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Abstract—This paper describes Distributed MASON, a dis-
tributed version of the MASON agent-based simulation tool.
Distributed MASON is architected to take advantage of well
known principles from Parallel and Discrete Event Simulation,
such as the use of Logical Processes (LP) as a method for
obtaining scalable and high performing simulation systems. We
first explain data management and sharing between LPs and
describe our approach to load balancing. We then present both a
local greedy approach and a global hierarchical approach. Finally,
we present the results of our implementation of Distributed
MASON on an instance in the Amazon Cloud, using several
standard multi-agent models. The results indicate that our design
is highly scalable and achieves our expected levels of speed-up.

I. INTRODUCTION

MASON is an open source agent-based modeling (or ABM)

simulation toolkit written in Java, and has enjoyed significant

popularity in the agent-based modeling community. Though it

has extensions for certain areas (such as geographic information

systems, social networks, or rigid body kinematics), MASON

is meant to be very general and domain-inspecific: it has been

used significantly in agent-based models ranging from the

social sciences to swarm robotics to population biology.

MASON was designed with efficiency in mind, and works

well with large models. For example MASON was recently

used in a 10-million-agent model of permafrost thawing and

its consequences on Canadian communities [1]. MASON is

also designed to be highly flexible and capable of being used

in unusual circumstances. Along these lines, we have used

MASON running in real time on-board cooperative soccer-

playing robots during the RoboCup soccer competition [2].

Introduced in 2003, MASON introduced many then-unique

features (for the ABM community). These included multi-

threaded models, total separation of model and visualization,

fully self-contained models, model serialization, 3D visual-

ization, limited guarantees of replicability, and a small, clean

model core which was orthogonal and consistent. Such capabil-

ities are prosaic by the standards of the general simulation field,

but in the ABM community they were entirely novel. MASON

has since had a significant impact on the ABM modeling

community going forward.
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In 2013 the National Science Foundation sponsored a

workshop bringing together MASON’s developers and the

user community. This resulted in nine recommendations to

improve MASON and to take it in important future directions.

Foremost among these was the recommendation to add parallel

and distributed capabilities for performance and scalability. This

paper describes our efforts to achieve this specific objective.

Our approach builds upon well-known principles of Parallel

Discrete Event Simulation (PDES) for distributed multi-agent

systems [3]. We aim to produce a high performing and easy to

use version of MASON, running in an enterprise or cloud envi-

ronment, that can be used by researchers across a broad section

of the scientific, engineering, GIS, and computational social

science communities. Our working name for the distributed

extensions to MASON is simply Distributed MASON.

The paper proceeds as follows: Section II provides some

background and discusses related work in Agent Based Model-

ing applications and issues in scaling up multi-agent simulation

systems. Section III describes how we are designing Distributed

MASON and gives an example of an implementation of a GIS

within the Distributed MASON framework. Section IV details

our approach to data management, followed by our approach

to load balancing in Section V. Section VI shows the results

of performance evaluation running on Amazon Web Services

(AWS), and Section VII offers some final observations.

II. BACKGROUND AND RELATED WORK

A. Agent-based Modeling Toolkits

In an agent-based simulation, multiple agents manipulate

the world in response to information received about the world.

To do this, agents or agent events are repeatedly placed on a

schedule, then stepped either in parallel or in randomly shuffled

order. It is not required for an agent to be embodied in the

world, but this is often the case: for example swarms of robot

agents collaborating to build a house, or agents as migrating

spice caravans eventually forming the historic silk road. These

concepts are not special to ABMs: indeed video games had been

doing similar things for decades prior; and robotics simulation

toolkits have often employed the same general approach, as

have simulations hosted on cellular automata.



Many of the traditions and conventions of agent-based

modeling can be traced to the seminal system SWARM [4].

SWARM emphasized simple single-process, single-thread

models, often with agents embedded in a 2D array physical

environment (a “gridworld”). There have been many SWARM-

like toolkits since then, the most well known being StarLogo [5],

NetLogo [6], Ascape [7], and early versions of Repast [8].

These toolkits tied the model to visualization and emphasized

ease of model development over efficiency.

