise, € = In §=2.
Proof. Detailed proof is shown in Appendix A. O

It can be readily shown for all the cases, €' is sandwiched
between € and 2e. Also notice that as a function of a and
b, €' is monotonically increasing with a, and monotonically
decreasing with b. Which means that the maximum €’ is
achieved when a goes to b, where BP-LIP is equivalent to
original LIP; The minimum value of € is achieved when
a goes to 0 and b goes to 1, where BP-LIP is equivalent
to WC-LIP. Generally speaking, BP-LIP can be viewed with
adaptive privacy guarantee: when the distance between a and b
is large, which means there’s much uncertainty on the prior, €’
decreases, hence, the BP-LIP notion is strong to protect against
any possible privacy inference. When the distance between
a and b is small, which means the prior knowledge of the
adversary is quite clear, €’ increases, hence, the BP-LIP notion
is designed to defend against privacy attack with known priors.
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Fig. 3. Single user privacy-preserving data collection configuration.

III. PRIVACY-PRESERVING DATA COLLECTION MODEL

From [15], The local multiple users’ data aggregation
problem is optimized when each user’s local data collecting
problem is optimized if each user perturbs and publishes data
independently. In this paper, we specifically investigate on
single user data collection problem.

A. System and Threat Model

Consider an individual possesses a private answer to some
query from a curator, which is denoted as X. It is assumed that
X takes value from a binary domain D = {0, 1} with certain
prior probabilities Py = Pr(X =1),1- P, = Pr(X =0). It
is assumed that the exact value of P; is not available for the
individual and curator, however, both of them know that P; is
bounded within [a, b], where 0 < a < b < 1. In order to use
Py as a parameter to estimate, the curator picks Py from [a, b]
as the prior. The user, on the other hand, designs a privacy-
preserving mechanism M to defend against the adversary with
arbitrary prior within [a,b]. M takes input X and perturbs
to Y with certain probabilities, the set of which is denoted
as perturbation parameters: go = Pr(Y = 1|X = 0); ¢1 =
Pr(Y = 0|X = 1). After receiving Y, the curator wants to
estimate X, denote the estimation as X = f(Y), where f()
is an estimator, in this paper, we deploy the minimized mean
square error (MMSE) estimator [16]: f(Y) = E[X]|Y], as
the exact P; is unavailable, the estimator becomes f(Y) =
Ep,[X|Y], where X is the random variable which takes the
distribution of P;. The configuration is shown in Fig. 3.

It is assumed that the curator possesses the knowledge of
the perturbation mechanism as well as the range of the prior
[a, b] (same with the user). The curator (adversary) is assumed
to be untrusted for multiple reasons, such as the private data is
profitable, or the curator is hacked. As a result, user wants to
cooperate with the curator for an estimation while remain some
uncertainty on the data. The accurate estimation is denoted as
”Utility”, and the uncertainty is denoted as “Privacy”.

B. Problem Formulation

Utility: In this paper, utility is measured by the inverse
of mean square error (MSE) between the raw data and the
estimation, where the MSE can be expressed as:

£ = Ep[(X — Ep [X|Y])?]. §))

Next we derive the privacy constraints for them.

Privacy: The privacy is measured by the BP-LIP, for the

binary model, define Fy, = #yﬁiy), then, VP, € [a, b]:

e~ < {Fuo, Fo1, F11, Foo} < €. (6)
Eq. (6) forms a feasible region for gy and ¢;. User wants to
help the curator to estimate while defending against attack
with any possible Pj. So, the optimal perturbation parameters
g and g7 are found at the optimal solutions of problem to
minimize the MSE subject to the BP-LIP constraints:

min £(qo, q1),

s.t. (6), Vpl € [a,b] and VP, € [a,b]. 7

As the curator knows [a, b] and user’s mechanism, ¢ and
q; are also available for him. To build the MMSE estimator,
which is prior-related, he picks P; from [a, b]. Notice that for
any fixed P;, we can find a P; € [a, b], such that P; maximize
&, denote this MSE as the maxp, £ under Py, then we want to
find an optimal P; under which the mechanism results in the
minimum maxp, €. Briefly speaking, the optimal P; should
guarantee that the MSE in the worst-case (VP € [a, b]) is not
too large. As a result, 151* is at the solution of the optimization
problem: ~

Plrgﬁl,b] Pfrelifb] PR ®)
We next derive the optimal solutions of ¢g, ¢} and P,

C. Main Results

The next theorem derives the optimal ¢o and g; for any
Py, Py € [a,b)].

