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Abstract—The radio frequency spectrum is occupied with
authorized and unauthorized user activities which might include
noise and interference. Detection of signals-of-interest (SOI) and
differentiation from non-signals-of-interest (NSOI) are therefore
crucial for frequency use management. There is a wide variety
of signals in a desired radio spectrum band, which leads to the
application of Signal Intelligence (SIGINT) to detect and identify
signals in real-time. In this paper, we study the problem of non-
Gaussian signal detection when the receivers are configured with
a large number of antennas (or the massive antenna regime).
First, we investigate the performance of signal detection with
massive MIMO when the transmitted signals are generated from
a Gaussian distribution. For the detection of Gaussian signals, we
consider the Neyman-Pearson (NP) detector. Then, we focus on
the performance of non-Gaussian signal detection with massive
MIMO, which is one of the main objectives of this paper. We show
that the NP detector gives poor performance for non-Gaussian
signals in low signal-to-noise-ratio (SNR). Therefore, we propose
to use a bispectrum detector, which contains the Gaussian noise
and reveals the non-Gaussian information that exists in the signal.
We present the theoretical analysis for asymptotic behavior of
Probability of False Alarm (𝑷𝑭𝑨) and Probability of Detection
(𝑷𝑫) when the transmitter sends Gaussian and non-Gaussian
signals. We show the performance of signal detection (for both
Gaussian and non-Gaussian signals) as a function of the number
of antennas and sampling rate. We also obtain the scaling
behavior of the performance in the massive antenna regime.

I. INTRODUCTION

Detecting an unknown, non-Gaussian signal in Gaussian
noise is crucial for both commercial and military usage. The
problem of signal detection occurs in various commercial
applications including smart city, environmental monitoring,
smart homes, intelligent vehicular systems [1]. There is a rapid
growth in wireless data traffic due to increase in wireless
devices and applications. Therefore, efficient utilization of
radio-spectrum is essential from the commercial perspective.
Revealing the information about the spectrum usage is very
critical for military, since it allows to understand the avail-
ability in adversarial environments.

Various studies on spectrum sensing has been done in the
case when the transmitted signals are Gaussian [2], [3]. Effect
of using multiple antennas on spectrum sensing has been also
investigated [4], [5]. The optimal detector in NP sense has
been proposed when the statistics of both noise and signal are
known [6]. In general, the statistics of noise and transmitted

signals are unknown, hence suboptimum detectors such as
energy detector, sliding window matched filtering have been
studied in the literature [7]. The application of higher-order
statistics has been also proposed for suboptimum detection
[8], [9]. The detection problem in the case of Gaussian signals
when the receiver has the massive MIMO capability has been
also considered [10], [11]. To the best of our knowledge, the
problem of sensing, when the signal is non-Gaussian and the
receiver is equipped with a large number of antennas has not
been studied.

Main Contributions of this paper: We focus on the non-
Gaussian signal detection in Gaussian noise within the massive
MIMO framework. We investigate how much massive MIMO
can help improve the performance of signal detection. We
assume that the observed spectrum has active and inactive
bands in which the user transmits signals actively and remains
silent, respectively. In our analysis, we focus on one active
band as shown in Fig. 1. The main contributions of this paper
can be highlighted as follows.

First, we study the problem of detecting an unknown Gaus-
sian signal in Gaussian noise by using NP detector. We present
the asymptotic analysis in the large antenna regime (i.e.,
massive MIMO), and analyze the asymptotic behavior of 𝑃𝐹𝐴
and 𝑃𝐷. Then, we show the relationship between 𝑃𝐹𝐴 and
𝑃𝐷 when the number of antennas (𝑀 ) and observed samples
(𝐿) go to infinity under the constraint of

√
𝐿𝑙𝑛(𝑀) ≥ 𝑀 .

We show the convergence of 𝑃𝐹𝐴 and 𝑃𝐷 with 𝑀 and 𝐿 for
different values of SNR by using MATLAB based simulations.