MASON was among the first ABM toolkits aimed at

more significant model development efforts, emphasizing

large, complex simulations that might be run many times.

MASON emphasized efficiency, multithreading, replicable

results, model/visualization separation and serialization, a wide

variety of visualization facilities, and ease of customization and

extension. Later toolkits (such as newer versions of Repast)

have since continued in this vein. However these toolkits

(including MASON) have largely been confined to a single

process and memory space.

As hardware has gotten cheaper, ABM models have been able

to become progressively larger and more complex, giving rise to

a new trend in ABM toolkits which provide high performance

distributed simulation, such as FLAME [9], Repast HPC [10],

and D-MASON [11]. One ABM direction of note has been

the creation of models embedded in geographic information

systems (or GIS). GIS models are often complex and very

large, and so provide both challenges and good motivation

for distributed simulation. MASON has a full-featured GIS

simulation facility called GeoMASON [12].

B. Load Balancing and Data Partitioning in Distributed
Simulation Systems

Our focus in this project is to speed up the execution of a

MASON simulation by employing techniques from Parallel

and Distributed Simulation that were first proposed in the

1970s. The basic idea is to partition the simulation model to

be able to run concurrently on multiple processors. Within

this context load balancing has long been recognized as a

critical technique for improving the performance of distributed

simulation systems [13], [14].

Other work involves developing algorithms for finely tuning

process migration strategies. For instance, a load balancing

scheme aimed at a High Level Archeture (HLA) uses estimates

of time delay and time gain factors to more precisely re-

distribute load [15]. The work in [16] describes a method to

parallelize a large-scale epidemiologic ABM developed using

the Repast HPC toolkit. The authors show that by using a 128

node cluster they can achieve speedups over around 1300%.

In terms of distributed MAS simulation, a variety of

approaches have been proposed, such as a combination of

both an agent-based and a discrete-event simulation model

[17]. There has been a growing interest in the integration of

GIS and MAS (e.g. [18]–[20] and now several open source

MAS toolkits now offer support the integration of geographical

information into their simulations (e.g. NetLogo [6], GAMA

[21], Repast [8], and MASON (see [22] for a review). This

allows researchers not only to link their models to actual

geographical locations but also to simulate various processes

of a diverse group of objects that are impacted by space

and observe the resulting spatial patterns over time. Such

applications range from the studying past civilizations; to the

spread of diseases; to analysis of crime, riots and conflict

[23]–[27].

III. DISTRIBUTED MASON ARCHITECTURE

The primary motivation to parallelize and distribute MASON

is to provide simulation support for massively scaled simulation

systems involving upwards of tens or even hundreds of millions

of agents. One of the goals is to take advantage of relatively

inexpensive compute clusters now commonly available to

researchers through cloud services such as AWS and Azure,

or at the University or Laboratory level. Here we provide a

description of the MASON architecture and the challenges of

transforming it to a PDES environment.

A. MASON Design

The single threaded version of MASON was developed

using a Model-View-Controller (MVC) architecture. MASON

is actually divided into two parts, a visualization portion and

a model portion, and the MVC architecture allows complete

separation between these two portions. The model portion is

entirely encapsulated in a single top-level object which has no

back-pointers to the visualization.

The heart of the MASON model portion is a real-valued time

schedule. The schedule allows agents to register themselves to

be called at some time in the future. Models also typically hold

one of more fields to represent some form of space. Each field is

a data structure that logically relates objects and values required

by the modeler. MASON provides built-in field structures in

the form of square or hex grids, continuous space, graphs, and

multigraphs. Fields can be 2D or 3D, bounded, unbounded, or

toroidal, or entirely user-defined. Finally, MASON models are

fully serializable and self-contained, and can be run side-by-

side in multiple threads or in the same thread.

The visualization portion typically contains a console which

enables the user to control the simulation schedule and various

global parameters, plus one or more windows (called displays)

which allow the user to view and manipulate data field

representations. To do this, displays call upon one or more field
portrayals which can visualize, inspect, and manipulate each

field representation in a wide variety of ways: these in turn

call upon simple portrayals which do the same for individual

objects or data stored in the fields.

