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Abstract. We study the minimum mean-squared error for 2-means clustering when the
outcomes of the vector-valued random variable to be clustered are on two spheres, the
surface of two touching balls of unit radius in n-dimensional Euclidean space, and the
underlying probability distribution is the normalized surface measure. For simplicity,
we only consider the asymptotics of large sample sizes and replace empirical samples by
the probability measure. The concrete question addressed here is whether a minimizer
for the mean-squared error identifies the two individual spheres as clusters. Indeed, in
dimensions n � 3, the minimum of the mean-squared error is achieved by a partition
obtained from a separating hyperplane tangent to both spheres at the point where they
touch. In dimension n = 2, however, the minimizer fails to identify the individual spheres;
an optimal partition is associated with a hyperplane that does not contain the intersection
of the two spheres.

1. Introduction

In many applications of data science, large sets of vectors need to be grouped into a
small number of subsets whose elements are close to each other. This type of partitioning
into subsets is also called clustering [13]. The subsets are often believed to be distinct
constituents in a mixture of random vectors that are sampled from di↵erent distributions.
In many cases, the distributions are from a known family that is parametrized by the
expected value of the outcomes, and the outcomes concentrate near the expected value
[17, 3]. Partitioning the observed set of vectors into subsets yields the empirical means,
also called centroids, which provide an estimate for the expected values. On the other hand,
once the expected values are accurately determined, one assumes that mapping each vector
to the subset whose centroid is closest provides a good partition. This heuristic approach
to the clustering problem is captured in an iterative algorithm by Lloyd [10], which aims
to minimize an objective function that measures the Euclidean mean squared distance of
the elements in each of the subsets from the respective centroid. Although the algorithm
seems to work well in practice, known results lack general a priori performance guarantees
[1, 9, 19, 4, 12] or show cases with slow convergence [21] even for two-dimensional clustering.

Another setting in which one tries to minimize the mean-squared distance is in vector
quantization [2, 5], see also [20]. There, partitioning of the outcomes of a random vector
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is not explicitly motivated by an underlying assumption that it is a mixture. The main
goal is to approximate the random vector by a quantized one, with a finite or discrete set
of outcomes while minimizing the distortion, measured in the expected Euclidean squared
norm of the quantization error or in terms of more general norms [6].

In this paper, we investigate the problem of minimizing the objective function appearing
in Lloyd’s algorithm for the special case of partitioning into two subsets. Optimality for
the 2-means problem has already been considered in dimension n = 2 for the concrete
examples of the uniform distribution on the disk and on the square [18]. We consider the
example of random vectors governed by a probability measure ⇢ that is formed by taking
the average of two probability measures that are uniform on two spheres, the surface of
two balls of unit radius in n-dimensional Euclidean space. If the set S is the union of the
two touching spheres and ⇢ the associated normalized surface measure, we wish to find the
assignment q : S ! {c1, c2} which maps S to c1, c2 2 Rn such that the mean-squared errorR
S kx � q(x)k2d⇢(x) is minimized. The concrete question is then whether an optimizer to
the mean-squared error assigns, up to sets of measure zero, a partition that singles out
each individual sphere.

Earlier results prove that applying semidefinite programming to a convex relaxation
of the objective function in Lloyd’s clustering algorithm [16] is successful if the spheres
are su�ciently separated [7, 8, 11], see also a separation requirement for more general,
subgaussian clusters [14]. Indeed, in dimension n = 1, the desired result is achieved if
and only if the spheres are separated by a su�ciently large distance. A unit sphere in
dimension n = 1 is a set of two points at a distance of 2. The uniform probability measure
on two symmetrically arranged spheres at a distance 2✏ is ⇢ = (1/4)��2�✏ + (1/4)��✏ +
(1/4)�✏ + (1/4)�2+✏, where �a is for any a 2 R a Dirac measure with support {a}. If we
choose 0 < ✏ < (

p
3� 1)/2, then by exhausting all choices of partitions, it is seen that the

set S1 = {�✏, ✏, 2 + ✏} with mean m1 = (2 + ✏)/3 and the set S2 = {�2 � ✏} with mean
m2 = �2� ✏ provide an optimal partition of {�2� ✏,�✏, ✏, 2 + ✏} for which the resulting
mean-squared error is 2(1+✏+✏2)/3 < 1, whereas the symmetric choice R1 = {✏, 2+✏} and
R2 = {�✏,�2� ✏} gives a mean-squared error of 1. On the other hand, if ✏ > (

p
3� 1)/2,

then the partitioning into R1 and R2 is indeed optimal for the mean-squared error.
It is tempting to attribute the failure to recover the individual spheres to the discrete

nature of the “surface” measures in R. A closer look shows that the concentration of the
measure near the origin is the reason for the optimal partition formed by one sphere canni-
balizing the other. As n grows, the measure ⇢ is less concentrated near the origin, and one
expects this cannibalizing behavior to disappear. Here, we examine the question whether a
successful partition can be obtained in dimensions n � 2 even if the spheres touch. This is
the most challenging case in which separation can still be achieved theoretically. We con-
sider the continuum limit, which means instead of sampling the distributions with finitely
many outcomes, we assume data given in the form of uniform measures on the spheres.

