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ABSTRACT: We apply the cooperative free volume (CFV)
model to analyze the segmental relaxation times, τ(T,V), of a
model 20-mer polymer melt simulated via molecular dynamics
over a broad pressure range. Thermodynamic characterization
of the 20-mer allows determination of the constant
contribution from the hard-core volume (Vhc), which then
yields predictions for the free volume, Vfree = V − Vhc. The
CFV rate model is based on an activation free energy that
increases with the number of cooperating segments, n*,
wherein the system’s free volume, Vfree, is what determines n*.
The model predicts that on isotherms ln τ vs 1/Vfree is linear
with T-dependent slopes. The 20-mer melt data follow this
linear behavior at all temperatures. Assuming a fixed activation energy per cooperating segment leads to a very simple analytic
form that describes all of the 20-mer melt’s high T behavior, including the Arrhenius to non-Arrhenius transition regime. This
form reflects the importance of a gas kinetic contribution as well as both energetic and entropic contributions to the activation
energy. Optimization of only one material-dependent parameter leads to collapse of the data. The results of this paper reveal that
a key source of non-Arrhenius behavior with decreasing T along isobars is the reduction in Vfree, which means that segmental
rearrangement will require increased cooperativity and higher activation energy. This effect explains the volume contribution to
dynamics.

1. INTRODUCTION

A common question in the study of glass-forming liquids relates
to why the relaxation dynamics so commonly have apparent
activation energies that steadily increase as a melt is cooled
toward its glass transition. In other words, why is the behavior
non-Arrhenius, and what is driving the activation energy? Here
we explore the question of what controls activation energy by
applying a new model rate equation, the cooperative free
volume (CFV) model, to understand local relaxation processes.
With it we can identify several important contributions that
drive dynamics over a wide range at high T, including the
Arrhenius to non-Arrhenius transition regime. For example, we
can show that activation energies are inversely proportional to
thermodynamically determined free volume and that over a
broad temperature range the latter is, in fact, the very source of
non-Arrhenius behavior. Our rate equation was originally
applied to simple monomeric fluids; here, we show for the first
time that the model accounts for full pressure-dependent
dynamics data of a simulated polymer melt.
An important goal in research on molten polymers and other

glass-forming liquids has been to explain how their dynamic
behavior, e.g., diffusion (D), relaxation times (τ), viscosity (η),
etc., depends on their corresponding thermodynamic properties
(refs 1−18 provide some examples including background from
the point of view of both experiment and models/theory). The

common starting point in modeling dynamics and relaxation
behavior is the Arrhenius expression, which for τ, is written by

τ = A B Texp[ / ] (1)

and with analogous expressions, η = Aexp[B/T], D =
Aexp[−B/T], etc. In eq 1, A is the pre-exponential factor
(commonly approximated as a constant), and B is a constant
that represents the activation energy. However, as noted above,
a hallmark of the behavior of glass-forming liquids is the
deviation from eq 1. As T is lowered, plots of ln τ vs 1/T
become nonlinear, exhibiting upward curvature that indicates
an increasing apparent activation energy.
A common practice in working with non-Arrhenius data is to

fit it to a well-known phenomenological form, the Vogel−
Fulcher−Tammann (VFT) equation19−21

τ = −A B T Texp[ /( )]0 (2)

This introduces a third parameter, T0, often called the Vogel
temperature. Though the VFT equation can fit data on glass-
forming liquids, it is limited in ability to explain the results.
The fact that simple Arrhenius dependence cannot explain

the behavior of glass-forming systems has led to the
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consideration of other explanations, some based on free
volume22−25 and some based on entropy.26,27 The early work
for free volume-based approaches started with the “Doolittle
equation”28

τ = A B Vexp[ / ]free (3)

where Vfree is the free volume (our own definition for Vfree is
below), and again A and B are typically constants. In historical
free volume models, such as those of Cohen and Turnbull
(CT)22 and Williams, Landel, and Ferry (WLF),24,25 a linear
Vfree(T) form was substituted into eq 3. This yielded an
equation equivalent in form to the phenomenological VFT
expression, which does indeed fit super-Arrhenius behavior;
however, this does not create a link to any realistic measure of a
system’s free volume.
In fact, we have shown29 that when actual PVT-based free

volumes are used as inputs into eq 3, e.g., on a standard P = 1
atm isobar, the resulting dynamics are not correct. In addition,
note how eq 3 does not have an explicit temperature
dependence; it should fail in situations where the (free)
volume is fixed. The notion, as in the Doolittle equation, that
free volume alone can explain relaxation behavior does not
work. Our own approach features an important role for free
volume; we find it to be a keyindeed, a naturalvariable for
understanding relaxation in glass-forming melts, but not the
only one.
One of the most influential entropy-based models applied to

non-Arrhenius behavior is that of Adam and Gibbs (AG),26

which describes the rate of segmental rearrangements. In the
process, a free energy barrier must be surmounted and this
leads to an explicit T dependence (unlike the Doolittle
equation). Furthermore, the process is envisioned as requiring
a number, z*, of particles to cooperate. The AG result is given
by

τ μ μ= *Δ = Δ *⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥A

z
T

A
s

T S N
exp exp

( / )
c

c (4)

The overall free energy of activation, z*Δμ, is proportional to
z*, where Δμ is the free energy of activation per cooperating
particle. The number of cooperating particles, z*, is determined
by the system’s average configurational entropy per particle,
(Sc/N). That is, z* = sc*/(Sc/N), where sc* is the key required
amount of configurational entropy that a group must have in
order to rearrange. In implementation, Sc is often approximated
as the entropy difference between a system’s liquid and solid
forms;26,30−33 it can also be computed via simulation
techniques.34−36

Examples of other models that share connections with the
AG model include the cooperative domain model of Matsuaka
and Quan37 and the gear model of Adachi.38 Both visualize the
dynamics in terms of cooperatively rotating groups of
conformers and lead to a simple VFT-like T dependence (as
do some implementations of the AG model). They can also be
applied to analyze the distribution of relaxation times; however,
they do not account for pressure dependence of the dynamics,
which will be important here.
Many other models exist for describing non-Arrhenius

dynamics (see above-cited reviews). For example, mode
coupling theory is well-known for predicting a dynamic
singularity and the behavior for time correlation functions.39,40

This is a much more detailed microscopic approach than the
CFV model and is based on information from pair density

(structural) correlations. Other pair correlation-based ap-
proaches include the NLE41,42 and ECNLE43,44 theories of
Schweizer and co-workers. Though these involve much greater
microscopic detail than the CFV model, there are some shared
similarities, in the sense that they are both activated rate models
that place strong focus on the density dependence of the
activation energy.
The cooperative free volume model (CFV) is the approach

we will apply here, and some of its attributes are analogous to
the basic groundwork laid out in the AG model. To gain a
fundamental level understanding, the CFV approach aims for a
full pressure-dependent description of dynamics.1,3 The
thermodynamic state of a system is determined by two
independent variables, say temperature, T, and volume, V, so
it is therefore important to be able to describe how the dynamic
response depends on each of these variables independently, i.e.,
to break down and explain the independent contributions
coming from changes in V and those coming from changes in
T. The CFV model thus describes τ(T,V). In contrast, using the
VFT expression as an example, note how a single parameter set
is not able to describe two different paths through the general
PVT space, e.g., different isobars, isochores, etc. Treating P-
dependent dynamics is much more challenging than modeling
just the standard ambient isobar. In addition to the CFV model,
there are other treatments that incorporate thermodynamic
scaling approaches.1,3,45−55 These include density scaling, with
τ = F(TVγ), where F is some unknown function of the single
combined variable, TVγ. There are also AG-based31−33,56 and
other entropy-based approaches46,47 for P-dependent dynamics.
We have found that representing the volume-based

contribution to P-dependent dynamics via the system’s free
volume, Vfree, is revealing. For instance, in earlier work,29 we
showed for several experimental systems that whenever T is
fixed (i.e., on an isotherm), a plot of ln τ vs 1/Vfree produces a
linear relationship, with each line having a T-dependent slope.
The free volume values that we use are based on analysis of
PVT data and are obtained completely independently of
dynamics experiments. We define Vfree as the difference
between a system’s overall volume, V, and its limiting, closely
packed, hard-core value, Vhc.