B. From MASON to Distributed MASON

We are presently testing Distributed MASON on three mod-

els drawn from MASON’s standard model archive: HeatBugs,

Flockers, and CampusWorld. These three models are spatially

organized and so are good targets for distribution, and they

vary significantly from one another in important and useful

aspects. We describe them here.



Fig. 1. MASON’s HeatBugs, Flockers, and CampusWorld models.

a) HeatBugs: Introduced in the SWARM toolkit, this

model is effectively the “Hello World” model of agent-based

modeling. In HeatBugs, an N×N toroidal grid environment is

populated by some M bugs. Each grid square can hold zero or

more bugs and has a current heat value. Bugs heat up the grid

square they are on, and this heat both evaporates and diffuses

to neighboring squares. The bugs do not like it to be too cold

or too hot, and wander to neighboring squares to hill-climb to

their preferred temperature.

MASON’s non-distributed HeatBugs model is implemented

using a 2D array of doubles (the heat) and an overlaid 2D

toroidal sparse grid of objects (the bugs). A sparse grid uses a

hash table to relate objects to locations rather than storing them

in a 2D array. The bugs are also agents on the schedule, and

an additional agent on the schedule (the diffuser) is responsible

for globally evaporating and diffusing heat. Each bug must be

able to read the heat values of neighboring cells.

b) Flockers: This is an implementation of the classic

Boids flocking model [28]. Here, some B flocking robots (the

“boids”) move about on a continuous 2D toroidal space C×C
in size. An additional D � B randomly distributed boids stay

“dead” (immobile) and serve as obstacles for the others. Each

boid maintains statistics on nearby boids (such as their locations

and headings) and uses these statistics to build five directional

vectors which represent behaviors such as avoidance of others,

flock cohesion, and so on, then moves along the a weighted

sum of the vectors.

MASON’s non-distributed Flockers model is done in a 2D

continuous space. MASON’s continuous field places each

object into a sparse grid (discretizing the continuous space) and

additionally associates them with a floating-valued location.

The boids are stored in this space and are also placed on the

schedule. Each boid must be able to perform neighborhood

lookups for nearby boids some fixed distance from him.

c) CampusWorld: This model uses MASON’s GeoMA-

SON toolkit to define an (effectively) 2D continuous space

populated by buildings, roads, sidewalks, and students. Build-

ings and roads are arbitrary 2D shapes, the sidewalk network

Fig. 2. Illustration of a field and its partition.

consists of paths in the form of sequences of straight lines

(called linestrings in GIS parlance), and students are point

objects. The students move randomly but are constrained to

move along pathways only. Students do not collide with one

another. MASON’s CampusWorld map is a GIS representation

of the George Mason University campus.

GeoMASON uses a combination of MASON data structures

(such as 2D continuous space) and special geometric data

structures provided by the JTS Topology Suite toolkit [29].

Unlike the Flockers and HeatBugs model, many objects in the

CampusWorld model (notably sidewalks and roads) may span

the entire environment. Students must be able to identify the

sidewalk nearest to them so as to follow along it.

IV. DISTRIBUTED DATA MANAGEMENT

In Distributed MASON, the field is partitioned into several

axis-aligned (hyper)rectangular regions, as shown in Figure 2.

Following standard PDES practice we partition the network in

a set of concurrently executing Logical Processes (LPs). Each

LP holds one region and processes all the agents located in

that region.



Fig. 3. Illustration of the Halo and Shared Area of a partition.

Message exchange between LPs can be implemented either

with a centralized message broker or in a peer-to-peer fashion.

In our preliminary experiments with D-MASON, which uses

the former approach, the centralized message broker quickly

becomes a performance bottleneck as the number LPs or

messages increases. Hence in Distributed MASON we use

the peer-to-peer approach and try to use the communication

between neighbors whenever possible for better scalability. We

use the OpenMPI toolkit [30] to support many of the distributed

features and algorithms in our implementation.

For most of the time, an agent is assumed to read only

nearby data (defined as its Area of Interest (AOI)), and modify

only data at its location. The system supports the rare cases

when an agent needs to access and modify data in a remote

location, but with a significant performance penalty.