Second, we focus on the main problem of this paper.
We investigate the non-Gaussian signal detection in Gaussian
noise. In most practical situations, the signal is non-Gaussian
or becomes non-Gaussian after going through a nonlinear
propagation media. If the signal is non-Gaussian, NP detector
does not give promising results. Therefore, we accomplish
the non-Gaussian signal detection by using bispectrum. The
bispectrum is defined as the Fourier transform of the third-
order cumulant function. If a process is non-Gaussian, it has
an infinite number of non-vanishing cumulants [12]. On the
other hand, the bispectrum of a Gaussian signal is zero in the
principal domain [13]. Therefore, a non-Gaussian signal can
be detected by using its bispectrum, which will be nonzero.
First, we estimate the bispectrum of the received 𝐿 samples
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Fig. 1: An active band which has a transmitter with single
antenna and a receiver with 𝑀 antennas.

at the each of the 𝑀 antennas of the receiver. Then, we get
the average of bisectrum estimates over the antennas. After
that, a generalized maximum likelihood ratio test (GLRT) is
applied to the received signal in the bispectral domain to
derive the 𝑃𝐹𝐴 and the 𝑃𝐷. Finally, we provide an asymptotic
analysis of the non-Gaussian signal detection when 𝑀 and 𝐿
go to infinity. We show that the 𝑃𝐹𝐴 and the 𝑃𝐷 converge
to 0 and 1, respectively if we set 𝑀 >> 𝐿. We conduct
MATLAB simulations to verify the results of non-Gaussian
signal detection with high sample rate in large antenna regime.

II. GAUSSIAN SIGNAL DETECTION IN GAUSSIAN NOISE

WITH MASSIVE MIMO

A. System Model

Suppose that the receiver has 𝑀 antennas and each antenna
receives 𝐿 samples. We assume that transmitted signal samples
are independent zero-mean random variables with complex
Gaussian distribution. Let 𝒙 = [𝑥1, ..., 𝑥𝐿] be the transmitted
symbols vector and 𝑥𝑖 is the 𝑖th sample with distribution
𝒞𝒩 (0, 𝜎2

𝑠). The hypothesis of the transmitted signal being
active and inactive is shown by 𝐻0 and 𝐻1, respectively. The
additive noise samples at different antennas are independent
zero-mean Gaussian random variables. Let 𝒀 = [𝒚1, ...,𝒚𝐿] ∈
ℂ
𝑀×𝐿 be a complex matrix containing the observed signals

at 𝑀 antennas, 𝑵 = [𝒏1, ...,𝒏𝐿] be a complex matrix and
the vector 𝒏𝑖 ∈ ℂ

𝑀×1 represents additive white Gaussian
noise at the receiver in 𝑖th sensing time with distribution
𝒞𝒩 (0, 𝜎2

𝑛𝐼𝑀 ). The received signal at the 𝑀 -antenna receiver
under the two hypotheses is:

𝐻0 : 𝒚𝑖 = 𝒏𝑖, 𝑖 = 1, ..., 𝐿, (1)

𝐻1 : 𝒚𝑖 = 𝒉𝑥𝑖 + 𝒏𝑖, 𝑖 = 1, ..., 𝐿, (2)

where 𝒉 ∈ ℂ
𝑀×1 denotes the channel gain vector between

the transmitter and 𝑀 antennas of the receiver. The channel
gain vector, i.e., 𝒉, is assumed to be constant at each sensing
time. The probability density function (PDF) under the two
hypotheses can be written as:

𝑝
(
𝒀 ∣𝐻0, 𝜎

2
𝑛

)
=

𝐿∏
𝑙=1

𝑒(−
1
2𝒚

𝐻
𝑙 𝑪−1

𝑤 𝒚𝑙)

(2𝜋)
𝑀
2 𝑑𝑒𝑡

1
2 (𝑪𝑤)

, (3)

𝑝
(
𝒀 ∣𝐻1,𝒉, 𝜎

2
𝑛, 𝜎

2
𝑠

)
=

𝐿∏
𝑙=1

𝑒(−
1
2𝒚

𝐻
𝑙 (𝑪𝑠+𝑪𝑤)−1𝒚𝑙)

(2𝜋)
𝑀
2 𝑑𝑒𝑡

1
2 (𝑪𝑠 +𝑪𝑤)

, (4)

where 𝑪𝑤 = 𝜎2
𝑛𝑰𝑀 and 𝑪𝑠 = 𝜎2

𝑠𝒉𝒉
𝐻 . 𝑰𝑀 , 𝑑𝑒𝑡(.), and 𝑒

denote the 𝑀×𝑀 identity matrix, the determinant of a matrix
and Euler’s number, respectively. The NP detector is given as:

𝐿 (𝒀 ) =
𝑝
(
𝒀 ∣𝐻1,𝒉, 𝜎

2
𝑛, 𝜎

2
𝑠

)
𝑝 (𝒀 ∣𝐻0, 𝜎2

𝑛)
> 𝛾 (5)

for a given threshold 𝛾.