Our results show that minimizing the mean-squared error in R2 leads to a non-symmetric
partition, as in the case of dimension n = 1. Fortunately, in dimensions n � 3 the minimizer
recovers the partition into individual spheres, as one hopes to achieve. In that case, the
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partition is symmetric (up to sets of measure zero); it is given by a separating hyperplane
that is invariant under reflections mapping each sphere onto the other.

This paper is organized as follows: In Section 2, we present the main results. The
proofs are either elementary and included there or relegated to the Section 3. A first part
of the proofs establishes that optimal partitions for 2-means clustering are obtained from
separating hyperplanes. The next part determines the location of the hyperplane.

Acknowledgment. Both authors would like to thank Dustin Mixon for suggesting
the intriguing calculus exercise worked out in Section 3.2. Additional thanks go to the
anonymous referee for comments that helped improve the presentation of this paper.

2. Optimal partitions for the mean-squared error

The problem we are concerned with is the minimization of the mean-squared error. Its
value depends on the partition of the support of a probability measure ⇢ describing the
outcomes of a mixture of random vectors.

Definition 2.1. Given a Borel probability measure ⇢ on Rn with support S and a Borel-
measurable subset S1 ⇢ S with complement S2 = S \ S1, then the mean squared error

associated with the partition {S1, S2} of S is

E(S1) = min
c12Rn

Z

S1

kx� c1k2d⇢(x) + min
c22Rn

Z

S2

kx� c2k2d⇢(x).

Here, kx� cik is the Euclidean distance between x and ci in Rn, i 2 {1, 2}.

In this paper, we are concerned with a special case where ⇢ is the (normalized) surface
measure for the union of two touching spheres,

⇢ =
1

2
(��1 + �1) .

Here �a is the surface measure supported on Sa ⌘ {x 2 Rn : kx � ae1k = 1}, where e1 is
the first canonical basis vector in Rn. The measure �a is obtained from translating �0, so
for any Borel measurable set A, �a(A + ae1) = �0(A), and for any orthogonal matrix O,
�0(A) = �0(O�1(A)).

The following are the main theorems in this paper:

Theorem 2.2. Let the Borel measure be given by ⇢ = 1
2(��1 + �1) on Rn

with support

S = S�1 [ S1. Let S1, S2 form a partition of S into two Borel measurable subsets, then

there exist a 2 R and T1 = {x 2 Rn : x1  a} such that E(T1)  E(S1). Moreover, if S1

is minimal for the mean-squared error, then there is a choice of the cuto↵ a for which T1

coincides with S1 or S2, up to a set of zero probability.

In short, disregarding sets of zero probability, an optimal partition of S is given by two
sets separated by a hyperplane orthogonal to e1, at an o↵set a from the origin. The fact
that an optimal partition comes from a separating hyperplane is well known [4], which we
supplement with a symmetrization argument.
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This result motivates abbreviating the mean-squared error for this special case, and
studying its dependence on the cuto↵,

E(n, a) = E({x 2 S : x1  �a}) .

By the reflection symmetry of ⇢ with respect to the first coordinate, it is su�cient to
consider E(n, a) for a � 0. With this simplification, we can study the case of dimension
n = 2 in elementary terms.

Theorem 2.3. In dimension n = 2, the absolute minimum of E(2, a) among a 2 [0, 2) is

attained at a non-zero cuto↵ a.

Proof. Parametrizing the two circles by arc length gives by a direct computation for a =

1 �
p
3
2 the probabilities ⇢({x 2 R2 : x1  �1 +

p
3/2}) = 5/12 and ⇢({x 2 R2 : x1 >

�1 +
p
3/2}) = 7/12. Choosing c1 = (⇣1, 0) and c2 = (⇣2, 0) with ⇣1 = �1 � 3/(5⇡) and

⇣2 = 5/7 + 3/(7⇡) gives for the mean-squared error

E
�
2, 1�

p
3
2

�
 1

4⇡

✓Z 11⇡/6

⇡/6
((�1 + cos t� ⇣1)

2 + sin2 t)dt

+

Z ⇡/6

�⇡/6
((�1 + cos t� ⇣2)

2 + sin2 t)dt+

Z 2⇡

0
((cos t+ 1� ⇣2)

2 + sin2 t)dt

◆

=
45⇡2 � 30⇡ � 9

35⇡2
< 0.987 .

This is less than E(2, 0) = 1, so the absolute minimum is not attained at a = 0. ⇤

To illustrate this result, we have computed the minimizing o↵set numerically and plotted
the resulting partition of the two circles in Figure 1, together with the value of the mean-
squared error associated with a given o↵set in Figure 2.

When the means of the two subsets {x 2 R2 : x1  �a} and {x 2 R2 : x1 > �a} then
Theorem 2.2 reduces identifying the optimal mean-squared error to finding the minimum
of a parameter integral.

In dimension n = 3, the mean-squared error can be computed explicitly.

Theorem 2.4. In dimension n = 3, the absolute minimum of E(3, a) among a 2 [0, 2)
occurs at a = 0.

Proof. We parameterize the two spheres by spherical coordinates and normalize the mea-
sure by surface area. Based on Theorem 2.2, an optimal partition is obtained with a
separating hyperplane orthogonal to the symmetry axis Re1. The associated probabilities
are for �2  a  2: ⇢({x 2 R2 : x1  �a}) = 1

2 � a
4 and ⇢({x 2 R2 : x1 > �a}) = 1

2 + a
4 .

