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Abstract. Properly discontinuous actions of a surface group by affine automor-
phisms of R? were shown to exist by Danciger—Gueritaud-Kassel. We show, however,
that if the linear part of an affine surface group action is in the Hitchin component,
then the action fails to be properly discontinuous. The key case is that of linear part
in SO(n,n—1), so that the affine action is by isometries of a flat pseudo-Riemannian
metric on R? of signature (n,n — 1). Here, the translational part determines a de-
formation of the linear part into PSO(n, n)-Hitchin representations and the crucial
step is to show that such representations are not Anosov in PSL(2n,R) with respect
to the stabilizer of an n-plane. We also prove a negative curvature analogue of the
main result, that the action of a surface group on the pseudo-Riemannian hyper-
bolic space of signature (n,n — 1) by a PSO(n, n)-Hitchin representation fails to be
properly discontinuous.
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1 Introduction

This paper is about an application of some rapidly developing tools from higher
Teichmiiller-Thurston theory to the study of properly discontinuous group actions
in affine geometry, flat pseudo-Riemannian geometry, and also pseudo-Riemannian
hyperbolic geometry.

An affine manifold is a manifold M equipped with a flat, torsion-free affine
connection V. If the geodesic flow of V is complete, then M is called a complete
affine manifold. Equivalently, a complete affine manifold is the quotient M = I'\R?
of a proper affine action, i.e. a properly discontinuous action of a group I' by affine
automorphisms of R?. Here the group T, which identifies with the fundamental
group w1 M, is required to be torsion free (otherwise the quotient is an orbifold
rather than a manifold). Complete affine manifolds are generalizations of complete
Euclidean manifolds, for which the connection V is the Levi-Civita connection of
a complete flat Riemannian metric or equivalently the action by I' preserves the
standard Euclidean metric on R?. In this case, by Bieberbach’s theorems, I' contains
a finite index subgroup I'g = ZF for which the corresponding finite cover of M
deformation retracts onto a totally geodesic k-torus.

By contrast to the setting of Euclidean geometry, the general picture of what
complete affine manifolds M can look like is much more mysterious. The Aus-
lander conjecture [Aus64, AMS13] gives a conjectural analogue of Beiberbach’s
theorem for the case that M is compact. However, in the non-compact case, it
is unclear what restrictions the presence of a complete affine structure puts on
the topology of M. Indeed in 1983, Margulis [Mar83, Mar87] found examples of
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proper affine actions by non-abelian free groups in dimension three, destroying
the natural intuition that a complete flat affine structure ought to obstruct word
hyperbolicity in the fundamental group. The geometry, topology, and deforma-
tion theory of complete affine three-manifolds with free fundamental group, now
known as Margulis spacetimes, has been studied thoroughly in recent years, see e.g.
[DGY5, GM00, GLM09, CDG16, CG17, DGK16b, DGK16¢, DGK, CDG17].

Recently, Danciger—Guéritaud—Kassel [DGK18b] found examples of proper affine
actions for any right-angled Coxeter group, and consequently any subgroup of such
a group. While this class of groups is very large and rich, let us focus on the sub-class
of surface groups, i.e. the fundamental groups m1 S of closed orientable surfaces S of
genus g > 2. In this case, the construction of [DGK18b] gives examples of proper
affine actions in dimension as low as d = 6.

Here we take up the problem of classifying proper affine actions by surface groups
w15, or equivalently complete affine manifolds which are homotopy equivalent to a
surface S. The advantage in considering surface groups is that tools to study repre-
sentations of surface groups have developed rapidly over recent years. Indeed, this
paper will make use of some recent results in higher Teichmiiller-Thurston theory in
order to obstruct properness for affine actions coming from a well-studied component
of representations, called the Hitchin component.

The group of affine automorphisms Aff(R?) = GL(d,R) x R¢ decomposes as
the semi-direct product of the linear automorphisms GL(d,R) with the translation
subgroup R?. Hence an affine action of the group I' consists of two pieces of data

(p,u) : T — Aff(R?) = GL(d,R) x R?

where here p : I' — GL(d,R), a homomorphism, is called the linear part, and u :
I' — R%, a cocycle twisted by p, is called the translational part. The main theorem
is:

Theorem 1.1.  Suppose that (p,u) : 115 — Aff(RY) = GL(d,R) x RY is a proper
affine action. Then the linear part p does not lie in a Hitchin component.

Here, the term Hitchin component refers to a special connected component (in
fact, multiple related components) of representations that was singled out by Hitchin
[Hit92] for its connection to Teichmiiller theory. Goldman [Gol88] proved that the
space Hom(71 S, PSL(2,R)) has 4g — 3 components, where ¢ is the genus of S. The
discrete faithful representations sort into two components, called the Teichmailler
components, corresponding to oriented hyperbolic structures on S of each possible
orientation. For G an adjoint real split semi-simple Lie group, such as G = PSL(d, R),
the compositions of representations in the Teichmiiller components with the princi-
pal representation 7 : PSL(2,R) — G are called Fuchsian representations and the
connected components of Hom(71S, G) containing all deformations of Fuchsian rep-
resentations are called G-Hitchin components and their elements called G-Hitchin
representations (we suppress the G when clear from context). See Section 3.1. In
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the case G = PSL(d,R), if d is odd, there is one Hitchin component and if d is
even, there are two Hitchin components which are nonetheless referred to as “the”
Hitchin component since the two components are related by an automorphism of
PSL(d,R). Hitchin showed that, like the Teichmiiller components for PSL(2,R), a
G-Hitchin component is (after dividing out by conjugation) homeomorphic to a ball
of dimension dim(G) - (2g — 2) inside which the locus of Fuchsian representations
make up a 6g — 6 dimensional sub-manifold (also a ball).

Labourie [Lab01] proved that a (lift of a) Fuchsian representation p is never the
linear part of a proper affine action and Theorem 1.1 extends Labourie’s result to
the entire Hitchin component. We note that in the case d = 3, the key case of
Theorem 1.1 follows from Mess [Mes07] and Goldman-Margulis [GMO00]. We also
note that, unlike the case d = 2, for d > 3 the space Hom(m.S, PSL(d,R)) has only
three (resp. six) connected components if d is odd (resp. if d is even). However,
the behavior of the representations in the other two (or four) components is very
different and still quite mysterious, making a study of proper affine actions with
linear part in those components intractible at this time.

Hitchin representations have many nice properties. In particular, Labourie [Lab06]
showed that every PSL(d,R)-Hitchin representation is Anosov; indeed he invented
the notion of Anosov representation, now central in higher Teichmiiller-Thurston
theory, for the purpose of studying the PSL(d, R)-Hitchin component. Anosov rep-
resentations were generalized by Guichard-Wienhard [GW12] to the setting of rep-
resentations of any word hyperbolic group into a semi-simple Lie group G. There is
a notion of Anosov for each parabolic subgroup P of G. For G an adjoint real split
semi-simple Lie group, the G-Hitchin representations satisfy this notion for the min-
imal parabolic (the Borel subgroup) B, or equivalently for all of the parabolic sub-
groups of GG. Anosov representations, including some recent characterizations due to
Guichard-Guéritaud-Kassel-Wienhard [GGKW17] and Kapovich-Leeb—Porti
[KLP14, KLP15], will be the essential tool for the proof of Theorem 1.1.

1.1 Flat pseudo-Riemannian geometry in signature (n,n—1).  The affine
transformation (p(7),u(y)) € Aff(R?) fixes a point if p(y) does not have one as an
eigenvalue. Hence if (p, u) is a free affine action by 7.5, then the linear part p() has
one as an eigenvalue, for all v € w15, and the same property passes to the Zariski
closure of p(m15). In the context of Theorem 1.1, Guichard’s characterization of
the possible Zariski closures of Hitchin representations [Gui| allows us to reduce to
the case that d = 2n — 1 is odd (with n > 2), and that the linear part p(mS) C
SO(n,n — 1) is contained in the special orthogonal group of the standard indefinite
symmetric bilinear form of signature (n,n — 1). The vector space R? together with
this form will be denoted by R™"~! and the affine space of this vector space, equipped
with the induced flat pseudo-Riemannian metric, will be denoted by E™"~!. Hence,
in this case the affine action (p,u) is by isometries of E™"~!. Theorem 1.1 is a
corollary of:
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Theorem 1.2.  Suppose (p,u) : 1S — Isomy(E»"~1) = SO(n,n — 1) x R*"~!
is an action by isometries of E®"~! with linear part p a SO(n,n — 1)-Hitchin repre-
sentation. Then the action is not proper.