B. Asymptotic Behavior of Probability of False Alarm and
Probability of Detection

In this section, we give the asymptotic analysis of the
Gaussian signal detection by using NP detector.

After some mathematical manipulations, the NP detector in
(5) becomes equivalent to deciding 𝐻1 if

𝜎2
𝑠

2

𝐿∑
𝑙=1

∣𝒉𝐻𝒚𝒍∣2 > 𝛾
′

(6)

where 𝛾
′
=

2𝜎4
𝑛

𝜎2
𝑠

(
1 + 𝜎2

𝑠𝒉
𝐻𝑪−1

𝑤 𝒉
)
𝑙𝑛

[
𝛾
(
1 + 𝜎2

𝑠𝒉
𝐻𝑪−1

𝑤 𝒉
)𝐿

2

]
.

For the NP detector in (6), 𝑃𝐷 can be rewritten as:

𝑃𝐷 = 𝑃𝑟𝑜𝑏

(
𝐿∑
𝑙=1

𝒚𝑙
𝐻Λ𝒚𝑙 > 𝛾

′ ∣𝐻1

)
. (7)

where 𝑃𝑟𝑜𝑏(.∣.) denotes conditional probability
and 𝒚𝑙 = (𝑪𝑠 +𝑪𝑤)

− 1
2 𝒚𝑙 ∼ 𝒞𝒩 (0, 𝑰𝑀 ). Here,

Λ = 𝑑𝑖𝑎𝑔
{
𝒉𝐻 (𝑪𝑠 +𝑪𝑤)𝒉, 0...0

}
and 𝑑𝑖𝑎𝑔 {𝑑1, ..., 𝑑𝑀}

denotes a 𝑀 ×𝑀 diagonal matrix with 𝑑𝑖 as the 𝑖th diagonal
element. In (7),

∑𝐿
𝑙=1 𝒚𝑙

𝐻Λ𝒚𝑙 has a scaled Chi-square
distribution with 2𝐿 degrees of freedom. Therefore, the 𝑃𝐷
can be simplified as:

𝑃𝐷 =
Γ
(
𝐿, 𝛾

′

𝒉𝐻(𝑪𝑠+𝑪𝑤)𝒉

)
Γ(𝐿)

, (8)

where Γ (𝛼) =
∫∞
0

𝑡𝛼−1𝑒−𝑡𝑑𝑡 and Γ (𝛼, 𝑥) =
∫∞
𝑥

𝑡𝛼−1𝑒−𝑡𝑑𝑡
are the complete and upper incomplete gamma functions,
respectively. 𝑃𝐹𝐴 can be also derived similarly as:

𝑃𝐹𝐴 =
Γ
(
𝐿, 𝛾

′

𝒉𝐻𝑪𝑤𝒉

)
Γ(𝐿)

. (9)

From the law of large numbers [14]:

lim
𝑀→∞

1

𝑀
𝒉𝐻𝒉

𝑎.𝑠.−−→ 𝔼
{∣ℎ𝑖∣2} , (10)

where 𝔼
{∣ℎ𝑖∣2} is the expected value of the i.i.d random

variable ∣ℎ𝑖∣2. 𝔼 {.} denotes the expectation of a random
variable. By using the central limit theorem, the definition of
𝑪𝑠 and 𝑪𝑤, and (10), (8) and (9) can be written as in the
following when 𝐿,𝑀 → ∞:

𝑃𝐷 = 𝑄

⎛
⎝ 𝛾

′

𝑀𝔼{∣ℎ𝑖∣2}(𝑀𝜎2
𝑠𝔼{∣ℎ𝑖∣2}+𝜎2

𝑛)
− 2𝐿

2
√
𝐿

⎞
⎠ , (11)

𝑃𝐹𝐴 = 𝑄

⎛
⎝ 𝛾

′

𝑀𝜎2
𝑛𝔼{∣ℎ𝑖∣2} − 2𝐿

2
√
𝐿

⎞
⎠ . (12)



Let us define a new threshold such that:

