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ABSTRACT

Discrete Fourier transform (DFT) is a fundamental building

block for various signal processing applications, and speeding

up large-scale DFT/FFT using distributed processing is often

desirable. In this paper, we consider the problem of distributed

DFT computation from untrustworthy servers. In particular,

we study the scenario where the goal is to compute the DFT

of an s-length signal from N distributed and untrustworthy

servers, where any � out of N servers can collude. The signal

must be kept information-theoretically secure from any � out

of N servers. The goal of this paper is to characterize the

minimum communication overhead while maintaining security

in an information-theoretic sense. The capacity of the secure

distributed FFT is defined as the maximum possible ratio of the

desired information (signal length s) and the total information

received from all N distributed servers. We present lower and

upper bounds on capacity of secure distributed FFT, and show

that these bounds match exactly when N − � is a power of 2,

and the bounds match asymptotically when N becomes large.

Index Terms— Information-theoretic Security, Dis-

tributed FFT.

1. INTRODUCTION
Distributed processing for large-scale computations can pro-

vide significant speed-ups. However, this is often accompanied

with a communication overhead. Also, if the distributed ar-

chitecture is untrustworthy, sensitive information about the

data could be prone to leakage. This type of secure distributed

computation problem falls into the category of secure multi-

party computation (SMPC). Several previous works on SMPC

include [1–4], however, communication overhead was not the

main focus of these works. Hence, it is important to devise

distributed process algorithms with minimal communication

overhead while guaranteeing information-theoretical security.

As one of the fundamental operations in signal and image

processing, discrete Fourier transform (DFT) has been studied

intensively. The focus of this work is on secure distributed

DFT. Since DFT can also be viewed as matrix-vector multipli-

cation, many algorithms for distributed matrix-vector/matrix
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Fig. 1. Secure distributed FFT using untrustworthy servers.

The goal is to compute the Fourier transform while keeping

servers from learning about x and simultaneously minimizing

the communication overhead.

multiplication can be directly applied to compute DFT dis-

tributedly. However, such generic strategies do not fully ex-

ploit the unique structure of a DFT matrix unlike the existing

FFT algorithms for a single machine, such as Cooley-Tukey

algorithm [5]. Hence, some works have focused specifically on

how to distribute the computation of FFT [6–8]. These works

focused on the implementations of the parallel/distributed FFT

algorithms. However, these works do not aim to characterize

the fundamental limits of the communication cost.

Recently, researchers in information/coding theory com-

munities have made significant progress on understanding the

communication cost and the additional speed-ups gained by

using codes for distributed matrix multiplication problems.

Some of the codes that are efficient for these problems include

polynomial codes and MatDot codes [9–11]. These codes

introduce redundancy in computations and provide speed-ups

by mitigating the stragglers in the distributed system. How-

ever, for the similar reason mentioned above, the computation

strategies designed along with these codes were not tailored to

the computations of FFT. Two recent works, [12,13], each pre-

sented a computing strategy that is designed to distribute the

computation of FFT and provides speed-ups by using codes.

However, the aforementioned works do not consider secu-

rity while designing the algorithms/computing strategies. A

few works that do take security into account include [14, 15]

where both works used secret sharing scheme along with dif-

ferent encoding strategies to make sure that the computations

are secure, and [16] proposed a novel coded computing strat-



egy that simultaneously provides resiliency against stragglers,

security against malicious servers and colluding servers.

Main Contributions: We consider a model where a user

wants to compute the DFT of x ∈ F
s securely using N untrust-

worthy servers when any � of them may collude. We leverage

the idea of secret sharing [15] and the idea of distributed FFT

in [12] for devising a novel distributed FFT scheme which

is (a) information-theoretically secure; (b) has a small com-

munication overhead and (c) explicitly utilizes the butterfly

structure of FFT. We show that our secure distributed FFT

scheme achieves a rate of 2�log2(N−�)�/N . We also show an

upper bound on the rate as (N−�)/N , which matches with the

achievable scheme when N − � is a power of 2. Furthermore,

the upper and lower bounds match asymptotically when N
goes to infinity for a fixed �.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider the problem where a user wishes to compute the

discrete Fourier transform X = F{x} = [X0 X1 . . . Xs−1]
T ∈

F
s securely for a given input x = [x0 x1 . . . xs−1]

T ∈ F
s

using N untrustworthy servers, for some integer s and a

sufficiently large field F. Each server is connected to the user

through a private link and is assumed to be honest but curious

(see Fig. 1). At the same time, any � out of N servers may

collude and the user does not know which � servers collude.