In fact, if n is odd, Theorem 1.1 follows from an observation of Abels-Margulis-
Soifer [AMS97] (see Remark 7.6), so we need only treat the case that n is even.
However, for much of the setup we will not distinguish between the case n odd and
n even.

The strategy for Theorem 1.1 follows the key point of view in the work of
Danciger—Guéritaud—Kassel [DGK16b, DGK16¢, DGK16a, DGK] on proper actions
by free groups in E%! and their quotients, called Margulis spacetimes. In that con-
text, Margulis spacetimes were studied as limits of their negative curvature coun-
terparts, namely three-dimensional AdS spacetimes which are quotients of anti de
Sitter space AdS® = H?!. Similarly, here we will study the above isometric actions
on E™"~! by thinking of these as infinitesimal versions of isometric actions on the
pseudo-Riemannian hyperbolic space H™"~ 1,

1.2 Deforming into hyperbolic geometry of signature (n,n — 1). The
pseudo-Riemannian hyperbolic space H™"~! is the model for constant negative cur-
vature in signature (n,n — 1). The projective model for H™"~! is:

H™" L =P {z € R™" ~ {0} : (x,2)n, < 0} C P(R™"),

where here R™" denotes the vector space R?" equipped with the standard symmetric
bilinear form (-,-),, of signature (n,n). The projective special orthogonal group
PSO(n,n) acts transitively on H™"~! as the orientation preserving isometry group
of a complete metric of constant negative curvature with signature (n,n —1). With
coordinates respecting the orthogonal splitting R™" = R™"~1 @ R%!  the stabilizer
in PSO(n,n) of the basepoint xog = [0 : --- : 0 : 1] is precisely the orthogonal
group O(n,n — 1) acting on the R™"~! factor in the standard way and acting on the
RO =R - xq factor as =+id.

Now consider a Hitchin representation p : mS — SO(n,n — 1). Denote by
tnn  SO(n,n — 1) — PSO(n,n) the natural inclusion for the orthogonal split-
ting R™" = R™"~1 ¢ RO above. Then tn,n © p stabilizes the basepoint x¢ € H»n—1
and acts on the tangent space of that point, a copy of R™"~! in the standard way
by linear isometries. Consider a deformation path o. : 715 — PSO(n,n) based at
00 = lnn © p. Any such deformation p. (for € not necessarily small, or possibly
zero) is a PSO(n,n)-Hitchin representation and such representations make up the
PSO(n, n)-Hitchin component. The derivative of g, at time € = 0 is naturally a
cocycle v : S — pso(n,n) twisted by the adjoint action of gy, which splits as an
invariant orthogonal sum

pso(n,n) = so(n,n — 1) @ R™" 1

where the action in the first factor is by the adjoint representation and the ac-
tion in the second factor is by the standard representation. Hence the projection
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u of the infinitesimal deformation v to the R™"~! factor gives a cocycle of trans-
lational parts for an affine action (p,u) on E™"~!. The geometric way to think of
this fact is as follows: As & — 0, the action of each p.(y) moves the basepoint xg
less and less, and by zooming in on the basepoint at just the right rate as ¢ — 0
and taking a limit (in an appropriate sense), the action converges to an affine ac-
tion (p,u) on E™"~! whose action on the basepoint is translation by the derivative
= 0:(7)xg € Ty, H™™ 1 = R™"~1 where here we identify the tangent space
Txoﬁ”?"_l with R™7~1,

Now, since iy, » 0 p has trivial centralizer in PSO(n, n), results of Goldman [Gol84]
on representation varieties of surface groups imply that any p-cocycle v : .S —
R™"~1 is realized as the R™"~! part of the derivative of a smooth deformation path
0 as above (and the so(n,n — 1) part may be taken to be trivial). We prove a
key lemma (Lemma 8.2) that connects a criterion [GLMO09, GT17] for properness
of the affine action (p,u) on E™"~! with the first order behavior of the two mid-
dle eigenvalues of elements p.(7), an inverse pair A,, A, which converges to the
two one-eigenvalues of ¢y, 0 p(7y) as € — 0. From this eigenvalue behavior, we use
[GGKW17, KLP14, KLP15] to prove that if (p, u) acts properly on R™"~! then the
representations . satisfy an unexpected Anosov condition. Specifically, for ¢ > 0
small enough, t2, o 0. is Anosov with respect to the stabilizer P, of an n-plane in
R?" where here to, : PSO(n,n) — PSL(2n,R) is the inclusion, see Theorem 8.7.
Theorem 1.2 then follows from the next theorem, which is a main technical result
of the paper:

Theorem 1.3. If p : mS — PSO(n,n) is a PSO(n,n)-Hitchin representation,
then 1y, 0 p : m S — PSL(2n,R) is not P,-Anosov.

As discussed above, PSO(n, n)-Hitchin representations enjoy all possible forms of
Anosovness available in PSO(n,n). However, a PSO(n, n)-Hitchin representation has
no reason to be P,-Anosov in the larger group PSL(2n,R), and the representations
landing in the subgroup ¢, ,SO(n,n — 1) (of the form above ¢, , o p) obviously fail
this condition. Theorem 1.3 says that P,-Anosovness in PSL(2n,R) never happens,
even by accident, to the inclusion of a PSO(n, n)-Hitchin representation.

The proof of Theorem 1.3 uses more than just Anosovness of PSO(n,n)-Hitchin
representations, specifically it uses that PSO(n,n)-Hitchin representations satisfy
Fock—Goncharov positivity [FG06]. However, we remark that the proof of The-
orem 1.2 outlined above only requires Theorem 1.3 for PSO(n,n)-Hitchin repre-
sentations which are small deformations of SO(n,n — 1)-Hitchin representations.
We remark that a proof of Theorem 1.3 in that case can be achieved without the
full strength of positivity in PSO(n,n), using in its place some special properties of
SO(n,n — 1)-Hitchin representations (Labourie’s Property (H) from [Lab06]) and
an argument about persistence of such properties under small deformation into
PSO(n,n), but we do not give this proof here.
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REMARK 1.4. Sourav Ghosh has announced independent work [Ghol8] that has
overlap with some of our results. Specifically, Lemma 8.2 and Theorem 8.7, showing
that a proper action on E™"~! whose linear part is Anosov with respect to the stabi-
lizer of an isotropic (n — 1)-plane corresponds to a deformation path into PSO(n,n)
for which the inclusions into PSL(2n,R) are P,-Anosov, is also proved by Ghosh.
Theorem 8.7 is one of the two main inputs in our proof of Theorem 1.2, the other
being Theorem 1.3 which Ghosh does not obtain. We also remark that, whereas we
focus on surface groups only, Ghosh works in the more general setting of actions by
any word hyperbolic group.

1.3 Proper actions in H™"~1. We also use Theorem 1.3, together with a
properness criterion, Theorem 6.1, based on techniques from [GGKW17] to show
the negative curvature analogue of Theorem 1.2.

Theorem 1.5. A PSO(n,n)-Hitchin representation p : .S — PSO(n,n) does
not act properly on H™»"~ L.

We note that proper actions by surface groups on H™"~! do exist when n is
even (Okuda [Okul3]), but not when n is odd (Benoist [Ben96]). Note that in the
case n = 2, Theorem 1.5 follows from work of Mess [Mes07] or of Guéritaud-Kassel
[GK17]. In that case H™"~! = H?! is the three-dimensional anti-de Sitter space,
whose study is greatly simplified by the accidental isomorphism between PSO(2,2),
and PSL(2,R) x PSL(2,R). The n = 2 case of the proof given here of Theorem 1.5,
through Theorem 1.3, is fundamentally different. Indeed, the work of Mess and of
Guéritaud-Kassel does not naturally generalize to higher H™" !, though it does
generalize to the setting of some other homogeneous spaces whose structure group
is a product.

1.4 Overview of proofs and organization. The paper naturally splits into
two main parts, namely Sections 2-6 and Sections 7-8. The proof of Theorem 1.3
is given in Section 5, which builds on Sections 2-4. Section 2 gives background
information about flag manifolds. Section 3 introduces Hitchin representations and
positivity and then proves a new transversality result, Corollary 3.7, for triples on the
positive curve associated to a PSO(n, n)-Hitchin representation. Section 4 introduces
Anosov representations, reviews some relevant recent results about them, and also
proves Proposition 4.7, a key dynamical input for Theorem 1.3. Section 6 proves
a general theorem, Theorem 6.1, connecting properness of actions on H™"~! with
certain Anosov conditions and then proves Theorem 1.5.

