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ABSTRACT

Discrete Fourier transform (DFT) is a fundamental building
block for various signal processing applications, and speeding
up large-scale DFT/FFT using distributed processing is often
desirable. In this paper, we consider the problem of distributed
DFT computation from untrustworthy servers. In particular,
we study the scenario where the goal is to compute the DFT
of an s-length signal from N distributed and untrustworthy
servers, where any ¢ out of IV servers can collude. The signal
must be kept information-theoretically secure from any ¢ out
of N servers. The goal of this paper is to characterize the
minimum communication overhead while maintaining security
in an information-theoretic sense. The capacity of the secure
distributed FFT is defined as the maximum possible ratio of the
desired information (signal length s) and the total information
received from all N distributed servers. We present lower and
upper bounds on capacity of secure distributed FFT, and show
that these bounds match exactly when IV — ¢ is a power of 2,
and the bounds match asymptotically when [V becomes large.

Index Terms— Information-theoretic Security, Dis-
tributed FFT.

1. INTRODUCTION

Distributed processing for large-scale computations can pro-
vide significant speed-ups. However, this is often accompanied
with a communication overhead. Also, if the distributed ar-
chitecture is untrustworthy, sensitive information about the
data could be prone to leakage. This type of secure distributed
computation problem falls into the category of secure multi-
party computation (SMPC). Several previous works on SMPC
include [1-4], however, communication overhead was not the
main focus of these works. Hence, it is important to devise
distributed process algorithms with minimal communication
overhead while guaranteeing information-theoretical security.

As one of the fundamental operations in signal and image
processing, discrete Fourier transform (DFT) has been studied
intensively. The focus of this work is on secure distributed
DFT. Since DFT can also be viewed as matrix-vector multipli-
cation, many algorithms for distributed matrix-vector/matrix
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Fig. 1. Secure distributed FFT using untrustworthy servers.
The goal is to compute the Fourier transform while keeping
servers from learning about  and simultaneously minimizing
the communication overhead.

multiplication can be directly applied to compute DFT dis-
tributedly. However, such generic strategies do not fully ex-
ploit the unique structure of a DFT matrix unlike the existing
FFT algorithms for a single machine, such as Cooley-Tukey
algorithm [5]. Hence, some works have focused specifically on
how to distribute the computation of FFT [6-8]. These works
focused on the implementations of the parallel/distributed FFT
algorithms. However, these works do not aim to characterize
the fundamental limits of the communication cost.

Recently, researchers in information/coding theory com-
munities have made significant progress on understanding the
communication cost and the additional speed-ups gained by
using codes for distributed matrix multiplication problems.
Some of the codes that are efficient for these problems include
polynomial codes and MatDot codes [9-11]. These codes
introduce redundancy in computations and provide speed-ups
by mitigating the stragglers in the distributed system. How-
ever, for the similar reason mentioned above, the computation
strategies designed along with these codes were not tailored to
the computations of FFT. Two recent works, [12,13], each pre-
sented a computing strategy that is designed to distribute the
computation of FFT and provides speed-ups by using codes.

However, the aforementioned works do not consider secu-
rity while designing the algorithms/computing strategies. A
few works that do take security into account include [14, 15]
where both works used secret sharing scheme along with dif-
ferent encoding strategies to make sure that the computations
are secure, and [16] proposed a novel coded computing strat-
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egy that simultaneously provides resiliency against stragglers,
security against malicious servers and colluding servers.

Main Contributions: We consider a model where a user
wants to compute the DFT of x € [F* securely using /V untrust-
worthy servers when any ¢ of them may collude. We leverage
the idea of secret sharing [15] and the idea of distributed FFT
in [12] for devising a novel distributed FFT scheme which
is (a) information-theoretically secure; (b) has a small com-
munication overhead and (c¢) explicitly utilizes the butterfly
structure of FFT. We show that our secure distributed FFT
scheme achieves a rate of 211°82(N=0J /N We also show an
upper bound on the rate as (N —¢) /N, which matches with the
achievable scheme when NV — ¢ is a power of 2. Furthermore,
the upper and lower bounds match asymptotically when N
goes to infinity for a fixed /.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider the problem where a user wishes to compute the
discrete Fourier transform X = F{z} = [Xo X1 ... X, 4]T €
[ securely for a given input x = [zg 1 ...751]7 € F*
using N untrustworthy servers, for some integer s and a
sufficiently large field F. Each server is connected to the user
through a private link and is assumed to be honest but curious
(see Fig. 1). At the same time, any ¢ out of NV servers may
collude and the user does not know which ¢ servers collude.

