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Tools allowing for the identification of viral sequences in host-associated and
environmental metagenomes allows for a better understanding of the genetics and
ecology of viruses and their hosts. Recently, new approaches using machine learning
methods to distinguish viral from bacterial signal using k-mer sequence signatures
were published for identifying viral contigs in metagenomes. The promise of these
content-based approaches is the ability to discover new viruses, with no or few known
relatives. In this perspective paper, we examine the use of the content-based machine
learning tool VirFinder for the identification of viral sequences in aquatic metagenomes
and explore the possibility of using ecosystem-focused models targeted to marine
metagenomes. We discuss the impact of the training set composition on the tool
performance and the current limitation for the retrieval of low abundance viral sequences
in metagenomes. We identify potential biases that could arise from machine learning
approaches for viral hunting in real-world datasets and suggest possible avenues to
overcome them.
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INTRODUCTION

Viruses infect host cells from all domains of life and are highly adapted to their host genetics
and their environmental niches (Hurwitz et al., 2014; Brum et al., 2015). Recently, metagenomics
has laid the groundwork for understanding viruses and their uncultured hosts. Several tools
provide rapid and accurate taxonomic assignment of metagenomic sequences directly from a
microbiome by comparing them to known bacterial and viral genomes using k-mer based tools,
such as Centrifuge (Kim et al., 2016), CLARK (Classifier based on Reduced K-mers) (Ounit et al.,
2015), USEARCH (Edgar, 2010), KRAKEN (Wood and Salzberg, 2014), and NBC (Naive Bayes
Classifier) (Rosen et al., 2008) [reviewed in Hurwitz et al. (2018)]. Importantly, these tools rely on
finding sequence similarity to known viral sequences that represent only a small portion of viral
diversity (Roux et al., 2015b). In practice, viromes have a high number of reads with no matches to
known viral genomes, in prior studies, less than 10% of reads were assigned from ocean viromes
(Hurwitz and Sullivan, 2013).

To explore the viral biodiversity and ecology, a number of bioinformatic tools perform a
high-level taxonomic (viral or cellular origin) assignment of metagenomic sequences. They aim
to provide means to collect all viral sequences in a metagenome and help the discovery of new viral
groups. Several approaches were used: some tools align short reads to a viral marker gene database

Frontiers in Microbiology | www.frontiersin.org 1

April 2019 | Volume 10 | Article 806


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.00806
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.00806
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.00806&domain=pdf&date_stamp=2019-04-16
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00806/full
http://loop.frontiersin.org/people/655527/overview
http://loop.frontiersin.org/people/652053/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Ponsero and Hurwitz

Machine Learning for Detecting Viruses

[MetaPhlAn (Segata et al., 2012), MetaPhlAn2 (Truong et al.,
2015)], or to a reference database of whole genomes MG-RAST
(Meyer et al., 2008), ViromeScan (Rampelli et al., 2016), VIP (Li
et al,, 2016), HoloVir (Laffy et al.,, 2016), FastViromeExplorer
(Tithi et al, 2018). Other tools use assembled contigs and
align to a viral genome database [Metavir (Roux et al,
2011, 2014), Virome (Wommack et al., 2012), MetaPhinder
(Jurtz et al., 2016)].

These reference-based classification tools are limited in their
ability to identify novel viruses and are biased toward the
identification of previously isolated viruses. However, large
scale efforts in retrieving viral sequences in metagenomes and
viromes as the IMG/VR database allows for broader research
into non-isolated viruses (Paez-Espino et al., 2019). In 2015,
the release of VirSorter allows the user to identify potential
viral sequences in metagenomes using Hidden Markov Models
(HMM). The tool relies on both known viral genomes and
viral sequences from viromes for broader detection of unknown
viruses (Roux et al., 2015a).