In the second, more geometric part of the paper, Section 7 reviews the properness
criterion (Theorem 7.10) for actions on E™"~! with Anosov linear part. This criterion
is stated in terms of a signed length function associated to such an affine action.
We introduce a new length function in the setting of H™" !, defined analogously.
Section 8 gives the main geometric transition arguments connecting the behavior of
actions on E™"~! with that of actions on H™" . We explain how a E™"~! action
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determines a path of H™"~! actions, which are in a certain sense nearby, and prove
Lemma 8.2, which relates the length function for the E™"~1 action to the first order
behavior of the length functions for the associated path of H™"~! actions. We then
prove Theorem 8.7, relating proper discontinuity of an E™"~! action with certain
Anosov behavior of the nearby H™"~! actions. Finally, we prove Theorem 1.2 and
then Theorem 1.1.

2 Grassmannians and Flag Manifolds

In this paper, three semi-simple Lie groups will appear frequently, namely G :=
PSL(d,R) with d > 2, and G’ := PSO(n,n) and G” := SO(n,n — 1) with n > 2.
After introducing these groups, the goal of this section will be to give a description
of the relevant flag manifolds on which these groups act, and to then give some basic
facts about them that will be used throughout the paper.

First, recall that SL(d,R) is the space of volume preserving linear automorphims
of the vector space R%. Fixing a basis of R?, SL(d, R) identifies with the group of dx d
real matrices of determinant one. The group PSL(d,R) is the quotient of SL(d,R)
by its center, which is trivial if d is odd, or is {+id} if d is even.

Next, consider the symmetric anti-diagonal matrix,

00 ... 01
00 ... 10
Ja=17 N
01 ... 00
10 ...00

In the case d = 2n is even, the signature of J; is (n,n) (meaning it has n positive
eigenvalues and n negative eigenvalues). We will use the notation (-, ), to denote
the symmetric bilinear form on R2" whose matrix is Jop,:

2n
(@ Y)nn = iny2n+1—i
i=1
where (11,...,29,) and (y1,. .., %2,) are the coordinates of z,y € R?" with respect to
the standard basis (eq, ..., e2,). We prefer to work in this basis in the initial part of
the paper. However, in the final sections of the paper it will be more natural to work
in a basis (€], ..., €}, ) which diagonalizes the form (-, -),, ,. We will use the notation

R™" to denote the vector space R?" together with the symmetric bilinear form
(-, )n,n- We equip R™"™ with the orientation making the standard basis positive and
define SO(n,n) < SL(2n,R) to be the orientation preserving automorphism group
of R™" that is the special linear automorphisms of R?" which preserve (-, nn- We
define PSO(n,n) to be the projection of SO(n,n) to PSL(2n,R).
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In the case d = 2n — 1 is odd, the signature of Jo,,_1 is (n,n — 1) (meaning Jo,,_1
has n positive eigenvalues and n — 1 negative eigenvalues). We will use the notation
(-, Ynn—1 to denote the symmetric bilinear form on R?*"~! whose matrix is Jo,_1:

n—1
<55a y>n,n71 = Z(-Tinnfi + x?nfiyi) + TpYn

i=1
where (21,...,72,-1) and (y1,...,y2n_1) are the coordinates of x,y € R?"~1 with
respect to the standard basis (f1,..., fon—1) of R27—1 We will use the notation
R™"~1 to denote the vector space R?"~! together with the symmetric bilinear form
(-, )nm—1. We equip R™"~! with the orientation making the standard basis positive
and define SO(n,n — 1) = PSO(n,n — 1) to be the orientation preserving auto-
morphism group of R™"~ 1 that is the special linear automorphisms of R?"~! that
preserve the symmetric bilinear form (-, )y —1.

We will often embed R™"~! in R™" in the following way. The vector e, — €,41
has negative signature in R™". Hence the orthogonal complement (e, — e,+1)" has
signature (n,n — 1) and we think of it as a copy of R™"~1. More specifically, we
embed R?"~1 as a subspace of R?" by the linear map

fireforl<i<n—1,
fimeppforn+1<i<2n—1,

fn = \}E(en + 6n+1)'

Then, the restriction of the form (-,-),, to (the image of) R?*"~! is precisely the
(image of the) form (-, ), 1. Hence we will write R®" = R®»"~! @ R%! where on
the right-hand side R™"~! is understood to be the image of R>*~! under the above
map and R%! is understood to be the span of e,, — e,41, and each is equipped with
the restriction of (-, )y p.

2.1 Grassmanians and Isotropic Grassmannians.  We introduce some nat-
ural compact homogeneous spaces associated to the main Lie groups of interest.
For 1 <k<d-—1,let Grk(Rd), denote the space of k-dimensional vector sub-
spaces in R%, known as the Grassmannian of k-planes in R,
In the case d = 2n, and 1 < k < n, let Gri(R™") C Gry(R?*") denote the space
of isotropic k-planes:

Gry(R™") := {H € Gr(R™) : (z,2)p, =0 forallz € H}.
For n 4+ 1 < k < 2n, denote

Gry(R™") := {H € Gry(R*™) : H* ¢ Grzn_k(R"’”)}

where H' denotes the orthogonal space to H with respect to (-, )n,n- Note that L
defines a canonical isomorphism Gry(R™") = Grg,_,(R™").
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Similarly, for 1 < k< n — 1,
Gry(R™ 1) :={H € Gri(R*"™) : (2, 2),, = 0 for all € H}
is the space of isotropic k-planes in R?"~!. For for n < k < 2n — 1, define

Gry, (R 1) = {H € Gr,(R™) : HL ¢ Grgn_l_k(R"’")}

where here H+ denotes the orthogonal space to H with respect to (-, Ynn—1. Note
that L defines a canonical isomorphism Gry(R™" 1) 2 Gry,_;_;(R™»"1).

PROPOSITION 2.1.

(1) For all 1 < k < d—1, G := PSL(d,R) acts transitively on Gry(R?). Hence
Gri(RY) = G/ Py, is a homogeneous space of G, where P}, denotes the stabilizer
of the k-plane span{ey,...,ex}.

(2) Foralll1 < k<2n—1,k #n, G' := PSO(n,n) acts transitively on Grg(R™").
Hence Gry(R™™) = G’/ P}, is a homogeneous space of G', where P, denotes the
stabilizer of the isotropic k-plane span{e, ..., ex}.

(3) For all 1 < k < 2n—2, G" := SO(n,n — 1) acts transitively on Gry(R™"1).
Hence, Gry(R™"~1) = G” /P! is a homogeneous space of G", where P} denotes
the stabilizer of the isotropic k-plane span{fi,..., fi}.

Proof. The proofs are well-known linear algebra exercises. Let us quickly recall a
proof of (2) to highlight what is different about the situation k& = n, to be discussed
after this proof.

By the isomorphism Grg(R™™) ~ Gry,_;(R™"), we may assume 1 < k <n — 1.
Let H € Grp(R™"™), an isotropic k-plane. Let vy,...,v; be a basis of H. Since the

form (-, ), is non-degenerate, there exists vectors v}, ..., v} so that <vi,v;~> = 0;j
for 1 <4,j < k. By adjusting v}, ..., v, with elements of H we may further arrange
that v], ..., v} span an isotropic k-plane H’', which necessarily intersects H trivially.

