ON THE MINIMUM OF THE MEAN-SQUARED ERROR
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ABSTRACT. We study the minimum mean-squared error for 2-means clustering when the
outcomes of the vector-valued random variable to be clustered are on two spheres, the
surface of two touching balls of unit radius in n-dimensional Euclidean space, and the
underlying probability distribution is the normalized surface measure. For simplicity,
we only consider the asymptotics of large sample sizes and replace empirical samples by
the probability measure. The concrete question addressed here is whether a minimizer
for the mean-squared error identifies the two individual spheres as clusters. Indeed, in
dimensions n > 3, the minimum of the mean-squared error is achieved by a partition
obtained from a separating hyperplane tangent to both spheres at the point where they
touch. In dimension n = 2, however, the minimizer fails to identify the individual spheres;
an optimal partition is associated with a hyperplane that does not contain the intersection
of the two spheres.

1. INTRODUCTION

In many applications of data science, large sets of vectors need to be grouped into a
small number of subsets whose elements are close to each other. This type of partitioning
into subsets is also called clustering [13]. The subsets are often believed to be distinct
constituents in a mixture of random vectors that are sampled from different distributions.
In many cases, the distributions are from a known family that is parametrized by the
expected value of the outcomes, and the outcomes concentrate near the expected value
[17, 3]. Partitioning the observed set of vectors into subsets yields the empirical means,
also called centroids, which provide an estimate for the expected values. On the other hand,
once the expected values are accurately determined, one assumes that mapping each vector
to the subset whose centroid is closest provides a good partition. This heuristic approach
to the clustering problem is captured in an iterative algorithm by Lloyd [10], which aims
to minimize an objective function that measures the Euclidean mean squared distance of
the elements in each of the subsets from the respective centroid. Although the algorithm
seems to work well in practice, known results lack general a priori performance guarantees
[1,9, 19, 4, 12] or show cases with slow convergence [21] even for two-dimensional clustering.

Another setting in which one tries to minimize the mean-squared distance is in vector
quantization [2, 5], see also [20]. There, partitioning of the outcomes of a random vector
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is not explicitly motivated by an underlying assumption that it is a mixture. The main
goal is to approximate the random vector by a quantized one, with a finite or discrete set
of outcomes while minimizing the distortion, measured in the expected Euclidean squared
norm of the quantization error or in terms of more general norms [6].

In this paper, we investigate the problem of minimizing the objective function appearing
in Lloyd’s algorithm for the special case of partitioning into two subsets. Optimality for
the 2-means problem has already been considered in dimension n = 2 for the concrete
examples of the uniform distribution on the disk and on the square [18]. We consider the
example of random vectors governed by a probability measure p that is formed by taking
the average of two probability measures that are uniform on two spheres, the surface of
two balls of unit radius in n-dimensional Fuclidean space. If the set .S is the union of the
two touching spheres and p the associated normalized surface measure, we wish to find the
assignment ¢ : S — {c1, co} which maps S to ¢1,co € R™ such that the mean-squared error
Js llz = q(z)||*dp(x) is minimized. The concrete question is then whether an optimizer to
the mean-squared error assigns, up to sets of measure zero, a partition that singles out
each individual sphere.

Earlier results prove that applying semidefinite programming to a convex relaxation
of the objective function in Lloyd’s clustering algorithm [16] is successful if the spheres
are sufficiently separated [7, 8, 11], see also a separation requirement for more general,
subgaussian clusters [14]. Indeed, in dimension n = 1, the desired result is achieved if
and only if the spheres are separated by a sufficiently large distance. A unit sphere in
dimension n = 1 is a set of two points at a distance of 2. The uniform probability measure
on two symmetrically arranged spheres at a distance 2¢ is p = (1/4)0_2—¢ + (1/4)d_¢ +
(1/4)d¢ + (1/4)62+4¢, where 0, is for any a € R a Dirac measure with support {a}. If we
choose 0 < € < (v/3 —1)/2, then by exhausting all choices of partitions, it is seen that the
set S1 = {—¢,¢6,2 + €} with mean m; = (2 + €)/3 and the set So = {—2 — ¢} with mean
mg = —2 — e provide an optimal partition of {—2 — €, —¢,€,2 + €} for which the resulting
mean-squared error is 2(1+e+¢€2)/3 < 1, whereas the symmetric choice Ry = {¢,2+¢€} and
Ry = {—¢,—2 — ¢} gives a mean-squared error of 1. On the other hand, if € > (v/3 —1)/2,
then the partitioning into Ry and R» is indeed optimal for the mean-squared error.