Theorem 4. For the optimization problem defined in (7), the

optimal qo and q1 are ¢ = and ¢f = =2

Proof. For an arbitrary but fixed P;, the estimator is:
E[X|Y] = Pr(X =1[Y). ©)
Thus receiving Y = 1, the curator estimates X, = Pr(X =
P (1—
LY = 1) = Z When
Xo = Pr(X =1|Y =0) = 50385
The MSE function can be rewritten as:
> (z— EX|Y])’Pr(X = 2)Pr(Y = y|X =)
z,y€{0,1}
:(1 - X1)2P1(1 - (h) + (1 - X())Zqul
+(X1)?(1 = P1)go + (Xo)*(1 — P1)(1 — qo).

When Y = 0, the curator estimates

(10)

It can be readily checked by taking ¢f =1 — ¢; and ¢} =
1 — go that the function of £ is symmetric about (0.5,0.5).
Thus we can narrow the whole feasible region by adding a
constraint: q; +go < 1. Then comparing with Xl and XO, we
have:

o _ % (1-P)(1—q—q)

- = > 0.
X=X = = —Pr¥ =1)] = (an
Which means in the simplified region, we always have X >
Xo. Now consider the four terms in (10), we want to control

q1 and go to minimize &£: the first term wants ¢; large while
the second term wants it small; the fourth term want gy large

while the third term wants it small. However, as (1 — X 1k



(1 — Xo)2, also (X1)? > (X)2. Which means in order to
minimize £, we minimize ¢; and ¢g. The minimized ¢; and
qo are found at the boundary of the privacy constraints, which

is achieved when max £20=1 — ¢€ and max w = g,
o PV = D ax P1(17q1)+(17P1)QO' (12)

qo qo
Asl—q1 > qo, Maxp, (a4 PT(;Z:l) — b(1*¢h);;(1*b)% —
Similarly, maxp, ¢[q 4 PT(;/ 0) — sgHl- “)(1 ®©) _ ¢€ The
optimal solutions are calculated accordmgly O

Intuitively, to increase utility, we need the probability of
perturbation as small as possible (when gg + ¢1 < 1), and the
smallest perturbation probability is bounded by the privacy
constraints. As a result, the optimal solution is at the point
where the privacy requirement is just met.

Observing the expression of ¢ and ¢}, when a =b = P,
which means the prior knowledge is certain and fixed, in this
case qj = % and ¢ = 1;39 L which are same with the optimal
solutions of LIP [15]; When a = 0, b = 1, we have the
optimal solutions for the WC-LIP: ¢ = ¢f = ﬁ, which is
independent of prior and is identical to the optimal solutions
of the LDP [2]. This result show that the BP-LIP connects the
notions of LIP, WC-LIP and LDP together by adjusting prior
uncertainty. Also, interestingly, the result implies that the WC-
LIP and LDP are equivalent even in optimal mechanism.

The next step is finding the optimal P;, which can be
derived by the following lemma.

Lemma 1. [fpl ?é P, E(Pl) > g(Pl) and:
— 14 b)b(e —1)2

o D\ _ 7(65 B2
EP) —E(P) = ARy (PL—P)2. (13)
Proof As the optlmal perturbation parameters are gq; =
T +8 and ¢f = T +e, , the estimator becomes:
(P = BX|y = 1] = Db+ 1),
b— ]3} + Pec (14)
A = R 3 o . P1(1 = a)
Xo(P1) = E[X|Y =0] = Fo P —
By (10), the E(Py) is:
(1= X1(P1))?Pi(1 — q7) + (X1 (P1))*(1 — P1)go 1s)
+(1 = Xo(P1))*(1 = Pr)go + (Xo(P1))*(1 = P1)(1 — q0).
If picking P, = P;, £(P;) becomes:
(1—X1(P1)?Pi(1 — qi) + (X1 (P1))*(1 — P)gs 16)

+(1 = Xo(P1))*(1 = Pr)gs + (Xo(P1))* (1 = Pu)(1 = g).
The distance of £(P;) and £(P;) is calculated accordingly.
O

From Lemma 1, we can learn that the optimal P} when [a, b]
and € are fixed is P;, when P, # Py, the MSE increases as a
result, and the increased amount is proportional to the square
of | P, — Py|, hence, we need to find the P;* that cannot be far
away from Pp, thus we have the following proposition.