The simulation and synchronization between LPs is done

in a time-stepped fashion. For each time step, each LP will

process the agents in its corresponding region that are scheduled

for that time step. All the message exchanges, including

agent migration, halo exchange, and remote access, will

performed once the processing of the agents is complete. The

synchronization between LPs is achieved at the end of each

time step through OpenMPI API calls. Usually synchronization

is achieved implicitly by the OpenMPI neighbor collectives in a

decentralized way, but in certain cases a global synchronization

using OpenMPI global collectives or barrier calls is also used.

A. Halo Exchange

To support rapid access of data stored within an AOI, each

LP not only stores the data in its own region, but also maintains

a cache of the data in its surrounding neighbors. The cached

area is called the Halo Area. Part of the LP’s own data will

also be cached by its neighbor LPs, and that part is called the

Shared Area. The sizes of these two areas are defined by AOI.

Figure 3 provides an example of the Halo and Shared Area

of a partition. Algorithm 1 shows the overall Halo Exchange

algorithm.

After each simulation step, each LP will pull the data from

its neighbors into its Halo Area and at the same time send the

Fig. 4. Illustration of Halo Exchange.

data in the shared area to its corresponding neighbors. This

process is called Halo Exchange and is shown in Figure 4.

Our implementation supports both grids and continuous fields

and both primitive value and object types. Primitive type data

can be transferred between LPs directly. For objects, serial-

izations and de-serializations are required for communication

between LPs. Serialization is supported in our system with

either the default Java serialization routines or with (faster)

custom user-defined routines which potentially do not require

building an object graph.

Algorithm 1 Halo Exchange

� Each LP initializes first
1: if not initialized then
2: myPart ← getPartition(self)

3: myHalo ← expand(myPart, aoi)

4: for each nid ∈ findNeighbors(self) do
5: neighborPart ← getPartition(nid)

6: neighborHalo ← expand(neighborPart, aoi)

7: sendRegions[nid] ← myPart ∩ neighborHalo

8: recvRegions[nid] ← myHalo ∩ neighborPart

9: initialized ← true

� Halo exchange
10: sendBuf, recvBuf ← initBuffers()

11: for each nid ∈ findNeighbors(self) do
12: sendBuf[nid] ← packRegions(sendRegions[nid])

13: MPINeighborAllToAll(sendBuf, recvBuf)

14: for each nid ∈ findNeighbors(self) do
15: unpackRegions(recvBuf[nid], sendRegions[nid])

B. Remote Access

Access to data outside an agent’s AOI is supported in our

system via Remote Procedure Calls (RPCs) between LPs. Read

access to the field data is provided in a synchronous fashion,

meaning that the caller will get the value once the RPC call

returns. One pitfall here is that the order of the read access

from other LPs and modifications from its own LP is undefined,

which may potentially cause a inconsistent view of the field.



Fig. 5. Options for local load balancing.

To avoid such an inconsistency, each LP caches the state of

the field in the previous step to serve the read access from

other LPs so that the modifications at the current step will not

interfere with that access. On the other hand, write access to the

field and access to agent states is supported in a asynchronous

way. Essentially each LP has a mailbox. When an agent tries

to modify the state of the field or another agent stored on a

remote LP, such modification request will be encapsulated into

a message and sent to the target LP. All the messages will get

delivered by the end of the current round and will be processed

at the start of next round by designated agent on each LP.

C. GIS Data

As one of major areas where MASON is being used (social

and geographical simulations) often involves a large number

of geometric objects in the model. In most cases, these objects

are static and read-only, but may span many LPs, e.g., rivers,

country boundaries, roads. In Distributed MASON, instead of

partitioning static and immutable objects into different LPs,

each LP will have a complete copy of all the static geometric

objects in the space so that the extra communication can be

eliminated at the cost of slightly more memory usage. For

mutable GIS data, if the object can be abstracted into a point-

object, it can be easily handled in the same way as other

regular point-objects (agents, field cells, etc.) in MASON. For

mutable volumetric GIS data, e.g., a polygon with some mutable

attributes, such object will be stored in one master LP while

other LPs covered by it only store a reference to the object.