To keep the computation secure, the user distributes se-
curely encoded versions of = to N servers. The encoding func-
tion is defined as f = (fy, fi, ..., fv—1), where f; is the en-
coding function for server j. We denote the encoded version of
a for server j as a;, where a; = fj(z) forj =0,1,..., N —1.
We denote the subset of colluding servers using the index
set L C [0 : N —1],|£| = ¢, and the corresponding en-
coded vectors the colluding servers received are defined as
ag = (aiy,diy,---,a;,_,). Fora scheme to be considered
secure, ag, VL C [0 : N —1],|£| = ¢ must not reveal any
information about the original x. Hence, a scheme must satisfy
the following security constraint,

I(x;a.) =0,VL C[0: N —1],|L] = 1. (D)

The answer from server ¢ is denoted as Z; fors = 0,1,..., N—
1. In order to obtain the final result, the user decodes X using
all the answers, i.e., X = d(Zy, Z1,...,Zn—1), wWhere d(.)
denotes the decoding function. The decodability constraint
can be written as H(X|Zo, Z1,...,Zn—-1) = 0.

For a scheme which satisfies decodability and security
constraints, the rate R is defined as the ratio of the number of
desired bits per total downloaded bits, as follows,

H(X
R= Nq# 2)

> H(Z;)

i=0
The capacity Cgpr(N, ¢) of secure distributed FFT is then
defined as the supremum of R over all achievable schemes.
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3. SECURE DISTRIBUTED FOURIER TRANSFORM
Theorem 1. For the (N, {) secure Fourier transform problem,
in which the input vector x is kept hidden from any ¢ colluding
servers while computing the Fourier transform X = F{z},
the capacity is upper and lower bounded as follows,

9 llogy (N—£)] N —¢
— N < Crrr(NV, ) < N (3)

Remark 1. It is worth noting that the upper bound and lower
bound match asymptotically as N goes to infinity for a fixed ¢,
and the bounds also match when N — { is a power of 2.

Remark 2. In our previous work [15], we obtained an upper
bound on the capacity of the secure distributed matrix mul-
tiplication problem as (N — £)/N. Therefore, this bound is
also applicable for the secure distributed FFT problem. We
also proposed a scheme in [15] to securely compute matrix
multiplication AB, where A € F"0*"™ and B € F™*"2, [t is
worth noting that the scheme of [15] works only when rq is a
multiple of N — £. However, in the distributed FFT setting, the
matrix A is replaced by a vector xT € F'**, which does not
satisfy the divisibility condition. Therefore, we need to devise
a new scheme for secure distributed FFT.

The proof of the lower bound is provided in Section 3.1.
Before presenting the proof, we present an illustrating example
and show the intuition behind the proposed scheme. A standard
FFT breaks the computation of the original DFT of an s-length
signal into log s stages. In our scheme, the user breaks the
signal into m = 211°282(N=0J parts and securely outsources
the first log - stages of FFT to N untrustworthy servers. After
receiving the responses from servers, the user then decodes the
intermediate values, and computes the rest of log m stages.

Example 1. (N = 5,¢ = 2) Consider a secure DFT problem
with 5 servers and any 2 servers may collude. The input vector
is ¥ = o w1 wo w3]T of length s = 4. The goal of the user is
to compute the DFT of x. Using standard DFT algorithm, the
following needs to be computed,

X, 1 1 1 1 o

o X1 o 1 7\/71 -1 \/7]. X1
X = X2 - 1 -1 1 -1 X9 (4)

X3 1 \/—1 —1 —\/—1 X3

Individual elements of X can be seen as linear combinations
of the elements of x, i.e.,

3
Xi =Y an(—V/-1)" 6))
n=0

[(—V=1)"z0 + (—V—=1)""z,] (6)
+ (—V=1)" [(—=V-1)"21 + (—V-1)%23] .