It is tempting to attribute the failure to recover the individual spheres to the discrete
nature of the “surface” measures in R. A closer look shows that the concentration of the
measure near the origin is the reason for the optimal partition formed by one sphere canni-
balizing the other. As n grows, the measure p is less concentrated near the origin, and one
expects this cannibalizing behavior to disappear. Here, we examine the question whether a
successful partition can be obtained in dimensions n > 2 even if the spheres touch. This is
the most challenging case in which separation can still be achieved theoretically. We con-
sider the continuum limit, which means instead of sampling the distributions with finitely
many outcomes, we assume data given in the form of uniform measures on the spheres.

Our results show that minimizing the mean-squared error in R? leads to a non-symmetric
partition, as in the case of dimension n = 1. Fortunately, in dimensions n > 3 the minimizer
recovers the partition into individual spheres, as one hopes to achieve. In that case, the
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partition is symmetric (up to sets of measure zero); it is given by a separating hyperplane
that is invariant under reflections mapping each sphere onto the other.

This paper is organized as follows: In Section 2, we present the main results. The
proofs are either elementary and included there or relegated to the Section 3. A first part
of the proofs establishes that optimal partitions for 2-means clustering are obtained from
separating hyperplanes. The next part determines the location of the hyperplane.

Acknowledgment. Both authors would like to thank Dustin Mixon for suggesting
the intriguing calculus exercise worked out in Section 3.2. Additional thanks go to the
anonymous referee for comments that helped improve the presentation of this paper.

2. OPTIMAL PARTITIONS FOR THE MEAN-SQUARED ERROR

The problem we are concerned with is the minimization of the mean-squared error. Its
value depends on the partition of the support of a probability measure p describing the
outcomes of a mixture of random vectors.

Definition 2.1. Given a Borel probability measure p on R™ with support S and a Borel-
measurable subset S; C S with complement S; = S\ Sy, then the mean squared error
associated with the partition {S7,S2} of S is

£(8)) = min/ Iz = e1|Pdp(z) + min/ Iz — o 2dp(z).
S1 co ER™ So

c1 ER™
Here, ||z — ¢;|| is the Euclidean distance between = and ¢; in R", i € {1, 2}.

In this paper, we are concerned with a special case where p is the (normalized) surface
measure for the union of two touching spheres,

1
p=5l0-1+01).

Here o, is the surface measure supported on S, = {x € R" : ||z — ae1|| = 1}, where e; is
the first canonical basis vector in R™. The measure o, is obtained from translating o, so
for any Borel measurable set A, 0,(A + ae;) = 09(A), and for any orthogonal matrix O,
00(A) = 50(0~1(4).

The following are the main theorems in this paper:

Theorem 2.2. Let the Borel measure be given by p = %(0_1 + o1) on R™ with support
S =S_1USq. Let 51,59 form a partition of S into two Borel measurable subsets, then
there exist a € R and Ty = {x € R" : x1 < a} such that E(T1) < E(S1). Moreover, if Sy
1s minimal for the mean-squared error, then there is a choice of the cutoff a for which T}
coincides with S1 or Sa, up to a set of zero probability.

In short, disregarding sets of zero probability, an optimal partition of S is given by two
sets separated by a hyperplane orthogonal to eq, at an offset a from the origin. The fact
that an optimal partition comes from a separating hyperplane is well known [4], which we
supplement with a symmetrization argument.
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This result motivates abbreviating the mean-squared error for this special case, and
studying its dependence on the cutoff,

E(n,a)=&E{x € S:x1 < —a}).

By the reflection symmetry of p with respect to the first coordinate, it is sufficient to
consider F(n,a) for a > 0. With this simplification, we can study the case of dimension
n = 2 in elementary terms.

Theorem 2.3. In dimension n = 2, the absolute minimum of FE(2,a) among a € [0,2) is
attained at a non-zero cutoff a.