As shown in Theorem 3.4 below, the mean-squared error is obtained by choosing c1 and
c2 to be the means of the two subsets, c1 = (⇣1, 0, 0), c2 = (⇣2, 0, 0) with ⇣1 = �1 � 1

2a,
⇣2 = 1� 1

2a.
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This choice results in

E(3, a) =
1

8⇡

✓Z 2⇡

0

Z ⇡

arccos(1�a)
((�1 + cosu� ⇣1)

2 + sin2 u) sinu dudt

+

Z 2⇡

0

Z arccos(1�a)

0
((�1 + cosu� ⇣2)

2 + sin2 u) sinu dudt

+

Z 2⇡

0

Z ⇡

0
((1 + cosu� ⇣2)

2 + sin2 u) sinu dudt

◆

=
1

4
a2 + 1 .

Thus E(3, a) achieves its absolute minimum at a = 0. ⇤

-2 -1 1 2
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0.5

1.0

Figure 1. An optimal partition of the union of two circles. First set (solid)
on left, second (dash-dotted) on right.
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Figure 2. Value of E(2, a) depending on cuto↵ a 2 [�2, 2], with minimum
achieved at two non-zero values of a.

Even in the absence of explicit computations for E(n, a) in case n > 3, we obtain the
same monotonicity property as for n = 3.

Theorem 2.5. The inequality

@
@aE(n, a) > 0 holds for all a 2 (0, 2) and n > 3. Moreover,

E(n, a) attains a minimum at a = 0, and this minimum is unique.
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Theorems 2.4 and 2.5 give us that the 2-means objective function E of two touching n-
spheres is increasing in the variable a for the cuto↵ for n � 3 in the continuum limit. Thus,
for dimensions n � 3, the optimal 2-means cuto↵ has a value of zero, so both n-spheres
are recovered successfully.

The remainder of the paper is dedicated to the proofs of Theorems 2.2 and 2.5.

3. Proofs of main results on optimal partitions

The first part of this section establishes the proof that an optimal partition is given by a
separating hyperplane that is orthogonal to the symmetry axis. The second part examines
the o↵set of the optimal separating hyperplane.

3.1. Minimizing the mean-squared error by partitions with a separating hy-
perplane. First, we consider a general Borel measure ⇢ with support S in Rn. Given a
partition {S1, S2} of S, and ⇢(Si) > 0, then we call m(Si) =

R
Si
xd⇢(x)/⇢(Si) the mean

associated with the set Si. If Si is clear from the context, we also abbreviate mi = m(Si).
By a direct computation, we have for any Si with ⇢(Si) > 0 and ci 2 Rn

Z

Si

kx� cik2d⇢(x) =
Z

Si

kx�mik2d⇢(x) + kci �mik2⇢(Si) ,

so the minimum is achieved if and only if ci = mi.
Moreover, given c1, c2 2 Rn , then among all the partitions, the partition into Voronoi

regions is optimal, as shown in Lemma 3.2 below.

Definition 3.1. Given c1, c2 2 Rn, we define the Voronoi partition {T1, T2} of a Borel set
S associated with the vectors c1 and c2 by the assignment

T1 = {x 2 S : kc1 � xk  kc2 � xk} , T2 = S \ T1 .

From this definition, we see that this Voronoi partition consists of a closed half-space
and its complement, with a separating hyperplane that is orthogonal to c1�c2 and contains
the midpoint (c1 + c2)/2.

Next, we note that given a partition into sets of non-zero probability, passing to the
Voronoi partition associated with the means can only improve the mean-squared error.
This fact is generally known, see for example [4, Proposition 3.1].

Lemma 3.2. Let S1, S2 be a partition of S with 0 < ⇢(S1) < 1 and associated means m1

and m2, then the Voronoi partition associated with m1,m2 satisfies

E(T1)  E(S1) .

Proof. For any measurable partition S1 and S2 and i 2 {1, 2}, choosing any x 2 Ti gives
by the definition of the Voronoi partition kx�mik  min{kx�m1k, kx�m2k}. Thus, the
partition of S into T1 and T2 gives a mean-squared error that is bounded above by that
associated with S1 and S2. ⇤

In the following, we focus on properties of optimal partitions. These properties are also
known, even in the more general context of k-means, see e.g. [4, Propositions 3.1 and 3.5] or
[6, Section 4.1]. We have decided to include them here to keep the exposition self-contained.
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Lemma 3.3. If {S1, S2} is a minimizing partition for the mean-squared error, then 0 <
m(Si) < 1 for i 2 {1, 2} and m(S1) 6= m(S2).

Proof. Let {S1, S2} be a minimizing partition. We know 0 < ⇢(S1) < 1, otherwise S1 or
S2 have unit measure and we can refine S1 or S2 and improve the mean-squared error.

Moreover, assuming an optimal partition into two sets S1 and S2 of non-zero probability
and equal means m1 = m2, then any partition performs equally well, and we can choose a
subset R1 ⇢ S1 with 0 < ⇢(R1) < 1 such that the associated mean r1 ⌘ m(R1) 6= m1. By
the characterization of the mean, then

R
R1

kx� r1k2d⇢(x) <
R
R1

kx�m1k2d⇢(x). For the
partition formed by R1 and R2 = S \R1, we then get that
Z

R1

kx� r1k2d⇢(x) +
Z

R2

kx�m1k2d⇢(x) <
Z

R1

kx�m1k2d⇢(x) +
Z

R2

kx�m1k2d⇢(x)

= E(S1) .