𝛾
′′
=

𝛾
′

𝑀𝜎2
𝑛𝔼 {∣ℎ𝑖∣2} . (13)

By using the relationship between inverse 𝑄-function and in-
verse error function, the threshold required to achieve 𝑃𝐹𝐴 = 𝜖
becomes:

𝛾
′′
= 2

√
𝐿
(√

2𝑒𝑟𝑓−1(1− 2𝜖) +
√
𝐿
)
. (14)

By using (13) and (14), (11) can be written as:

𝑃𝐷 = 𝑄

(√
2𝑒𝑟𝑓−1(1− 2𝜖) +

√
𝐿

(𝑀𝜎2
𝑠𝔼 {∣ℎ𝑖∣2}+ 𝜎2

𝑛)
−
√
𝐿

)
. (15)

For the case when 𝐿,𝑀 → ∞, the term inside 𝑄-function in
(12) is dominated by

√
𝐿𝑙𝑛(𝑀)−√

𝐿. In this case, (12) can
be approximated as:

𝑃𝐹𝐴 ≈ 𝑄
(√

𝐿𝑙𝑛(𝑀)−
√
𝐿
)
. (16)

Moreover, the term inside 𝑄-function in (16) goes to ∞. Then,
𝑃𝐹𝐴 will always converge to 0 when 𝐿,𝑀 → ∞. Given that
𝑃𝐹𝐴 = 𝜖, (15) can be approximated when 𝐿,𝑀 → ∞ as:

𝑃𝐷 ≈ 𝑄

(
−√

𝐿𝑙𝑛(𝑀)

𝑀
−
√
𝐿

)
. (17)

If
√
𝐿𝑙𝑛(𝑀) ≥ 𝑀 and 𝐿,𝑀 → ∞, over all term inside (17)

goes to −∞. Therefore, 𝑃𝐷 converges to 1.

III. NON-GAUSSIAN SIGNAL DETECTION IN GAUSSIAN

NOISE WITH MASSIVE MIMO

A. System Model

The receiver has 𝑀 antennas and each antenna receives
𝐿 samples. We assume that the transmitted signal samples
are independent, identically distributed random variables with
non-Gaussian distribution. It is also assumed that the signal
has constant variance and bispectrum. Furthermore, 𝒙, 𝐻0 and
𝐻1 denote the transmitted symbols vector and two hypotheses
defined in Section II, respectively. It is assumed that the
additive noise samples at different antennas are independent
zero-mean Gaussian random variables with variance 𝜎2

𝑛. The
complex matrix 𝒀 and the vector 𝒏𝑖, which are defined as
in Section II, denote the observed signals at the 𝑀 antennas
of the receiver and the additive white Gaussian noise at the
𝑀 antennas of the receiver in 𝑖th sensing time, respectively.
The channel gain vector 𝒉 is assumed to be constant at each
sensing time.

B. Bispectrum Estimation for the Receiver with Single An-
tenna

Signal detection in higher order spectrum domains like the
bispectrum and trispectrum gives promising results when the
received signal is non-Gaussian due to its ability of suppress-
ing Gaussian noise and retaining the non-Gaussian information
simultaneously [15]. Therefore, we use the bispectrum for non-
Gaussian signal detection in our analysis.

The bispectrum of a random signal is generated by the
Fourier transform of its third order cumulant, which is given
as [16]:

𝐶𝑥(𝜏1, 𝜏2) = 𝔼 {𝑥(𝑡)𝑥(𝑡+ 𝜏1)𝑥(𝑡+ 𝜏2)} (18)

The bispectrum of a discrete-time random sequence is given
as:

𝐵(𝑤1, 𝑤2) = 𝔼 {𝑋(𝑤1)𝑋(𝑤2)𝑋(𝑤3)} , (19)

where

𝑋(𝑤) =
1

2𝜋

∞∑
𝑛=−∞

𝑥(𝑛)𝑒−𝑗𝑤𝑛 (20)

is the Fourier transform of {𝑥(𝑛)}, and 𝑤3 = 2𝜋𝑘−𝑤1−𝑤2,
𝑘 is 0 or 1. Bispectrum must be estimated from the observed
signals at the receiver. In this section, we study the case that
the receiver has one antenna. Then, the received symbols is
denoted by the complex vector 𝒚 ∈ ℂ

