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Many tropical fruit-feeding nymphalid butterflies are associated with either

the forest canopy or the understorey; however, the exceptions offer insights

into the origins of tropical diversity. As it occurs in both habitats of tropical

forests in Ecuador and Peru, Archaeoprepona demophon is one such exception.

We compared patterns of occurrence of A. demophon in the canopy and under-

storey and population genomic variation for evidence of ecological and

genetic differentiation between habitats. We found that butterfly occurrences

in the canopy were largely uncorrelated with occurrences in the understorey at

both localities, indicating independent demographic patterns in the two habi-

tats. We also documented modest, significant genome-level differentiation at

both localities. Genetic differentiation between habitat types (separated by

approx. 20 m in elevation) was comparable to levels of differentiation between

sampling locations (approx. 1500 km). We conclude that canopy and

understorey populations of A. demophon represent incipient independent

evolutionary units. These findings support the hypothesis that divergence

between canopy and understorey-associated populations might be a

mechanism generating insect diversity in the tropics.
1. Introduction
The mechanisms generating high species diversity in tropical systems are

poorly understood [1–3]. One emerging feature of tropical forest systems is

the vertical stratification of their biota [4], which is well documented in butterfly

communities of lowland tropical forests [5–7]. Trap studies of fruit-feeding

nymphalid butterflies (Nymphalidae), which primarily use rotting fruit for

adult nutrition, have demonstrated that most species are strongly associated

with either the forest canopy or the understorey [1]. This apparent specializ-

ation is correlated with a strong phylogenetic signal, such that canopy species

are generally more closely related to other canopy species than to understorey

species, and vice versa [5]. This supports the hypothesis that adaptation to

canopy or understorey habitat has strongly influenced the patterns of evolution-

ary divergence among neotropical forest butterflies. However, some species are

exceptions and have been observed with equal frequency in both habitats [1,5].

These species might be habitat generalists, or, they might represent cases of

incipient differentiation, with divergence being propelled by local adaptation

to the unique environmental conditions in each habitat.
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Table 1. Sample collection information for 82 Archaeoprepona demophon
that were examined for population genetic variation. N: total sample size;
female: number of females; male: number of males.

locality collection date N female male

Garza Cocha, La Selva Lodge, Ecuador

canopy October 1999 –

July 2001

20 6 14

understorey October 1999 –

July 2002

22 12 10

Los Amigos Biological Station, Peru

canopy April 2004 –

August 2005

10 4 6

understorey April – November

2004

30 6 24
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Figure 1. Estimates of the probability of occurrence in the canopy for 139 fruit-
feeding nymphalid butterflies. Dots represent point estimates (medians) and
bars represent 95% highest-density intervals for probability of occurrence in
the canopy. The focal species, Archaeoprepona demophon, is indicated in
red. The dashed line indicates equal probability of occurring in the canopy
and understorey.
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Specialization and the consequent reduction in gene flow

would, at least partially, uncouple canopy and understorey

populations demographically and facilitate genetic differen-

tiation. Here we examine datasets from tropical fruit-feeding

butterfly communities to assess patterns of occurrence in

canopy versus understorey and identify a focal species that

occupies both habitats. We combine occurrence data with

genome-level population genetic data to ask whether there is

evidence of ecological and genetic differentiation between

canopy and understorey populations of our focal species.

Specifically, we quantified phenological and demographic

independence, and the patterns of genomic differentiation,

between canopy and understorey populations.
2. Material and methods
(a) Butterfly biology and demography
Fruit-feeding nymphalid butterflies were sampled using paired,

baited traps, placed in the canopy (greater than 20 m elevation)

and understorey (1 m above the forest floor), sampled for 5 con-

secutive days during the first 10 days of each month (see [1] for

details) at Tirimbina Biological Reserve, Costa Rica (10.4158,
284.1208), Garza Cocha, La Selva Lodge, Ecuador (20.4988,
276.3738), Shiripuno Research Center, Ecuador (21.1058,
276.7318) and Los Amigos Biological Station, Peru (212.6098,
270.0928) [1,5]. Species identifications were made by P.J.D. and

Isidro Chacon, and specimens are deposited at the University of

New Orleans, USA or Museo Nacional, San Jose, Costa Rica. To

describe vertical habitat separation of communities and to identify

candidate focal species, we assessed the tendency of butterfly

species to occur in either the canopy or understorey using these

long-term trap data. Habitat fidelity for each of 139 species was

characterized using a hierarchical Bayesian model on monthly

count data, where capture in the canopy or understorey was mod-

elled as a binomial distribution. Analyses were conducted using

the STAN language [8] (see electronic supplementary material

for STAN code).