= −V V Vfree hc (5)

This definition is straightforward, though it is important to note
that the literature also contains other definitions,57 such as
those that attempt to separate the “total free volume” into
“vibrational” and “excess” contributions. Another popular
measure of free volume is the Debye−Waller factor, the “rattle
space”, ⟨u2⟩, swept out by a molecular segment on a picosecond
time scale. This quantity is strongly connected to dynamic
relaxation53,58−63 but differs significantly from our Vfree
definition because it can still change with T at constant
volume. As eq 5 shows, in our definition Vfree will only change
when there is a change in volume.
The cooperative free volume model (CFV) incorporates

both a free volume contribution and an independent temper-
ature contribution in the following general form:

τ = + − +⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠C

V
V

C
T

T Cln 1 ln1
hc

free

2 1/2
3

(6)

Below we show how this form results from making a set of clear
physical assumptions. We recently tested eq 6 on a simulated
monomeric fluid, the well-studied “KA−LJ” Kob and Anderson
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Lennard-Jones mixture,34−36,64−72 and we showed that it
applies well over a broad temperature range including the
Arrhenius to non-Arrhenius transition regime.73 Here we test
eq 6 against simulation data extending over a large span of PVT
space for a bead−spring polymer melt, a common polymer
simulation model,61−63,74 where each polymer molecule is
composed of a linear chain of (attractive) Lennard-Jones atoms
(segments) held together by the FENE bond potential.
We note that when the temperature is further lowered

approaching the system’s Tg, the T dependence is not well-
described by the above. Instead, the functional dependence on
T is well handled using the “thermodynamic scaling” form we
previously deduced from studies on experimental P-dependent
dynamics of real glass-forming polymer melts:

τ τ= * +⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠

V
V

T
T

ln ln
b

hc

free
ref

(7)

Note the gas kinetic ln T1/2 term is not required at low T, and
the notation for the parameters (b, T*, τref) comes from that
earlier article.29 Both eqs 6 and 7 can be derived starting from
the same CFV model framework, up to the point that produces
the general form, (1/Vfree) × f(T).73

An outline of the remainder of the article is as follows. In
section 2, we describe the basic framework of the cooperative
free volume rate model. A more detailed derivation is in ref 73.
In section 3, we first analyze the PVT behavior of the simulated
20-mer fluid, which leads to the evaluation of Vfree values. Then
we compare the behavior predicted by the analytic CFV model
τ(T,V) expression with the actual 20-mer simulation data.
Relaxation times are analyzed on isobars, isochores, and
isotherms. We discuss the energy and entropy of activation,
the importance of the contribution from gas kinetic T
dependence, and the role that free volume plays in influencing
cooperativity. In this section we also show how free volume
connects the appearance of non-Arrhenius behavior with the T-
dependent increases in apparent activation energy. In section 4,
we provide a summary. A description of the simulation details
can be found in the Appendix, as the simulated system and
simulation methods used in this work are fairly standard.

2. COOPERATIVE FREE VOLUME MODEL

In this section we describe the CFV rate model. A more
detailed description of the derivation is available in ref 73.
The basic molecular level picture of the relaxation event

starts by envisioning a liquid particle (or molecular segment)
surrounded by other nearby particles, forming a “cage” that
restricts movement. We then consider the time that it would
take for that particle to move out of the cage of its surrounding
neighbors. In order for this to happen, the nearby particles first
need to maneuver (redistribute) in such a way that some
required amount of free volume, v*, is gathered on site, creating
a new space into which the particle can move. Because sizable
spaces are not common in a liquid, we have thus assumed this
process must require the cooperation of a number (n*) of
nearby particles such that each one maneuvers to redistribute
and consolidate free volume. When these particles have
successfully created the required amount of consolidated free
space, they have thus adopted a formation that we will call the
“activated state”. The probability of the activated state is
denoted by Pact.
A schematic illustration of how this process might work is

shown in Figure 1. The positions of the cooperating particles
(segments) are shown before they move in semitransparent
red, and then after they have moved in solid red. These
maneuvers lead to the “activated state”, where there is a full
particle-sized vacancy (dashed circle) sufficient so that another
particle can make a full diameter scale translation and thus
escape its previous cage of neighbors. The drawings give a sense
for how the number of particles that must cooperate to make
the same-sized space is expected to increase with liquid density,
and how we quantify this will be described a bit further below.
The overall rate for the relaxation process, R (∝ 1/τ), is

given by the following form:

= × ×R T P[constant] 1/2
act (8)

This is the product of the rate that a particle can cover a
distance on the order of its own size (a function of its average
gas kinetic velocity), attenuated by the probability, Pact, that
there is a free space available into which to move. The gas
kinetic velocity is proportional to T1/2, and the importance of
including this contribution was demonstrated for monomeric
fluids in ref 73, and we show this to be true here for polymeric

Figure 1. Schematic showing cooperating particles (red), before they make their moves (semitransparent red), and then after (solid red); remaining
liquid particles are black. After the moves are made the resulting configuration corresponds to the “activated state” where a full particle-sized vacancy
has been created (dashed circle), and once this is formed (or concurrently with its formation), another particle can move into the vacancy to make a
full diameter-scale translation and thus escape its previous cage of neighboring particles. As density increases (Vfree decreases) the number of
cooperating particles must increase to make the same-sized vacancy; in this example n* increases from 1, to 2, to 4. The CFV model activation free
energy (ΔAact) depends on n*: the higher the n*, the lower the probability of the activated state (Pact).
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fluids as well. The remaining contributions to the velocity and
other directional and geometric considerations associated with
the rate process are absorbed into a single constant multi-
plicative factor denoted by “[constant]”.
The probability of the activated state, Pact, is given by the

following general expression:

= −Δ = − *ΔP A T n a Texp[ / ] exp[ / ]act act (9)

ΔAact is the Helmholtz free energy change for the n* particles
to go into their activated state (i.e., to form a space). (The
Boltzmann constant has been absorbed for simplicity.) ΔAact
comprises the total activation free energy for the process, while
Δa = ΔAact/n* is thus the activation free energy per
cooperating particle. In a cooperative model, the activation
free energy increases as the number of cooperating particles
increase. This structure is embodied by latter form of eq 9.
Since we are interested in understanding relaxation data over

a broad temperature range, it is useful to consider a limiting
high-T contribution to Δa, entropic in nature and arising due to
the molecular hard cores. Thus, we write