It can be seen that by splitting the summation into two parts
according to the indices of the elements in x, the computa-
tions inside the brackets are essentially two two-point DFT
with different inputs. This property has been exploited by the
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Fig. 2. A four-point DFT with NV = 5, ¢ = 2 and s = 4. The user sends the encoded inputs, which are kept private by the keys, to
servers. After servers compute and return the answers, the user decodes by and b, and computes the final result using by and b;.

Cooley-Tukey fast Fourier transform algorithm [5] for the sin-
gle machine setting and by authors of [12] for the insecure
distributed setting. We exploit this property in a similar fash-
ion. In this example, the computation is broken into log s = 2
stages. Our scheme consists of three phases. During Phase 1,
the user divides x into m = 21°82(N=01 = 2 parts as follows,

_|®o _ %1
apg = [:Ez] ;a1 = ij] . (7N
The user then encodes ay and ay for server i as follows,
a; =ao+ (i + ar + (i +1)%ko + (i + 1)%k1,  (8)

where ko and ki are random vectors of same length as ay and
aj whose entries are drawn i.i.d. from the uniform distribution
foralli =0,1,...,4. By adding these two random vectors,
the two colluding servers will not be able to obtain a clean
version of any a;. Servers return the results of the firstlog = =
1 stage after computing F{a;} = Waa,, i.e.,

Z() = W2a0 + W2a1 + Wzko + Wle

Zy = Waag + 2Waay + 2°Wakq + 23Woky

Zy = Waag + 3Waay + 3°Wako + 3°Waky

Zy = Waag + 4Waay + 4°Wako + 4° Wk,

Zy = Waao + 5Waay + 5°Wako + 5°Waky,  (9)

where Wy is the 2-point DFT matrix. The answers from servers
can be seen as the evaluations of a degree 4 polynomial at 5
distinct points.

In Phase 2, the user takes the 5 linearly independent equa-
tions and decodes Woay and Wsay,

bi70 A o 1
i) ey

Here, we have defined b;
ai,t=0,1

In Phase 3, the user follows the combining rules of the
FFT algorithm and computes the last log m = 1 stage, which
can be visualized with a butterfly diagram shown in Fig. 2, i.e.,

1 ;.0
-1 ai,l '

2-point DFT of

b = (10)

£ Waa; as the

Xo =bo,o+ b1

X1 =by1 —V—1b11
Xo =bgo—bio

X3 =0bo1+V—1b11

Achievable Scheme and Proof of Theorem 1

Y

3.1.

We now present the general scheme and describe the details of
each phase and their computational complexity.
Phase 1 (Secure Encoding at the User): The user first
splits the input vector = into m disjoint vectors a;,V ¢ =
0,1,...,m — 1, where m = 2U1°82(N=0] " The elements of
a;’s are given as,

s

— —1.
m

ai,t = $i+tma t 20717-"7 (12)
In order to provide security to a;’s against any ¢ colluding
servers, the user generates ¢ random vectors k,,’s whose el-
ements are drawn i.i.d. from the uniform distribution and

encodes a;’s as follows,
- -1
_ i +
=3 ayi+ > kayitm,
1=0 n=0

where y; is a distinct non-zero element in IF assigned to server
J. Bach server j computes an > -point FFT using their received
a; and returns the following polynomial,

m—1 —1
= Z Wea;y" + Z W kny™tm
i=0 n=0

aty =y;,7 =0,1,..., N — 1, where we denote h(y;) as Z;.
Servers are assumed to be working at the same speed and in
parallel. The complexity of this phase is, thus, the complexity
of a single machine computing an ;>-point FFT. It is well-
known that the complexity of computing an --point FFT is
O(= log ).

We next show that the proposed scheme is information-
theoretically secure and that the security constraint (1) is satis-
fied. We start with the following sequence of inequalities:

Ixyag) = I(x;aiy, - - -

(13)

(14)

751271)
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= H(a,,..

. ’Zii[—l |:L‘)
Y H,, .. ket
b

_ ~ s
= H(aiy, .-, a0, ) —€Elog|F|

H(G,, ..

"Ziié—l) -

— Hi(k,..