Now inserting the mean of R2 instead of m1 in the second term on the left shows that

E(R1) < E(S1) .

This contradicts optimality, so m1 = m2 cannot hold for a minimizing partition. ⇤

Theorem 3.4. Let ⇢ be a Borel measure on Rn
with support S. If the partition {S1, S2} is

a minimizer for the mean-squared error, then the sets T1 and T2 in the Voronoi partition

associated with the means {m(Si)}2i=1 coincide with S1 and S2 up to changes involving

subsets of the separating hyperplane or sets whose probability vanishes.

Proof. We know 0 < ⇢(S1) < 1, so both sets S1 and S2 have means under ⇢.
Passing to the Voronoi partition {T1, T2} associated with these means {m(Si)}2i=1 gives

E(T1) = E(S1) .

Using the inequality in the definition of the Voronoi partition, we see that if R1 = T1\S2 is
non-empty, then so is R2 = T2\S1, and kx�mik  min{kx�m1k, kx�m2k} if x 2 Ri ⇢ Ti,
i 2 {1, 2}. Hence, denoting the hyperplane H = {x 2 Rn : kx � m1k = kx � m2k}, on
R1 \ H and R2 \ H strict inequality holds in the norm bounds, and we see that by the
monotonicity of integrals, the equality E(T1) = E(S1) forces both sets to have probability
zero, ⇢(R1 \H) = ⇢(R2 \H) = 0. ⇤

From now on, we specialize to ⇢ = (��1+�1)/2. As a first result for this concrete choice
of ⇢, we show that the mean-squared error does not increase when passing to a suitable
partition into half-spaces that are separated by a hyperplane orthogonal to e1.

To obtain this, we note that choosing a partition that separates into half-spaces with a
separating hyperplane that contains the symmetry axis Re1 is not optimal. Without loss
of generality, we orient this hyperplane so that it is orthogonal to e2.

Lemma 3.5. Let n � 2, ⇢ = 1
2(��1 + �1) be the measure defined on Rn

with support S,
S1 = S \ {x 2 Rn : x2 � 0} and T1 = S \ {x 2 Rn : x1 � 0}, then E(S1) > E(T1).
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Proof. By symmetry, the mean of S1 is m(S1) = ↵e2. Also, we know that the mean is in
the interior of the convex hull of S1, so 0 < ↵ < 1. Again using the symmetry between S1

and S2 as well as ⇢(S1) = ⇢(S2) = 1/2,

E(S1) = 2

Z

S1

kx� ↵e2k2d⇢ = 2

Z

S1

kxk2d⇢� ↵2 =

Z

S
kxk2d⇢� ↵2 .

Next, comparing with the Voronoi partition corresponding to {±e1} and using symmetry
properties, we have

E(S1) = 2(

Z

T1

kx� e1k2 + 1/2)� ↵2 = E(T1) + 1� ↵2 .

From 0 < ↵ < 1, we then have E(S1) > E(T1). ⇤
We are now ready to prove Theorem 2.2, which states that an optimal partition coin-

cides, up to sets of measure zero, with one obtained from a separating hyperplane that is
orthogonal to Re1.

Proof of Theorem 2.2. Given a partition of S by S1 and S2 with means mi = m(Si),
i 2 {1, 2}, we observe the following:

The algebra of Borel sets of the form A1⇥Rn�1 with A1 ⇢ R, is a sub-algebra of the Borel
algebra of Rn. The functions that are measurable with respect to this algebra depend only
on the first coordinate. By the Radon-Nikodym theorem, there exist functions di : R ! R
such that for any A = A1 ⇥ Rn�1,

Z

A
di(x1)�Si(x)d⇢(x) =

Z

A
kx�mik2�Si(x)d⇢(x) .

Next, using Fubini, if µ is the image measure of ⇢ under projection onto the first coordinate,
µ(A1) = ⇢(A1 ⇥ Rn�1), then there is f : R ! [0, 1] such that

Z

A1

d1fdµ =

Z

A1⇥Rn�1
kx�m1k2�S1(x)d⇢(x)

and Z

A1

d2(1� f)dµ =

Z

A1⇥Rn�1
kx�m2k2(1� �S1(x))d⇢(x) .

Next, we observe if f is the function associated with a partition S1 and S2 and R1 = {x 2
R : d1(x)  d2(x)}, then letting g = �R1 gives that

Z

R
d1gdµ+

Z

R
d2(1� g)dµ 

Z

R
d1fdµ+

Z

R
d2(1� f)dµ .

We conclude, setting T 0
1 = S \ (R1 ⇥ Rn�1) and T 0

2 = S \ T 0
1 that

Z
kx�m1k2�T 0

1
d⇢+

Z
kx�m2k2�T 0

2
d⇢  E(S1) .

Next, replacing m1 and m2 by the means m0
i ⌘ m(T 0

i ), i 2 {1, 2}, does not increase the
left-hand side, which shows that

E(T 0
1)  E(S1) .
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Finally, setting {T1, T2} to be the Voronoi partition associated with the means m0
1 and m0

2
implies

E(T1)  E(S1) .