To keep the computation secure, the user distributes se-

curely encoded versions of x to N servers. The encoding func-

tion is defined as f = (f0, f1, . . . , fN−1), where fj is the en-

coding function for server j. We denote the encoded version of

x for server j as ãj , where ãj = fj(x) for j = 0, 1, . . . , N −1.

We denote the subset of colluding servers using the index

set L ⊂ [0 : N − 1], |L| = �, and the corresponding en-

coded vectors the colluding servers received are defined as

ãL � (ãi0 , ãi1 , . . . , ãi�−1
). For a scheme to be considered

secure, ãL, ∀L ⊂ [0 : N − 1], |L| = � must not reveal any

information about the original x. Hence, a scheme must satisfy

the following security constraint,

I(x; ãL) = 0, ∀L ⊂ [0 : N − 1], |L| = �. (1)

The answer from server i is denoted as Zi for i = 0, 1, . . . , N−
1. In order to obtain the final result, the user decodes X using

all the answers, i.e., X = d(Z0, Z1, . . . , ZN−1), where d(.)
denotes the decoding function. The decodability constraint

can be written as H(X|Z0, Z1, . . . , ZN−1) = 0.

For a scheme which satisfies decodability and security

constraints, the rate R is defined as the ratio of the number of

desired bits per total downloaded bits, as follows,

R =
H(X)

N−1∑
i=0

H(Zi)

. (2)

The capacity CFFT(N, �) of secure distributed FFT is then

defined as the supremum of R over all achievable schemes.

3. SECURE DISTRIBUTED FOURIER TRANSFORM
Theorem 1. For the (N, �) secure Fourier transform problem,
in which the input vector x is kept hidden from any � colluding
servers while computing the Fourier transform X = F{x},
the capacity is upper and lower bounded as follows,

2�log2(N−�)�

N
≤ CFFT(N, �) ≤ N − �

N
. (3)

Remark 1. It is worth noting that the upper bound and lower
bound match asymptotically as N goes to infinity for a fixed �,
and the bounds also match when N − � is a power of 2.

Remark 2. In our previous work [15], we obtained an upper
bound on the capacity of the secure distributed matrix mul-
tiplication problem as (N − �)/N . Therefore, this bound is
also applicable for the secure distributed FFT problem. We
also proposed a scheme in [15] to securely compute matrix
multiplication AB, where A ∈ F

r0×r1 and B ∈ F
r1×r2 . It is

worth noting that the scheme of [15] works only when r0 is a
multiple of N − �. However, in the distributed FFT setting, the
matrix A is replaced by a vector xT ∈ F

1×s, which does not
satisfy the divisibility condition. Therefore, we need to devise
a new scheme for secure distributed FFT.

The proof of the lower bound is provided in Section 3.1.

Before presenting the proof, we present an illustrating example

and show the intuition behind the proposed scheme. A standard

FFT breaks the computation of the original DFT of an s-length

signal into log s stages. In our scheme, the user breaks the

signal into m = 2�log2(N−�)� parts and securely outsources

the first log s
m stages of FFT to N untrustworthy servers. After

receiving the responses from servers, the user then decodes the

intermediate values, and computes the rest of logm stages.

Example 1. (N = 5, � = 2) Consider a secure DFT problem
with 5 servers and any 2 servers may collude. The input vector
is x = [x0 x1 x2 x3]

T of length s = 4. The goal of the user is
to compute the DFT of x. Using standard DFT algorithm, the
following needs to be computed,

X =

⎡
⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 −√−1 −1

√−1
1 −1 1 −1
1

√−1 −1 −√−1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎦ . (4)

Individual elements of X can be seen as linear combinations
of the elements of x, i.e.,

Xi =

3∑
n=0

xn(−
√−1)in (5)

=
[
(−√−1)0ix0 + (−√−1)2ix2

]
+ (−√−1)i

[
(−√−1)0ix1 + (−√−1)2ix3

]
.

(6)

It can be seen that by splitting the summation into two parts
according to the indices of the elements in x, the computa-
tions inside the brackets are essentially two two-point DFT
with different inputs. This property has been exploited by the
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Fig. 2. A four-point DFT with N = 5, � = 2 and s = 4. The user sends the encoded inputs, which are kept private by the keys, to

servers. After servers compute and return the answers, the user decodes b0 and b1, and computes the final result using b0 and b1.