Proof. Parametrizing the two circles by arc length gives by a direct computation for a =
1-— @ the probabilities p({z € R? : 21 < —1++/3/2}) = 5/12 and p({z € R? : z1 >
—1++/3/2}) = 7/12. Choosing ¢; = ({1,0) and ¢z = ({2,0) with ¢; = —1 — 3/(57) and
Co =5/7+ 3/(7m) gives for the mean-squared error

117/6
E(2,1- %) §1</ ((—=1+cost — ¢1)? +sin® t)dt
41 /6

/6 2m
+/ ((—1+cost—§2)2+sin2t)dt+/ ((cost +1 —C2)Q+sin2t)dt>
0

—7/6
4572 — 30m — 9
= < 0.987.
3572
This is less than E(2,0) = 1, so the absolute minimum is not attained at a = 0. O

To illustrate this result, we have computed the minimizing offset numerically and plotted
the resulting partition of the two circles in Figure 1, together with the value of the mean-
squared error associated with a given offset in Figure 2.

When the means of the two subsets {x € R? : z; < —a} and {z € R? : 2; > —a} then
Theorem 2.2 reduces identifying the optimal mean-squared error to finding the minimum
of a parameter integral.

In dimension n = 3, the mean-squared error can be computed explicitly.

Theorem 2.4. In dimension n = 3, the absolute minimum of E(3,a) among a € [0,2)
occurs at a = 0.

Proof. We parameterize the two spheres by spherical coordinates and normalize the mea-
sure by surface area. Based on Theorem 2.2, an optimal partition is obtained with a
separating hyperplane orthogonal to the symmetry axis Re;. The associated probabilities
are for =2 <a <2 p({z €R?:21 < —a}) =% —%and p({z €R?: 2y > —a}) =1 + 4.
As shown in Theorem 3.4 below, the mean-squared error is obtained by choosing ¢; and
¢o to be the means of the two subsets, ¢; = ((1,0,0), c2 = ({2,0,0) with {; = —1 — %a,

ngl—%a.
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This choice results in

1 2T pm
E(3,a) :</ / ((—=1 + cosu — ¢1)* + sin® u) sin u dudt
8m \Jo arccos(l—a)
2w parccos(l—a)
+/0 /0 (=1 + cosu — (2)? + sin® w) sin u dudt

2T pm
+ / / (14 cosu — ¢2)? + sin? u) sinududt)
o Jo

1
:Za2—i—1.

Thus E(3,a) achieves its absolute minimum at a = 0.

FIGURE 1. An optimal partition of the union of two circles. First set (solid)
on left, second (dash-dotted) on right.

2

1 2

FIGURE 2. Value of E(2,a) depending on cutoff a € [—2, 2], with minimum
achieved at two non-zero values of a.

Even in the absence of explicit computations for F(n,a) in case n > 3, we obtain the
same monotonicity property as for n = 3.

Theorem 2.5. The inequality %E(n,a) > 0 holds for all a € (0,2) and n > 3. Moreover,
E(n,a) attains a minimum at a = 0, and this minimum is unique.
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Theorems 2.4 and 2.5 give us that the 2-means objective function E of two touching n-
spheres is increasing in the variable a for the cutoff for n > 3 in the continuum limit. Thus,
for dimensions n > 3, the optimal 2-means cutoff has a value of zero, so both n-spheres
are recovered successfully.

The remainder of the paper is dedicated to the proofs of Theorems 2.2 and 2.5.

3. PROOFS OF MAIN RESULTS ON OPTIMAL PARTITIONS

The first part of this section establishes the proof that an optimal partition is given by a
separating hyperplane that is orthogonal to the symmetry axis. The second part examines
the offset of the optimal separating hyperplane.

3.1. Minimizing the mean-squared error by partitions with a separating hy-

perplane. First, we consider a general Borel measure p with support S in R”. Given a

partition {Si,S2} of S, and p(S;) > 0, then we call m(S;) = fSi xdp(x)/p(S;) the mean

associated with the set S;. If \S; is clear from the context, we also abbreviate m; = m(S;).
By a direct computation, we have for any S; with p(S;) > 0 and ¢; € R

/S o — eilPdp() = /5 o — mal2dp(a) + i — mal o(S5)

so the minimum is achieved if and only if ¢; = m;.
Moreover, given c1,co € R" | then among all the partitions, the partition into Voronoi
regions is optimal, as shown in Lemma 3.2 below.