Then H @ H' is a non-degenerate subspace of R™" which therefore has signature
(k, k). Its orthogonal complement (H @ H')* has signature (n —k,n— k) and a basis
Wi, ...y Wk, W, ..., w,_, with the property that wi,...,w,— and wi,...,w),_,
each span isotropic (n — k)-planes and satisfy (w;,w}) = d;;. Then the following
defines an orthogonal transformation of R™™:

e; — v; for all 1 <7 <k,
e; — Wi_k foral k+1<i<n,
€ Why i1 forall n+1 <@ < 2n —k,
€ Vi1 for all 2n —k 4+ 1 <@ < 2n.
This automorphism maps the standard isotropic k-plane, spanned by ey,...,e; to

H. However, this automorphism might not preserve orientation. To fix that issue,
we may precompose with the orientation reversing automorphism which swaps e,
and e,+1 and leaves all other basis vectors fixed. Of course, since k < n, this does
not change the fact that span{ey,...,ex} — H. O
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By contrast to Proposition 2.1.(2), the PSO(n,n) action on Gr,(R™") has two
orbits. Here is an invariant that distinguishes them (which can already be seen in the
proof above). For any H € Gr,(R™"), choose a basis (v1,...,v,) of H. This extends
uniquely to a basis (v,...,v,,0,,...,v]) of R* so that H' = span{v},...,v,} is
also an isotropic n-plane and (v;, U§‘>n,n = ;5 for 1 < 4,7 < n. Then define

VIA Aoy AV ALV
H) = € {+1}, 2.1
(H) LUl L (1) (21)

In fact, 7(H) does not depend on the choice of the basis (vi,...,v,) for H: In
the procedure above, a change of the basis v1,...,v, of H, represented by a n x n
matrix, leads to a change of the basis v,...,v], of H' by the exact same matrix,
hence any change of orientation in the basis for H is canceled out by the same change
of orientation in the basis for H'. We define:

Gr, (R™") := {H € Gr,(R™™") : 7(H) = +1},
Gr, (R""):={H € Gr,(R"") : 7(H) = —1}

and refer to the first as the Grassmannian of positive isotropic n-planes and to the
second as the Grassmannian of negative isotropic n-planes. See Figure 1 for the case
n=2.

REMARK 2.2. There is no intrinsic difference between the space of positive isotropic
n-planes and the space of negative isotropic m-planes. Indeed, an element of
PO(n,n)\PSO(n,n) reverses the orientation of R™" and hence takes the positive
isotropic n-planes to the negative ones and vice versa. Hence any argument about
Gr;’ (R™") that does not use a particular choice of orientation on R™™ also applies
to Gr,, (R™").

PROPOSITION 2.3. The action of G' = PSO(n,n) on Gr,(R™") has two orbits,
Gr; (R™") and Gr,, (R™"). Each isotropic (n — 1)-plane Hy € Gr,_1(R™") is con-
tained in a unique positive isotropic n-plane H, € Gr;; (R™") and a unique negative
isotropic n-plane H_ € Gr,, (R™™). The maps

@y : Gr,_1(R™) — Gr (R™™),
w_ : Grp_1(R"") — Gr, (R™")

defined respectively by Hy — H, and Hy — H_ are G'-equivariant fiber bundle
projections, with fiber a copy of RP" 1.

Proof. Consider Hy := span{ey,...,en_1} € Gr,_1(R™"). Then H; := span{ey,
...,en} and H_ := span{ey,...,e,_1,€,4+1} are the unique isotropic n-planes con-
taining Hy. We see this as follows. Let H&' = span{ei,...,en+1} DO Hoy denote the
orthogonal space to Hp. Then the inner product (-,-), , descends to a well-defined
inner product on the quotient Hg /Hy which has signature (1,1). Hence Hy /Hy
contains exactly two isotropic lines whose inverse images in HOL are H; and H_.



J. DANCIGER AND T. ZHANG GAFA

Figure 1: The subset Gri(R*?) in Grq(R*) = RP? is the well-known doubly ruled hyper-
boloid. The lines of one of the rulings make up Grj (R??) while the lines of the other make
up Gr; (R?2). The projection map w, (resp. w_) simply maps a point of Gri(R*?) to the
line of the + ruling (resp. the — ruling) containing it.

Note also that 7(H;) = +1 and 7(H_) = —1. By transitivity of the G’-action on
Gr,—1(R™") (Proposition 2.1.(2)), the maps w; and w_ may be expressed respec-
tively as gHy — gHy and gHy — gH_. Since every (n — 1)-plane contained in an
isotropic n-plane is also isotropic, its clear that @ and w_ are surjective, and that
the fiber above H (resp. H_) is the space P(H% ) of (n— 1)-planes in H (resp. the
space P(H*) of (n — 1)-planes in H_), a copy of RP"~!, 0

2.2 Flag manifolds and parabolic subgroups. For each 1 < k < d, the
Grassmannian Gry(R?) = G/P, is a special example of a flag manifold of G =
PSL(d,R) and the stabilizer P, < G of a k-plane in R is an example of a parabolic
subgroup. More generally, by a flag manifold of G, we will mean a compact homoge-
neous space of the form G/ P for some parabolic subgroup P < G. Before discussing
parabolic subgroups in general, let us first introduce the most important example,
the Borel subgroup.

In general, a Borel subgroup B of an algebraic group G defined over R is a
maximal Zariski closed and Zariski connected solvable subgroup. The Lie groups G
that we will work with in this paper are unions of connected components (for the real
topology) of the real points G(R) of some algebraic group G, so we will understand
the term Borel subgroup to mean a subgroup of the form B = B(R)NG. In the case
that G = PSL(d,R), a Borel subgroup B < G is the stabilizer of a full flag F, i.e. a
maximal increasing sequence of vector subspaces of R%:

F(l) C F(Q) Cc .- C F(d_l)

where for each 1 < k < d—1, F) ¢ Grk(Rd) is a k-subspace. For example, the
standard full flag is defined by

F) = span{eq,...,ex}
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for all 1 < k£ < d — 1. The stabilizer of the standard flag is the subgroup of upper
triangular matrices, which we will call the standard Borel subgroup. The action of G
on the space of full flags is transitive and all Borel subgroups are conjugate. Hence
the space of full flags identifies with Fp = G/B, where B is any Borel subgroup.
For G’ = PSO(n,n), a Borel subgroup is given by the subgroup B’ < G’ of elements
which are upper triangular (i.e. the intersection with G’ of the standard Borel in
PSL(2n,R)). For G = SO(n,n—1), a Borel subgroup is again given by the subgroup
B" < G" of elements which are upper triangular (i.e. the intersection with G” of the
standard Borel in SL(2n — 1,R) = PSL(2n — 1,R).) The associated flag manifolds
will be described soon.

DEFINITION 2.4. A parabolic subgroup of a semi-simple Lie group G (which is as-
sumed to be the union of finitely many connected components of the set of real
points G(R) of some algebraic group G defined over R) is any subgroup P which
contains a Borel subgroup B. We call the homogeneous space Fp = G/P a flag
manifold.

Two parabolic subgroups P, () < GG are said to be opposite if P N Q) is a reduc-
tive subgroup of G. Given a parabolic subgroup P < G, all parabolic subgroups
opposite to P are conjugate to one another. For example, the parabolic subgroups
opposite to a Borel subgroup B are also Borel subgroups and are conjugate to B.
For another example, if G = PSL(d,R) then the stabilizer P, < G of the standard
k-plane span{ei,...,e;} is a parabolic subgroup, whose associated flag manifold
is G/P, = Gry(R?). The stabilizer of any transverse (d — k)-plane, for example
span{eg41,...,€q}, is an opposite parabolic to Py, and any such subgroup is conju-
gate to Py_g.

We shall consider mainly the case of a parabolic subgroup P < G which is
conjugate to an opposite of itself. In this case, the action of G on the product
Fp x Fp admits a unique open orbit, which we may think of as the subspace of
pairs of opposite parabolic subgroups, or alternatively as the pairs of transverse
flags in Fp. Let us now give some examples of P, Fp, and Op in the three settings
of interest. The reader may easily verify the following claims.

ExAMPLE 2.5. Let G = PSL(d,R), and recall that the subgroup B of upper trian-
gular matrices in G is a Borel subgroup. As we saw above, the flag manifold Fp is
naturally:

F®) ¢ Grp(RY) forall 1 < k < d
_ _ (p (a-1)) . £ k S ,
s {F (F - F )'F@cF(J)fora111<¢<j<d—1}'

The space of transverse flags Op is
Op = {(Fl,Fz) e Fpx Fp: FP 4 B R for all 1 <k < d}.

More generally, let Z C {1,...,d — 1} be a subset of indices and let F' be
the standard flag of type Z, meaning F contains the standard subspace F() =
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span{ey, ..., e;} of dimension i if and only if ¢ € Z. Then the stabilizer Pr of F' is a
parabolic subgroup of G and Fr = G/ Pz identifies with the space of flags of type Z.
Further Pr is conjugate to its opposite parabolic subgroups if and only if Z = ¢7
for the involution o : i — d — 4. In this case the space of transverse pairs of flags is

Or = {(FLFQ) € Frx Fr: F® + Fl47F — Re for all k € I} .

