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Abstract—We consider the K-user interference channel with
confidential messages (IC-CM) with intersymbol interference
(ISI). The main contribution of this paper is to show that
sum-secure degrees of freedom (SDoF) can be made to linearly
increase with the number of users K with no channel state infor-
mation at the transmitters (CSIT). We demonstrate that this is
true whenever the channel impulse response (CIR) lengths from
the legitimate transmitters towards their respectively intended
receivers are larger than those from the interfering transmitters
towards the unintended receivers. To design this scheme, we use:
a) the simple channel matrix structures of the received signal
space to eliminate interference and allow decodability at the
intended receivers. b) an injection of artificial noise into the
transmitted signal from a strategically chosen small number of
transmitters that act as cooperative jammers in order to preserve
confidentiality of messages at unintended receivers. This is the
first work showing that the SDoF of the K-user IC-CM with
ISI can linearly increase with K, the number of users.

I. INTRODUCTION

Efficient communication using wireless channel resources

seeks to maximize reliable communication rates at a minimum

cost of transmission power. Research on physical (PHY) layer

security seeks to maximize the secure rates of communication

between the legitimate users while at the same time making

sure that any eavesdroppers in the vicinity are not able to

decode any information. A vast majority of the proposed

solutions on PHY layer security so far rely on the assumption

that channel state information (CSI) is available the trans-

mitters (CSIT). A detailed survey on PHY layer security

can be found in [1]. However, this assumption of CSIT

availability is not a feasible one as the eavesdropping nodes

cannot voluntarily cooperate in collecting CSI and feeding

it back to the transmitters. In this paper, we aim to show

that the sum-secure degrees of freedom (SDoF) for the K-

user single-input single-output (SISO) interference channel

with intersymbol interference (ISI) can scale linearly with

the number of users. Perhaps the most interesting aspect of

the proposed scheme is that it does not require CSIT. We

leverage the inherent heterogeneity present in different ISI

links (across transmitters and receivers) along with artificial

noise to achieve secrecy. The considered model is the secure

version of the non-secure model that was investigated in [2],
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Fig. 1: K-user interference channel with confidential messages with
intersymbol interference. LD and LI denote the effective number
of channel taps from kth transmitter to the intended receiver k and
from the interfering ith transmitter to the unintended receiver k,
respectively.

where it was shown that exploitation of ISI heterogeneity

due to the inherent randomness of the wireless channel can

lead to significant gains in spectral efficiency. Under full

CSI availability assumption, the sum-DoF of the K-user IC

without ISI was investigated in [3] and its secure version in

[4]. The concept of achieving secrecy [1] by exploitation of

ISI heterogeneity originates from our previous work [5], [6].

II. SYSTEM MODEL

We consider the K-user interference channel with confi-

dential messages (IC-CM) with symmetric ISI where each

transmitter k ∈ {1, 2, . . . ,K} is interested in sending an

independent message Wk, where k ∈ {1, 2, . . . ,K}, to the

kth receiver (see Fig. 1). The message transmission must

preserve the confidentiality constraint, i.e., each receiver must

not be able to learn any information about the other K − 1
unintended messages. The channel from the kth transmitter

to the kth receiver is represented by the channel impulse

response (CIR) denoted by {hk,k[n]}Lk,k

n=1 and Lk,k denotes

the effective number of channel taps or CIR length of the

desired (i.e., direct) link, i.e., from the kth transmitter to the

intended receiver k. Similarly, {hk,i[n]}Lk,i

n=1 denotes the CIR

between the ith transmitter and the kth receiver and Lk,i

denotes the effective number of channel taps or CIR length of

the interfering (i.e., indirect) link, i.e., from the ith transmitter

to the unintended receiver k. In this paper, we focus on

symmetric ISI, i.e., we assume that Lk,k = LD for all

k ∈ {1, 2, . . . ,K} and Lk,i = LI for i �= k ∈ {1, 2, . . . ,K}.
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The channel is assumed to be linear time invariant (LTI)

over the transmission blocklength. All the CIR coefficients

are assumed to be independent and identically distributed

(i.i.d.) random variables drawn from a continuous distribution.