Theorem 5. By Lemma 1, for a given range [a, b|, the optimal
P is P* = ofb,

== -WC-LIP
04 - c-LIP
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Fig. 4. Numerical analysis on utility-privacy tradeoffs.

Proof. £(Py) can be represented as:
_— (ef — 1+ b)blef —1)?
k) = (e —a)(1 — a)e?

where the first part is not determined by P;, thus
min max &(Py) is equivalent to min max(P; —P;)2. The result
is straightforward. O

E(P) + (P—P1)?, (7

Notice that, in finding the optimal P}, there are other types
of algorithms other than the minimax formulation, such as
minimize the expected MSE:

Pyeu[nb]EP 1€4a, b}[g(PhPl)] (18)
The steps in finding the optimal P;* are similar, in (18), the
problem is equivalent to finding P; that minimize E[(P; —
Py)?], and the optimal Pj = E[P;]. When P is uniformly
distributed in [a, b], P} = L.

By Theorem 4 and Theorem 5, when the range of P;: [a, b]

is fixed, the optimal P} = “TH’ and the optimal perturbation
parameters g5 = #w and ¢ = b_la_feé.

IV. SIMULATION

In this section, we simulate with numerical results and real
world data to show the advantages of the proposed variations
of LIP. For the first part, we use numerical results to show the
impact of the prior uncertainty to the utility-privacy tradeoffs
and compare the performance of different privacy notions.
In the second part, we use real-world data to illustrate the
advantages of the BP-LIP comparing with LDP.

The first experiment is the comparison among different
privacy notions with numerical analysis, including e-WC-LIP,
e-LIP, e-BP-LIP. For the e-BP-LIP, we compare two cases with
different prior uncertainties, the uncertainty of the prior is
measured by 6 = b— a. We randomly generate a prior P; and
generate the user’s data from a binary domain according to
P, then we randomly generate ¢ and b such that a < P; <)
under two cases: d = 0.5 and § = 0.1. Then we calculate the
MSEs which are averaged 5000 times with different a and b.
For the WC-LIP, we fix a = 0 and b = 1. The utility-privacy
tradeoffs under different privacy notions are shown in Fig. 4.

Observe from Fig. 4, the e-LIP achieves the best utility
while the e-WC-LIP achieves the worst utility under each e.
This is because the worst-case LIP has fixed (smaller) feasible
region for parameters than LIP. Other than that, the utility
privacy tradeoffs of the e-BP-LIP is sandwiched between e-LIP
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Fig. 5. Utility-privacy tradeoffs comparison of different notions with the
income consensus dataset.

and e-WC-LIP, and the curve with larger uncertainty results
in a decreased utility.

Next, we testify our analysis by simulation on a real world
dataset: ”Census income” (Adult dataset). This is a census
survey dataset in which 48842 users’ personal information
are listed, including 14 attributes, such as: age, work class,
marriage, race, sex, education and annual income. In the
field of machine learning, the Adult dataset is usually used
for predicting whether each user’s annual income is over
50k dollar by training on all the personal information (taken
as features). This is an application of data aggregation for
multiple users. As we discussed in Sec. II, when each user is
assumed to independently publish data, the optimal parameters
for each user are achieved at their local optimality. i.e., if each
user perturbs data using the optimal parameters derived in Sec.
III, the overall aggregation result is also optimal.