For d = 2n even, we highlight two important cases. First, if Z = {n}, then
Fr = Gr,(R?") is the Grassmannian of n-planes in R?", and Pr = P, is the stabilizer
of an n-plane. Second, if Z = {n—1,n+1}, then Fr = F,_1 n41 is the space of pairs
of an (n — 1)-plane contained in an (n+ 1)-plane and Pz = P,,_1 n41 is the stabilizer
of such a flag. For d = 2n — 1 odd, an important case will be that of Z = {n — 1,n},
for which 77 = F,—1, is the space of pairs of an (n — 1)-plane contained in an
n-plane and Pr = P,_1,, is the stabilizer of such a flag.

EXAMPLE 2.6. Let G” = SO(n,n —1). Then the subgroup B” < G" of upper trian-
gular matrices is a Borel subgroup (i.e. B” = G” N B for B the standard Borel in
PSL(2n — 1,R) = SL(2n — 1,R)). The space Fp» = G”/B"” may be described as

F®) € Gry(R™1),
fB” —_ F — (F(l), o ’F(2T’L—1)) . F(Qn—l—k:) — (‘F’(k‘))L7
F®) c pE+D for 1 < k< 2n—2

In other words Fp~ is the space of all full flags of R?”~! for which each subspace
of dimension less than half is isotropic and each subspace of dimension greater than
half is the orthogonal space to the isotropic subspace of complementary dimension.
Note that all of the data specifying such a flag is contained in the subspaces of
dimension less than half. Nonetheless, it is useful to keep track of the subspaces of
dimension larger than half as well. The space of transverse pairs is given by

Opn = {(Fl, Fy) € Fv x Fpo: F) 4 FP170 — R2-L for all 7,} .

Similarly to the above, a subset Z C {1,...,2n—1} of indices specifies a flag manifold
Fr1 containing the flags of type Z which obey the orthogonality rules above when
applicable. The stabilizer of the standard flag of type Z is the parabolic subgroup
Pr. Unlike above, Pr = P7, where 7T = TUoT denotes the symmetrization of Z under
the involution o : i — 2n — 1 — . Indeed all parabolic subgroups of G’ are conjugate
to their opposites. Hence, we will always assume Z = Z is symmetric. The maximal
parabolic subgroups of G" are of the form P := P 9,,—1_p} for 1 <k <n— 1.

EXAMPLE 2.7. Let G’ = PSO(n,n). The subgroup B’ of upper triangular matrices
in G’ is again an example of a Borel subgroup. Then the associated flag manifold
Fp = G/B’ may be described as the space of flags F' of the form

FO c...c po=) c p M ¢ piot) ¢ Lo pneD), (2.2)
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where

o M) € Gry(R™) for all 1 <k <2n—1, k #n,
o FCn=k) — (PN for all k # n,
o 7 € Grf(R™") and F™ € Gry (R™").

As in the previous example, the information given in the flag F' is more than needed
to specify the associated point of Fp/. Indeed, the subspaces FO c...c pir-1)
entirely determine F'. However, it will be useful to have notation for the other sub-
spaces as well.

The other parabolic subgroups of G’ are each given by the stabilizer of an
incomplete flag made up of a subset of the subspaces of (2.2). Since the stabi-
lizer in G’ of F for any i # n is equal to the stabilizer in G’ of F2"=9 it
suffices to consider symmetric flags. However, we note one important difference
between G’ and G”. The stabilizer P/t < G’ of the positive isotropic n-plane
H, :=span{ey,...,e,} and the stabilizer and P/~ < G’ of the negative isotropic n-
plane H_ := span{ey,...,e,_1,€n41} are each maximal parabolic subgroups of G'.
Their intersection P/" N P,~ = P! _, is the stabilizer of the isotropic (n — 1)-plane
Hy = span{ey,...,e,—_1}, which is a parabolic subgroup, but not a maximal one.

REMARK 2.8. In the case n is even, any two transverse isotropic m-planes have
the same sign, hence P/" and P/~ are each conjugate to their opposite parabolic
subgroups. In the case n is odd, however, any two transverse isotropic n-planes have
opposite sign, hence any opposite parabolic subgroup to P." is conjugate to P.~
and vice versa.

2.3 Affine charts for flag manifolds. The flag manifolds of G = PSL(d,R)
admit natural affine coordinate charts, which will be useful for the computations in
Sections 4 and 5.

Let us start with the Grassmannian Gry(R?) = G/P. For any Y € Gry_(R%),
denote by Uy the space of k-planes which are transverse to Y:

Uy :={X € Grip(RY) : X NY =0},

an open subset of Gry(R?). Fix X € Uy. Then any linear map ¢ € Hom(X,Y)
determines another element of Uy, namely the graph of ¥,

Gy ={r+(x)eR:z € X}

Observe that Gy, is also transverse to Y since the decomposition RI=X+Yisa
direct sum. It is easy to verify that the map 1 — G, is a homeomorphism

Hom(X,Y) = Uy. (2.3)

This equips the chart Uy C Grg(R?) with a linear vector space structure, in which
X is the origin. This linear structure gives natural coordinates on the tangent space

TxGry(RY) = Tx Uy = Hom(X,Y). (2.4)
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Note that choosing a different basepoint, say Z € Uy, yields a different vector space
structure Hom(Z,Y") = Uy, which differs from the first by an affine isomorphism.
Hence, independent of basepoint, Uy is equipped with an affine structure and we
call Uy an affine chart of Gry(R?). The affine charts {Uy : Y € Grg_;} cover
Gri(R?) and satisfy the invariance property that gUy = Ugy for all g € G and
Y € Grd_k(Rd).

Next, consider the space Fr of flags of type Z = {iy,...,3,} C {1,...,d}. Any
flag transverse to a flag of F7 has type 0Z, where recall that ¢ denotes the involution
i+—d— 1. Choose Y € F,7 and let

Uy :={Z e Fr: 20 ny@=i) — 0, for all 1 < k < p}.

Fix a basepoint X € Uy, and let Z € Uy another point. Using the above recipe,
we may realize each subspace Z(*) of Z uniquely as the graph of a linear map
Vit X (ix) — y(d=ix) Further the linear maps are related to one another as follows.
Define subspaces Vi = X V., = X)) qy(d—ie-1) for all 1 < k < p, and Vp =
Yy (@=i») Note that the dimension of Vi is i — i1 and the subspaces form a direct
sum decomposition

Ri=Vi@---aV, (2.5)

The 7, subspace X (%) of X is the direct sum X&) =V, @ - & V). and the d — 7},
subspace of Y is the direct sum Y@ — Vit1 @ --- @ Vj,. The condition that
Z0x)  Z() for k < ¢ is equivalent to the condition that for each 1 < i < k and
each ¢ < j < p, the projection to the V; factor of the restriction to V; is the same
for 1);, as it is for v;,. Hence, Z € Uy determines unique linear maps ;; : V; — V;
for all 1 <7 < 7 < p, so that

vie= P v

1<i<k<j<p
This gives a homeomorphism
Uy = € Hom(V;,V)),
1<i<j<p

which equips Uy with a linear structure for which X is the origin. This linear struc-
ture gives natural coordinates on the tangent space

TIxFr=TxUy = @ Hom(V;,V)).

1<i<j<p

As above, note that choosing a different basepoint, say Z € Uy, yields a different
vector space structure on Uy, which differs from the first by an affine isomorphism.
Hence, independent of basepoint, Uy is equipped with an affine structure and we
call Uy an affine chart of Fz. The affine charts {Uy : Y € F,z} cover Fr and satisfy
the invariance property that gUy = Ugy for all g € G and Y € F,7.
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Let us remark on one special case of the above construction. If Z = {1,...,d},
then F7 = Fp is the space of full flags. In this case 0Z = 7. Let X,Y € Fp be any
transverse pair of flags. Then the decomposition (2.5) takes the form

where L; := X® 0 Y@=+ are lines, so we use the letter L rather than V. The
linear coordinates above on Uy for which X is the origin take the form

Uy = @ Hom(L;, L)
1<i<j<d

and as before these coordinates give coordinates at the tangent space level:

TxFp=TxUy = @ Hom(Li,Lj).
1<i<j<d

It will be natural for our purposes to embed each flag manifold for G’ = PO(n, n)
and G” = SO(n,n—1) in a flag manifold of G = PSL(d,R) (for d = 2n or d = 2n—1),
and work in the above coordinates. An important example is the following. The space
Gr,_1(R™") of isotropic (n — 1)-planes is naturally a smoothly embedded subman-
ifold of the Grassmannian Gr,_1(R?") of all (n — 1)-planes. The tangent space
TxGr,_1(R™") is naturally a subspace of TxGr,_1(R?") and may be expressed
in the coordinates (2.4). In fact, TxGr,_1(R™") corresponds to the homomor-
phisms ¢ € Hom(X,Y') which are anti-symmetric, in the sense that (¢(v), w),, =
—(v,¥(w))pnn holds for all v,w € X. We conclude this section with a proposition
that describes the fibers of the projections w® : Gri(R™") — Gr,_1(R™") of
Proposition 2.3 in these coordinates.