All the read and write requests to the object will be handled in

the same way as the aforementioned remote access mechanism,

despite that the object may be in the neighborhood.

V. LOAD BALANCING

A balanced workload among all processors is critical to

simulation performance. In this section, we will introduce the

load balancing strategies used in Distributed MASON.

Our goal for load balancing is to distribute the workload

among LPs such that the runtime of each step for all LPs

is roughly the same, so that faster LPs do not waste time

waiting for slower LPs to complete. Determining an optimal

load-balancing is a well-known NP-Complete problem. In

Fig. 6. Quadtree partitioning.

Distributed MASON we have implemented several heuristics

that work at different levels and with different effectiveness and

overhead. The goal at the lower levels is to balance the load

frequently with minimum overhead, while the goal at higher

levels is to distribute the workload as evenly as possible.

A. Local

In local load-balancing, each node tries to balance the

workload locally with its neighbors. To do this, each node first

measures its runtime for every step. When a node performs

load-balancing, it collects the runtimes from its neighbors, and

based on the runtimes, it chooses the neighbor and action

(either expand or shrink its region) such that the variance of

runtimes among the node and all its neighbors is minimized.

When making load-balancing decisions, we assume the runtime

is linear in the size of the region, i.e., if we shrink the region

by 30%, its runtime is expected to become 30% lower as well.

The overall procedure is shown in Algorithm 2.

Each partition adjustment can only shift the border by at

most the AOI to avoid additional data exchange between nodes

since each node already has part of its neighbors’ data in

its halo area. This restriction may seem to slow down the

load balancing but we argue that this is actually preferable

because, by limiting the adjustment and avoiding additional data

exchange, the overhead is minimized and therefore the local

load balancing can be done more frequently, better adapting

to the change of workload.

Despite its simplicity and low overhead, there are limitations

to local load-balancing. First, to avoid expensive coordination,

we must constrain things such that a LP and its neighbors

may not perform load-balancing at the same time. To do this,

we implemented a graph coloring algorithm in the system so

that at each step, only nodes with a designated color may

balance their loads with neighbors. Second, since each region

is (hyper)rectangular and each LP can only hold one region,

the boundary shift can only be done when both the source

and the destination are aligned. This is shown in Figure IV-C,

where the blue regions correspond to viable load-balancing

actions while the red region is not viable. This can result in a

local optimum where loads are poorly balanced.



Algorithm 2 Local Load Balancing

1: runtimes ← exchangeNeighborRuntime()

2: myPart ← getPartition(self)

3: myAction ← None

4: if isMyTurn() then

� For each dimension, among the neighbors
that are aligned with me, find the one

whose runtime differs from mine the most
5: target ← 0

6: maxDiff ← 0

7: for d ← 0 to getNumDimensions() do
8: neighbors ← findNeighborsInDimension(self, d)

9: for each nid ∈ neighbors do
10: if isAligned(myPart, getPartition(nid), d) then
11: delta ← aoi[d] / getSize(myPart, d) ×
12: (get(runtimes, self) − get(runtimes, nid))

13: if |delta|> maxDiff then
14: target ← nid

15: maxDiff ← |delta|
� Generate load balancing action between self and target

16: myAction ← generateAction(target)

� Exchange the actions with all other
nodes and apply all the actions

17: actions ← MPIAllGather(myAction)

18: for each action ∈ actions do
19: apply(action)

� Synchronize the data in the Halo area
20: HaloExchange()

B. Global

As mentioned before, local load-balancing approach can get

stuck in local optima and so we need to periodically redistribute

the workload globally. Currently global load-balancing is

implemented in the centralized fashion. One LP collects the

runtime information and regional data from all the LPs. Various

load-balancing heuristics can then be executed by that LP to

calculate a new near-optimal partitioning scheme. Finally the

new scheme and the corresponding data will be distributed

back to all other LPs and the simulation will continue.

The large amount of data transfer in this process may seem

to incur a high overhead, but this can work well in practice for

two reasons. First, most simulations using MASON come with

a GUI and associated visualizations, which already require

constant collection of data to one node. Second, many effective

load-balancing algorithms, if implemented in a distributed way,

may require significant coordinations and many small message

exchanges among all the nodes, which is far less efficient than

the few bulk transmissions in our approach.