Furthermore, the transmitters have no knowledge of channel

state information (i.e., no CSIT). They only know the effective

CIR lengths LD and LI towards the intended and unintended

receivers, respectively. For coherent decoding, each receiver k
is assumed to know its local channel coefficients, i.e. channel

state information at the receiver (CSIR).

Let x[n] be the symbol transmitted by transmitter k at time

n. The signal yk[n] received at time n by receiver k is

yk[n] =
K∑
i=1

Lk,i∑
�=1

hk,i[�]x[n− �+ 1] + zk[n], (1)

where zk[n] is the channel noise seen by receiver k at time

n. The channel noise is assumed to be circularly symmetric

and Gaussian with zero mean and unit variance. Each trans-

mitted signal xk[n] must satisfy the average power constraint,

E[x2
k[n]] ≤ P .

Let Wk, for k ∈ {1, 2, . . . ,K}, be the message from the kth

transmitter to the kth receiver. A secure rate of communication

Rk = log(|Wk|)
n is achievable if there exists an n-length code

such that, for n → ∞ and ε → 0, the following reliability

and confidentiality constraints are satisfied:

Pr[Wk �= Ŵk] ≤ ε (2)

1

n
I(W {k}; y

(n)
k |Wk) ≤ ε, (3)

where W {k} = W\{Wk} and W = {W1,W2, . . . ,WK}.

The sum secrecy capacity Cs is defined as the supremum

of all achievable secure sum rates Rs =
∑K

k=1 Rk. We define

sum secure degrees of freedom (SDoF) as the pre-log of the

sum secrecy capacity as follows

SDoF = lim
P→∞

Cs

log(P )
. (4)

III. MAIN RESULT AND ILLUSTRATIVE EXAMPLE

We state the main contribution of this paper in the following

Theorem. It shows that with no CSIT, we can make SDoF

linearly scale up with the number of users K.

Theorem 1. For the K-user IC-CM with symmetric ISI
where LD and LI denote the ISI length parameters for
LD > LI , the following SDoF is achievable without any CSIT

SDoF =

{
(K−(LI−1))+

LD
, LD ≥ LI

0, otherwise
(5)

where (x)+
Δ
= max(x, 0).

Fig. 2 shows the achievable rate of the current result versus

its non-secure version in [2] for LD = 3 and LI = 2.

We introduce the following example in order to illustrate

the main idea behind the proposed transmission scheme.

Example 1. Consider a K-user IC-CM with symmetric ISI

where LD = 3 and LI = 2. This means that any symbol

Fig. 2: Comparison of the achievable rate of the (current) secure K-
user IC-CM with ISI model (triangles) versus its non-secure version
(squares) in [2] for ISI link length parameters LD = 3 and LI = 2.

sent by the kth (dedicated) transmitter during a given time

slot will be seen over LD = 3 time slots at the (indented)

receiver k. Similarly, any signal sent by the ith (interfering)

transmitter, i �= k, will be seen over LI = 2 time slots at the

receiver k. Our goal is to show that SDoF = (K − 3)/3 is

achievable.

Transmission phase: For secrecy, we use the following

transmission strategy:

• Let the first J = LI + 1 = 3 transmitters, each send an

independent artificial noise symbol in the first time slot.

That is, the first transmitter sends x1[1] = n1, the second

transmitter sends x2[1] = n2, and the third transmitter sends

x3[1] = n3.

• Let all of the remaining K − J = K − 3 transmitters only

send an information symbol over the first time slot, each.

That is, the fourth transmitter sends x4[1] = s4, the fifth

transmitter sends x5[1] = s5, . . . , and the Kth transmitter

sends xK [1] = sK .

• All the transmitters then remain silent over the last

LD − 1 = 2 time slots, i.e., over the second and third time

slots. This can also be thought of as zero-padding.