—

. 761'271)

—
=

(c) " - S
< H(a;,)+---+ H(ai,_,) —EE log |FF|

D 2 10g [F| — 02 10g [F| = 0, (15)
m m

where (a) follows from the fact that all encoded vectors a
are functions of x and random vectors k;,Vi =0,1,...,/—1,
(b) is due to the fact that an uniformly distributed random
variable in the field F has entropy log |F| and there are >
elements in each one of the ¢ random vectors, (c¢) follows
from upper bounding the joint entropy by using the sum of
individual entropies, and (d) follows from argument similar
to (b). Since mutual information is non-negative, we conclude
that the scheme is information-theoretically secure.

Phase 2 (Distributed Computation at Servers): Each an-
swer Z; can be viewed as a polynomial evaluated at point
y = y; for all j whose degree is at most m + ¢. Since m + ¢
is always less or equal to [V, the user can always solve for
the coefficients of the polynomial by polynomial interpolation
using the N evaluations to decode the Fourier transforms of
a;’s. We denote the Fourier transforms of a; as b;, whose
elements are,

=
o

b= D aiawl™V =01~ —1  (16)
n=0

where w; denotes the primitive sth root of unity. The complex-
ity of interpolating a polynomial with degree at most m + ¢ is
known to be at most O((m + ¢) log®(m + £) log log(m + £)).
After multiplying the length of a;, the complexity becomes
O(2 (m + ) log®(m + £) log log(m + £)).

Phase 3 (Decoding at the User): The user then computes the
final result by using the elements of all b; according to FFT
algorithm as follows,

m—1
Xi=>_

=
o

imn it
g Wy Wy a7
t=0 n=0
m—1
it
= E bt,mod(iw‘—jl)wsv (13)
t=0

forall?=0,1,...,s — 1. To remove the modulo in (18), we
substitute ¢ with p + q%. After rearranging, we have,
m—1 .
Xptqs = Z (bepw?") wd', (19)
t=0
forp =0,1,...,2 —1land g = 0,1,...,m — 1. By ex-

panding (19) for all p + ¢.%, it can be seen that equation
(19) is, in fact, the Fourier transform of 7% vectors of length
m, and the tth element of the pth vector equals to bt,pwg’t.
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Fig. 3. A comparison between the secure distributed FFT and
standard FFT when s = 2°0,/ = 3 and N = 8,16 and 32.

The complexity of the Fourier transform of a length m vec-
tor is known to be upper bounded by O(m logm loglogm)
by using Bluestein’s FFT algorithm [17] and fast polynomial
multiplication [18]. By multiplying the number of vectors, the
complexity is O(slogmloglogm). The overall complexity
is, hence, the sum of complexities of three phases.

We next compare the secure distributed FFT to standard
FFT (see Fig. 3). We let s = 2°0 and ¢ = 3. The curve shows
the complexity of the secure distributed FFT at N = 8,16
and 32, and the horizontal line represents the complexity of
standard FFT computed at a single machine. Clearly, when
N = 8 and 16, the secure distributed FFT provides signif-
icant speed-ups. However, as N increases, the number of
partitions m also increases. Hence, the decoding of Phase 2
becomes the bottleneck, and the overall complexity increases.
When N = 32 or larger, it is no longer efficient to compute
FFT distributedly using the proposed scheme as the decod-
ing complexity of Phase 2 becomes too large, and the overall
complexity exceeds the complexity of standard FFT.

The communication rate of the scheme can be computed
by counting the number of useful terms received at the user,
i.e., number of b;’s, divides by the total number of down-
loaded terms, i.e., number of Z;’s. Since there are m b;’s and
N Z;’s, the communication rate is Rgpp(N,¢) = m/N =
2Uoe2(N=0O1 /N Using the achievable rate Rper(N,¢) as a
lower bound on the capacity, i.e., Rprr(N, £) < Cppr(N,¥),
along with Remark 2 and [15], i.e., Crpr(N, ¢) < %, we
obtain the expression of Theorem 1. This completes the proof.

4. CONCLUSION

In this paper, we studied the problem of secure distributed
fast Fourier transform of a long input vector x, where  must
be kept private from the servers while any ¢ of them may
collude during the computations. Our proposed scheme is
a combination of the secret sharing scheme and the Cooley-
Tukey FFT algorithm. The capacity is lower bounded by the
achievable rate of 2l1og2(N—0)] /N and is upper bounded by
(N — ¢)/N. We show that the upper and lower bounds match
asymptotically as /N becomes large. In addition, these bounds
match exactly when N — / is a power of 2.
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