Moreover, if S1 is chosen as a minimizer for the mean-squared error, then necessarily
mi = m0

i, i 2 {1, 2}, otherwise we would have strict inequality between E(T 0
1) and E(S1).

This implies that the means mi are on the symmetry axis Re1. Applying Theorem 3.4
now shows that, up to a set of probability zero, S1 and S2 are separated by a hyperplane.
From the preceding lemma, optimality implies that the hyperplane does not contain the
symmetry axis. If it is not orthogonal to e1, then there is a set A1 ⇢ R such that 0 <
⇢(A1 ⇥ Rn�1 \ S1) < ⇢(A1 ⇥ Rn�1 \ S)/2 and hence there is a subset B1 ⇢ A1 with
µ(B1) > 0 for which f(B1) ⇢ (0, 1/2). This contradicts optimality, because changing from
f to the characteristic function g would lower the mean-squared error. We conclude that
the hyperplane is orthogonal to e1. ⇤

3.2. The optimal o↵set of the separating hyperplane. From here on, we consider
the dependence of the mean-squared error on the o↵set of the separating hyperplane.

We first introduce some additional notation. When the mean-square error is computed,
the measure ⇢ can be replaced by an e↵ective measure on R obtained from projecting onto
the first coordinate.

We first consider the projection of �0. With the normalization constant

An :=

✓Z 1

�1
(1� x2)

n�3
2 dx

◆�1

=
�(n2 )p
⇡�(n�1

2 )
,

the resulting measure µn on Borel sets in [�1, 1] is given by [15]

dµn(x) := An(1� x2)
n�3
2 dx.

The probability that �0 assigns to {x 2 S0 : x1  1 � a}, a 2 [�1, 1], is equal to the
probability of {x 2 R : x  1� a} under µn,

M�
n (a) :=

Z 1�a

�1
dµn(x).

This is the mass of part of the first sphere, obtained by a separating hyperplane between
the two centers of the touching spheres, at a distance of 1 � a from the center of the first
sphere. From the normalization convention, the total mass of the measure obtained from
two spheres is two, so the complementary mass remaining is

M+
n (a) := 2�M�

n (a).

The mean of the first piece is

C�
n (a) :=

R 1�a
�1 xdµn(x)

M�
n (a)

,
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and that of the second piece, relative to C�
n (0) = 0, accordingly

C+
n (a) :=

2�
R 1�a
�1 xdµn(x)

M+
n (a)

.

With the help of Fubini-Tonelli, the integration over Rn giving the mean-squared error can
be reduced to an integral with respect to µn. The contributions to the mean-squared error
are split into 3 terms,

E�(n, a) :=

Z 1�a

�1
(1� x2 + (x� C�

n (a))2)dµn(x),

E±(n, a) :=

Z 1

1�a
(1� x2 + (x� C+

n (a))2)dµn(x),

and

E+(n, a) :=

Z 1

�1
(1� x2 + (2 + x� C+

n (a))2)dµn(x).

In each of these cases the integrand is the squared distance of a point on either of the two
spheres from the respective mean of the partition. The resulting mean-squared error is
obtained by summing the three contributions and dividing by the total mass,

E(n, a) =
1

2

⇥
E�(n, a) + E±(n, a) + E+(n, a)

⇤
.

Lemma 3.6. Let n � 2 and a 2 [0, 2], then E(n, a) is expressed in terms of C�
n , M�

n , C+
n ,

and M+
n according to

E(n, a) = 3� 1

2

�
(C�

n (a))2M�
n (a) + (C+

n (a))2M+
n (a)

�
.

Proof. From normalization, we have the identities
R 1
�1 dµn(x) = 1 and

R 1�a
�1 dµn(x) =

1 �
R 1
1�a dµn(x); from symmetry,

R 1
�1 xdµn(x) = 0 and

R 1�a
�1 xdµn(x) = �

R 1
1�a xdµn(x).

With the expression for C�
n (a) and M�

n (a),

E�(n, a) = M�
n (a)� 2C�

n (a)

Z 1�a

�1
xdµn(x) + (C�

n (a))2M�
n (a)

= M�
n (a)�

�
C�
n (a)

�2
M�

n (a)

The integrals in the other terms are converted similarly, including C+
n (a) and M+

n (a),

E±(n, a) =

Z 1

1�a
dµn(x)� 2C+

n (a)

Z 1

1�a
xdµn(x) + (C+

n (a))2
Z 1

1�a
dµn(x)

= 1�M�
n (a) + 2C+

n (a)C�
n (a)M�

n (a) + (C+
n (a))2(1�M�

n (a))

= 1�M�
n (a) + 2C+

n (a)C�
n (a)M�

n (a) + (C+
n (a))2(M+

n (a)� 1) .
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Because the last term is integrated over the entire sphere, the normalization and sym-
metry yield

E+(n, a) =

Z 1

�1
dµn(x)� 2(2� C+

n (a))

Z 1

�1
xdµn(x) + (2� C+

n (a))2
Z 1

�1
dµn(x)

= 1 + (2� C+
n (a))2

= 5� 4C+
n (a) + (C+

n (a))2.