𝐿×1. The raw bispectrum
estimate can be calculated for 𝐿 samples as:

𝐵̂(𝑗, 𝑘) =
1

𝐿
𝑌 (𝑗)𝑌 (𝑘)𝑌 (−𝑗 − 𝑘), (21)

where 𝑌 (𝑘) is the discrete Fourier transform of 𝐿 samples at
the receiver {𝑦(𝑛)}, 𝑛 = 1, ..., 𝐿:

𝑌 (𝑘) =

𝐿−1∑
𝑛=0

𝑦(𝑛)𝑒−𝑗
2𝜋
𝐿 𝑘𝑛. (22)

𝑌 (𝑗 +𝐿) = 𝑌 (𝑗) and 𝑌 (𝐿− 𝑗) = 𝑌 ∗(𝑗). It has been shown
in [13] that the bispectrum of a Gaussian signal is zero over
the all principal domain. Therefore, the bispectrum estimation
is implemented in the principal domain in this paper. The
principal domain of 𝐵̂(𝑗, 𝑘) is the triangular grid:

𝑅 =

⎧⎨
⎩

(𝑗, 𝑘) :0 < 𝑗 ≤ 𝐿

2

0 < 𝑘 ≤ 𝑗

2𝑗 + 𝑘 ≤ 𝐿

⎫⎬
⎭

(23)

where 𝐿 is even. The variance of raw bispectrum estimate of
𝐿 samples is given as [12]:

𝑣𝑎𝑟
(
𝐵̂(𝑗, 𝑘)

)
= 𝐿 (𝑣𝑎𝑟 (𝑌 (𝑗)) 𝑣𝑎𝑟 (𝑌 (𝑘)) 𝑣𝑎𝑟 (𝑌 (−𝑗 − 𝑘))) .

(24)
Since the variance increases with 𝐿, we perform a time-domain
smoothing by dividing 𝐿 samples to 𝑁𝐵 number of blocks
where each block has a length of 𝐿𝐵 . First, the discrete Fourier
transform of each block in 𝐿 samples is calculated as:

𝑌𝑚(𝑘) =

𝐿𝐵−1∑
𝑛=0

𝑦(𝑛)𝑒
−𝑗 2𝜋

𝐿𝐵
𝑘𝑛

, 𝑚 = 1, 2, ..., 𝑁𝐵 . (25)

𝑌𝑚(𝑗 + 𝐿) = 𝑌𝑚(𝑗) and 𝑌𝑚(𝐿 − 𝑗) = 𝑌 ∗
𝑚(𝑗). From this

transform of the signal, the bispectrum estimate of the signal
is evaluated as in the following:

𝐵̂𝑚(𝑗, 𝑘) =
1

𝐿𝐵
𝑌𝑚(𝑗)𝑌𝑚(𝑘)𝑌𝑚(−𝑗 − 𝑘). (26)



Then, the individual bispectrum estimates are averaged for all
the 𝐿 samples which yields the smoothed estimate:

𝐵̂𝑎𝑣𝑔(𝑗, 𝑘) =
1

𝐿

𝑁𝐵∑
𝑚=1

𝑌𝑚(𝑗)𝑌𝑚(𝑘)𝑌𝑚(−𝑗 − 𝑘). (27)

C. Bispectrum Estimation for the Receiver with Multiple An-
tennas

In this section, we study bispectrum estimation when the
receiver has multiple antennas. In this case, bispectrum is
estimated from the 𝐿 observed samples at the 𝑀 antennas
of the receiver. The received symbols stored in the complex
matrix 𝒀 are divided into 𝑀 blocks, each of length 𝐿. Raw
bispectrum estimate can be calculated for 𝐿 samples in 𝑚th
antenna as follows:

𝐵̂𝑚(𝑗, 𝑘) =
1

𝐿
𝑌𝑚(𝑗)𝑌𝑚(𝑘)𝑌𝑚(−𝑗 − 𝑘), (28)

where 𝑌𝑚(𝑘) is the discrete Fourier transform of 𝐿 samples
in 𝑚th antenna 𝑦𝑚(𝑛) for 𝑚 = 1, ...,𝑀 :

𝑌𝑚(𝑘) =

𝐿−1∑
𝑛=0

𝑦𝑚(𝑛)𝑒−𝑗
2𝜋
𝐿 𝑘𝑛. (29)