Based on our estimates of habitat fidelity (see Results), we

chose Archaeoprepona demophon as our focal species. We exam-

ined demographic connectivity between A. demophon in the

canopy and understorey using the partial correlation between

abundances in each habitat across months at each site after

accounting for total butterfly abundance, which can vary across

months [9].
(b) Molecular methods
We used a genotyping-by-sequencing protocol to generate

markers throughout the genome of A. demophon. DNA was

extracted from a single leg from each of 82 individuals from

Garza Cocha, La Selva Lodge, Ecuador and Los Amigos Biologi-

cal Station, Peru (table 1), and a reduced representation genomic

library was produced for each individual following the methods

of Gompert et al. [10] and Parchman et al. [11] (see electronic sup-

plementary material for details). Briefly, genomic DNA was

digested with two restriction enzymes, and multiplex identifiers

and adapters were ligated to the resulting fragments, which were

then amplified with PCR using the Illumina primers. PCR pro-

ducts were then pooled, and fragments of between 300 and

400 bp were selected with a Blue Pippin (Sage Science) and

sequenced on the Illumina 2500 platform using single-end

reads of 100 bp in length. A de novo assembly was performed

as described in the dDocent variant-calling pipeline [12] and the

scaffolds from this de novo assembly were treated as artificial

chromosomes for a reference-based assembly in which all

sequence reads were assembled using bwa 0.7.5a-r405 [13]. SAM-

tools v. 0.1.19 [14] was used to index, sort and merge the

individual alignments. Bi-allelic, single nucleotide sites were

identified and filtered using SAMtools.

We measured genetic differentiation between canopy and

understorey samples and between localities (Ecuador and Peru)

using two approaches. First, we calculated pairwise Nei’s GST,

a multi-locus version of Wright’s FST [15], which we hereafter

call FST. In a second approach, we used a distance-based redun-

dancy analysis (dbRDA) [16] on the genotypic dissimilarity

calculated as pairwise Euclidean distances among individuals

based on their multi-locus genotypes using the vegan package

[17]. Statistical significance of the model was assessed via

99 999 permutations of the data. All calculations were performed

in R v. 3.4.3 [18].
3. Results
(a) Patterns of occurrence
Estimates of habitat fidelity indicated substantial variation

among species, where the majority showed a strong preference
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Figure 2. Patterns of genomic differentiation among localities for Archaeopre-
pona demophon genotyped for 43 799 SNP loci. (a) Estimates of pairwise FST

(and bootstrap confidence intervals) are provided for each comparison. Differ-
entiation between canopy and understorey samples (separated by approx.
20 m) is comparable to differentiation between Ecuador and Peru (approx.
1500 km). (b) Redundancy analysis (RDA) of 82 sampled individuals of A. demo-
phon separates canopy and understorey samples as well as Ecuador and Peru.
Symbols represent individuals whose positions in canonical ordination space are
determined by their multi-locus genotypes. Circles indicate individuals from
Ecuador, triangles indicate individuals from Peru, green symbols represent
individual samples from the canopy, brown from the understorey.

Table 2. Results of RDA significance tests using a permutational ANOVA. d.f.:
degrees of freedom, variance: variance partitioning between ‘country’
(Ecuador versus Peru) and ‘forest’ (canopy versus understorey), F: pseudo F
from 99 999 permutations of individuals among localities, p-value: probability
that the pseudo F is at least as large under the null hypothesis of no
association between factors (country or forest) and individual genotypes.

factor d.f. variance F p-value

country 1 59.3 1.0872 0.005

forest 1 55.9 1.0242 0.083

residual 79 4311.5
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for either canopy or understorey (figure 1; electronic sup-

plementary material, table S1; see also [5] for a detailed

examination of these patterns). We chose A. demophon as our

focal species because it occurred in both habitats and had an

intermediate estimated habitat fidelity (posterior probability

of being found in canopy (median (95% highest-density inter-

val (HDI)) ¼ 0.46 (0.41, 0.50)) and based on the availability of

specimens. We did not detect a correlation between canopy

and understorey abundances of A. demophon across sites (cor-

relation coefficients r (95% confidence intervals), t-statistics and

p-values: Costa Rica: r¼ 0.11 (20.09, 0.31), t96¼ 1.1251, p¼
0.2634; Peru: r¼ 0.26 (20.17, 0.61), t21 ¼ 1.2326, p¼ 0.2314;