Definition 3.1. Given ¢, ¢y € R™, we define the Voronoi partition {T1,T>} of a Borel set
S associated with the vectors ¢; and c¢o by the assignment

Ti={zeS:|ca—z|| <|eca—z|}, To=5S\T1.

From this definition, we see that this Voronoi partition consists of a closed half-space
and its complement, with a separating hyperplane that is orthogonal to ¢; —c2 and contains
the midpoint (¢1 + ¢2)/2.

Next, we note that given a partition into sets of non-zero probability, passing to the
Voronoi partition associated with the means can only improve the mean-squared error.
This fact is generally known, see for example [4, Proposition 3.1].

Lemma 3.2. Let S1,S2 be a partition of S with 0 < p(S1) < 1 and associated means my
and ma, then the Voronoi partition associated with mi, ms satisfies

E(Th) < E(51).

Proof. For any measurable partition S; and Sy and ¢ € {1,2}, choosing any = € T; gives
by the definition of the Voronoi partition ||z —m;|| < min{|lz —m||, ||x —m2|}. Thus, the
partition of S into 717 and T gives a mean-squared error that is bounded above by that
associated with S; and Ss. O

In the following, we focus on properties of optimal partitions. These properties are also
known, even in the more general context of k-means, see e.g. [4, Propositions 3.1 and 3.5] or
[6, Section 4.1]. We have decided to include them here to keep the exposition self-contained.
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Lemma 3.3. If {S1,S2} is a minimizing partition for the mean-squared error, then 0 <
m(S;) <1 fori e {1,2} and m(S1) # m(S2).

Proof. Let {S1,S2} be a minimizing partition. We know 0 < p(S1) < 1, otherwise S; or
S5 have unit measure and we can refine S; or So and improve the mean-squared error.

Moreover, assuming an optimal partition into two sets S7 and Sy of non-zero probability
and equal means mj; = me, then any partition performs equally well, and we can choose a
subset Ry C S7 with 0 < p(R1) < 1 such that the associated mean 1 = m(R;1) # my. By
the characterization of the mean, then le lz — r1|%dp(x) < le |z — m1||?dp(x). For the
partition formed by R; and Ry = S\ R;, we then get that

[ e riante + [ o mildote) < [ o mildote) + [ e = malPapta

Rl RQ
= £(S)).

Now inserting the mean of Ro instead of mj in the second term on the left shows that
E(Ry) < E(57).
This contradicts optimality, so mi = ms cannot hold for a minimizing partition. ]

Theorem 3.4. Let p be a Borel measure on R™ with support S. If the partition {S1,Sa} is
a minimizer for the mean-squared error, then the sets T1 and To in the Voronoi partition
associated with the means {m(S;)}?_, coincide with Sy and Sy up to changes involving
subsets of the separating hyperplane or sets whose probability vanishes.

Proof. We know 0 < p(S1) < 1, so both sets S; and Se have means under p.
Passing to the Voronoi partition {7}, 72} associated with these means {m(S;)}%, gives

E(T) =E(S1).

Using the inequality in the definition of the Voronoi partition, we see that if Ry = 71N .55 is
non-empty, then so is Ry = T3NS, and ||z —m;|| < min{||z—m4||, |[z—ma2]|} ifz € R; C T;,
i € {1,2}. Hence, denoting the hyperplane H = {x € R" : ||z — mq|| = [Jz — m2||}, on
Ry \ H and Ry \ H strict inequality holds in the norm bounds, and we see that by the
monotonicity of integrals, the equality £(77) = £(S1) forces both sets to have probability
zero, p(R1 \ H) = p(R2 \ H) = 0. O

From now on, we specialize to p = (0_1+01)/2. As a first result for this concrete choice
of p, we show that the mean-squared error does not increase when passing to a suitable
partition into half-spaces that are separated by a hyperplane orthogonal to e;.

To obtain this, we note that choosing a partition that separates into half-spaces with a
separating hyperplane that contains the symmetry axis Re; is not optimal. Without loss
of generality, we orient this hyperplane so that it is orthogonal to es.