𝑌𝑚(𝑗 + 𝐿) = 𝑌𝑚(𝑗) and 𝑌𝑚(𝐿− 𝑗) = 𝑌 ∗
𝑚(𝑗). The principal

domain of 𝐵̂𝑚(𝑗, 𝑘) is given as in (23) and the variance of
𝐵̂𝑚(𝑗, 𝑘) can be calculated similar to (24). The smoothed bis-
pectrum estimate is evaluated by averaging the raw estimates
for all 𝑀 antennas as:

𝐵̂𝑎𝑣𝑔(𝑗, 𝑘) =
1

𝑀

𝑀∑
𝑚=1

𝐵̂𝑚(𝑗, 𝑘)

=
1

𝑀𝐿

𝑀∑
𝑚=1

𝑌𝑚(𝑗)𝑌𝑚(𝑘)𝑌𝑚(−𝑗 − 𝑘).

(30)

The variance of the smoothed bispectrum estimate becomes:

𝑣𝑎𝑟(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)) = 𝑣𝑎𝑟(
1

𝑀

𝑀∑
𝑚=1

𝐵̂𝑚(𝑗, 𝑘))

=
1

𝑀
𝑣𝑎𝑟(𝐵̂𝑚(𝑗, 𝑘)).

(31)

𝐵̂𝑎𝑣𝑔(𝑗, 𝑘) has independent real and imaginary parts with the
following variance:

𝑣𝑎𝑟(𝑅𝑒(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘))) ≈ 𝑣𝑎𝑟(𝐼𝑚(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)))

≈ 𝑣𝑎𝑟(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘))

2
.

(32)

Let us define independent and normally distributed random
variables 𝑋1, 𝑋2, ..., 𝑋𝑛 with mean 𝜇𝑖 and unit variances.
Then, the random variable

∑𝑘
𝑖=1 𝑋

2
𝑖 is distributed according

to the non-central chi-squared distribution with 𝑘 degrees of
freedom and a non-centrality parameter 𝜆. Here, 𝜆 is related
to the mean of the random variables 𝑋𝑖 as 𝜆 =

∑𝑘
𝑖=1 𝜇

2
𝑖 .

Moreover, the asymptotic distribution of 𝐵̂𝑎𝑣𝑔(𝑗, 𝑘) is complex

normal and independent for each frequency pair (𝑗, 𝑘) [12].
By using these facts, the distribution of the statistic 𝑡:

𝑡 =
𝑅𝑒(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘))

2 + 𝐼𝑚(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘))
2

𝑣𝑎𝑟(𝐵̂𝑎𝑣𝑔(𝑗,𝑘))
2

=
2
∣∣∣𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)

∣∣∣2
𝑣𝑎𝑟(𝐵̂𝑎𝑣𝑔(𝑗, 𝑘))

,

(33)

is non-central chi-square with two degrees of freedom and
non-centrality parameter:

𝛽(𝑗, 𝑘) =
2
∣∣∣𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)

∣∣∣2
𝐿
𝑀 (𝑣𝑎𝑟(𝑌𝑚(𝑗))𝑣𝑎𝑟(𝑌𝑚(𝑘))𝑣𝑎𝑟(𝑌𝑚(−𝑗 − 𝑘)))

(34)
where 𝛽(𝑗, 𝑘) is defined as skewness function.

D. Asymptotic Behavior of Probability of False Alarm and
Probability of Detection

In this section, we give the asymptotic analysis of the non-
Gaussian signal detection by using bispectrum based detector.

𝐵̂𝑎𝑣𝑔(𝑗, 𝑘) is complex Gaussian with zero mean under 𝐻0,
so the distribution of the statistic 𝑡, which is defined in (33)
is a central chi-square with two degrees of freedom:

𝑡 =
2𝑀

𝐿𝜎6
𝑛

∣∣∣𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)
∣∣∣2 . (35)

The statistic 𝑇0, which is obtained by summing the individ-
ual bin statistics, is an approximation of the central chi-squared
with 2𝑃 degrees of freedom under 𝐻0. 𝑃 denotes the number
of bins in the principal domain [17]. Then, 𝑇0 and 𝑃𝐹𝐴 are
given as:

𝑇0 =
∑

𝑡

=
2𝑀

𝐿𝜎6
𝑛

∑
𝑟𝑒𝑔𝑖𝑜𝑛

∣∣∣𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)
∣∣∣2 . (36)