Cooley-Tukey fast Fourier transform algorithm [5] for the sin-
gle machine setting and by authors of [12] for the insecure
distributed setting. We exploit this property in a similar fash-
ion. In this example, the computation is broken into log s = 2
stages. Our scheme consists of three phases. During Phase 1,
the user divides x into m = 2�log2(N−�)� = 2 parts as follows,

a0 =

[
x0

x2

]
, a1 =

[
x1

x3

]
. (7)

The user then encodes ã0 and ã1 for server i as follows,
ãi = a0 + (i+ 1)a1 + (i+ 1)2k0 + (i+ 1)3k1, (8)

where k0 and k1 are random vectors of same length as a0 and
a1 whose entries are drawn i.i.d. from the uniform distribution
for all i = 0, 1, . . . , 4. By adding these two random vectors,
the two colluding servers will not be able to obtain a clean
version of any ai. Servers return the results of the first log s

m =
1 stage after computing F{ãi} = W2ãi, i.e.,

Z0 = W2a0 +W2a1 +W2k0 +W2k1

Z1 = W2a0 + 2W2a1 + 22W2k0 + 23W2k1

Z2 = W2a0 + 3W2a1 + 32W2k0 + 33W2k1

Z3 = W2a0 + 4W2a1 + 42W2k0 + 43W2k1

Z4 = W2a0 + 5W2a1 + 52W2k0 + 53W2k1, (9)

where W2 is the 2-point DFT matrix. The answers from servers
can be seen as the evaluations of a degree 4 polynomial at 5
distinct points.

In Phase 2, the user takes the 5 linearly independent equa-
tions and decodes W2a0 and W2a1,

bi =

[
bi,0
bi,1

]
� W2ai =

[
1 1
1 −1

] [
ai,0
ai,1

]
. (10)

Here, we have defined bi � W2ai as the 2-point DFT of
ai, i = 0, 1.

In Phase 3, the user follows the combining rules of the
FFT algorithm and computes the last logm = 1 stage, which
can be visualized with a butterfly diagram shown in Fig. 2, i.e.,

X0 = b0,0 + b1,0

X1 = b0,1 −
√−1b1,1

X2 = b0,0 − b1,0

X3 = b0,1 +
√−1b1,1 (11)

3.1. Achievable Scheme and Proof of Theorem 1
We now present the general scheme and describe the details of

each phase and their computational complexity.

Phase 1 (Secure Encoding at the User): The user first

splits the input vector x into m disjoint vectors ai, ∀ i =
0, 1, . . . ,m − 1, where m = 2�log2(N−�)�. The elements of

ai’s are given as,

ai,t = xi+tm, t = 0, 1, . . . ,
s

m
− 1. (12)

In order to provide security to ai’s against any � colluding

servers, the user generates � random vectors kn’s whose el-

ements are drawn i.i.d. from the uniform distribution and

encodes ai’s as follows,

ãj =

m−1∑
i=0

aiy
i
j +

�−1∑
n=0

kny
n+m
j , (13)

where yj is a distinct non-zero element in F assigned to server

j. Each server j computes an s
m -point FFT using their received

ãj and returns the following polynomial,

h(y) =

m−1∑
i=0

W s
m
aiy

i +

�−1∑
n=0

W s
m
kny

n+m, (14)

at y = yj , j = 0, 1, . . . , N − 1, where we denote h(yj) as Zj .

Servers are assumed to be working at the same speed and in

parallel. The complexity of this phase is, thus, the complexity

of a single machine computing an s
m -point FFT. It is well-

known that the complexity of computing an s
m -point FFT is

O( s
m log s

m ).
We next show that the proposed scheme is information-

theoretically secure and that the security constraint (1) is satis-

fied. We start with the following sequence of inequalities:

I(x; ãL) = I(x; ãi0 , . . . , ãi�−1
)



= H(ãi0 , . . . , ãi�−1
)−H(ãi0 , . . . , ãi�−1

|x)
(a)
= H(ãi0 , . . . , ãi�−1

)−H(k0, . . . , k�−1)

(b)
= H(ãi0 , . . . , ãi�−1

)− �
s

m
log |F|

(c)

≤ H(ãi0) + · · ·+H(ãi�−1
)− �

s

m
log |F|

(d)
= �

s

m
log |F| − �

s

m
log |F| = 0, (15)

where (a) follows from the fact that all encoded vectors ãL
are functions of x and random vectors ki, ∀ i = 0, 1, . . . , �−1,

(b) is due to the fact that an uniformly distributed random

variable in the field F has entropy log |F| and there are s
m

elements in each one of the � random vectors, (c) follows

from upper bounding the joint entropy by using the sum of

individual entropies, and (d) follows from argument similar

to (b). Since mutual information is non-negative, we conclude

that the scheme is information-theoretically secure.