In contrast to these reference-based approaches, an emerging
approach is to use composition-based pattern detection
leveraging machine learning algorithms. The idea behind this
approach is to train a machine learning model to learn to
identify a set of features that signal a viral origin to generalize the
identification of all viral sequences. VirFinder (Ren et al., 2017)
uses a machine learning approach to classify sequences as viral
(phages) or prokaryotic based on their k-mer signatures. The
model presented in the paper is a logistic classifier, trained on
known phages and bacterial genomes from the RefSeq database
(well refer to this model as “phages-prok model”), and was
shown to provide better accuracy for viral sequence detection
than VirSorter, especially on short sequences (<5000 bp).
Importantly, the tool was shown to have better recall for the
identification of previously unknown phage sequences. The
authors also provide a model trained on all DNA viral, including
some eukaryotic viruses, and prokaryotic genomes from RefSeq
(We'll refer to this second model as “DNAvirus-prok”). Other
machine-learning based tool for viral hunting in metagenome,
such as MARVEL were developed (Amgarten et al., 2018;
Bzhalava et al., 2018). However, these other tools base their
prediction on various genomic features such as the relative
synonymous codon usage (Bzhalava et al., 2018), gene density,
strand shifts, and the number of significant hits against the
pVOGs database (Amgarten et al., 2018). While these approaches
are valuable, they lose information contained in non-coding
sequences, and their use is limited to long contigs only. Moreover,
these tools may add additional bias based on the choice of gene
caller for the extraction of the genomic features.

In this work, we review the potential bias and pitfalls
of composition-based machine learning approaches such as
VirFinder for the detection of viral sequences in aquatic
ecosystems. Because MARVEL relies on a pVOGs database, we
focused our discussion on VirFinder that to our knowledge
is the only tool using a completely database-independent
approach for the detection of phages. In particular, we discuss
three points of importance: (1) the training set composition
of supervised machine-learning models and the possibility to

obtain marine-focused models, (2) the impact of eukaryotic
contamination in metagenomes and (3) limitations in current
tools when considering the low abundance of viral sequences in
most metagenomes.

THE COMPOSITION OF THE TRAINING
SET AND DISCOVERY OF NEW VIRUSES

Soueidan et al. (2015) explored the difficulties of classification
of metagenomic sequences using k-mer-based machine-learning
approaches (Soueidan et al.,, 2015). In their perspective paper,
the authors used the concept of “hardness of the task.” Hardness
measures were developed to understand why some instances
are harder to classify correctly than others (Smith et al., 2014).
Overlap of data from different classes was shown to be a
principal contributor to instance hardness. Using a k-Disagreeing
Neighbors (kDN) algorithm, Soueidan et al. (2015) show that,
for a k-mer size of 3 bp, the high-level classification of viral
sequences mixed with non-viral sequences is a hard task, whereas
low-level classification (family level classification) is easier. These
results suggest that machine learning models trained to classify
viral sequences against cellular sequences may have a hard time
generalizing to unknown viral families.