𝑃𝐹𝐴 = 𝑃𝑟𝑜𝑏(𝑇0 > 𝛾∣𝐻0), (37)

When 𝑃 is large, 𝑇0 can be approximated by the Fisher’s
approximation [18] as:√

2𝑇0 ∼ 𝒩 (
√
4𝑃 − 1, 1). (38)

Applying (38) in (37), we obtain the following expression for
𝑃𝐹𝐴:

𝑃𝐹𝐴 =
1

2
− 1

2
𝑒𝑟𝑓

(√
2𝛾 −√

4𝑃 − 1
)
. (39)

Then, the threshold to achieve 𝑃𝐹𝐴 = 𝜖 becomes:

𝛾 =
1

2

(
𝑒𝑟𝑓−1(1− 2𝜖) +

√
2𝑃 − 1

2

)2

. (40)

In the principal domain, which is the triangular grid given
in (23), there are 𝐿2

12 bins. Therefore, (40) can be written as:

𝛾 =
1

2

(
𝑒𝑟𝑓−1(1− 2𝜖) +

√
𝐿2

6
− 1

2

)2

. (41)



The statistic 𝑇1, which is obtained by summing the indi-
vidual bin statistics, is an approximation of the non-central
chi-squared with 2𝑃 degrees of freedom under 𝐻1. By using
(33) and (34), the non-centrality parameter is given as:

𝛽 =
∑

𝑟𝑒𝑔𝑖𝑜𝑛

𝛽(𝑗, 𝑘). (42)

Then, the 𝑃𝐷 can be defined as:

𝑃𝐷 = 𝑃𝑟𝑜𝑏(𝑇1 > 𝛾∣𝐻1). (43)

If 𝑃 is large, (43) can be approximated as:

1

2𝑃
𝑇1 ∼ 𝒩

(
1 +

𝛽

2𝑃
,
𝑃 + 𝛽

𝑃 2

)
. (44)

Therefore,

𝑃𝐷 =
1

2
− 1

2
𝑒𝑟𝑓

(
𝛾 − 2𝑃 − 𝛽

2
√
𝑃 + 𝛽

)
, (45)

where

𝛽 =
∑

𝑟𝑒𝑔𝑖𝑜𝑛

2
∣∣∣𝐵̂𝑎𝑣𝑔(𝑗, 𝑘)

∣∣∣2
𝐿
𝑀 (𝑣𝑎𝑟(𝑌𝑚(𝑗))𝑣𝑎𝑟(𝑌𝑚(𝑘))𝑣𝑎𝑟(𝑌𝑚(−𝑗 − 𝑘)))

.

If the threshold 𝛾 is held as constant, 𝑃𝐷 is a monotonically
increasing function of the expression:

𝜆 =
2𝑃 + 𝛽

2
√
𝑃 + 𝛽

. (46)

If 𝛽 >> 2𝑃 , 𝜆 ≈
√
𝛽
2 . Since we assume that the signal has

constant variance and bispectrum, 𝛽 is linearly proportional
with 𝑃 𝑀

𝐿 . Let us assume that 𝛽 = 𝑐𝑃 𝑀
𝐿 , where 𝑐 is a constant.

Then, 𝜆 ≈
√
𝛽
2 if 𝑀

𝐿 >> 1. Then, from (46), for 𝛽 >> 2𝑃 :

𝜆 ≈ 1

2

√
(𝑐)𝑃𝑀

𝐿
. (47)

By using 𝑃 = 𝐿2

12 , (45) can be written as:

𝑃𝐷 =
1

2
− 1

2
𝑒𝑟𝑓

(
−1

4

√
(𝑐)𝑀𝐿

3

)
, (48)

for 𝛾 << 2𝑃 + 𝛽. Therefore, 𝑃𝐷 converges to 1, while 𝑀,𝐿
go to ∞ and 𝑀 >> 𝐿.

IV. RESULTS

We observe the asymptotic results of 𝑃𝐷 and 𝑃𝐹𝐴 by using
MATLAB simulations. First, we obtain the asymptotic results
when the transmitted signal is Gaussian. Convergence regions
of 𝑃𝐷 and 𝑃𝐹𝐴 for different values of SNR is shown in Fig. 2.