Lemma 3.5. Letn > 2, p = %(U,l + 01) be the measure defined on R™ with support S,
S1=SN{zxeR”: 29 >0} and Ty = SN{x € R": 21 > 0}, then £(S1) > E(T1).
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Proof. By symmetry, the mean of S; is m(S1) = aez. Also, we know that the mean is in
the interior of the convex hull of S7, so 0 < a < 1. Again using the symmetry between S;
and Sy as well as p(S1) = p(S2) = 1/2,

£(51) —2/ Hwa62||2dp—2/ lellap = o? = [ falfdp— a?.

Next, comparing with the Voronoi partition corresponding to {#e1} and using symmetry
properties, we have

ES)=2(] |lz—el]?+1/2)—a®=E(T1)+1—a?.
T
From 0 < a < 1, we then have £(S7) > £(T1). O
We are now ready to prove Theorem 2.2, which states that an optimal partition coin-

cides, up to sets of measure zero, with one obtained from a separating hyperplane that is
orthogonal to Re;.

Proof of Theorem 2.2. Given a partition of S by S; and Sy with means m; = m(S;),
i € {1,2}, we observe the following:

The algebra of Borel sets of the form A; xR® ! with A; C R, is a sub-algebra of the Borel
algebra of R™. The functions that are measurable with respect to this algebra depend only
on the first coordinate. By the Radon-Nikodym theorem, there exist functions d; : R — R
such that for any A = 4; x R*~1,

/A di(n)xs, (x / o — mal®xs, (2)dp(a)

Next, using Fubini, if 4 is the image measure of p under projection onto the first coordinate,
(A1) = p(A; x R* 1), then there is f : R — [0, 1] such that

/ dy fdp = / e — ma||xs, (2)dp(z)
Aq A xRn—1

[ o= pan= [ om0 s (@)dple).
Ay A xRn—1

Next, we observe if f is the function associated with a partition S; and Se and Ry = {z €
R : di(z) < da(x)}, then letting g = x g, gives that

/dlgd,u+/d2 1— d,u</d1fd,u+/d2 1—
We conclude, setting 7] = SN (R x R"™!) and T) = S\ T} that

e = milxagdp+ [ e = malPraydo < £(50),

Next, replacing m; and mgy by the means m, = m(T}), i € {1,2}, does not increase the
left-hand side, which shows that

and

E(TY) < E(S1) .
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Finally, setting {7, 7%} to be the Voronoi partition associated with the means m} and m/,
implies
E(Ty) < E(S51).

Moreover, if S7 is chosen as a minimizer for the mean-squared error, then necessarily
m; = m}, i € {1,2}, otherwise we would have strict inequality between £(T7) and £(S1).
This implies that the means m; are on the symmetry axis Re;. Applying Theorem 3.4
now shows that, up to a set of probability zero, S1 and Sy are separated by a hyperplane.
From the preceding lemma, optimality implies that the hyperplane does not contain the
symmetry axis. If it is not orthogonal to ej, then there is a set A; C R such that 0 <
p(A; x R"1' N S1) < p(A; x R N S)/2 and hence there is a subset B; C A; with
w(By) > 0 for which f(B;) C (0,1/2). This contradicts optimality, because changing from
f to the characteristic function g would lower the mean-squared error. We conclude that
the hyperplane is orthogonal to e;. O

3.2. The optimal offset of the separating hyperplane. From here on, we consider
the dependence of the mean-squared error on the offset of the separating hyperplane.

We first introduce some additional notation. When the mean-square error is computed,
the measure p can be replaced by an effective measure on R obtained from projecting onto
the first coordinate.

We first consider the projection of og. With the normalization constant

Ay = (/11(1 - xz)"z?’dx) e fr((")Q)

the resulting measure p, on Borel sets in [—1,1] is given by [15
dpn () = Ap(1 — xQ)n%dac.