C. Hierarchical

The local and global load balancing algorithms discussed so

far are at two ends of the overhead vs. effectiveness spectrum. In

practice, it is preferable to have a tunable algorithm capable of

Algorithm 3 Hierarchical Load Balancing

Input: level

1: group ← getGroup(level)

2: myNode ← getNode()

� Every node in the group sends its
runtime and data to the group master

3: runtimes ← collectRuntimesTo(getMaster(group))

4: data ← collectDataTo(getMaster(group))

� The group master calculates the new centroid
5: if isGroupMaster(myNode, group) then
6: centroid ← initEmptyCentroid()
7: for each node ∈ getLeaves(myNode) do
8: centroid ← centroid + center(node) ×
9: get(runtimes, node) / sum(runtimes)

� Every node updates its
partition based on the new center

10: newCentroids ← MPIAllGather(centroid)

11: for each newCentroid ∈ newCentroids do
12: moveCenter(newCentroid)

� Distribute the data to all nodes
based on the new partition

13: distributeFrom(getMaster(group, data))

� Synchronize
14: HaloExchange()

balancing the two. So far we have assumed the entire field can

be arbitrarily partitioned into axis-aligned (hyper)rectangular

regions. We can constrain the unlimited partitioning flexibility

by making use of a tree structure. By using data structures

such as such as K-D trees or quadtrees, load balancing can be

done quite effectively in a hierarchical fashion.

Consider quadtree-based partitioning as shown in Fig-

ure IV-C. Every node in a quadtree is responsible for a

rectangular region. Nonleaf nodes have four children, and

partition their region into four subregions, each assigned to

one child. For load balancing, each region is only in charge of

adjusting the partition between its four subregions.

We have implemented a quadtree-based scheme by assuming

that the tree will always be full. Therefore we only need to

balance the load within the a given ply, instead of between two

plies. Since one region corresponds to one LP in our system,

the assumption of a full tree imposes restrictions on the number

of LPs that can be used by our system. For example, in case

of a quadtree, the number of LPs must be a power of four. To

alleviate this issue, we allow nodes at the second last level

to either have four leaves (like an ordinary quadtree) or two

leaves (like a K-D tree) so that the system can fully use powers

of 2 LPs.

Like the local load balancing algorithm, the hierarchical

algorithm performs load balancing based on the runtime of the

LP. The node will first collect the runtime of its children. Then

it will calculate the centroid of the children’s centers using
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Fig. 7. Simulation rate with different numbers of processors and number of
agents for the DHeatBugs model.
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Fig. 8. Simulation rate with different number of processors and field sizes for
the DHeatBugs model.

their runtimes as weights. The result will be used as the new

origin for the node’s partitions. The runtime of this node will

be set to the maximum of its children’s runtimes. To apply

the changes, the node will first collect all the data from its

children and redistribute the data based on the new partition

scheme.

Balancing higher-level (that is, more global) plies in the

tree will be much more expensive, so they are performed at a

correspondingly lower frequency than lower levels. The exact

frequencies of load balancing at different levels is determined

dynamically by comparing the estimated performance gain after

balancing and the overhead it may incur. The entire procedure,

shown in Algorithm 3, describes the process of hierarchical

load balancing.

VI. EVALUATION

In this section, we evaluate the performance of Distributed

MASON using Amazon Web Services. Since our system uses

time-stepped synchronization and therefore is more tightly

coupled, here we focus evaluation on a more parallelized

scenario where all the EC2 instances used are the same type and

0 8 16 24 32 40 48 56 64
Number of Logical Processors

0

50

100

150

S
im

ul
at
e
R
at
e
(s
te
ps

p
er

se
co
nd

)

D = 0.005 D = 0.010 D = 0.015 D = 0.020

Fig. 9. Simulation rate with various number of processors and agent densities
for the DFlockers model.
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Fig. 10. Simulation rate with various number of processors for the DFlockers
model in D-MASON and Distributed MASON.

in the same network. The EC2 instance used in our experiments

is the c5.large type (2 vCPUs and 4GB RAM) running 64-bit

Ubuntu 16.04 LTS. OpenJDK 1.8.0 and GCC 5.4.0 are used

to compile the system, OpenMPI 3.1.0, and its Java bindings.