Each user firstly converts his annual income as {0,1}, by
the following rule that: if income is above 50k, his data is 1
and O otherwise. We first create a deep neural network using all
the 14 features to predict each user’s the annual income. Each
prediction probability is used as the exact prior. Then users
are perturbing data according to the optimal mechanism of
LIP ((g0,q1) = (%, 1;391 )). At last we calculate the average
error between the estimation and the raw data. This case is
denoted as the e-LIP in Fig. 5. Similarly, we then derive
optimal parameters under ¢ = 0 and b = 1 and denote
it as eWC-LIP. To create a bounded-prior range, we train
the network with arbitrary 13 features, and collect prediction
priors from all the 14 feature-combinations, thus forming a
prior family Py = {P}, PZ, ..., P{*}. Then a = minP; and
b = maxP;. The following steps are similar, but with BP-
LIP optimal parameters. The last notion is context-free LDP,
which is with the same mechanism as WC-LIP. There are two
cases under the LDP notion, the first one is with prior-related
estimator, which is the same with other notions. This case
is denoted as the Opt-LIP, which is equivalent to WC-LIP.
The second case is with prior-free estimator proposed in [2]:
Xepp=(1-q9Y + 1.

From Fig. 5, we can observe similar results as shown in
the numerical result. However, in this case, the exact prior
trained with 14 features is very accurate, thus e-LIP performs
much better than in the numerical result. Other than that,
the Opt-LDP leads to an increased utility than the context-

free LDP, which means prior-related estimator is a promising
approaching to increase utility.

V. CONCLUSION

In this paper, the notions of worst-case LIP and bounded-
prior LIP are proposed to overcome the limitation of LIP
and can be implemented according to different scenarios: LIP
can be used when the exact prior is available; when there is
uncertainty on the prior, BP-LIP can be used instead; If there
is no prior knowledge, WC-LIP can be used alternatively. We
also derive the relationships between each notion with LDP,
and show that e-WC-LIP is equivalent to e-LDP, and e-BP-LIP
is sandwiched between e-LDP and 2e-LDP. Then we model a
privacy preserving binary data collection mechanism, whose
parameters are derived from an optimization problem with the
goal to minimize the mean square error subject to the privacy
constrains. The optimal solutions are derived in closed form
and allow us to characterize the utility-privacy tradeoffs for
this problem. At last, we present simulation results for both
synthetic data and real world data to illustrate the advantages
of the LIP and BP-LIP models.
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APPENDIX A
PROOF OF THEOREM 3

Proof. Suppose a mechanism M satisfies e-BP-LIP, which
means Vz,y € {0, 1}, there is:

Pr(Y =vy) .
_ Y=y
Prefa) PriY =y|X=1) — € (19)
PT(Y =i y) .
_ FHEY =Y .
Prefan Pr¥ =g X =0) = © (20)
—€ PT‘(Y = y)
< N S S
e Prefat) Pr(Y =y|X =1)’ 21
—€ PT‘(Y y)

< =Y 20
Fielas Pr(Y = y|X = 0)’ =

Eq. (19) gives us (by Bayes rule):
Pr(Y =yl X =0)(1— P1) < o
Pr(Y =yl X =1) -

Pr(Y=y|X=0
Denote Ly, = P:Ey:izixﬂg'

When Lg; > 1, to find the max, we want (1 — P;) as large

as possible, thus P; = a, (1 — P, =1 — a). Hence,
a+ (1 —a)Lo; <e.

Thus, 1 < L()l < elcia

—a

When Loy < 1, to find the max, we want (1 — P;) as small
as possible, thus P, = b, (1 — P, =1 —b). Hence,

max P; +
Py €la,b]

(23)

b + (1 — b)LOI < e. (24)
Thus, Lo < 5= b and Lo; < 1, the intersection is Lg; < 1.
Which means when L1 < 1, all values satisfy the constraints.
Combine the two cases, we have: Lg; < “’1'*5
Similarly, constraint (20) gives us:
(1—P1)+ P Ly <ef, (25)

e“+b—1

As a result, we have: L <
Eq. (19) gives us (by Bayes rule):
Pr(Y =y|lX =0)(1— P)

b i
¢ T T Py =gx=D)

P;€la,b]

When Lg; > 1, to find the minimum, we want (1 — P;) as
small as possible, thus P, = b, (1 — P, =1 —b). Hence,

e <b+(1—b)Lo (26)

Thus, Lg1 > ‘i—_gb and Loy > 1, the intersection is
Lyp; > 1. Which means when Lg; > 1, all values satisfy
the constraints.