Phase 2 (Distributed Computation at Servers): Each an-

swer Zj can be viewed as a polynomial evaluated at point

y = yj for all j whose degree is at most m+ �. Since m+ �
is always less or equal to N , the user can always solve for

the coefficients of the polynomial by polynomial interpolation

using the N evaluations to decode the Fourier transforms of

ai’s. We denote the Fourier transforms of ai as bi, whose

elements are,

bi,t =

s
m−1∑
n=0

ai,nw
tmn
s , ∀ t = 0, 1, . . . ,

s

m
− 1, (16)

where ws denotes the primitive sth root of unity. The complex-

ity of interpolating a polynomial with degree at most m+ � is

known to be at most O((m+ �) log2(m+ �) log log(m+ �)).
After multiplying the length of ai, the complexity becomes

O( s
m (m+ �) log2(m+ �) log log(m+ �)).

Phase 3 (Decoding at the User): The user then computes the

final result by using the elements of all bi according to FFT

algorithm as follows,

Xi =

m−1∑
t=0

⎛
⎝ s

m−1∑
n=0

at,nw
imn
s

⎞
⎠wit

s (17)

=

m−1∑
t=0

bt,mod(i, s
m )w

it
s , (18)

for all i = 0, 1, . . . , s− 1. To remove the modulo in (18), we

substitute i with p+ q s
m . After rearranging, we have,

Xp+q s
m

=

m−1∑
t=0

(
bt,pw

pt
s

)
w

qt s
m

s , (19)

for p = 0, 1, . . . , s
m − 1 and q = 0, 1, . . . ,m − 1. By ex-

panding (19) for all p + q s
m , it can be seen that equation

(19) is, in fact, the Fourier transform of s
m vectors of length

m, and the tth element of the pth vector equals to bt,pw
pt
s .
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Fig. 3. A comparison between the secure distributed FFT and

standard FFT when s = 250, � = 3 and N = 8, 16 and 32.

The complexity of the Fourier transform of a length m vec-

tor is known to be upper bounded by O(m logm log logm)
by using Bluestein’s FFT algorithm [17] and fast polynomial

multiplication [18]. By multiplying the number of vectors, the

complexity is O(s logm log logm). The overall complexity

is, hence, the sum of complexities of three phases.

We next compare the secure distributed FFT to standard

FFT (see Fig. 3). We let s = 250 and � = 3. The curve shows

the complexity of the secure distributed FFT at N = 8, 16
and 32, and the horizontal line represents the complexity of

standard FFT computed at a single machine. Clearly, when

N = 8 and 16, the secure distributed FFT provides signif-

icant speed-ups. However, as N increases, the number of

partitions m also increases. Hence, the decoding of Phase 2
becomes the bottleneck, and the overall complexity increases.

When N = 32 or larger, it is no longer efficient to compute

FFT distributedly using the proposed scheme as the decod-

ing complexity of Phase 2 becomes too large, and the overall

complexity exceeds the complexity of standard FFT.

The communication rate of the scheme can be computed

by counting the number of useful terms received at the user,

i.e., number of bi’s, divides by the total number of down-

loaded terms, i.e., number of Zj’s. Since there are m bi’s and

N Zj’s, the communication rate is RFFT(N, �) = m/N =
2�log2(N−�)�/N . Using the achievable rate RFFT(N, �) as a

lower bound on the capacity, i.e., RFFT(N, �) ≤ CFFT(N, �),
along with Remark 2 and [15], i.e., CFFT(N, �) ≤ N−�

N , we

obtain the expression of Theorem 1. This completes the proof.

4. CONCLUSION
In this paper, we studied the problem of secure distributed

fast Fourier transform of a long input vector x, where x must

be kept private from the servers while any � of them may

collude during the computations. Our proposed scheme is

a combination of the secret sharing scheme and the Cooley-

Tukey FFT algorithm. The capacity is lower bounded by the

achievable rate of 2�log2(N−�)�/N and is upper bounded by

(N − �)/N . We show that the upper and lower bounds match

asymptotically as N becomes large. In addition, these bounds

match exactly when N − � is a power of 2.
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