Decodability at the kth receiver: Note that all the

receivers, i.e., 1 through K observe the signals with the same

structure. Furthermore, since the channel coefficients are

i.i.d. random variables drawn from a continuous distribution,

for the above LD and LI values, the kth receiver observes

a total of LD linear combinations respectively over LD time

slots:

• Lk[1] (x1[1], . . . , xJ [1], xJ+1[1], . . . , xK [1]) is received

over the first time slot.

• Lk[2](x1[1], . . . , xJ [1], xJ+1[1], . . . , xK [1]) is received

over the second time slot.

• Lk[3](xk[1]) is received over the third time slot.

Therefore, the first receiver (for example) observes

LD = 3 independent linear combinations respectively

over the first 3 times slots: L1[1](n1, n2, n3, s4, s5, . . . , sk),
L1[2](n1, n2, n3, s4, s5, . . . , sK), L1[3](n1).
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Note that, because LD > LI , the kth receiver always gets its

dedicated symbol xk[1] from the linear combination received

in the last time slot, i.e. the LDth time slot. For example,

the first receiver is directly able to decode x1[1] = n1 from

L1[3](n1) alone. Therefore, we have a total of K dedicated

communication links where each receiver k ∈ {1, 2, . . . ,K}
is able to decode its dedicated symbol. Furthermore, since J
out of the K decoded symbols are the artificial noises sent

from the J cooperative jammers, this scheme thus transmits

a total of K − J = K − 3 information symbols over the

transmission block of length LD = 3 time slots.

Secrecy at the kth receiver: This transmission scheme

achieves secrecy as follows: After decoding its dedicated

symbol from Lk[LD](xk[1]), each receiver k remains only

with LI = 2 independent linear combinations (i.e., observed

in the first LI time slots) with K − 1 interfering symbols.

Furthermore, the rank of the matrix formed by the LI

independent linear combination is LI = J − 1 = 2, i.e.,

equal to the number of the interfering noises from J − 1
cooperative jammers. Thus, since the interfering artificial

noise symbols occupy the same space as the interfering

(i.e., unintended) information symbols, the kth receiver

is not able to solve for any of the unintended symbols.

Therefore, our scheme securely achieves the transmission of

K − 3 information symbols over 3 time slots, i.e., achieving

SDoF = (K − 3)/3.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is divided into three sections. In

Section IV-A, we describe the general transmission scheme.

In Section IV-B, we describe the received signal and the

corresponding channel matrix structures. In Section IV-C, we

leverage the channel structure to analyze SDoF of the scheme.

A. General Transmission Scheme

We now consider the general transmission scheme for the

K-user IC-CM with symmetric ISI for any Lk,k and Lk,i

(where Lk,k = LD, Lk,i = LI for i �= k ∈ {1, 2, . . . ,K},

and LD > LI ). This scheme works over a transmission block

of total duration T = LD time slots. The order of information

and artificial noise symbols transmission is described next. To

preserve security, we let any J = LI+1 transmitters out of K
serve as cooperative jammers. For ease of presentation (and

without loss of generality), we consider the first J transmitters

to be the cooperative jammers.

Transmission phase:

• Let the first J transmitters send an artificial noise symbol,

each, over the first time slot. That is, they send x1[1] = n1,

x2[1] = n2, . . . , xJ [1] = nJ .

• Let all the remaining K−J transmitters send an information

symbol, each, over the first time slot. That is, they send

xJ+1[1] = sJ+1, xJ+2[1] = sJ+2, . . . , xK [1] = sK .

• In the last LD − 1 time slots, let all transmitters remain

silent. This can also be thought of as zero-padding.

Decodability at the kth receiver: We enforce the kth re-

ceiver to decode its dedicated symbol, i.e., from the kth

transmitter. Note that this symbol can either be an artificial

noise or information symbol depending on whether or not the

corresponding transmitter k is a cooperative jammer or not.

This decoding is feasible whenever the desired (i.e. direct) ISI

link length LD is greater than the interfering (i.e. indirect) ISI

link length LI . This is because the kth receiver observes LD

equations (out of which LI + 1 are independent) where the

equation Lk[LD]( . ) observed in the last time slot, (i.e., the

LDth time slot) contains its dedicated symbol only. Hence,

this directly allows receiver k to decode xk[1]. We further

note that a similar signal structure is observed at all of the K
receivers.