Each EC2 instance holds only one MPI slot and corresponds

to one logical processor. All the results are obtained through

10 repeated experiments with different random seeds and 95%

confidence intervals are provided in all applicable figures, even

though some of them are too small to be visible. The metric of

interest is the average simulation rate, defined as the number of

steps executed per second. Unless specified otherwise, the field

in partitioned uniformly and we calculate the average simulation

rate using the time consumed by running the simulation for

2000 steps.

The test problems are distributed versions of the three previ-

ously described demo applications implemented in Distributed

MASON, called DHeatBugs, DFlockers, and DCampusWorld
respectively. We first provide the scalability result for these

problems under different workload configurations, and then

show the effectiveness of two load balancer implementations:

Greedy and Hierarchical, when running in DHeatBugs.
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Fig. 11. Simulation rate with various number of processors for the DCampus-
World model.

A. Scalability

We first evaluate the scalability of the DHeatBugs application

implemented in Distributed MASON under different numbers

of agents and field sizes, and the results are shown in Figures 7

and 8, respectively. In both Figures the X-axis represents the

number of logical processors used for the simulation and the

Y-axis represents the resulting simulation rate.

In Figure 7, we fix the field size to 6400×6400 and vary the

number of agents from 3200 to 128000. We can see from the

Figure that the simulation rate increases nearly linearly with

the number of processors in all three settings. In Figure 8, we

fix the number of agents to be 3200 while using various field

sizes from 1600×1600 to 6400×6400. Under relatively heavy

workload (6400×6400 field size), the simulation rate scales

almost linearly. As the workload intensity becomes lighter,

the synchronization and network communication overhead

introduced by the distributed facilities becomes more and more

dominant, counterweighting the performance advantage brought

by more processors. Therefore the simulation rate increases

sub-linearly in cases of 3200×3200 and 1600×1600 field sizes.

We now evaluate the scalability of the DFlockers application.

In this experiment, we choose a fixed field size (1000×1000)

and various numbers of agents (5000 to 20000) to obtain the

result for various agent densities D from 0.005 to 0.02 agents

per unit square. The result is shown in Figure 9. Similar to the

result of DHeatBugs and as would be expected, Distributed

MASON exhibits sublinear scalability when the workload

intensity is quite low (e.g., D = 0.005 and D = 0.01). As the

workload intensity increases, the simulation rate of DFlockers
scales more and more linearly as the the number of logical

processors increases.

Since the DFlockers application is also implemented in D-

MASON, we compare the simulation rate for the DFlockers

application in both D-MASON and Distributed MASON. In

this experiment, we use a 10000×10000 field and 10000 agents.

The Perfectly Scalable line is obtained by multiplying the sim-

ulation rate of the single-node Flockers application in MASON

by the number of the logical processors used. As shown in
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Fig. 12. Variance among nodes’ runtimes as the simulation progresses with
various load balancers and initial partition schemes, in the DHeatBugs model.

Figure 10, the MPI-based Distributed MASON outperforms D-

MASON significantly. As the number of processors increases,

the centralized message broker used in D-MASON becomes

a bottleneck while the MPI-based Distributed MASON uses

point-to-point communications and provides better simulation

rate. In fact, with our specific configuration, the ActiveMQ

message broker used by D-MASON fails to process all the

messages in time when there are 20 or more processors. The

simulation then becomes extremely slow and often crashes.

Hence only the result with 2–16 processors are shown for

D-MASON in Figure 10.

Finally, we evaluate the scalability of Distributed MASON in

a more complex application: DCampusWorld. We set the field

size to be 3000×3000 and the number of agents to be from

10000 to 40000. The result is shown in Figure 11. Similar to the

results obtained for DHeatBugs and DFlockers, the scalability

of the system improves as the intensity of the workload

increases. For the lightest workload (N = 10000), the distributed

performance gain becomes saturated with 32 processors and,

with 64 processors, the synchronization overhead overcomes

the performance advantages, yielding a slight lower simulation

rate even with more processors. However for the highest

workload (N = 40000), the performance scales well with the

number of processors, where with 32 processors we can get

an approximately 13 times the acceleration of the single-node

result.