The probability that g assigns to {x € Sy : 1 < 1 —a}, a € [-1,1], is equal to the
probability of {x € R: 2 <1 —a} under uy,,

1—a
M, (a) := /1 dpin ().
This is the mass of part of the first sphere, obtained by a separating hyperplane between
the two centers of the touching spheres, at a distance of 1 — a from the center of the first
sphere. From the normalization convention, the total mass of the measure obtained from
two spheres is two, so the complementary mass remaining is

M (a) :=2— M, (a).
The mean of the first piece is

Y edua(a)
C (CL) T Mn_(a) ’
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and that of the second piece, relative to C,; (0) = 0, accordingly

2- _17(1 xd,un(a:)
Cl(a):= ]\};_ @

With the help of Fubini-Tonelli, the integration over R" giving the mean-squared error can
be reduced to an integral with respect to u,. The contributions to the mean-squared error
are split into 3 terms,

1—a
E_(n,a) = / (- a? + (2 — O (a))?)dpn(x),

-1

1
Ei(n,a) = / (1— a2 + (2 — C:Ha))?)dpn(z),

—a
and
1
By (n,a) = / (1= + (242 — CHa)?)dpn ().
-1
In each of these cases the integrand is the squared distance of a point on either of the two

spheres from the respective mean of the partition. The resulting mean-squared error is
obtained by summing the three contributions and dividing by the total mass,

E(n,a) = %[E_(n, a) + E+(n,a) + E(n,a)].

Lemma 3.6. Letn > 2 and a € [0,2], then E(n,a) is expressed in terms of C, , M, , C;F,
and M, according to

1 _ .
E(n,a) =3 — 5 ((Cy (a))* M, (a) + (Cyf (a))* M,/ (a))
Proof. From normalization, we have the identities f_ll dpn(z) = 1 and f_lia dpy(z) =
1- fll,a dpn(z); from symmetry, fil xdpn(x) = 0 and fi;a xdpn () = _fll,a xdpn ().

With the expression for C;, (a) and M, (a),

l—a

E_(n,a) = M, (a) - 2C, (a) /1 wdpn(z) + (Cy (a))* My, (a)

= M, (a) — (C; () M, (a)

n n
The integrals in the other terms are converted similarly, including C, (a) and M, (a),

1 1 1
E.(n,a) = / dyin(z) — 2C; (a) / rdpin(z) + (CF (a))? / djin ()

—a 1—a —a
=1- M, (a) +2C] (a)C; (a) M, (a) + (C;f (a)*(1 — M, (a))
=1- M, (a) +2C} (a)C; (a) M, (a) + (C;f (a)* (M (a) — 1)

n n n
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Because the last term is integrated over the entire sphere, the normalization and sym-

metry yield

1 1 1
Bena) = [ dpala) =22 = C(@) [ adpale) + 2= CE@P [ dala)

-1
=14+ (2—-Cl(a))?
=5—4C} (a) + (Cf (a))*.

Adding together E_(n,a), E+(n,a), and E4 (n,a) and dividing by 2 gives, after collecting

terms,

E(n,a) :; [ (C’ ) o (a)
+1- (a) +2C;7 (a)Cy (@) M,y (a) + (Cf (@) (M, (a) = 1)
+5—4CF (a) + (CF (a))?]
= 2 [6— (Cr (@) My (a)
+2C, (a)Cy (a) M, (a) + (Cff ())* M, (a)

— 4G, (a)] .

We simplify further by converting between M, and M,’

E(n, ) :é (6~ (C;(a))® M (a)
+2C, (a) (2 = CH (@) M, (a) + (CF (a))* M, (a)
—4C,f (a)]

=>[6— (Cr (a)” My, (a)

—2(C,f (a))> M} (a) + (Cyf (a))* M} (a)] -

(
(

Thus,
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Lemma 3.7. The deriwative %E(n,a) is expressed in terms of M, , M, and a as

0 24,(2a—a?)"T
5 = (i i@ |
+ (20— )OI (@)

22— a)(20 - )T (M ()

—a)(My ()’

_l’_

n —

- <n{11>2 (2a — a®)" ' M, (a)

mn

+2 (0~ 1)(2a - a®) "z M (a)

Proof. Note that f_lfa rdpn(x) = =74 (20 — (12)717_1 by direct integration.
Differentiating term by term yields

< ! A P
90" =7 500 (@) 2,7 (1~ a) (20— a?)" M, (0)
2
* (n/i) (2a — a®)"' Ap(2a — a?)”;‘“’}
1 An n—1 n—3
_W[Q <2+ n71(2a—a2) 3 )An(l—a)(2a—a2) o Vs