PROPOSITION 2.9. Let X € Gr,_1(R™") and let M = w'(X) € Gr; (R™"). Let
Y € Gr,+1(R™™) be transverse to X. Then in the coordinates (2.4), the tangent
space T /)y to the fiber £); = (w')~Y(M) is given by the subspace

Hom(X,M NY) C Hom(X,Y).

Proof. Since every (n — 1)-dimensional subspace in M is isotropic, it follows that ¢,/
is simply the Grassmannian of (n — 1)-dimensional subspaces in M. In the coordi-
nates (2.3), the smaller Grassmannian Gr,,_1(M) C Gr,_(R?") identifies with the
subspace Hom(X, M NY) C Hom(X,Y). 0

3 Hitchin Representations and Positivity

Throughout the paper, we fix a closed surface S of genus g > 2 and denote by
I' = 715 the fundamental group. Also, throughout this section, let G be an adjoint,
real split, semi-simple Lie group. In this section, we recall what it means for a rep-
resentation I' — G to be in the G-Hitchin component (Section 3.1) and explain the
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important positivity property that such representations satisfy. This positivity prop-
erty was studied by Fock—Goncharov and is based on Lusztig’s notion of positivity
in G. It will be used to obtain one key ingredient, namely Corollary 3.7, for the proof
of Theorem 1.3. A deep understanding of positivity is not needed for the rest of the
paper, hence we will avoid giving the rather technical definition until Section 3.3 at
the end of this section. A reader who is not familiar with positive representations
may wish to treat Corollary 3.7 (in Section 3.1) as a black box, and return to the
details of Section 3.3, which is entirely self-contained, after reading the rest of the
paper. Section 3.2 gives some basic Lie theory prerequisites both for Section 3.3 and
for Section 4.

3.1 G-Hitchin representations. Let X (I",G) := Hom(I', G)/G, where G acts
on Hom(I",G) by conjugation. For G = PSL(2,R), the discrete and faithful repre-
sentations assemble into two connected components of Hom(I", PSL(2,R)), and their
conjugacy classes form a union of two connected components in X' (I, PSL(2,R)).
A representation in either of these components, which are called the Teichmailler
components, corresponds to an oriented hyperbolic structure on the surface S, and
the orientation distinguishes the two components. Let us further equip S with an
orientation. Then we call the corresponding component of X(I', G), the Teichmiiller
component of S (and we ignore the other component of discrete faithful representa-
tions). The G-Hitchin component is a generalization of the Teichmiiller component
to the setting where PSL(2,R) is replaced with any adjoint, real split, semi-simple
Lie group G.

Let g denote the Lie algebra of G. Recall that a 3-dimensional subalgebra (TDS)
of g is a Lie subalgebra that is isomorphic to s[(2,R). A TDS b C g is called principal
if every non-zero element X € b is regular, i.e. the dimension of the centralizer
of X is minimal among the centralizers of all elements in g. By work of Kostant
[Kos59], g contains a principal TDS, and any two principal TDS’s are conjugate by
an automorphism of G. Let

7¢ : PSL(2,R) — G

be a faithful homomorphism whose image is a subgroup of G whose Lie algebra is a
principal TDS in g. This determines the map

i : X(T',PSL(2,R)) — X(T,G)
[p] = [7G © pl.
The component of X' (I', G) containing the image of the Teichmiiller component was

studied by Hitchin [Hit92].

DEFINITION 3.1. The connected component of X(I', G) containing the image of the
Teichmiiller component under i¢ Is called the G-Hitchin component. A representa-
tion whose conjugacy class lies in the G-Hitchin component is called a G-Hitchin
representation.
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Note that if G = PSL(2,R), the G-Hitchin component is exactly one of the
Teichmiiller components. If there is no ambiguity, we will sometimes refer to a G-
Hitchin representation simply as a Hitchin representation.

REMARK 3.2. The Hitchin component as we defined above is not quite well-defined.
It depends on our choice of orientation on S and also on a conjugacy class of homo-
morphism 7¢ as above, of which there are finitely many corresponding to the outer
automorphism group of G. Differing choices may give distinct Hitchin components
of X(I',G) which are mapped isomorphically to one another by pre and/or post
composition by outer automorphisms.

ExAMPLE 3.3. Consider G = PSL(d,R). Then 7 : PSL(2,R) — PSL(d,R) is the
irreducible representation, unique up to automorphisms of PSL(d, R), obtained from
the action of SL(2,R) on the (d — 1)t symmetric tensor power ®S‘;m1 R? = RY of
R2. Tt is easy to check that for h € PSL(2,R) non-trivial, 7¢(h) is regular. More
specifically, if the eigenvalues of h are A\,A\~! (well-defined up to 1), then the
eigenvalues of 7¢(h) are X312, X4=3 . A\=(@=3) \=(d=1) (a]s0 well-defined up to +1).
The G-Hitchin representations are the continuous deformations in Hom(I',G) of
Tgoj:I' = G, where j : I' — PSL(2,R) is in the Teichmiiller component.

Let w denote the area form on R?. Then w defines a natural bilinear form b on the
tensor power (X)(d_l) R?, which may be defined on simple tensors by the formula:

blug ® - @ ug—1,v1 @ -+ @ v4-1) = w(ut,v1) - - W(Ug—1,V4-1)-

Restricting to the subspace ® ([d-1) 2 of symmetric tensors in ®(d_1) R? gives a

sym
non-degenerate bilinear form which is
e anti-symmetric if d = 2n is even, or
e symmetric, if d = 2n — 1 is odd, with
— signature (n — 1,n) if n is even, or
— signature (n,n — 1) if n is odd.

The image of 7¢ preserves b, hence when d = 2n is even, 7¢(PSL(2, R)) is contained in
a conjugate of PSp(2n,R) and when d = 2n—1 is odd (so that PSL(d,R) = SL(d,R)),
7 (PSL(2,R)) is contained in a conjugate of SO(n,n — 1).

ExAMPLE 3.4. Consider G” = SO(n,n—1). Thinking of G’ < G = PSL(2n—1,R) =
SL(2n — 1,R), we may assume the irreducible representation 7o from Example 3.3
takes values in G”. Further, for each non-trivial element h € PSL(2,R), 7¢(h) is
regular as an element of G”. Hence we may take 7g» = 7g. Hence, the natural
inclusion G” — @G induces an inclusion of the G”-Hitchin component into the G-
Hitchin component.

ExXAMPLE 3.5. Consider G’ = PSO(n,n) < G = PSL(2n,R). Given an orthogonal
splitting R™" = R»"~1 @ R%1 the action of h € Aut(R*"!) = SO(n,n — 1) = G”
on R™"~! extends to R™" by acting trivially in the R%! factor. We denote by
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tnn @ G — G’ the composition of the natural inclusion SO(n,n — 1) — SO(n,n)
with the projection SO(n,n) — PSO(n,n) and note that ¢, , is injective since the
action of h € SO(n,n — 1) on R™" is never —1.

Let 7 = tnn © T, Where 7g is as in Example 3.4. Then the image of 7¢ is
a principal PSL(2,R) in G’. Indeed, for each non-trivial element h € PSL(2,R), the
centralizer of 7¢/(h) in G’ is a Cartan subgroup A’ < G'. Note that if the eigenvalues
of h are A, \~! (well-defined up to £1), then the eigenvalues of 7o/ (h) are

AT A2 N L1, A2 AT )

and the eigenvalue 1 has multiplicity two. Hence 7/ (h) is not regular as an element
of G = PSL(2n,R). However, ¢ (h) is regular in G’, since the 1 eigenspace has
signature (1, 1) and decomposes into a sum of two isotropic lines which are preserved
by (a finite index subgroup of) the centralizer.

Since 7gr = tpy © TG, the inclusion ¢y, : G” — G’ induces an inclusion of
the G”-Hitchin component into the G’-Hitchin component. However, the inclusion
ton : G — G = PSL(2n, R) does not map the G’-Hitchin component to the G-Hitchin
component.