Secrecy at the kth receiver: The described above trans-

mission scheme preserves confidentiality because it adheres

to the following signal spaces conditions:

We noted above that each receiver k ∈ {1, 2, . . . ,K} observes

LD linear combinations. However, due to the interference

link length LI , only the first LI linear combinations out of

LD contain the interfering symbols from the other K − 1
transmitters. This implies that after decoding its dedicated

symbol xk[1], the receiver k remains with only LI indepen-

dent linear combinations with K−1 unknowns. Therefore, to

preserve confidentiality of the interfering symbols, all we need

to do is to ensure that the number of (interfering) artificial

noise symbols (sent from the cooperative jammers) is equal

to the number of the remaining linear combinations, i.e., LI .

Furthermore, to ensure that security is also preserved at all

of the J receivers that form direct J links to their respective

J cooperative jamming transmitters, we have to impose that

the condition J − 1 ≥ LI be satisfied.

B. Received Signal and Channel Matrix Structures

Let XK be the composite signal vector of size K × 1 sent

from all K transmitters. The LD × 1 signal vector Yk seen at

the kth receiver over the transmission blocklength T = LD

can thus be written as follows

Yk =HkXK + Zk (6)

=Hkkxk +

K∑
i �=k

Hkixi + Zk (7)

=Hkkxk +H
(−k)
k X

(−k)
K + Zk (8)

where Hk is the composite channel matrix seen at the kth

receiver, Hkk =
[
hkk[1] hkk[2] . . . hkk[LD]

]�
,

Hki =
[
hki[1] hki[2] . . . hki[LI ] 0 . . . 0

]�
, i �= k,

H
(−k)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hk,1[1] . . . hk,k−1[1] hk,k+1[1] . . . hk,K [1]

hk,1[2] . . . hk,k−1[2] hk,k+1[2] . . . hk,K [2]

...
...

. . .
...

hk,1[LI ] . . . hk,k−1[LI ] hk,k+1[LI ] . . . hk,K [LI ]

0 0 . . . 0 . . . 0

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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XK =
[
x1[1] . . . xK [1]

]�
X

(−k)
K =

[
x1[1] . . . xk−1[1] xk+1[1] . . . xK [1]

]�
,

and Zk is an LD×1 noise vector whose elements are complex

circularly independent zero-mean unit-variance.

In the next Section, we do the SDoF calculation using

the signal and matrix structures that we described above.

Furthermore, we will introduce Lemma 1 and Lemma 2 which

respectively show that the rank of the matrix Hk is LI + 1

and the rank of the matrix H
(−k)
k is LI . The consequence

of these channel matrix structures and their rank properties is

that they lead to decodability and confidentiality.

In particular, we show that although the receiver k is able

to decode intended message xk[1], it is not able to decode

any symbols sent from the remaining K − 1 interfering

transmitters. This is because after decoding its dedicated

symbol, the dedicated receiver remains only with a signal

portion Y
(−k)
k = H

(−k)
k X

(−k)
K + Zk where X

(−k)
K = Xi

for i �= k ∈ {1, 2, . . . ,K}. However, this remaining (inter-

fering) signal occupies a space that is completely immersed

in artificial noise symbols. To prove this fact, we show

that the rank of the matrix H
(−k)
k is J − 1 = LI , i.e.,

equivalent to the number of artificial noise symbols sent from

J − 1 cooperative jammers. This in turn implies that any

message from transmitter k will not be decoded by any other

unintended receiver i, for i �= k ∈ {1, 2, . . . ,K}. From here

on, for simplicity of notation, we adopt the notation xk to

represent xk[1] since all the K transmitters send their symbols

only during the first time slot.

C. SDoF Calculation

For a blocklength T , the following secure rate is achievable

for receiver k, for k = J + 1, . . . ,K

Rk =
I(xk;Yk)−maxi �=k I(xk;Yi)

T
, (10)

Furthermore, since all the channel coefficients are i.i.d, then

from here on, we will use the fact that maxi �=k I(xk;Yi) =
I(xk;Yi) for any i �= k.