Adding together E�(n, a), E±(n, a), and E+(n, a) and dividing by 2 gives, after collecting
terms,

E(n, a) =
1

2

⇥
M�

n (a)�
�
C�
n (a)

�2
M�

n (a)

+ 1�M�
n (a) + 2C+

n (a)C�
n (a)M�

n (a) + (C+
n (a))2(M+

n (a)� 1)

+ 5� 4C+
n (a) + (C+

n (a))2
⇤

=
1

2

⇥
6�

�
C�
n (a)

�2
M�

n (a)

+ 2C+
n (a)C�

n (a)M�
n (a) + (C+

n (a))2M+
n (a)

� 4C+
n (a)

⇤
.

We simplify further by converting between M�
n and M+

n ,

E(n, a) =
1

2

⇥
6�

�
C�
n (a)

�2
M�

n (a)

+ 2C+
n (a)

�
2� C+

n (a)M+
n (a)

�
+ (C+

n (a))2M+
n (a)

� 4C+
n (a)

⇤

=
1

2

⇥
6�

�
C�
n (a)

�2
M�

n (a)

� 2(C+
n (a))2M+

n (a) + (C+
n (a))2M+

n (a)
⇤
.

Thus,

E(n, a) = 3� 1

2

�
(C�

n (a))2M�
n (a) + (C+

n (a))2M+
n (a)

�
.

⇤
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Lemma 3.7. The derivative

@
@aE(n, a) is expressed in terms of M�

n ,M+
n and a as

@

@a
E(n, a) =

2An(2a� a2)
n�3
2

(M�
n (a)M+

n (a))2

h
(1� a)(M�

n (a))3

+ (2a� 1)(M�
n (a))2

+
An

n� 1
(2� a)(2a� a2)

n�1
2 (M�

n (a))2

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)

+ 2
An

n� 1
(a� 1)(2a� a2)

n�1
2 M�

n (a)

�
✓

An

n� 1

◆2

(2a� a2)n�1
i
.

Proof. Note that
R 1�a
�1 xdµn(x) = � An

n�1(2a� a2)
n�1
2 by direct integration.

Di↵erentiating term by term yields

@

@a
E(n, a) =� 1

2(M�
n (a))2

h
2

A2
n

n� 1
(1� a)(2a� a2)n�2M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1An(2a� a2)
n�3
2

i

� 1

2(M+
n (a))2

h
2

✓
2 +

An

n� 1
(2a� a2)

n�1
2

◆
An(1� a)(2a� a2)

n�3
2 M+

n (a)

�
✓
2 +

An

n� 1
(2a� a2)

n�1
2

◆2

An(2a� a2)
n�3
2

i

=� An(2a� a2)
n�3
2

2(M�
n (a))2

h
2

An

n� 1
(1� a)(2a� a2)

n�1
2 M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1
i

� An(2a� a2)
n�3
2

2(M+
n (a))2

h
2

✓
2 +

An

n� 1
(2a� a2)

n�1
2

◆
(1� a)M+

n (a)

�
✓
2 +

An

n� 1
(2a� a2)

n�1
2

◆2 i
.
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Combining terms and simplifying gives

@

@a
E(n, a) =

2An(2a� a2)
n�3
2

(M�
n (a)M+

n (a))2

h
� 2

An

n� 1
(1� a)(2a� a2)

n�1
2 M�

n (a)

�
✓

An

n� 1

◆2

(2a� a2)n�1

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)

+ (2a� 1)(M�
n (a))2

+ (1� a)(M�
n (a))3

+
An

n� 1
(2� a)(2a� a2)

n�1
2 (M�

n (a))2
i
.

Finally, rearranging terms gives the claimed expression for @
@aE(n, a).

⇤

To prove that for any fixed n > 3, the function a 7! E(n, a) is increasing for a 2 (0, 2),
it su�ces to show that @E(n, a)/@a is positive for all a 2 (0, 2) and n > 3. This will be the
centerpiece of the proof of Theorem 2.5. To prepare this, we use the simplified expression
for @E(n, a)/@a given in the preceding lemma and find an estimate for M�

n that is obtained
by studying the monotonicity properties of the function n 7! M�

n (a) for a fixed.

Lemma 3.8. The expression M�
n (a) is continuous in both n 2 [3,1) and a 2 [0, 2], and

@
@nM

�
n (a) > 0 for n > 3 and a 2 (0, 1) (and negative for n > 3 and a 2 (1, 2)).

Proof. First, note that by Leibniz integral rule and integrability of x↵ lnx, ↵ > 1, at 0,

@

@n

Z 1�a

�1
(1� x2)

n�3
2 dx =

Z 1�a

�1

@

@n
(1� x2)

n�3
2 dx =

Z 1�a

�1
ln(1� x2)(1� x2)

n�3
2 dx .

Thus, taking the partial derivative with respect to n, we obtain

@

@n
M�

n (a) =

Z 1�a

�1
ln(1� x2)dµn(x)�

Z 1�a

�1
dµn(x)

Z 1

�1
ln(1� x2)dµn(x).

Consequently, we have @
@nM

�
n (0) = @

@nM
�
n (1) = @

@nM
�
n (2) = 0. Next, we show that

@
@nM

�
n (a) > 0 for a 2 (0, 1). To this end, we find critical points of a 7! @

@nM
�
n (a).