When 𝑀 > 202 and 𝐿 >
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

, 𝑃𝐷 converges to 1 and
𝑃𝐹𝐴 converges to 0 for -20 dB SNR. For -10 dB SNR, 𝑃𝐷
and 𝑃𝐹𝐴 converges to 1 and 0 respectively when 𝑀 > 40 and

𝐿 >
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

. When SNR equals to 0 dB, 𝑃𝐷 converges to

1 and 𝑃𝐹𝐴 converges to 0 for 𝑀 > 17 and 𝐿 >
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

.
Finally, 𝑃𝐷 converges to 1 and 𝑃𝐹𝐴 converges to 0 for 𝑀 >

15 and 𝐿 >
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

when SNR is 10 dB. According to

Fig. 2: The convergence of 𝑃𝐷 and 𝑃𝐹𝐴 while 𝐿,𝑀 go
to infinity when the distribution of the transmitted signal is
Gaussian.

these results, 𝑃𝐷 and 𝑃𝐹𝐴 converge to 1 and 0 respectively
with smaller number of antennas while SNR increases.

Fig. 3 shows 𝑃𝐹𝐴 versus 𝑃𝐷 obtained by derived ap-

proximations and simulation when 𝐿 =
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

, 𝐿 =

2
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

, and 𝐿 = 3
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

. 𝑀 = 10 and SNR is -10
dB in all cases. It can be seen that the relationship between

𝑃𝐷 and 𝑃𝐹𝐴 approaches to ideal case while 𝐿 >
(

𝑀
𝑙𝑜𝑔(𝑀)

)2

for both approximations and simulation. It can be also ob-
served that simulation results are upper bounded by derived
approximations.

For the non-Gaussian signal case, we compare 𝑃𝐹𝐴 versus
𝑃𝐷 obtained by simulation, when our proposed and NP
detectors are used. We also show 𝑃𝐹𝐴 versus 𝑃𝐷 based on
the derived approximations of our proposed detector. These
results, which can be seen in Fig. 4, are obtained for 𝑀 = 𝐿 =
10, 𝑀 = 2𝐿 = 20, and 𝑀 = 3𝐿 = 30. Transmitted signal has
a Bernoulli distribution (with parameter 0.5) and the SNR is
0 dB in all cases. It can be seen that 𝑃𝐷 converges to 1 while
𝑀 >> 𝐿. Simulation results are upper bounded by derived
approximations as in the Gaussian signal case. Moreover, it
can be observed that our proposed bispectrum based detector
outperforms NP detector if the signal is non-Gaussian.

V. CONCLUSION

We investigated the effect of large number of antennas and
sample rate on the quality of non-Gaussian signal detection.
First, we studied detection of an unknown Gaussian signal in
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Fig. 3: Approximations and simulation results of 𝑃𝐹𝐴 versus
𝑃𝐷 when the transmitted signal is Gaussian.

Fig. 4: Approximations and simulation results of the proposed
detector and comparison of the results with NP detector when
the transmitted signal is non-Gaussian.

Gaussian noise. We analyzed the performance of the Gaussian
signal detection by using a NP detector when the number of
antennas (𝑀 ) and sample size (𝐿) are large. We showed the
required condition for the relationship between 𝐿 and 𝑀 while
both of them go to infinity to obtain 𝑃𝐹𝐴 and 𝑃𝐷 close to 0
and 1, respectively. We then studied the performance of the
non-Gaussian signal detection in the large antenna regime with
a large number of samples. We used a GLRT in bispectral
domain to obtain the expressions for 𝑃𝐹𝐴 and 𝑃𝐷 as functions
of 𝐿 and 𝑀 . We presented an asymptotic analysis for the 𝑃𝐹𝐴
and the 𝑃𝐷 when the observed signal is non-Gaussian. We
showed that the 𝑃𝐷 goes to 1 while 𝑀,𝐿 approach to infinity
and 𝑀 >> 𝐿. Then, we observed the asymptotic behavior
of 𝑃𝐹𝐴 and 𝑃𝐷 when the transmitted signal is Gaussian or
non-Gaussian by using MATLAB simulations.

In the future, we aim to study the robust signal detection
with massive MIMO. In this case, we will assume that all
the statistical information related to the transmitted signal is
unknown. We aim to investigate how much the large number
of antennas at the receiver can improve the quality of signal
detection.
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