Using differential entropy, we expand numerator of (10) as

I(xk;Yk) = h(Yk)− h(Yk|xk) (11)

I(xk;Yi) = h(Yi)− h(Yi|xk). (12)

Furthermore, the first term of (11) can be expanded as

h(Yk) =h(HkXK + Zk) (13)

= log(πe)LD det(ILD
+ PHkHk

H), (14)

where AH denotes the complex conjugate of A and P is

the symbol transmission power. Hk is the composite channel

matrix seen at the kth receiver obtained by concatenation of

Hkk and H
(−k)
k . In Lemma 1, we show that the matrix Hk

has rank LI + 1 almost surely.

Lemma 1. Let Hk be an LD × K composite channel
matrix seen at the kth receiver from all of the K trans-
mitters. Furthermore, let the first column Hkk of Hk be
the vector whose elements are the i.i.d. channel coeffi-
cients randomly picked from a continuous distribution such

that Hkk =
[
hkk[1] hkk[2] . . . hkk[LD]

]�
. Let the re-

maining K − 1 columns of Hk be of the form Hki =[
hki[1] hki[2] . . . hki[LI ] 0 . . . 0

]�
, for i �= k ∈

{1, 2, . . . ,K} and LD > LI . Then, Hk is of rank LI + 1
almost surely.

Proof. The proof of Lemma 1 follows similar arguments as

those of Lemma 1 in [5] and is thus omitted here.

Similarly, the second term of (11) can be expanded as

h(Yk|xk) =h(Hkkxk +H
(−k)
k X

(−k)
K + Zk|xk) (15)

=h(H
(−k)
k X

(−k)
K + Zk) (16)

= log(πe)LD det(ILD
+ PH

(−k)
k H

(−k)
k

H
), (17)

where H
(−k)
k is the LD × (K − 1) matrix carrying the inter-

fering symbols vector X
(−k)
K = Xi, i �= k ∈ {1, 2, . . . ,K}

as shown by equation (8) and (16) follows from the indepen-

dence of xk and (X
(−k)
K , Zk). In Lemma 2, we show that the

matrix H
(−k)
k has rank LI almost surely.

Lemma 2. Let H(−k)
k be an LD×(K−1) composite channel

matrix seen at the kth receiver from all of the K−1 interfering
transmitters as shown in equation (8). Then, H(−k)

k is of rank
LI almost surely.

Proof. The proof of Lemma 2 follows similar arguments as

those of Lemma 1 in [5] and is thus omitted here.

The first term of (12) can be expanded as

h(Yi) =HiXK + Zi (18)

= log(πe)LD det(ILD
+ PHiHi

H), (19)

where Hi is the composite channel matrix seen at the ith
receiver. Here the matrix Hi has the same structure as Hk

in (6). In turn, implies that (by Lemma 1) Hi is also of rank

LI + 1 almost surely.

The second term of (12) can be expanded as

h(Yi|xk) =h(Hiixi +H
(−i)
i X

(−i)
K + Zi|xk) (20)

=h(H
(−k)
i X

(−k)
K + Zi) (21)

= log(πe)LD det(ILD
+ PH

(−k)
i H

(−k)
i

H
), (22)

where H
(−k)
i is the LD × 1 channel matrix carrying the

symbol vector X
(−k)
K to receiver i �= k ∈ {1, 2, . . . ,K}.

The equation (21) is due to the independence of xk from

(X
(−k)
K , Zk). Note here that the matrix H

(−k)
i has a different

structure from H
(−k)
k and is of rank LI + 1. See Lemma 3.

Lemma 3. Let H
(−k)
i be an LD × (K − 1) matrix whose

first column is identical to that of Hi and whose subsequent
K − 2 columns are randomly picked from those of the last
K− 1 of Hi without repetition. Then, the matrix H

(−k)
i is of

rank LI + 1 almost surely.