By

@

@a

@

@n
M�

n (a) =
(2a� a2)

n�3
2

R 1
�1(1� x2)

n�3
2 dx

Z 1

�1

�
ln(1� x2)� ln(2a� a2)

�
dµn(x),
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we have that @
@a

@
@nM

�
n (a) = 0 if and only if

a 2
(
0, 1±

s

1� exp

✓Z 1

�1
ln(1� x2)dµn(x)

◆
, 2

)
.

Hence, for a 2
✓
0, 1�

r
1� exp

⇣R 1
�1 ln(1� x2)dµn(x)

⌘◆
, we have @

@nM
�
n (a) is increas-

ing in a. To see this, take 0 < ! 
R 1
�1 ln(1 � x2)dµn(x), set !⇤ = 1 �

p
1� exp(!) and

verify @
@a

@
@nM

�
n (!⇤) > 0. Similarly, for a 2

✓
1�

r
1� exp

⇣R 1
�1 ln(1� x2)dµn(x)

⌘
, 1

◆
,

we have @
@nM

�
n (a) is decreasing in a. Therefore, by @

@nM
�
n (0) = @

@nM
�
n (1) = 0, we see

@
@nM

�
n (a) > 0 for all a 2 (0, 1). Repeating this for a 2 [1, 2] gives @

@nM
�
n (a) < 0 for all

a 2 (1, 2). Thus we have shown M�
n (a) is increasing in n > 3 for a 2 (0, 1) (and decreasing

in n > 3 for a 2 (1, 2)). ⇤
Corollary 3.1. For a 2 [0, 1], we then have the inequalities M�

3 (a)  M�
n (a)  1 for all

n > 3.

Lemma 3.9. For all n � 3 and for all a 2 [1, 2), M�
n (a) � An

n�1

�
2a� a2

�n�1
2
.

Proof. We make the change of variables y = 1+ x with dy = dx, in M�
n (a) =

R 1�a
�1 An(1�

x2)
n�3
2 dx to obtain M�

n (a) =
R 2�a
0 An(2y � y2)

n�3
2 dy. Repeating integration by parts on

parts (2� y)
n�3
2 and y

n�3
2 dy yields the formula

Z 2�a

0
An (2� y)

n�3
2 y

n�3
2 dy = 2

An

n� 1

1X

k=0

0

@
kY

j=0

n� 2j � 1

n+ 2j � 1

1

A (2a� a2)
n�(2k+3)

2 (2� a)2k+1.

By

���

0

@
KY

j=0

n� 2j � 1

n+ 2j � 1

1

A
��� =

���(�1)K

0

@
KY

j=0

 
1� n� 1

j + 1
2(n� 1)

!1

A
���


���

0

@
KY

j=0

exp

 
� n� 1

j + 1
2(n� 1)

!1

A
���

=
��� exp

0

@�
KX

j=0

n� 1

j + 1
2(n� 1)

1

A
���

! 0

as K ! 1, we see the alternating series converges. Moreover, since the first term is
always positive, the sum converges to a function always greater than zero for a 2 (1, 2) (by
property of alternating series). Lastly, we see that for each odd n � 3, there are exactly
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n�1
2 positive terms and for even n � 4, there are n�2

2 positive terms prior to a convergent
alternating series (which starts at a positive term).
Consequently,

M�
n (a) � 2

An

n� 1
(2a� a2)

n�3
2 (2� a)

=
2

a

An

n� 1
(2a� a2)

n�1
2 ,

which is greater than or equal to An
n�1(2a � a2)

n�1
2 (by maximizing the denominator for

a 2 [1, 2)). ⇤

Lemma 3.9 gives estimates on M�
n (a) that we combined with the expression for E(n, a)

and @E(n, a)/@a from Lemmas 3.6 and 3.7 to show the main inequality @
@aE(n, a) > 0 for

a 2 [1, 2) in the proof of Theorem 2.5.

Proof of Theorem 2.5. We recall the simplified expressions

E(n, a) = 3� 1

2

�
(C�

n (a))2M�
n (a) + (C+

n (a))2M+
n (a)

�

and

@

@a
E(n, a) =

2An(2a� a2)
n�3
2

(M�
n (a)M+

n (a))2

h
(1� a)(M�

n (a))3

+ (2a� 1)(M�
n (a))2

+
An

n� 1
(2� a)(2a� a2)

n�1
2 (M�

n (a))2

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)

+ 2
An

n� 1
(a� 1)(2a� a2)

n�1
2 M�

n (a)

�
✓

An

n� 1

◆2

(2a� a2)n�1
i
.

To show the desired inequality, we need only show that the factor in brackets is positive:

L(n, a) =
�
(1� a)M�

n (a) + 2a� 1
� �

M�
n (a)

�2

+

✓
An

n� 1
(2a� a2)

n�1
2 M�

n (a)� 2
An

n� 1
(1� a)(2a� a2)

n�1
2

◆
M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)�

✓
An

n� 1

◆2

(2a� a2)n�1 > 0

for a 2 (0, 2) and n > 3.
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We distinguish two cases, depending on the value of a.

Case I: If a 2 (0, 1), by Corollary 3.1, we replace M�
n (a) with M�

3 (a) = 1
2(2� a) for all

positive terms. That is,

L(n, a) �
�
(1� a)M�

n (a) + 2a� 1
� �

M�
n (a)

�2

+
An

n� 1
(2a� a2)

n�1
2

✓
1

2
(2� a)

◆2

� 2
An

n� 1
(1� a)(2a� a2)

n�1
2 M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1

✓
1

2
(2� a)

◆
�
✓

An

n� 1

◆2

(2a� a2)n�1.