This idea is further confirmed by the performance of
VirFinder that shows a dependence on abundant known viral
groups in the tool’s training set. The “phages-prok” model’s
viral training set is mainly composed of phages infecting
Proteobacteria and firmicutes from the RefSeq database, and on
the other hand, the training set is poor in Archaea infecting
phages. Discussing this bias in their training set, the authors
showed how VirFinder’s performance varied for several groups
of viruses. They showed a markedly lower performance for
the detection of Archeal phages than Bacterial phages and
revealed that the tool is biased toward the identification of
the most represented viral groups in their training set (Ren
et al., 2017). Because different ecosystems harbor different viral
groups and their hosts, we expect VirFinder’s ability to retrieve
viral sequences to be significantly affected when considering
different ecosystems. We evaluated the true positive rate, or recall
(how many truly viral results are returned) from the “phages-
prok model” for viral sequences isolated in various aquatic
ecosystems (Figure 1A). Each evaluation set was composed
of viral sequences isolated in pelagic, freshwater, hot spring,
coral-associated and wastewater metagenomes available in the
IMG/VR environment database. Not surprisingly, the recall of
VirFinder varies according to the considered ecosystem. We
measure a lower recall of the tool for viral contigs isolated
in hot springs, coral-associated and wastewater environments
compared to the tool performance for viral sequences isolated
from pelagic and freshwater metagenomes. This suggests that
while viral groups present in pelagic ecosystem are now well
represented in the RefSeq database, a variety of viruses present
in less-studied ecosystems such as coral-associated are currently
unavailable (Figure 1A). Some of the differences in recall across
the ecosystems can be explained by the presence of sequences
from viruses infecting eukaryotes. These sequences would not
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FIGURE 1 | Influence of the training set composition on the model performances. (A) Recall of VirFinder “phage-prok” model on viral contigs isolated in various
aquatic ecosystems. The recall was assessed for VirFinder “phage-prok” model when considering viral contigs isolated in various aquatic ecosystems (pelagic,
freshwater, hot spring, coral-associated and wastewater). The sequences were downloaded from the IMG V/R env database (methods described in Supplementary
File S1 and list of metagenomes used in Supplementary File S2). The viral sequences were broken down to 5000, 3000, 1000, and 500 bp and used to evaluate
VirFinder “phage-prok” model. The mean of the recall was calculated for three evaluation sets of 2000 viral sequences each with the exception of the
coral-associated evaluation sets composed of 200 viral examples due to the low amount of sequence available for this ecosystem. The error bars correspond to the
standard deviation on the three measures. (B) F1-score of classifiers trained on Tara Oceans Metagenomes. Tara-trained models were trained on 10 000 viral and 10
000 prokaryotic sequences from Tara Oceans metagenomes and viromes broken down to 5000 bp. Previous cleaning steps were performed to ensure a low
contamination content of the training set (see Supplementary File S1). The F1-score of a Tara-trained model and of VirFinder’s “phage-prok” model was calculated
for evaluation sets composed of viruses and prokaryotes isolated in a marine ecosystem (“marine genomes”) or an evaluation set composed of viral and prokaryotic

the standard deviation on the three measures.

genomes regardless of their origin (“all genomes”). For the “marine evaluation set,” genomes from phages and prokaryotes isolated in marine ecosystems were
downloaded from Genbank and the Patric database, respectively, and the sequences were broken down to 5000, 3000, 1000, and 500 bp (see methods in
Supplementary File S1 and list of genomes available in Supplementary File $2). The “all genomes” evaluation set is composed of genomes from phages and
prokaryotes from RefSeq database published after 2014 (see methods in Supplementary File S1 and list of genomes available in Supplementary File S$2). The
mean of the F1-score was calculated for three evaluation sets composed of 2000 viral sequences and 2000 prokaryotic sequences. The error bars correspond to

be recognized as viral by the “phage-prok” model. However, the
VirFinder “DNAvirus-prok model,” trained to identify both phage
and eukaryote infecting viruses shows the same drop in recall
for hot spring, coral-associated and wastewater metagenome
(Supplementary Figure S1).

The inability of these models to recognize certain viral
groups may be improved by increased sequencing effort of new
viral genomes. It indeed is possible to train models on an
ever-growing number of sequences: deep learning approaches are
particularly suited for this task since they can deal with complex
patterns and their performance increases with the number of
training examples. In contrast to this approach, we explored
into the possibility of training simpler models, tuned to an
ecosystem of interest using metagenomic sequences. Indeed, viral
communities vary in composition by environment as a function
of host populations, which in turn occupy niches defined by
specific physical and chemical properties (Hurwitz et al., 2014;
Brum et al., 2015). Thus, when working in a given environment,
the user only needs to recognize a small subset of viral sequences.
Viromes can provide a set of viral signatures from a given
ecosystem, that can be used to inform a machine learning model.