A n— 2 n—3
— (2—1— n1(2a—a2)2> An(2a—a2)T}
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Combining terms and simplifying gives

0 _2A,(2a—a?) T Ay
%E(n,a) = [—2

Finally, rearranging terms gives the claimed expression for %E (n,a).
(]

To prove that for any fixed n > 3, the function a — E(n,a) is increasing for a € (0, 2),
it suffices to show that 0E(n,a)/0a is positive for all a € (0,2) and n > 3. This will be the
centerpiece of the proof of Theorem 2.5. To prepare this, we use the simplified expression
for 0E(n,a)/0a given in the preceding lemma and find an estimate for M, that is obtained
by studying the monotonicity properties of the function n +— M (a) for a fixed.

Lemma 3.8. The expression M, (a) is continuous in both n € [3,00) and a € [0,2], and
a%Mn_(a) >0 forn >3 and a € (0,1) (and negative for n > 3 and a € (1,2)).

Proof. First, note that by Leibniz integral rule and integrability of z*Inz, o > 1, at 0,
) l1—a e 1—a o . l1—a e
871/_1 (1—:[)2)23d.1‘:/_1 an(l—xQ)‘ZSd:U:/_l ln(l—xQ)(l—xQ)Tsdx.
Thus, taking the partial derivative with respect to n, we obtain
o 1-a l1—a 1
%Mn_(a) = / In(1 — 22)dpy, (z) — / dun(x)/ In(1 — 22)dpun (z).
-1 -1 -1

Consequently, we have %M‘(O) = %Mn_(l) = %Mn_@) = 0. Next, we show that

n

Z-M; (a) >0 for a € (0,1). To this end, we find critical points of a — &M (a).

By

90 ., . . (2a—a2)% !
dagn (@) = JL (1 - a2) P de /_1 (In(1 = 2?) — In(2a — a?)) dpun (),
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(a) =0 if and only if

n

o fi-on ([ w0 i) 2},

Hence, for a € (0, 1- \/1 — exp (f_ll In(1 — :J:Q)dun(ac))), we have %Mn*(a) is increas-
ing in a. To see this, take 0 < w < f_ll In(1 — 2%)du, (), set w* =1 — /1 — exp(w) and
verify -2 o 8nMn (w*) > 0. Similarly, for a € (1 - \/1 — exp (f}l In(1 — l’Q)d,U,n(ZL‘)), 1),
we have %M;( ) is decreasing in a. Therefore, by -2 aa M, (0) = 8 M*( ) = 0, we see
(%Mg(a) > 0 for all @ € (0,1). Repeating this for a € [1, 2] glves v 9 M~ (a) < 0 for all

€ (1,2). Thus we have shown M, (a) is increasing in n > 3 for a € (0,1) (and decreasing
inn >3 forae(1,2)). O

we have that Pa 8n]\f

Corollary 3.1. For a € [0,1], we then have the inequalities M (a) < M, (a) < 1 for all
n > 3.

n—1

Lemma 3.9. For alln > 3 and for all a € [1,2), M, (a )2%(2@—@2)7.

Proof We make the change of variables y = 1+« Wlth dy = dz, in M, fl AL (1 -
)"z ® dz to obtain M, (a) =
parts (2 — y)nT_5 and ynT_S dy yields the formula

02 “A 2y —y ) z dy. Repeating 1ntegrat10n by parts on

k

2-a n—3 n-3 A, > n—25—1 n—(2k+3)
=0

k=0
By
’ ﬁn—2j—1 ‘7 1K ﬁ(l n—1 ) ‘
j:On+2j—1 <0 j+3(n—1)
K n—1
I (525555)
K
n—1
jzgj+§(n—1)
—0

as K — oo, we see the alternating series converges. Moreover, since the first term is
always positive, the sum converges to a function always greater than zero for a € (1,2) (by
property of alternating series). Lastly, we see that for each odd n > 3, there are exactly
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"T_l positive terms and for even n > 4, there are "7_2 positive terms prior to a convergent
alternating series (which starts at a positive term).