Moreover, we see (1� a)M�
n (a) + 2a� 1 � (1� a)M�

3 (a) + 2a� 1 = a/2 + a2/2 � 0.
Hence, the first term can be estimated as well by eliminating M�

n (a), resulting in the
lower bound

L(n, a) �
✓
a

2
+

a2

2

◆✓
1

2
(2� a)

◆2

+
An

n� 1
(2a� a2)

n�1
2

✓
1

2
(2� a)

◆2

� 2
An

n� 1
(1� a)(2a� a2)

n�1
2 M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1

✓
1

2
(2� a)

◆

�
✓

An

n� 1

◆2

(2a� a2)n�1.

By Lemma 3.8, we also have that M�
n (a)  M�

n (0) = 1.
Using this estimate for the remaining negative factor multiplying M�

n gives a further lower
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bound from which all quantities other than a have been eliminated,

L(n, a) �1

8
(1 + a)a(2� a)2

+
An

n� 1
(2a� a2)

n�1
2

✓
1

2
(2� a)

◆2

� 2
An

n� 1
(1� a)(2a� a2)

n�1
2

+

✓
An

n� 1

◆2

(2a� a2)n�1

✓
1

2
(2� a)

◆

�
✓

An

n� 1

◆2

(2a� a2)n�1

=
1

8
(1 + a)a(2� a)2

+
1

8

An

n� 1
(2a4 � 8a3 + 24a2 � 16a)(2a� a2)

n�1
2

� 1

2

✓
An

n� 1

◆2

a(2a� a2)n�1.

Finally, by the second and third term decreasing in a 2 (0, 1), we have

L(n, a) � 1

8
(1 + a)a(2� a)2 +

1

4

An

n� 1
� 1

2

✓
An

n� 1

◆2

=
1

8

 
(1 + a)a(2� a)2 +

2An

n� 1
�
✓

2An

n� 1

◆2
!

� 1

8
(1 + a)a(2� a)2 > 0.

Consequently for a 2 (0, 1], @
@aE(n, a) > 0.

Case II: If a 2 [1, 2), we re-examine L(n, a) and apply Lemma 3.9.

By the inequality

An

n� 1
(2a� a2)

n�1
2 �

✓
An

n� 1

◆2

(2a� a2)n�1 ,
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we have

L(n, a) =
�
(1� a)M�

n (a) + 2a� 1
� �

M�
n (a)

�2

+

✓
An

n� 1
(2a� a2)

n�1
2 M�

n (a)� 2
An

n� 1
(1� a)(2a� a2)

n�1
2

◆
M�

n (a)

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)�

✓
An

n� 1

◆2

(2a� a2)n�1

�
�
(1� a)M�

n (a) + 2a� 1
� �

M�
n (a)

�2

+

✓
An

n� 1

◆2

(2� a)(2a� a2)n�1
�
M�

n (a)
�2

+

✓
An

n� 1

◆2

(2a� a2)n�1M�
n (a)

+ 2

✓
An

n� 1

◆2

(a� 1)(2a� a2)n�1M�
n (a)�

✓
An

n� 1

◆2

(2a� a2)n�1

=
�
(1� a)M�

n (a) + 2a� 1
� �

M�
n (a)

�2

+

✓
An

n� 1

◆2

(2a)


M�

n (a)� 1

2

�
M�

n (a)
�2
�
(2a� a2)n�1

+

✓
An

n� 1

◆2 h
2
�
M�

n (a)
�2 �M�

n (a)� 1
i
(2a� a2)n�1.

Using Lemma 3.9 in the last inequality and recalling that if a 2 (1, 2), then M�
n (a) <

M�
n (1) = 1/2, we further estimate

(1� a)M�
n (a) + 2a� 1 >

3

2
a� 1

2
> 0

which gives

L(n, a) �
�
(1� a)M�

n (a) + 2a� 1
�✓ An

n� 1

◆2

(2a� a2)n�1

+

✓
An

n� 1

◆2

(2a)


M�

n (a)� 1

2

�
M�

n (a)
�2
�
(2a� a2)n�1

+

✓
An

n� 1

◆2 h
2
�
M�

n (a)
�2 �M�

n (a)� 1
i
(2a� a2)n�1.
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Thus, combining terms, we obtain a lower bound

L(n, a) �
✓

An

n� 1

◆2 h
(1� a)M�

n (a) + 2a� 1

+ 2aM�
n (a)� a

�
M�

n (a)
�2

+ 2
�
M�

n (a)
�2 �M�

n (a)� 1
i
(2a� a2)n�1

=

✓
An

n� 1

◆2 h
aM�

n (a) + 2(a� 1) + (2� a)
�
M�

n (a)
�2i

(2a� a2)n�1,

consisting of strictly positive terms if 1 < a < 2.
Consequently, we see for n > 3 and a 2 (1, 2),

@

@a
E(n, a) > 0

We conclude that for a 2 (0, 2) and n > 3, E(n, a) is strictly increasing, thus attaining
its unique minimum at a = 0. ⇤
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