As a proof of concept, we developed pelagic-focused
classifiers trained on Tara Oceans viromes and microbiomes.
Using VirFinder training function, we trained models
using metagenomes from the Tara Oceans Dataset
(prokaryote-enriched fractions, 0.22 to 1.6 wm, 0.22 to 3 pwm)
for the non-viral sequences and sequences from the Tara Oceans
Viromes (virus-enriched fraction, <0.22 pm) for the viral

sequences (Sunagawa et al., 2015) (material and methods are
detailed in Supplementary File S1 and a list of metagenomes in
Supplementary File S2).

Two evaluation sets were constructed using published phages
and prokaryotic genomes, isolated in marine ecosystem (“marine
evaluation set”) or isolated in various ecosystems (“all genomes
evaluation set”) (material and methods in Supplementary
File S1, list of genomes in Supplementary File S2). To ensure
that those sequences were not used to train the VirFinder
“phages-prok” or “DNAvirus-prok” models, only genomes
published after 2014 were used in the evaluation sets.

To take into account both recall and precision (a measure
showing how many result returned are truly viral sequences) of
the models in this evaluation, the F1-score (harmonic average of
precision and recall for the model), was calculated. Globally, the
F1-score of Tara-trained models is equivalent to those measured
for VirFinder “phage-prok” model on this marine-focused
evaluation set. The Tara-trained models also show a preferential
detection for marine viral groups as their performance is greatly
reduced when sequences from other ecosystems are taken into
account (Figure 1B). More precisely, the recall is greatly reduced
when the model is evaluated on all RefSeq genomes regardless of
their origin, showing an ecosystem-focused specialization of the
Tara-trained models (Supplementary Figure S2).

This result shows that it is possible to obtain
ecosystem-focused models for the identification of viruses
in metagenomes using the information from viromes available
for the ecosystem of interest. Although we believe that this
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approach could be applied to other ecosystems, it is important to
highlight that viromes can also provide a biased representation of
the actual viral population. For example, viromes uniquely target
the dsDNA viral community. Moreover, the DNA extraction
method (Wood-Charlson et al., 2015) or the chosen filtration size
(Lopez-Pérez et al., 2017) used for viromes can greatly impact
the composition of viral group retrieved, and therefore bring a
bias in the training set. While this approach could provide an
avenue to investigate environments where few viral genomes
are available, it requires the availability of several viromes and
microbiomes datasets from the ecosystem of interest. Such a
sequencing effort is rarely met, however, this issue is expected
to be reduced by the increasing number of metagenomic
datasets available.

THE PROBLEM OF POTENTIAL
EUKARYOTIC CONTAMINATION

We further argue here that training on an ever-growing
number of sequences may lead to unexpected effects. VirFinder
published model, “phage-prok” was trained on RefSeq phages and
prokaryotic genomes, however, the authors provide online the
“DNAvir-prok model,” trained on all DNA viral and prokaryotic
genomes from RefSeq. This model is more exhaustive in terms
of virus groups included in its training set; however, it shows
a strong misclassification of eukaryotic sequences, with an FPR
superior 0.7 for genomic sequences from known fungi, plant,
human and protozoa (Supplementary Figure S3).

The “phage-prok” model training set does not contain any
eukaryotic sequences, and therefore shows an increased false
positive rate toward eukaryotic sequences. This false positive
rate is further increased when using the “DNAvirus-prok”
model, where this misclassification is increased by the sequence
length suggesting that this model learned to identify eukaryotic
sequences as viral. At a tetra-nucleotide level, prokaryotic and
eukaryotic viruses and their hosts have been shown to share a

closer sequence composition, providing a potential explanation
for this model’s behavior (Pride et al., 2006).

When sequencing a metagenome, eukaryotic contamination
is common. Eukaryotic sequences in metagenomes usually come
from human contamination when processing the metagenome
but can also come from the eukaryotic host when considering
host-associated microbiome (human or cow gut metagenome as
an example). In those cases, the eukaryotic sequences can easily
be removed by mapping the input contigs against the human
and host genome. However, in aquatic ecosystems, eukaryotic
sequences can also be present in metagenome from micro and
pico-eukaryotes naturally present in the ecosystems. Dealing with
those sequences is more difficult because of the lack of complete
genomes for these organisms in the databases. New tools that
take into account eukaryotic sequences are critical for exploring
a variety of ecosystems of interest.