Δ = + Δa T k a T/ /rel (10)

where −k is the entropy of activation per cooperating particle;
from the approach detailed in ref 73 it follows that k is a
positive-valued constant. Δarel is the value of Δa measured
relative to the hypothetical hard-sphere-like state; we refer to
Δarel as the “energy of activation” per cooperating particle and
assume that its value is a constant.
Note that ref 73 provides much more detail on the various

quantities (k, Δarel, ΔAact, etc.) defined up to this point.
In the CFV model, the key expectation is that as the free

volume in the system decreases, more particles must operate
together to open up the required amount of free space, i.e., n*
will increase. We can quantify n* as follows: In order to be able
to make a characteristic-sized space into which a segment can
move, we assume that a group of cooperating particles must
contain, in total, a characteristic amount of free volume (v*). It
then follows that the group size (the number of cooperating
particles, n*) will be inversely proportional to the overall
system’s average free volume per particle. That is, n* is given by

* = *n v V N/( / )free (11)

where N is the total number of particles (segments) in the
system. This approach is analogous to the AG framework26

where the number of cooperating particles, z* = sc*/(Sc/N), is
inversely proportional to the configurational entropy per
particle. (In ref 57 we have discussed the connection between
free volume and entropy.) Our assumption that v* is constant
is thus similar to the AG assumption that the configurational
entropy in a cooperating group (sc*) is constant. In our case, as
Vfree decreases there should be an increase in n*, leading to the
relationship n* ∝ 1/Vfree, and this form will dictate the
activation free energy.29,73

Substituting eqs 10 and 11 into Pact = exp[−n*Δa/T] (eq 9),
and using this in the rate equation, R ∝ 1/τ ∝ T1/2Pact (eq 8),
leads to the main result, eq 6 above. Equation 6 is written in
terms of the convenient working measure of relative free
volume, Vhc/Vfree. The three system-dependent parameters are
C1 = kv*/(Vhc/N), C2 = Δarel/k, and C3 (related to the system-
dependent limiting behavior). We will apply eq 6 with fixed
constant values for C1, C2, and C3 because we have assumed v*,
k, and Δarel to each be constants.

We emphasize that a system’s T- and P-independent Vhc
value is determined a priori, from the PVT analysis,
independent of any dynamics data. We have noted in refs 29,
57, and 73 that historical free volume models have free volume
values that have been fit to produce results that match
relaxation data, and those values are therefore not necessarily
consistent with experimental volumes. This cannot happen in
the CFV model.
Equation 6 expresses relaxation times as a function of two

independent thermodynamic variables, T and Vfree, or equiv-
alently, T and V. It will describe τ(T,V) for all points within a
range of general T,V space (any general path) with just a single
set of model parameters. This is a much more demanding test
than the typical scenario of restricting a model’s application to
τ(T) on the P = 1 atm isobar.

3. RESULTS AND DISCUSSION
In this section the CFV model is applied to analyze simulation
results for the 20-mer bead−spring polymer fluid. In the
simulations, each polymer molecule comprises 20 Lennard-
Jones (LJ) atoms (segments) with bonded connections
described by the FENE potential; in all cases, the fluid systems
consisted of 80 molecules and thus a total of N = 80 × 20 =
1600 LJ atoms (segments). Molecular dynamics simulations
were carried out under standard periodic boundary conditions
to obtain average thermodynamic properties and the
corresponding segmental relaxation times, τ. The latter is a
measure of the time for segments to move distances on the
order of their own size and is defined by the time of decay in
the self-intermediate scattering function, Fs(q,t). Note that for
all T, V conditions we have chosen the same value of q =
7.07σ−1. This value is close to the first peak in the
(intermolecular) structure factor S(q); however, the peak
does depend on density. Using the same q value results in
relaxation times that are defined for a consistent characteristic
distance. For conditions at high T and low density, the
distinction between “vibration” and “breaking free from a cage”
becomes less clear, so the reported τ values will thus simply
represent the degree of segmental movement. This choice also
leads to clarity in the role of the gas kinetic contribution, such
that a simplifying low-density convergence point for relaxation
times is obtained (results below) where only the gas kinetic
prefactor determines the “relaxation time”. In the results, all
quantities will be reported in standard LJ units where length is
in σ, energy in ε, time in σ(m/ε)1/2, etc., where m is the atom
(segment) mass and σ an ε are the LJ distance and energy
parameters. Full simulation details are in the Appendix.

3.1. PVT Behavior and Limiting Hard-Core Volume. In
order to implement the CFV model for the dynamics, we first
perform an analysis of the system’s pressure−volume−temper-
ature (PVT) behavior; this will lead to thermodynamic values
for the system’s free volume at any desired point. Using our
definition for free volume, Vfree = V − Vhc (eq 5), requires the
value of Vhc. We will follow the approach we used for the KA−
LJ monomer fluid in ref 73, where we extrapolated the limiting
hard-core volume from plots of the PVT data.
Figure 2 shows the results for the 20-mer fluid PVT behavior

in the form of V(T) isobars. As was the case for the monomer
fluid in ref 73, a reasonable estimate of the system’s limiting
hard-core volume, Vhc, can be made just from simple visual
inspection of the V(T) curves because the range of PVT space
shown here is quite large. Dashed lines for each isobar have
been drawn as a guide to the eye that extend from the
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simulation data down to V at T = 0. Having curves for several
isobar pressures (covering the P range of interest) is helpful in
bracketing some reasonable bounds around a good average
estimate, here about Vhc/N = 0.83 to 0.85. This range of
uncertainty has little effect on the analysis (see the detailed tests

in ref 73). We will take Vhc/N = 0.84 as the limiting hard-core
volume and use this single value throughout the paper. To put
the physical meaning of this limiting volume in context,
consider the packing fraction of equal spheres, (π/6)/(V/N).
Random close-packing of such a liquid corresponds to a
packing fraction of 0.64. The limiting segment packing fraction
here for the 20-mer fluid is fairly close, with a value of (π/6)/
(0.84) = 0.62. A connection between the limiting volume, Vhc,
and the condition of random close packing was also shown in
ref 73 for the monomeric KA−LJ mixture.

3.2. T Dependence of Relaxation Data: Accounting for
the Contribution from the Average Kinetic Gas Velocity.
The CFV rate model begins with a familiar Arrhenius-type
exponential contribution that brings in the activation energy for
the process (Pact = exp[−ΔAact/T], eq 9); however, the overall
rate eq 8 includes a T-dependent prefactor as well. The
contribution from the average gas kinetic velocity is expected in
the prefactor, but it is often ignored because its temperature
dependence (T1/2) is anticipated to be much weaker than that
arising from the T dependence of the exponential term.
However, if the value of the system’s activation energy is not
large enough for the exponential to strongly dominate the
prefactor (say, when T is doubled or more in the high-T
regime), then failing to account for the T1/2 dependence may
be consequential. In order to illustrate this we will consider first
raw simulation data plotted as a series of isochores; we will then
turn to isobars.

Figure 2. PVT behavior for the 20-mer polymer fluid. Shown are
results for V/N as a function of T for isobars of P = 0, 0.5, 1.5, 3.0, and
6.0. Values are in standard LJ units. V/N is the volume per LJ atom
(segment). Extrapolations (dashed lines) are drawn as a guide to the
eye in approximating the system’s limiting close-packed, hard-core
volume, Vhc/N ≈ 0.84, which is used in the free volume calculations,
Vfree = V − Vhc.