When Lg; < 1, to find the minimum, we want (1 — Py) as

large as possible, thus Py = a, (1 — P, =1 — a). Hence,
6_6 S a+ (1 = a)Lm
Thus, £—=2 < Loy < 1.
Combine the two cases, we have: e;;“ < Lo;.
When e™¢ — a < 0, the in-equation always hold. When
e ¢“—a>0, wehaveLw—l/Lgl_%.
Similarly, constraint (22) gives us: When e — 145 > 0,
Loy =1/Lyp < e—%@f
In summary, there are two cases regarding the relation
between a + b and 1, and under each case, there are three

cases on the e and the boundary:

27)

When ¢ < 1 — b: a is the first boundary when e~ ¢
approaches 1, and 1 — b is the second.

Case 1 ¢ < a < 1—b: Loy < £=2

and LlO <

—86+bb_1. where: 8;—; — 8€+b—1 G —bl()l(“+b D <0 So we
5 e‘+b—1 =a efb=17 _ e 4b=1
have: Loy, L1g < &=, as max{ o T, } =%
Case 2 a < e°¢ S 1—b: Lgs < el:(;z and Lig <
min{€t=1 1=} To find the minimum of Lq: <=L —
l1—a (e —1)(ae“ 71+b)
e “—a b“(e;‘ a) . .
. eS4b—1 —a e + 1
when e€ > <=2: min{ GG —} =
when ef < 1—b.min{€ +b— 1’ ﬁsa }
a e
compare e},’fa with e , we have:
e‘—a l—a  __ a(2—e‘—e™°)
e — = a = T-a)(e=a), < 0. So, in this case:
when ef > 1= L01 Lipg < & +b 1
when e€ < L01 LlO a,’
6. H 8 —a
Case3.a§1—b<e L01<m1n 1a’e€+b ——5—} and

Lyp < min{€tp=t 1o

identical to case 2. Comparmg 1:; with 8,(, —, we have:
_ [(b=1)e“+a](e=1) (b—1+a)e(e‘~1) <0.
(e=<+b— 1)(1 a) — (e~ <+b—1)(1—a)

b e —a And we also showed in

“—}. Thus the result of

—=%-}. The minimum Value of Ly is

e‘—a b
1—a e*ﬁ—i—(b—l -
s e —a _

Thus min{ b 7} =
last case that = < min{*— +b 1, =

; . . l-a b e
this case is 1dentlcal to that of case 2:
when ef > 1= L01 Lig < & +b 1
when e < L01 LlO < ﬁ,

When a > 1 —b: 1 — b is the first boundary when e~ ¢
approaches 1, and a is the second.

Case 4 e < 1-b < a: Lyy < $=2 and Ly <
e‘+b—1 .e‘—a e‘:+b—1 _ (e‘=1)(a+b-1)
= where: 5= — &5 = ) > 0 So we
have:Lg1, Lig < = e —

Case 5 1—b< e‘6 < a: Lo <m1n{1 a,el+b =71

and L1g < & +lf’ L To find the minimum of Lo;: 61:;‘ —
b (e —1)[a—(1—b)e€]
e~ c+b—1 (lfa)(e c4+b— 1) *
€ __e‘—a.
when e€ > 1% mln{ = & e,(+b 7} = &= 3
€ e —a —
when e€ < lbb : min{ &= N e176+b71} T -
i1 e“+b— . e +b—
compare c——3— with > We have:.e,urb_1 5

— U=b)ete™ =2) 5 ) S0, in this case:

= Thle—tbm 1)
when e€ > %5 Lo1, Lig < 5 _“;
when e° < 1% L017 Ly < Wbb—l;

Case 6:1 — b § a<e € Ly < min{es_(f, Tbbl} and

Lip < min{¢t=1 120} The minimum value of Loy is
identical to case 5.

Comparing €4b-1 with =2 we have: ech—bb’l -
e}:ila( (e —2(7—12)21)4-1) < (e _(1)(1 2);)6 < 0 Thus
min 81:;,687(,_%_1} = ¢ +;’ L And we also showed in last
case that £t2=1 < mln{ﬁ, m}. Thus the result of
this case is identical to that of case 5:

when e > 1952 Lo1, Lig < e ‘;,

when e < 1%5: Lo1, L1o < #;

In summary, the above cases can combine into four cases
as shown in the theorem. |