Labourie [Lab06], Guichard [Gui08], and Fock—Goncharov [FG06] established
the following characterization of G-Hitchin representations. We fix both a hyper-
bolic metric and an orientation on the surface S. The boundary of the group o'
then identifies with the visual boundary of the universal cover S5 = H? of S. The
orientation on .S induces an orientation on S which in turn induces a cyclic order-
ing on OI' = S'. Let B < G denote a Borel subgroup of G and Fg = G/B the
corresponding flag manifold.

Theorem 3.6 (Labourie, Guichard, Fock-Goncharov). Let p:I' — G be a repre-
sentation. Then p is a G-Hitchin representation if and only if there exists a continuous
p-equivariant curve £ : OI' — Fp which sends positive triples in 01" to positive triples
in Fp.

The curve & : 9I' — Fp is called a positive curve and turns out to be the same
as the Anosov limit curve for p, see Theorem 4.5 in Section 4.1. We delay discus-
sion of positivity until Section 3.3, whose main purpose is to prove a transversality
statement, Proposition 3.17, about positive triples of flags in Fp = G'/B’ in the
case G' = PSO(n,n). We remark that in this case, the positive curve of Theorem 3.6
actually takes any distinct triple (not just a positive triple) to a positive triple of
flags, see Appendix B. The following result is a direct corollary of Proposition 3.17
and may be used as a black box in the rest of the paper.

COROLLARY 3.7. Let G’ = PSO(n,n), let o : T' — G’ be a G’-Hitchin representation.
Then the p-equivariant positive curve & : OI' — Fp/ satisfies



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

V(@) + (£ () N e (y) ) + e (y) = R
for all pairwise distinct triples (y,z,z) in OT.

3.2 Lie theory background. Here we give some brief Lie Theory background
needed in particular for Section 3.3, but also for other parts later in the paper such
as Section 4.3.

For any opposite pair of Borel subgroups BT, B~ C G, let U* ¢ B* denote the
unipotent radicals. The identity component of BT N B~, denoted A, is a maximal,
connected, abelian Lie subgroup of G, i.e. a Cartan subgroup of G. Let g be the
Lie algebra of G, and let u*,b® a C g be the Lie subalgebras corresponding to the
subgroups UT, B¥, A C G. Then let a™ C a denote the positive Weyl chamber so
that the corresponding simple root spaces all lie in b™, and let A denote the set of
simple roots corresponding to a™. For every simple root o : a — R, let H, : R — a
denote the corresponding simple coroot.

Before continuing we give some concrete examples of the Lie theoretic objects
defined above in the special cases of interest throughout this paper, namely for the
Lie groups G = PSL(d,R), G’ = PSO(n,n), and G” = SO(n,n — 1). Let 0; j = ; j.q
denote the d x d square matrix with 1 as its (7, j)-entry and all other entries are 0.
We will also denote 6; := d; ;.

ExXAMPLE 3.8. Let G = PSL(d,R). Then the Lie algebra g = psl(d,R) is the set of
traceless d x d real-valued matrices. Let BT < G (resp. B~ < G) be the subgroup
of upper (resp. lower) triangular matrices in G, and let UF < B¥ be the subgroups
whose diagonal entries are 1. Then (B™, B™) is an opposite pair of Borel subgroups
in G, U* is the unipotent radical of B*, and A is the set of diagonal matrices in G
with positive diagonal entries. The abelian Lie algebra a C g is the space of traceless
diagonal matrices, and a*t is the subset of a consisting of matrices whose diagonal
entries are in weakly decreasing order going down the diagonal. The simple roots are
A ={a,...,an_1} where «; : diag(ay,...,a,) — a; — a;1+1, and the corresponding
co-roots are Hy, (t) = t(8; — di11).

EXAMPLE 3.9. Let G’ = PSO(n,n) < PSL(2n,R) = G. The Lie algebra is given by
g =pso(n,n) :={X €sl(2n,R) : XT - Jy, + Jon - X = 0}.
Again, let B’ < G’ (resp. B~ < G) be the subgroup of upper (resp. lower) triangu-

lar matrices in G’ and let U’ be the subgroup of B'* whose diagonal entries are 1.
Then (B'*, B'~) is an opposite pair of Borel subgroups, U’ < B'* is the unipotent

radical, and
1 1
A = {diag (al,...,an,,...,> s a; >0}
Ay, ajl
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is a Cartan subgroup of G’. The Lie algebra of A’ is
o = {diag (a1, ..., an, —apn,...,—a1) : a; € R},
and the positive Weyl chamber is
o = {diag(a,...,an, —n,...,—a1) €A a1 = = apy—Qp = = —a1},

where note that a, may be either positive, negative, or zero. The simple roots are
A ={d,...,al} where

)

. a; — a; ifi=1,...,n—1
o) diag(ay, ..., —a) > ¢ 0 THL T e
an—1+a, ifi=n

and the corresponding co-roots are

Hy, (t) =

i

t(0; = 6ip1 + 02pn—i — Oo2ny1—4) ifi=1,...,n—1

ExAMPLE 3.10. Let G” = SO(n,n — 1) < SL(2n — 1,R) = PSL(2n — 1,R). The Lie
algebra is given by

g” = so(n,n — 1) = {X S pﬁ[(?n — 1,R) : XT cJop_1 + Jop_1 - X = 0}

Let B"T < G (resp. B’~ < G) be the subgroup of upper (resp. lower) triangular
matrices in G”, and let U"* < B"* be the subgroups whose diagonal entries are
1. As before, (B"*, B"~) is an opposite pair of Borel subgroups in G”, U"* is the
unipotent radical of B”*, and the Cartan subgroup is given by:

1 1
A — {diag (al,...,anl,l,,...,) :ai>0}.
an—1 ay

Then the Lie algebra of A” is

o = {diag (a1,...,an-1,0,—an_1,...,—ay) : a; € R},

and the positive Weyl chamber a”* is again the subset of a” whose entries are

in weakly decreasing order, going down the diagonal. The simple roots are A” =

{,...;all |} where

» “n—1
a; — Q341 ifi:1,...,n—2
Ap—1 ifi=n-—1

)

of : diag(ay,...,—ay) — {

and the corresponding co-roots are give by Hyr(t) = t(0; — 041 + d2n—1—i — d2n—i)-
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3.3 Positivity. In this section, we recall Lusztig’s notion of positivity in an
adjoint, real split, semi-simple Lie group G, and give some of the basic properties.
For more details, refer to Fock-Goncharov [FG06], Lusztig [Lus94], or Guichard—
Wienhard [GW16]. The theory is easiest to understand in the context of G =
PSL(d,R); indeed this is usually the main example given in an introduction to the
topic. However, since our goal is Corollary 3.7, we will focus here on the lesser known
case of G' = PSO(n,n).

Recall that a 3-dimensional subalgebra (TDS) of g is a Lie subalgebra that is
isomorphic to s[(2,R). We begin with the following standard fact.

PROPOSITION 3.11. For every o € A, there are linear maps X} : R — ut, X :
R — u™ so that

)=
[H (1),X (1)] = 2Xa(1), and
)| = Ha(1). (3.1)

In particular, {H,(t) + X} (a) + X, (b) € g : a,b,t € R} is a TDS.
This motivates the following definition.
DEFINITION 3.12. For any o € A, let xF := expoX¥. The data
(B+, B~, {xz}aeAv {7y }aeA)
is a pinning of G.

EXAMPLE 3.13. Let G’ = PSO(n,n). Choose B'* as in Example 3.9, with A’ =
{a],...,al,} the corresponding set of simple roots. Then, for all i = 1,...,n — 1,
define

X3 (1) = t(8ii+1 — 2n—i2nt1-4),
Xy () = t(0it1,i — 2n+1-i2n—i)
and for i = n, define

X(;?L (t) = t(énfl,n+1 - 5n,n+2),
X(;/n (t) = t(5n+1,n—1 — 5n+2,n)-

For all i = 1,...,n, it is elementary to check that (3.1) holds with o = «. Let
o (1) = exp(X, (1) = Iday + X, (¢)

where here Idy,, denotes the (2n) x (2n) identity matrix. Then, the data (B'*, B'~,
{z} ¥, {2} ) is an example of a pinning of G’.
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Choose a pinning (B*, B, {z! }aea, {2 }aca) of G, and let at C a be the
positive Weyl chamber and A the simple roots determined by BY, B~. For any
a € A let s, € GL(a) be the reflection about the kernel of o (using the Killing form
restricted to a). Recall that the Weyl group W = W (a) is the subgroup of GL(a)
generated by @ := {sq : @ € A}. Tt is well-known that W (a) is a finite group, and
that there is a unique element wy € W(a), usually called the longest word element,
so that wo(a™) = —at. Write wo = sq,, - Sa,, as a reduced word in @, and define
the subset U;’O by

Uty = {1:3'1 (t1) -+ x;m (tm) :ti>0Vi=1,...,m} (3.2)
The subset U;FO C U™ does not depend on the choice of reduced word representative
for wyp. In fact U;FO is a semi-group (although this is not obvious).