Figure 3. Simulation data for the 20-mer polymer fluid: relaxation times on isobars and isochores. Panel “a” shows ln τ vs 1/T isochores with
densities, N/V = 0.85, 0.90, 0.95, 1.00, 1.05, and 1.08. Panel “b” shows the same results plotted as ln τ + ln T1/2 vs 1/T which adjusts for the T
dependence of the gas kinetic velocity in the pre-exponential factor. Panel “c” shows a close-up of the N/V = 0.95 isochore plotted with and without
the adjustment. Isobars are plotted as ln τ vs 1/T in panel “d” and as ln τ + ln T1/2 vs 1/T in panel “e”; the isobar pressures are P = 0, 0.5, 1.5, 3.0,
and 6.0. Panel “f” shows the isochores and isobars together, plotted in the adjusted ln τ + ln T1/2 vs 1/T form. Values are in LJ units. Note the
termination of some of the isochores at low T (high 1/T) is due to cavitation (negative P), and the P = 0 isobar terminates at high T due to
evaporation.
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In Figure 3a, the simulation results obtained for the
segmental relaxation times (τ) of the 20-mer fluid are plotted
as ln τ vs 1/T in the form isochores. The densities (N/V) are
0.85, 0.90, 0.95, 1.00, 1.05, and 1.08. Details on calculating τ, a
measure of the time for segments to move distances on the
order of their own size, are in the Appendix. At high T (low 1/
T), linear plots are expected, reflecting the so-called Arrhenius
regime. However, in Figure 3a the plots show clear downward
curvature as high T is approached. Contrast these with the plots
shown in Figure 3b, where we account for the T-dependent
contribution to the prefactor by removing it, i.e., by plotting
ln τ + ln T1/2 vs 1/T. Now in the high-T region the plots are
indeed linear and confirm the expectation that Arrhenius-type
behavior (constant apparent activation energy) is occurring.
This is shown even more clearly in Figure 3c, wherein a single
isochore (N/V = 0.95) is plotted with and without the kinetic
gas correction.
The slopes for the linear set of plots shown in Figure 3b can

be used to determine the activation energies. Comparing the set
of isochores in Figures 3a and 3b, it is also clear that there is a
significant change in the average slopes in the high-T regime; in
fact, the corrected (Figure 3b) activation energy is typically
about half the value of the estimate without the correction
(Figure 3a). Not accounting for the gas kinetic correction will
not only lead to inaccurate estimates of the activation energy
but will also incorrectly estimate the extent to which the
activation energies change as a function of density.
In Figures 3d and 3e the simulation results obtained for the

segmental relaxation times (τ) of the 20-mer fluid are plotted in
the form of isobars having P = 0, 0.5, 1.5, 3.0, and 6.0. Figure 3d
shows the results without the kinetic correction in the
prefactor, which is then accounted for in Figure 3e to the
right. The high-temperature downward curvature that was
particularly evident for the case of the isochores is visible in the
ln τ vs 1/T isobars, but to a much lesser degree. Instead, it is
the Figure 3e ln τ + ln T1/2 vs 1/T plots that show stronger
curvature, in this case, an enhancement of the upward
curvature.
Compared to the isochores, the uncorrected isobars do

appear to exhibit a degree of linearity at high T, but does this
mean that accounting for the T dependence of the prefactor has
become less important? That cannot be a sensible conclusion,
since its functional contribution should not depend on how the
data are plotted. If we are to conclude that the gas kinetic
correction matters for isochores, then we must also argue its
importance for isobars.
In fact, the appearance of linearity in the uncorrected ln τ vs

1/T isobars is explained by the underlying density-driven
changes in the activation energies (ΔAact increasing as V(T)
decreases). This effect, reflected in the clear positive curvature
of the isobars (a form predicted by CFV below), partially
cancels with the inherent negative curvature of the gas kinetic T
dependence to produce the appearance of linearity. However,
the cancellation is effective only over a limited T-range because
even at high T, if T is further increased, the downward
curvature on the ln τ vs 1/T isobars will reappear. As noted, this
can be seen in Figure 3d and is very clear in Figure 4 of ref 73
in our study of monomers.
We expect that the effect of the gas kinetic T dependence

should be important in most simulation investigations because,
although simulations probe non-Arrhenius behavior, they still
tend to be restricted to a regime of relatively high T such that
changes in T1/2 are competitive with those in exp[−ΔAact/T].

By comparison, experimental dielectric spectroscopy studies
probe in a range such that T typically varies between Tg and
(roughly) ∼1.3Tg. Under those conditions the effective
activation energies are much higher, driving much stronger
changes in τ, while the changes in the gas kinetic contribution
are small by comparison.

3.3. Volume Dependence of Relaxation Data: Free
Volume Is a Natural Variable. The CFV model expression
eq 6 predicts that isothermal changes in ln τ are expected to be
linearly proportional to inverse free volume and that the
isotherm slopes should increase as the temperatures decrease.
We test this key prediction against the simulation results in the
upper panel of Figure 4 where ln τ vs Vhc/Vfree is plotted for
multiple isotherms. As expected, all the isotherms display clear
linearity, and the slopes systematically increase with decreasing
T. This behavior was initially shown in experimental data on
glassy melts29 and more recently in the simulations of the
simple KA−LJ monomeric liquid in ref 73; results for the latter
are included as an inset in the figure. Here we demonstrate for
the first time linear isothermal ln τ vs Vhc/Vfree behavior for a
simulated polymer melt.
These results make a strong case for the linkage of free

volume with dynamic behavior because in our treatment the
dynamics data are not used in predicting values for the free
volume. The limiting hard-core volume value (Vhc = 0.84) that
leads to Vfree = V − Vhc was obtained by analyzing the 20-mer
melt’s PVT behavior. The abscissa values for each point are
therefore calculated using only thermodynamic quantities. Here
it is also worthwhile to add that any uncertainty in the Vhc value
does not lead to any significant change in the results (e.g., see
detailed tests in ref 73 and footnote 75).
We argued above for the importance in accounting for the

T1/2 dependence of the prefactor, so the lower panel of Figure 4
shows ln τ + ln T1/2 vs Vhc/Vfree plotted as isotherms; the effect
is a shift in the intercept of each linear isotherm. These results
now show there to be a clear convergence pattern to a limiting
value at high Vfree (low 1/Vfree), and thus the “fan-like” pattern
of ln τ + ln T1/2 vs Vhc/Vfree lines radiates from this point.
Equation 6 predicts a convergence point at high Vfree, as it is
embodied in the limiting constant C3. When plotted in the ln τ
+ ln T1/2 vs Vhc/Vfree form, the convergence shows that at low
density the gas kinetic velocity should be the only important T-
dependent contribution in determining the time for a particle
to traverse a distance on the order of its own size. This form of
plotting the isotherms also emphasizes how the remaining T
dependence (the (1 + C2/T) term in eq 6) is the key part that
serves in making the isotherm slopes systematically increase
with decreasing T.

3.4. Parametrization of the Cooperative Free Volume
Model. We next turn to fitting the τ(T,Vfree) simulation data in
order to obtain values for the system-dependent parameters C1,
C2, and C3. Although all three parameters can be determined at
once, here we do the fit in two stages (determining the C2
parameter first) because it is useful in discussing the features of
eq 6. We focus on just the high-T half of the set of isotherms in
Figure 4, choosing 1/T = 0.2 through 1.1. As noted in the
Introduction, eq 6 does eventually break down at low T; a fit to
the higher T data, alone, will allow us to probe (in section 3.5)
how far into lower T the eq 6 form continues to hold. The
choice of low T cutoff of 1/T = 1.1 represents roughly the
average temperature at which the isochores become nonlinear
in Figure 3b.
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Equation 6 predicts a linear relationship between the
variables [ln τ + ln T1/2] and [(Vhc/Vfree) × (1 + C2/T)]. If
this form is correct, then there should be a choice for C2 that
will collapse the data from the multiple isotherms into a single
straight line. In the upper panel of Figure 5, we show a plot of
ln τ + ln T1/2 vs (Vhc/Vfree) × (1 + C2/T) that demonstrates this
collapse, using a value of C2 = 4.0 determined by trial and error
adjustment. The sensitivity of the collapse to the choice of C2 is
about ±0.3 (see note 76). The “second stage” of the fit follows
immediately because the form is linear. The remaining

parameters, C1 = 0.0669 and C3 = −1.173, are set once C2 is
fixed because they correspond to the line’s slope and intercept,
respectively. The quality of the data collapse demonstrates that
eq 6, with a constant C2, does a very good job of matching the
system’s dynamics behavior. This provides support for the view
that there is a constant amount of activation energy accrued for
each cooperating segment that participates. (As described in
section 2, the activation energy per cooperating segment is
proportional to C2 and, technically, also to C1; both C1 and C2
are constant.) The collapsed isotherms correspond to a wide
range of T and P, and additional plots showing a variety of
paths through PVT space (e.g., isobars and isotherms) will be
shown below.
Recall that the unity in the factor (1 + C2/T) in eq 6 traces

back to the entropic contribution to the activation free energy
per cooperating segment. This is a contribution that persists