Ecuador (Shiripuno): r¼ 20.39 (20.74, 0.13), t14¼ 21.5816,

p¼ 0.1361; Ecuador (Garza Cocha): r¼ 0.17 (20.01, 0.35),

t110¼ 1.8577, p¼ 0.06589), evidence that the canopy and under-

storey are not exhibiting demographic patterns expected of a

single population.
(b) Genomic differentiation
Following reference-based assembly, variant-calling and

filtering, we analysed a final dataset of 43 799 single-nucleo-

tide polymorphism (SNP) loci. The median sequence depth

was 26.42 (s.e. ¼ 0.28) reads per individual per locus. All

pairwise FST values were small, ranging from 0.0106 to

0.0198, but significantly different from zero (figure 2a). The

ordination using RDA illustrated patterns similar to the pair-

wise FST (figure 2b, table 2). The overall model was significant

( p , 0.001), 1.4% of the variation explained between Ecuador

and Peru ( p ¼ 0.005) and 1.3% of the variation explained by

canopy versus understorey ( p ¼ 0.083), which is not signifi-

cant (a ¼ 0.05). The sample imbalance in Peru (ncanopy¼ 10,

nunderstorey¼ 30) likely limits our power to reject the null

hypothesis for canopy versus understorey in this model (see

electronic supplementary material for the exploration of

power). Separate analyses for each location showed significant

differentiation between canopy and understorey in Ecuador

( p ¼ 0.037) but failed to detect a difference in Peru ( p . 0.1).
4. Discussion
Individuals of the butterfly A. demophon captured in traps from

Costa Rica, Peru and two sites in Ecuador were nearly equally

likely to be sampled in the canopy and understorey (the prob-

ability of being found in the canopy was estimated to be 0.46

(95% HDI: 0.41, 0.50)). Thus, A. demophon is among a few

fruit-feeding nymphalid butterflies in neotropical forests that

are not exclusively associated with the canopy or the under-

storey. Furthermore, A. demophon canopy populations

appear to be demographically uncorrelated and unconnected

with understorey populations. Examination of patterns of

population genomic variation in canopy and understorey

samples from Ecuador and Peru shows low, but measurable,

differentiation (figure 2). Differentiation between canopy

and understorey samples (separated by approx. 20 m) is com-

parable to the differentiation between Ecuador and Peru

(approx. 1500 km) (figure 2). Together, these results support

the hypothesis that local adaptation to canopy and under-

storey habitats might be a mechanism of population

differentiation in tropical forests.

While we do not understand the mechanism(s) that might

drive local adaptation in canopy and understorey habitats,

the pattern of genetic variation we observed for A. demophon
is consistent with the concept of isolation by environment

[19], wherein differences among habitats can have a role in

determining population genetic structure that is similar to
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isolation by distance [20]. There is at least one example of ver-

tical partitioning between sibling species that might have

arisen from similar population processes. The fruit-feeding

nymphalids Colobura dirce and C. annulata were considered

members of the same species until an extensive examination

of their morphology and natural history [21]. Despite minor

morphological divergence in adults, larvae of these species

differ in colour, and understorey C. dirce lays solitary eggs

on saplings, while canopy C. annulata lays large clutches

in mature trees of the same host plant. Examination of

A. demophon revealed no morphological differences between

canopy and understorey adults of either sex, or between

samples from Ecuador and Peru (C. Penz, University of

New Orleans, personal communication).

Much remains to be learned in this system. In particular,

we do not know if the amount of observed differentiation is

the result of habitat-specific selection acting on demograph-

ically linked subpopulations in equilibrium, or if the

differentiation marks the start of a process of speciation that

would ultimately result in isolated species in the canopy

and understorey. Nevertheless, the patterns of demographic

and genomic differentiation within this nominal species

parallel phylogenetic patterns at the community level [5]

and support the hypothesis that adaptation to vertically dis-

tributed habitats in tropical forests might contribute to the

diversity of these communities. Comparable investigations

of other taxa (e.g. other butterflies as well as other tropical
forest organisms in general) are required to assess the

generality of this pattern.
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