B. Load Balancing

Here we evaluate two load balancers: greedy and hierarchical.
As discussed before, the greedy balancer running on each node

attempts to shift the partition boundaries with its local neighbors

with the goal being to minimize the runtime variance between

neighbors. The hierarchical balancer works only on top of

a quad-tree partitioned field. Each node in the tree structure

will be in charge of balancing the runtime of its four children

through moving the center that divides its region. The balancer

can be triggered when the estimated performance gain after the

balancing exceeds its overhead. In our experiments, however,
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Fig. 13. Simulation Rate with various number of processors and load balancers
for the DHeatBugs model.

the greedy balancer runs every 100 steps for simplicity. For

the hierarchical balancer, the workload will be balanced every

100 steps at the lowest level, every 400 steps at the second

lowest level, and every 1600 steps at the third lowest level, etc.

We test with the DHeatBugs application using a 6400×
6400 field and 3200 agents. To show the effectiveness of the

load balancer, we start the simulation with the field manually

partitioned in a very unbalanced way. Since the agents are

uniformly and randomly placed in the field, with unbalanced

partition, we expect a very unbalanced workload at each node.

Since the hierarchical load-balancer only works in a tree-

like partition scheme while the greedy balancer works in

any rectangularly partitioned field, we evaluate both partition

schemes, one hierarchically partitioned with a quad tree, the

other partitioned in a striped fashion, denoted as QT and

SP, respectively. To demostrate the load balancers in action,

we take a snapshot of a single run of the DHeatBugs with

16 processors and the two aforementioned initial partitions.

Figure 12 shows the variance of the nodes’ per-step runtimes

as the simulation progresses. As we discovered from the

experiments, with the striped partition the greedy balancer

(SP-Greedy) works well in bringing down the variance of the

runtime. With the hierarchical partition, the greedy balancer

(QT-Greedy) is gradually stuck with a local optima and only

moderately reduces the variance while the hierarchical balancer

(QT-Hierarchical) is very effective in balancing the workload.

As shown in the Figure, after two levels of load balancing, the

variance of the nodes’ runtime becomes nearly zero, indicating

a well-balanced workload.

Next we evaluate the simulation rate and the balancing

overhead of the two balancers with different number of logical

processors. Figure 13 shows the simulation rate (bar plots using

the left Y-axis) and the overhead of the balancer (lines using

the right Y-axis) in DHeatBugs with a hierarchically partitioned

field. Similar to the previous result, the hierarchical balancer can

keep a balanced workload among nodes, resulting in the highest

average simulation rate. Even though the greedy balancer

performs poorly in balancing the workload, its overhead is

much lower compared to the overhead of the hierarchical

balancer. The overhead of both balancers decreases as the the

number of processors increases. This is because with the same

field size, the more processors the system uses, the smaller the

region on each processor is and therefore less expensive for

the balancer to rearrange the data between the processors.

VII. CONCLUSION

This paper described the design and implementation of

Distributed MASON, a distributed version of the MASON

multi-agent simulation toolkit. We first described Distributed

MASON’s local agent-based data management scheme using

Halo Exchanges along with global data sharing via RPC

calls. We then described our approach for achieving scalability

and high performance using multiple types of load balancing

algorithms. At the local level LPs manipulate their Areas-of-

Interest in response to changes in workload distribution. At a

global level Distributed MASON can use a centralized approach

where runtime information is collected by a single LP. We

considered several heuristics for load balancing, including a

greedy approach and a tree-based hierarchical method. We

then evaluated our system using an implemented running on an

AWS C5 instance. We found that Distributed MASON achieved

highly scalable performance, in terms of linear performance

increases as the size of the simulation grew. We also found

that its load balancing scheme was effective and was, not

surprisingly, sensitive to the size and density of the workload.
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