Figure 4. Linearity in (log of) relaxation times as a function of inverse
free volume on isotherms of the 20-mer polymer fluid. The upper
panel shows ln τ vs Vhc/Vfree for isotherms of 1/T = 0.2 to 1.7 in
increments of 0.1. Values are in standard LJ units. Pressure values on
each isotherm typically range from P = 0 up to values of about 7 to 9.
(P values range even higher for high T isotherms (1/T < 0.5), while
the highest P’s are lower for low-T isotherms (1/T > 1.4) due to run
length limitations for sampling large τ values.) The lower panel shows
the same isotherms plotted as ln τ + ln T1/2 vs Vhc/Vfree, where adding
the ln T1/2 term on the ordinate demonstrates the effect of adjusting
for the T dependence coming from the gas kinetic velocity (pre-
exponential factor contribution). The insets show the corresponding
linear trends obtained for the monomeric KA−LJ fluid in ref 73 for
isotherms ranging from 1/T = 0.1 to 2.1 (full details available in ref
73).

Figure 5. Application of the CFV model eq 6 to 20-mer melt
relaxation behavior. To parametrize the model, plots here consider the
results coming from ten of the isotherms in Figure 4, 1/T = 0.2 to 1.1
in increments of 0.1. The upper panel shows a plot of [ln τ + ln T1/2]
vs [(Vhc/Vfree) × (1 + C2/T)] (linear variables from eq 6); here the
data have been collapsed into a single line with a choice of C2 = 4.0.
(The activation energy per cooperating particle is proportional to C2.)
The data collapse demonstrates that the eq 6 form is correct. The
slope and intercept of the collapsed line lead directly to the values for
the remaining parameters, C1 = 0.0669 and C3 = −1.173. The lower
panel is a comparison showing that a collapse is not obtained when the
entropic unity term is removed in a plot of [ln τ + ln T1/2] vs [(Vhc/
Vfree) × (C2/T)], wherein, no value of C2 can collapse the high T data;
C2 = 4.0 is shown.
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into high T due to the effect of lingering segmental hard cores
(an athermal effect).77 The set of open symbols in the lower
panel of Figure 5 illustrates what happens if we fail to account
for this contribution: the data, especially those toward the
higher T end, do not collapse. There is no choice of value for
C2 that can collapse the data in a plot of ln τ + ln T1/2 vs (Vhc/
Vfree)(C2/T); changing C2 will only shift the numerical values
on the x-axis (C2 = 4.0 is shown). These results demonstrate
that the entropic term present in the form of eq 6 does in fact
play an important role and that both entropic and energetic
contributions need to be accounted for.
The importance of accounting for an entropic contribution

was a conclusion also reached by Betancourt et al.61 These
authors used their polymer simulation data and compared
relaxation times with corresponding results from a direct
counting method for numbers of cooperating segments. In fact,
there have been different attempts to track and quantify the
numbers of cooperating particles via simulation-based counting
methods, correlation functions, and related quantities (refs 61
and 74 are a couple of examples). Of course, any such method
requires choices in defining what qualifies as an “observed
cooperating group”. The present CFV quantification can only
elucidate such numbers to within a proportionality constant;
however, it is still useful to compare other types of estimates
with the present thermodynamic Vfree-based trends.
Note that the eq 6 parameters have sensible values: The

energetic parameter, C2 = Δarel/k = 4.0, is on the scale of the LJ
pair interaction energy (ε = 1). The volume-related parameter,
C1 = kv*/(Vhc/N) = 0.0669, is also on the scale of the 20-mer
liquid’s typical relative free volume values (e.g., Vfree/Vhc values
around 0.1 are typical at P = 6). Furthermore, multiplying C1
and C2 (to eliminate k) gives an “energy-volume value” of C1C2
= v*/(Vhc/N)Δarel = 0.27, which is on a similar scale to the
product of the LJ interaction energy (ε = 1) multiplied by a
typical system Vfree/Vhc value. For the case of the KA−LJ
monomeric fluid,73 we obtained a value of C2 = 3.0 (LJ units).
Here, the C2 = 4.0 value sensibly reflects the likelihood that the
activation energy for relaxation of segments in a polymer chain
would be higher than that for free segments. The KA−LJ value
of C1 = 0.0719 is fairly close to the present 20-mer value of
0.0669.
In addition, it is illuminating to compare the balance between

the entropic and energetic contributions to the activation
energy. As noted above, the entropic term is represented by the
“reduced value” of unity (with k divided out); the energetic
term is C2/T. In going from high T (say 1/T = 0.2) to lower T
(1/T = 1.1), C2/T (with C2 = 4.0) varies from 0.8 to 4.4. At the
highest T the entropic term is comparable to the energetic
term; however, at the lowest T in this range it becomes 4.4
times weaker than the energetic term. Over this T range there is
a notable shift in the entropy−energy balance in eq 6.
3.5. Discussion of Results Using the Cooperative Free

Volume Model. Having discussed the volume and temper-
ature contributions to relaxation behavior, as well as the
constants, that comprise eq 6, we now turn to analyzing the
relaxation time behavior on isobars. This is a particularly strong
test for the form of the CFV model because on an isobar T and
V are changing simultaneously. We will focus initially on a
single isobar for the 20-mer melt, P = 3, shown in Figure 6
where ln τ + ln T1/2 is plotted against 1/T. The points
correspond to the simulation data, and the curve corresponds
to eq 6 (same parameters as in the discussion above: C1 =
0.0669, C2 = 4.0, C3 = −1.173).

The form of the curve predicted using eq 6 compares well
with the simulation data; we note that both data and model
reveal behavior that is very clearly non-Arrhenius. The
substantial upward curvature in the isobar plot means that
the apparent activation energy is increasing with decreasing T.
The CFV model explains why this should happen.
On an isobar, as T decreases, Vfree is also decreasing. In terms

of the CFV picture, this means that the number of cooperating
particles is increasing (n* ∝ 1/Vfree), which causes an increase
in the total activation free energy (ΔAact = n*Δa). As an
illustrative example, Figure 6 shows the difference between two
selected points on the isobar. The value of Vhc/Vfree (∝ n*)
changes significantly, going from 2.08 to 4.48, and associated
with this is the dramatic change in the apparent activation
energy; the slope of the isobar roughly doubles between those
two points. (Note the activation free energy, ΔAact, and the
“apparent activation energy”, defined by the slope, (∂(ln τ +
ln T1/2)/∂T−1)P, are closely linked to each other, but they are
not mathematically identical.)
The above explains the way in which non-Arrhenius behavior

is driven by the free volume effect: the activation energy per
cooperating segment (C2) is constant, so a changing 1/Vfree is
the only way to drive up the total activation energy. Looking
directly at the form of eq 6, it is evident that a plot of (1/Vfree)
× (1 + C2/T) vs 1/T must result in upward curvature because
1/T and 1/Vfree are both increasing on an isobar. Put simply,
isobars are non-Arrhenius because (1/Vfree) × (1/T) rises faster
than 1/T.