Proof. The proof of Lemma 3 directly follows from the fact

that H
(−k)
i is a truncation of the full row rank matrix Hi

by one random column. Furthermore, since Hi has similar

structure as Hk, removing one of its last K−1 columns does

not alter its rank. Therefore, rank(H
(−k)
i ) = LI + 1.
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We rewrite equation (11) using (14) and (17) as follows

I(xk;YK) = log
det(ILD

+ PHkHk
H)

det(ILD
+ PH

(−k)
k H

(−k)
k

H
)

(23)

= log
det(ILD

+ PΨkΛkΛ
H
kΨ

H
k)

det(ILD
+ PΨ

(−k)
k Λ

(−k)
k Λ

(−k)
k

H
Ψ

(−k)
k

H
(24)

=

rank(Hk)∑
�=1

log(1 + Pλ2
k�)−

rank(H
(−k)
k )∑

�=1

log(1 + Pλ
(−k)2

k� ), (25)

where the numerator of equation (24) comes from the sin-

gular value decomposition (SVD) of the composite channel

matrix Hk into ΨkΛkVk
H [7]. Similarly, the denominator of

equation (24) comes from the SVD of the interfering channel

matrix H
(−k)
k into Ψ

(−k)
k Λ

(−k)
k V

(−k)
k

H
. The first term of (25)

comes from Sylvester’s identity det(I+AB) = det(AB+I)
and the fact that Ψk and Vk are unitary matrices whose

product forms an identity matrix [7]. Furthermore, since by

Lemma 1, Hk is of rank LI + 1, then the nonzero portion

of matrix Λk is a square diagonal matrix whose elements

are LI + 1 ordered squares of the singular values (SVs)

of Hk [8]. Similarly, the second term of (25) comes from

Sylvester’s identity and the fact that Ψ
(−k)
k and V

(−k)
k are

unitary matrices whose product forms an identity matrix.

Furthermore, since by Lemma 2, H
(−k)
k is of rank LI , then the

nonzero portion of matrix Λ
(−k)
k is a square diagonal matrix

whose elements are LI ordered squares of SVs of H
(−k)
k .

We also rewrite (12) using (19) and (22) as follows

I(xk;Yi) = log
det(ILD

+ PHiHi
H)

det(ILD
+ PH

(−k)
i H

(−k)
i

H
)

(26)

=

rank(Hi)∑
�=1

log(1 + Pλ2
i�)−

rank(H
(−k)
i )∑

�=1

log(1 + Pλ
(−k)2

i� ), (27)

where equations (26)-(27) follow analogous arguments as

those of (23)-(25).

Combining the definition of SDoF in (4), secure rate in (10)

and the expansions of its terms in (25) and (27) plus the fact

that only K − J transmitters transmit information symbols,

we obtain

SDoF = lim
P→∞

∑K
k=J+1 Rk

T log(P )
= lim

P→∞

K∑
k=J+1

Rk

T log(P )

= lim
P→∞

K∑
k=J+1

(I(xk;Yk)−maxi �=k I(xk;Yi))

T log(P )
(28)

=
K∑

k=J+1

(
rank(Hk)− rank(H

(−k)
k )

)
T

−
K∑

k=J+1

(
rank(Hi)− rank(H

(−k)
i )

)
T

(29)

=
K∑

k=J+1

1

LD
=

(K − J)

LD
=

K − (LI + 1)

LD
, (30)

where (29) follows from Lemma 1, Lemma 2, and Lemma 3.

The last equation follows from the secrecy enforcement that

J be at least of value LI + 1 and T = LD. This completes

the proof of Theorem 1.

V. CONCLUSION

We introduced a scheme showing that SDoF for the K-

user IC-CM with ISI can linearly increase with K through

ISI heterogeneity exploitation even without CSIT. Specif-

ically, strategically chosen J out of K transmitters send

artificial noise symbols. This aligns interfering symbols in

a separate subspace from each respectively desired symbol at

the intended receiver k while ensuring that these interfering

symbols are completely masked by artificial noise. There are

several interesting future research directions such as the ex-

tension to the IC-CM with non-symmetric ISI and derivation

of upper bound on SDoF of IC-CM with ISI.
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