DEALING WITH LOW VIRAL CONTENT IN
METAGENOMES

While viromes allow for enrichment in viral sequence content,
real-world metagenomes often contain a low proportion of viral
sequences (Breitbart et al., 2002; Reyes et al., 2010; Daly et al.,
2011). Similar to other tools for viral detection in metagenomes,
VirFinder’s precision when dealing with rare events is hampered
by a simple Bayes’ relationship (Ren et al., 2017). Indeed, when
working in datasets where viral reads are rare (less than 10%),
the number of false positives can become comparable or even
superior to the number of true positive hits. Some metrics
for machine learning model performance are appropriate to
study such imbalanced datasets. Receiver-operator curves (ROC)
are commonly used to evaluate binary classifiers performances.
Because ROC curves do not depend on the particular threshold
value, they provide a better measure of the tradeoft between true
and false positives rates. The area under a ROC curve (AUC)
can be used to summarize a model’s performance. It is, however,
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FIGURE 2 | Performance of classifiers on a low viral content evaluation set. The precision (A) and Area under the precision-recall curve (AUPRC) (B) was calculated
for VirFinder “phages-prok” model and a Tara-trained model on an imbalanced marine evaluation set. The evaluation set is composed of sequences from genomes
from phages and prokaryotes isolated in marine ecosystems, downloaded from Genbank and the Patric database, respectively, and the sequences were broken
down to 5000, 3000, 1000, and 500 bp (see methods in Supplementary File S1 and list of genomes available in Supplementary File $2). The mean precision (A)
and AUPRC (B) was obtained on three evaluation sets composed of 100 viral sequences and 1900 non-viral sequences. The error bars correspond to the standard
deviation on these three measures.
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important to notice that this metric, relies only on true and
false positive rates and is therefore misleading when evaluating
models on imbalanced datasets. On the other hand, metrics like
precision-recall curves (PRC) and the area under precision-recall
curves (AUPRC), allows one to measure the loss of precision
when moving to imbalanced datasets.

In this context, models and methods with increased
precision are certainly valuable. As an example, the Tara-trained
models showed a lower false positive rate than VirFinder
“phage-prok” model on a marine evaluation set. The precision
and AUPRC for those models were evaluated on a set composed
of 5% viral sequences from marine phage genomes and
95% non-viral sequences from marine prokaryotic genomes.
While we do not claim that all ecosystem-focused models
would perform better in the detection of rare events, this
experiment shows how valuable high precision models can be
in the case of very imbalanced datasets, with a significant
improvement in the precision (Figure 2A) and AUPRC
(Figure 2B) of the Tara-trained model compared to the
VirFinder “phage-prok.”

DISCUSSION

Sample bias occurs when the data used to train the algorithm does
not accurately represent the problem space the model will operate
in. A model trained on an incomplete and unrepresentative
training dataset will be highly unlikely to perform well in
real-world situations.

VirFinder is based on a logistic classifier model, trained
on genomic datasets from RefSeq. The obtained model is
tuned to identify certain viral groups that are well represented
in the database. We argue that it is possible to develop
ecosystem-focused models that are trained on sequences that
are representative of the environment they are specialized in.
Because these ecosystem-focused models focus on a subset of
viral and prokaryotic groups, they can be trained on a smaller
training set than models trying to encompass all ecosystems. As
a proof-of-concept, we used metagenomic sequences from the
Tara Oceans expedition as training set and obtained models tuned
for the identification of marine viral sequences. As expected,
our marine-focused models performed poorly on viral groups
isolated in other ecosystems. While this approach is limited
by the number and quality of viromes available, it is possible
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