Figure 6. Application of the CFV model to 20-mer relaxation
behavior: [ln τ + ln T1/2] vs 1/T on the P = 3.0 isobar. The curve
corresponds to model eq 6, ln τ = C1(Vhc/Vfree) × (1 + C2/T) −
ln T1/2 + C3, with parameters C1 = 0.0669, C2 = 4.0, and C3 = −1.173;
the points are the simulation data. The model captures the non-
Arrhenius behavior along the isobar because the increasing 1/Vfree
(increasing with 1/T) causes an increase in the overall activation free
energy (ΔAact = n*Δa). The model interpretation is that the increasing
1/Vfree causes an increasing number of cooperating segments, n* ∝ 1/
Vfree. (Note this increase in ΔAact occurs while the activation energy
per cooperating segment (C2) remains constant.) Along the isobar, two
points are marked to illustrate where 1/Vfree (and thus n*) has
changed by roughly a factor of 2, and with this, there is the clear
increase in the apparent activation energy (slope). (Note that ΔAact
and the slope, (∂[ln τ + ln T1/2]/∂(1/T))P, are closely linked to each
other but technically not mathematically identical.)
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The same single CFV model parametrization applies over a
wide (T, V, P) space. Figure 7 shows several isobars and

isochores plotted again as ln τ + ln T1/2 vs 1/T. Isobars are for
P = 0, 1.5. 3.0, and 6.0, and isochores are for density (N/V)
values of 0.80, 0.90, 0.95, and 1.00. The points are the
simulation data, and the curves correspond to eq 6 with the
same C1, C2, and C3 values as above. We note that although
these constants were obtained by fitting the range of 1/T =
0.1−1.1 the model curves are in good agreement with the
simulation data extending through values of 1/T = 1.2−1.4 and
even to 1.6 at low P. At low enough T the agreement is
expected to break down, and the start of this is visible for the
very lowest temperatures on each isobar and on the highest
density isochore. This eventual breakdown is also seen in the
monomeric results as well, and thus is not a result specific to
the intramolecular energetic barriers of the polymer model.
How the model may be applied to low temperature behavior is
discussed below.
Over the wide range of higher T’s, the apparent activation

energy, (∂(ln τ + ln T1/2)/∂T −1)V (i.e., the slope), is constant
on any single isochore. Its value depends sensitively on the
isochore density, and these changes follow from the connection
to Vfree, viz. ΔAact = n*Δa, where n* ∝ 1/Vfree. As Figure 7
shows, the CFV model eq 6 gets this right, accurately capturing
that increasing density requires more segments to participate in
creating an available space for local motion, leading to an
increase in the activation energy and thus an increase in slope.
Turning to the set of isobars, the CFV model clearly captures

the non-Arrhenius behavior at each value of P, showing the
anticipated change in steepness from one isobar to the next. In
addition, starting from the same T, V point the isobars in Figure
7 rise more steeply than isochores. The apparent activation

energy remains constant for the isochore but will consistently
increase along the isobar, since the increasing slope is driven by
the changes in Vfree, as discussed above.
It is important to note that eq 6 applied equally well to the

KA−LJ monomeric fluid studied in ref 73 as it has applied to
the 20-mer melt studied here; the inset to Figure 7 shows the
monomer results. This confirms the role of free volume as a
natural variable for these two different simulated systems as
well as for the experimental systems we studied in prior work.29

Comparing the two simulated systems (20-mers vs
monomers), there is a notable difference in their apparent
activation energies, evaluated at both constant volume, EV =
(∂(ln τ + ln T1/2)/∂T −1)V, and at constant pressure, EP =
(∂(ln τ + ln T1/2)/∂T −1)P. For example, at the same point, T =
1.0 and P = 3.0 in LJ units, the EV ≈ 1.4 and EP ≈ 3.2 values for
the 20-mer melt are larger by about a factor of 2 compared to
the corresponding EV ≈ 0.65 and EP ≈ 1.6 values for the
monomeric KA−LJ fluid. This is partly connected to the
observation (above) that the 20-mer melt has the larger
activation energy per cooperating particle/segment. An even
more important factor contributing to the difference is in how
the 20-mer melt has lower relative free volume values compared
to monomers; for example, at T = 1.0 and P = 3.0, Vfree/Vhc =
0.20 for the 20-mers, while Vfree/Vhc = 0.33 for the KA−LJ
monomers. This implies that the polymer melt (at the same T,
P) requires more cooperating particles/segments in order to
rearrange, and this larger n* (∝ 1/Vfree) thus leads to higher
ΔAact = n*Δa.
Another interesting quantity to compare is the ratio of the

apparent activation energies, EV/EP, which is a measure of a
system’s volume vs temperature sensitivity.1,3 High values close
to 1 indicate little sensitivity to changes in volume, and low
values closer to 0 indicate strong sensitivity to changes in
volume. When comparing experimental systems in the
literature, the value of EV/EP is often taken at the system T =
Tg and P = 1 atm. Note that EV/EP values change with T, P
(e.g., the ratio of slopes at the crossing points in Figure 7 are T,
P-dependent), and we can analyze and compare these trends.
In Table 1, we show the EV/EP values at several different

choices of T, P for both the simulated 20-mer polymer and the
monomeric KA−LJ fluid. At all T, P points, the EV/EP values
are consistently lower for the monomeric fluid compared to the
20-mer melt, which demonstrates the stronger sensitivity to
volume change in the monomer fluid. This is consistent with
tabulations for experimental systems (e.g., Table 2 of the

Figure 7. Application of the CFV model to 20-mer relaxation behavior
over a broad PVT space: [ln τ + ln T1/2] vs 1/T for multiple isobars
and isochores. The curves correspond to the CFV model eq 6, ln τ =
C1(Vhc/Vfree) × (1 + C2/T) − ln T1/2 + C3, with parameters C1 =
0.0669, C2 = 4.0, and C3 = −1.173; the points are the simulation data.
Isobars, in red, from bottom to top, are for P = 0.0, 1.5, 3.0, and 6.0.
Isochores, in blue, bottom to top, are for density (N/V) = 0.80, 0.90,
0.95, and 1.00. Values are in LJ units. The inset shows the
corresponding application of model eq 6 to the monomeric KA−LJ
fluid (see ref 73), where C1 = 0.0719, C2 = 3.0, and C3 = −1.644, and
shown are isobars of P = 0.5, 1.5, 3.0, 6.0, and 9.0 and isochores of N/
V = 0.70, 0.90, 1.00, and 1.10.