Consequently,
A n—
My (a) > 2" (20~ a*)"7 (2 - a)
n p—
2 A n—
=- " (2a — QQ)Tl,

an—1
which is greater than or equal to %(2@ — a2)n771 (by maximizing the denominator for
a € [1,2)). O

Lemma 3.9 gives estimates on M (a) that we combined with the expression for E(n, a)
and 0E(n,a)/0a from Lemmas 3.6 and 3.7 to show the main inequality %E(n, a) > 0 for
a € [1,2) in the proof of Theorem 2.5.

Proof of Theorem 2.5. We recall the simplified expressions

E(n,a) =3 - % ((C (@)* My (a) + (C5f (a))* M) (a))

n
and

9 24,(20—a?)"T ~
—FE(n,a) = (Mn_(a)MrJ[(a))z [(1 —a)(M, (a))g

Oa
+ (2a — 1)(M,, (a))?
(

An

_l’_

~(2-a)

n—1

+ < A )2 (2a — a®)" 1M (a)

+ 2n‘4_"1 (a—1)(2a — a®) "2 M; (a)

= (20— a?y1].
h |

To show the desired inequality, we need only show that the factor in brackets is positive:

L(n,a) = ((1 — a)Mj, (a) + 2a — 1) (M, (a))”

+( Afnﬂ?a—az)"%M;(a)d n

-(1-a)(2a— a2)"21> M, (a)

+ (nA_"lf (20 — a®)" ' M;, (a) — ( An >2 (20 —a®)* ' >0

n—1

for a € (0,2) and n > 3.
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We distinguish two cases, depending on the value of a.

Case I: If a € (0,1), by Corollary 3.1, we replace M, (a) with M; (a) = £(2 — a) for all
positive terms. That is,

L(n,a) > (1 — a)M;, (a) + 2a — 1) (M, (a))”
2
b (o0 o) (;(2 - a))

n —
An

n —

+ (nA_”l)z (20— )" @(2 _ a)> _ (nA_"1>2 (20— a?)"L.

—2-"(1-a)(2a - a®) T M (a)

Moreover, we see (1 —a)M,, (a) +2a —1> (1 —a)M; (a) +2a —1=a/2 +a%/2 > 0.
Hence, the first term can be estimated as well by eliminating M, (a), resulting in the
lower bound

By Lemma 3.8, we also have that M, (a) < M, (0) = 1.
Using this estimate for the remaining negative factor multiplying M, gives a further lower
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bound from which all quantities other than a have been eliminated,

L(n, a) zéu +a)a(2 — a)?

4 %(m — ) @(2 - a)>2

An

n—1

+ (nA_"1>2 (20— a?)"! G(z - a)>

-2

(1—a)(2a—a®)" T

1 A e
S nl (2a* — 8a® 4 24a® — 164a)(2a — CLQ)TI
n —

1/ A \?
B < ) a(2a — a?)" L,

n—1

Finally, by the second and third term decreasing in a € (0,1), we have

1 s 1 A, 1 A, 2
> - _ - _ =
L(n,a)_8(1—|—a)a(2 2 R 2<n—1)

2
| (iatz o 2 - (2

1
> §(1 +a)a(2 —a)® > 0.

Consequently for a € (0, 1], %E(n, a) > 0.

Case II: If a € [1,2), we re-examine L(n,a) and apply Lemma 3.9.

By the inequality

17
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we have

L(n,a) = ((1 — a)M;, (a) + 2a — 1) (M;, (a))”

n

+< A (90— )" M (a) — 220 =R

n—1 n—

Using Lemma 3.9 in the last inequality and recalling that if a € (1,2), then M (a) <
M, (1) = 1/2, we further estimate

n

3 1
(l—a)Mn_(a)—l—Qa—1>§a—§>0

which gives
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Thus, combining terms, we obtain a lower bound

An

L(n,a) > < 1)2 [(1 — a)M; (a) + 2a — 1

+2aM, (a) —a (M_(a))2

+2 (Mn_(a))Q — M, (a) — 1} (2a — a?)"!

- (,;%1)2 [aMn_(a) +2(a—1)+(2-a) (Mn—(a))z} (2a —a®)" !,

consisting of strictly positive terms if 1 < a < 2.
Consequently, we see for n > 3 and a € (1, 2),

d
—FE(n,a) >0
5a L a)
We conclude that for a € (0,2) and n > 3, F(n,a) is strictly increasing, thus attaining
its unique minimum at a = 0. [l
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