Table 1. Trends in the Ratio of Apparent Activation Energies
(EV/EP)

a

P 1/T 20-mer EV/EP KA−LJ EV/EP

0.5 1.0 0.36 0.27
0.5 1.5 0.43 0.36
3.0 1.0 0.43 0.39
3.0 1.5 0.52 0.49

aThe EV/EP results here correspond to the simulation results, though
the corresponding CFV model values are similar. The EV/EP values
were calculated by estimating EV = (∂(ln τ + ln T1/2)/∂T −1)V and EP =
(∂(ln τ + ln T1/2)/∂T −1)P from the local slopes of the simulation data
on isochores and isobars, respectively. Note that in the simulation data
the isochores do not cross at the exact 1/T and P values listed in this
table, and so weighted averages using the two closest isochores were
used to estimate the EV value. The estimated uncertainty in the EV/EP
values is ±0.02.
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Roland et al. review1) that show lower average EV/EP for small
molecules compared to polymers. The results in Table 1 also
demonstrate that for both simulated systems EV/EP increases
with decreasing temperature (at fixed P), and it increases with
increasing pressure (at fixed T). Note, also, that the monomeric
fluid’s EV/EP is affected more strongly than the 20-mer on going
from low to higher pressure.
Trends in the T, P dependence of EV/EP have been reported

(e.g., via dielectric spectroscopy) for some experimental
systems in the literature. Examples include results from Floudas
and co-workers for poly(2-vinylpyridine) (P2VP)78 and
poly(vinyl isobutyl ether) (PViBE)79 and from Naoki et al.80

for poly(vinyl chloride) (PVC) and the small molecule o-
terphenyl (OTP). The trends in EV/EP for the experimental
systems are diverse and system-specific. The small molecule,
OTP, like the present simulation results, showed an increasing
EV/EP with decreasing T, and so did P2VP. However, the
opposite trend was observed for PViBE, and there was
nonmonotone behavior for PVC. Most of the experimental
systems showed an increase in EV/EP with increasing P, which is
the same trend as for the present simulated systems. Note in
addition that most of the experimental EV/EP values are higher
than the average EV/EP values for the simulated systems in
Table 1. This is likely because the simulated systems are probed
at higher temperatures relative to system Tg.
In Figure 8, we highlight the range of applicability of eq 6 to

the 20-mer fluid from an overall “PVT space perspective”. We

compare the model and simulation values for [ln τ + ln T1/2 −
C3]; i.e., we calculate the value of [ln τ + ln T1/2 − C3] using the
model τ and compare it to the corresponding value calculated
using the simulation τ value. A symbol is marked at each of the
simulation T, V data points where the model results agreed to
within a threshold of the simulation data. Satisfaction of two
agreement criteria are marked: 15% deviation or less (open
symbols) and 7% deviation or less (solid symbols). The
model’s “applicable region” thus appears visually as the scatter
pattern of colored points spreading over the T, V space. As a

guide, dashed lines identify the isobars, P = 0, 0.5, 1.5, 3.0, and
6.0.
The model shows good agreement with the simulation data

through all of the T, V regions lying between the P = 0 and 6.0
isobars over a temperature interval that spans very high T (T =
5, beyond the plotted range) down to the model’s low-T limit;
the low-T and high-P bounds are roughly indicated in the
figure. The more generous criterion, signifying agreement
within 15%, brings in many points that extend outside the P = 0
and 6.0 isobars, including some located above the P = 0 isobar
that are identified with negative pressures. The points that lie
visually below the P = 6.0 isobar show that the model’s high P
limit extends up to pressures around 9 or 10 (and even 12 at
the higher T’s). A pressure of P = 9 in LJ units corresponds to
almost 400 MPa for an argon-like fluid.
Though the simple eq 6 model cannot describe the low T

regime, it is still striking how large the range of general
applicability is in PVT space. Over the applicable range of eq 6,
the input variables, T and Vfree, each can vary by more than a
factor of 5, and the resulting relaxation times will then vary in a
detailed way (depending on the particular T and Vfree)
anywhere in the range of more than two base 10 orders of
magnitude. As emphasized above, this regime of applicability
includes an accurate description of the non-Arrhenius behavior
on isobars, and this is noteworthy because eq 6 is based on the
simplest imaginable assumption of a constant activation energy
per cooperating segment (C2).
We now turn to some thoughts on applying the CFV model

at low T. In ref 29 we first deduced the low-T CFV form (eq 7,
ln τ = (Vhc/Vfree)(T*/T)

b + ln τref) by applying arguments
analogous to those in thermodynamic scaling ap-
proaches.1,3,45−55 The resulting eq 7 indeed works very well
in describing pressure-dependent dynamics over a range of low
T near an experimental system’s Tg; however, its T dependence
cannot be correct in the high-T regime. Subsequent goals were
to obtain a more physical explanation for understanding the
source of the form (1/Vfree) × f(T) and to capture the high-T
range behavior that makes up such an important portion of the
results in simulated glassy melts. These goals have been met
through the derivation of eq 6. Because eq 6 gets all of the high-
T behavior correct, particularly the volume contribution to non-
Arrhenius behavior, it provides the formalism for connecting
with eq 7.
A fundamental prediction that comes from the CFV

derivation is the linearity of ln τ vs 1/Vfree on isotherms (and
with slopes that increase with decreasing T). In all of the
systems that we have studied to date, we find this behavior to
hold at all T. For example, the clear linearity of the isotherms in
Figure 4 is maintained at both high and low T (regardless of
whether or not the simple eq 6 with constant C2 applies). We
draw the firm conclusion that any changes in the free energy of
activation that are caused by changes in volume (fixed T) can
be correctly described by the CFV framework of ΔAact ∝ n* ∝
1/Vfree, from high T to low T.
Having determined that free volume is the natural variable

for mapping data on dynamic relaxation, and particularly that
the 1/Vfree functional form applies as the volume contribution
over all simulated/experimental parameter space, we then
distinguish between two regimes in drawing conclusions about
T dependence. When dealing with experimental systems,
studied in temperature ranges close to Tg (say T = Tg up to
∼1.3Tg or so) a simple empirical form (e.g., ∼1/Tb, eq 7)
applies. Equation 7 involves only three dynamics parameters,

Figure 8. Range of the 20-mer fluid PVT space described by the CFV
model eq 6. The symbols illustrate agreement between simulation and
model over a range of PVT space. The quantity [ln τ + ln T1/2 − C3]
was calculated using the model τ, and using the simulation τ, and then
compared. 7% deviation or less is indicated by solid symbols. 15%
deviation or less is indicated by open symbols. The applicable PVT
space encompasses T and Vfree values that can each change by more
than factor of 5, with relaxation times that can vary (depending on T
and Vfree) anywhere in the range of more than two base 10 orders of
magnitude.
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and it can be used along any thermodynamic path through
pressure-dependent relaxation space, yielding a description that
is both practical and predictive (contrast with the three-
parameter VFT equation, which cannot describe more than one
single isobar or isochore). On the other hand, for the very
broad T-range, shifted to higher temperatures and covering the
Arrhenius to non-Arrhenius transition regime (commonly
probed in simulated fluids), it is the form of eq 6 that very
effectively captures the T-dependent behavior.

4. SUMMARY AND CONCLUSIONS
In this article we have applied the cooperative free volume
(CFV) model to analyze and explain the pressure dependent
dynamics, τ(T,V), for a simulated polymer melt in the high T
and Arrhenius to non-Arrhenius transition regime.
The cooperative free volume model is based on the

following: (1) The rate of relaxation is governed by an overall
free energy of activation (ΔAact = n*Δa) that increases with the
number of cooperating segments (n*). (2) The system’s
thermodynamic free volume (Vfree = V − Vhc) is what
determines n*. For relaxation to occur, space needs to be
made to allow the entry of a segment. Assuming that a
cooperating group of nearby segments must contain, in total,
some characteristic amount of free volume (in order to make
that space) leads to the form, n* ∝ 1/Vfree.
The relationships ΔAact = n*Δa and n* ∝ 1/Vfree, together

with the assumption of constant activation energy per
cooperating segment, are the essentials that lead to the CFV
model’s form eq 6, ln τ = C1(Vhc/Vfree) × (1 + C2/T) − ln T1/2

+ C3.
Equation 6 describes the pressure-dependent dynamics over

a regime that spans Arrhenius to non-Arrhenius behavior. It
matches the simulation data over a very wide range of the 20-
mer fluid’s T, V space, covering in particular the high- to mid-T
range, a regime that is important in simulation studies. The
form of the T dependence in eq 6 eventually breaks down at
lower T as the system’s glass transition temperature is
approached; application in this lower T regime (e.g., typically
probed by dielectric relaxation spectroscopy) requires the use
of the related model eq 7. Equations 6 and 7 can both be
derived starting from the same basic cooperative ΔAact = n*Δa
and n* ∝ 1/Vfree structure,

73 and this leads to the general form
ln τ ∼ (1/Vfree) × f(T), which works under all conditions,
though the T contribution ( f(T)) in eq 7 is empirical.
We note that as in our analysis of simulation data on

monomers,73 important features of eq 6 are that it reflects both
an energetic and an entropic contribution to the activation free
energy and a prefactor temperature dependence from the gas
kinetic velocity. We have verified that all of these effects make a
contribution in the 20-mer simulation data, and we believe this
will be true in most simulation studies, which tend to probe
glassy systems at a relatively high range of T.
Of course, use of this approach relies on our straightforward

and unambiguous predictions for Vfree(T,P), which require only
PVT data (experimental or simulated), and is carried out
independently of the dynamics results. Note that knowing the
form of the volume contribution (∼1/Vfree) allows our
expressions (eqs 6 and 7) to require only three dynamics
parameters, while pressure-dependent descriptions typically
require four. A case in point: the three-parameter VFT equation
cannot express P-dependent dynamics.
One of the most important predictions that follows from the

generalized CFV ln τ ∼ (1/Vfree) × f(T) functional form, and is

shown clearly in the 20-mer results reported here, is that ln τ vs
inverse free volume (1/Vfree) is linear on isotherms, with slopes
that will increase with decreasing T. This has also been the case
for all the earlier systems we have studied, including simulations
of the KA−LJ monomeric fluid73 and analysis of experimental
data on polymeric and small molecule glass-formers.29 As noted
above, the conclusion is that the volume contribution for all
systems can be effectively captured using the natural variable,
1/Vfree.
Turning to isobars, the CFV model reveals that a key source

of non-Arrhenius behavior arises from the T dependence of
Vfree. As 1/Vfree increases with 1/T, the number of cooperating
segments also increases (n* ∝ 1/Vfree), which results in an
increasing activation energy (ΔAact = n*Δa). To our knowl-
edge, an explanation such as this has never been presented
before. Though the connection of Vfree to activation energy is
not the only source of non-Arrhenius behavior, it is the first
source, important in the high-T regime, and it remains
important at low T near Tg.

■ APPENDIX. MOLECULAR DYNAMICS SIMULATION
DETAILS

In the following we describe the details for the molecular
dynamics (MD) simulations. The polymer molecules are
described by a bead−spring type of model that is commonly
implemented in the literature.62,63,74,74 We have followed the
choices of model parameters in Mangalara and Simmons, who
presented (see their Supporting Information)63 a detailed
description of the model and some corresponding average
properties at P = 0, e.g., relaxation times and average volume
and energy, and we have compared to their results to verify our
own simulation results.
The interactions between all segments (beads) that are not

directly bonded to each other are described by the Lennard-
Jones potential, uLJ(r), given by

ε σ σ= −u r r r( ) 4 [( / ) ( / ) ]LJ
12 6

(A1)

where r is the pair separation distance, and σ and ε are the LJ
characteristic distance and energy parameters, respectively. The
interactions between directly bonded segments are described by
the finitely extensible nonlinear elastic (FENE) potential,81,82

given by

ε σ σ ε
= − −

+ − +
u r KR r R

r r

( ) 0.5 ln[1 ( / ) ]

4 [( / ) ( / ) ]
FENE 0

2
0

2

12 6
(A2)

where K = 30 and R0 = 1.5. Note that the nonbonded uLJ
interaction includes attractions, while the in the bonded uFENE
interaction the LJ contribution is truncated at r = 21/6σ and
shifted to zero at this distance so as to be repulsive only.
In all cases the quantities are given in standard LJ units where

length is in units of σ, energy in units of ε, time in units of σ(m/
ε)1/2, etc., where m is the mass. As noted in the main text, each
linear polymer molecule is comprised by 20 segments, and the
simulated system consisted of a total of N = 1600 segments (80
molecules). The molecular dynamics (MD) simulations were
run under standard periodic boundary conditions and where
the nonbonded pair interactions were cut off at a distance of r =
2.5σ where the potential was truncated and shifted to zero.
(This small energy shift was not written explicitly in eq A1.)
There are no tail corrections in the average properties.
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The MD trajectories were integrated using the velocity form
of the Verlet algorithm.83 The time step size was dt = 0.002.
The main runs (data collection runs) were simulated in the
canonical (N, V, T) ensemble using an Andersen type of
temperature bath.84 However, the temperature coupling was
done in a way that allowed for long stretches (“blocks”) of
microcanonical (N, V, E) simulation, wherein at the beginning
of a block all the atom velocities were replaced with a new set
drawn from the Maxwell−Boltzmann distribution for that T.
Then, microcanonical NVE simulation was run for the entire
block. The amount of time defining the block was set at a target
value (based on trends in equilibration, etc.) such that it would
be at least 3 times the relaxation time (τ) for the particular
conditions (and often, e.g., at higher T’s, it was much longer).
Relaxation times were measured over the course of each NVE
block. In the case of obtaining data on isobars, first, isobaric (N,
P, T) simulations were performed using a Berendsen type of
pressure and temperature coupling.85 The resulting average
volume from these NPT runs was then used as the fixed volume
value for the above-described NVT/NVE-type runs that
followed, wherein the relaxation data were collected (and
average pressure was verified to be the same as the original set
pressure from the run with Berendsen-type coupling).
Relaxation times were calculated based on the self-

intermediate scattering function, Fs(q,t), which is a measure
of the movement of a segment over time. It is given by

∑= ⟨ · − ⟩F q t N i tq r r( , ) (1/ ) exp[ ( ( ) (0)]j js (A3)

where the sum runs over all segments, j = 1 to N. As in ref 63,
the value of q = 7.07σ−1 was used to define the length scale,
which is close to the value of the first peak in the structure
factor. The relaxation time, τ, is defined to be the time when
Fs(q,t) has decayed to a value of 0.2.
Relaxation times were simulated for many points in the PVT

space. The strategy for ordering and equilibrating the runs was
to start from high temperatures and low densities, the same
strategy described in our work on the KA−LJ monomeric
system (see Appendix B of ref 73). Typically, the total
production run lengths were carried out to 250 blocks and were
equilibrated before that for 100 blocks. The density of the data
points along with the general smoothness of the data trends is
an indication of reasonably low uncertainties in the relaxation
times. Taking the 250 block run at 1/T = 1.3 and N/V = 1.03 as
an example, if each individual block is treated as a separate
result for ln τ, then these 250 results had a standard deviation of
0.18, and the error in the average of these results (defined by
the standard deviation of the mean) is thus about 0.011, which
is smaller than the data point symbol size in Figure 4. Errors
should be somewhat higher for points at lower T and higher
density, though in general, we tried to limit our coverage to
state points where we felt we could get reliable τ values.
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