EXAMPLE 3.14. Let G' = PSO(n,n), and let (B"",B’_,{x;r;}?:l, {2, }iz1) be the
pinning described in Example 3.13. The unipotent radicals U+ C B'*, the corre-
sponding positive Weyl chamber a’t C o’ and the simple roots A’ = {af,...,al,}
are as described in Example 3.9. To simplify notation, let s; := s,,. Then define
1 := Sp—1-8n € W(d'), and for all k =2,...,n — 1, define

HE = Sn—k " Bk—1* Sn—k-

Then gy - po - -+ - up—1 is a reduced word expression of wg. Using this expression,
one may describe the positive elements U’;B of U'F. For example, if n = 2, then
wo = $152 and hence a typical element of U;B has the form:

1 60 0 0\ /1 0t 0
010 0|01 o0 —t
+ + _ 2
T T )= 10 o 1 4 [{o 0 1 o
000 1/\oo o0 1

1 t1 ta —tito

o1 0

“loo0o 1 -

00 0 1

For larger n, we give an inductive formula describing U’;B in Appendix A, but the
formula is somewhat messy. Luckily, we will be able to avoid working with an explicit
description of UZf.

Next, we give the definition of positive triple of flags.

DEFINITION 3.15. Let F* € Fp(G) (resp. F~ € Fp(G)) be the flag stabilized by
BT (resp. by B™). A triple of flags (F1, Fy, F3) € Fp(G)3 is called positive if there
is some g € G so that g - (Fy, Fy, F3) = (F",u- F~,F~), for some u € Ujo.
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REMARK 3.16. The notion of positivity in Definition 3.15 depends on a choice of
pinning. Any two conjugate pinnings give the same notion of positivity. However,
in this setting it is not always the case that two different pinnings are conjugate
(this is exactly the same subtlety, often ignored, that leads to multiple isomorphic
Hitchin components in Remark 3.2). In order for Theorem 3.6 to hold as stated, one
must choose a pinning for G which is compatible with the choice of representation
T defining the notion of G-Hitchin representation. On the other hand, since any
two pinnings differ by some automorphism of G, we may, after applying such an
automorphism, assume that a G-Hitchin representation satisfies Theorem 3.6 for
the notion of positive determined by any particular pinning we chose to work with.

Note that if (Fy, Fy, F3) is a positive triple, then in particular the three flags
{F}, Fy, F3} are pairwise transverse. We now prove a stronger transversality result,
which is the main technical result of this section. Let G’ = PSO(n,n) and let B’ < G’
be a Borel subgroup with Fp = G’/B’ the associated flag manifold. Recall from
Example 2.7 that an element I' € Fp, may be regarded as a flag

F(l) C---C F(n—l) C FJ(rn),FEn) C F(n—H) C.C F(Qn—l),

where ) € Gr;(R™") is an isotropic i-plane and F*?~9) = (FO)L for 1 <i < n—1
and FJ(rn) € Gr;(R™") (resp. F" ¢ Gr,, (R™")) is the unique isotropic n-plane
which contains F("~1 and which has positive signature T(FJ(F")) = 1 (resp. has
negative signature T(an)) = —1). See Section 2.1.

PROPOSITION 3.17. Let G’ = PSO(n,n) and let B' < G’ be a Borel subgroup with

Fp = G'/B’ the associated flag manifold. Then for any positive triple (Y, Z, X) €
(Fp)3, we have:

X1 | ( Z(n=1) Y(n+2)> +Y™ =R> and (3.3)
X0y (20D Ay () 4y ™) g, (3.4)

Proof. By Remark 3.16, we may work with any pinning which is convenient. We
choose the pinning (B, B'~, {z}, }?_,, {z_, }1 ) of Example 3.13. We will prove (3.3)
directly. The other statement (34) is equivgﬂent. To see this, consider the orientation
reversing element g € PO(n,n)\PSO(n,n) which exchanges the n'" and (n 4 1)
basis vectors and fixes the other basis vectors. Then, on the one hand, g flips the
sign of the isotropic n-planes. On the other hand ¢ exchanges the roots o}, _; and
a}, and exchanges the elements xz,n (t) and x:; (t), leaving all other one parameter
subgroups x/(t) of the pinning pointwise fixed. Noting that wl’i (t) and :U;’;Z (s)
commute for any s,¢ > 0, we observe that the action of g fixes each point of the set
U ;‘B of Example 3.14. Hence g takes positive triples of flags to positive triples of flags
but exchanges the positive and negative isotropic n-planes of each flag. Hence (3.3)
implies (3.4).
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We now prove (3.3). Since the transversality condition (3.3) is unchanged by
multiplication by g € G’, we may assume that Y = F™ and X = F~ are the flags
fixed by B'* and B'~ respectively, and that Z = uF~ for u € UL}. The element u
has the form

u=gg () xl, (tm), (3.5)

Qiy Qi

which is difficult to work with directly. We will use a conjugation trick to simplify
the proof.
The Cartan subgroup A’ < G’ stabilizes both Y and X, hence for a € A’:

a(Y,Z,X)=a(F*,uF~,F") = (F" aua 'F~,F™).

We shall use a carefully chosen (path of such) element(s) to simplify the situation.
Observe that if 1 <i<n —1, then

art,(t)a™! = a(ida, + X[, (t))a™!

i

. a; a2n—;
= idg, + 1 <6i,i+1 - 52n—i,2n+1—i>
Qi1 2n+1—1

@
= CL‘(; <Zt> .
'\ Git1

where here a = diag ((11, e, O, ai, ey a%) Similarly, if i = n,

az), (t)a™! = a(idg, + X;r,n (t))a?

o
. Ap—1 a
= idg, +t ( e n 11 — n(;n’nH)

an+1 Gn4-2

= a:;r,n (anan—1t) .

In particular, aua™! € U;ro. Also, observe that by choosing a € A’ so that a1 <
az < -+ < ap < 1, we can make each of the finitely many terms a:nzg (t)a=! of (3.5)
arbitrarily close to the identity. In fact, we may define a path s — a® € A’ so that
a*u(a®)~! smoothly converges to the identity as s — 0, as follows. For s > 0, let

a® = diag(s™,s" 1, ... s8,1,1,87L, ..., s7™). Then for all 1 <i < n,

and hence

us == a*u(a®) P =zl (sty) - vl (sty)

Qg

is a path smoothly converging to the identity element in G’ as s — 0. The tangent
vector to this path is
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% us = X, (1) + -+ X3, (2) (3.6)
s=0
where here r; =37, .ty > 0forall 1 <j<n.

It is sufficient to show that (3.3) holds to first order for the path (Y, Z, X) =
(Y, Zs, X) := (F*,usF~,F~), as this will mean that (3.3) will hold for all s > 0
sufficiently small, and hence for s = 1. We must simply show that the tangent vector
to the path s — V; := (uSX(”_I)) NY "2 in Gri(R?") = P(R?") is transverse to

the hyperplane P (X (n=1) g Yj{n)) This is straightforward in coordinates:

YL”) =Rey + -+ + Re,, and
x (1) _ Repio + -+ - + Regy,, hence

From (3.6), we read off that,
d
ds

Hence, in terms of the identification

T -1 Grp_1 (R?) = Hom(X ™~y (+1)
= EB Hom(Re;, Rej),

2n>izn+2>5>1

UsCn+2 = —Tp€p — I'n—1€6n+1-
s=0

from Section 2.3, we see that [ _us X"~ has a non-trivial component in Hom
(Rey 9, Repy1). It then follows that our path s — Vi, based at Vp = XD 0
Y ("+2) — Re,, 5, has tangent vector dd\gs 0Ty, P(R2") which is transverse to the
hyperplane P (X(nfl) ® Y+(n)>' -

Corollary 3.7 follows immediately from Proposition 3.17.

4 Anosov Representations

Here we review Anosov representations and prove several useful lemmas about them.
Labourie [Lab06] introduced the notion of Anosov representation in order to charac-
terize the good dynamical behavior of the representations in the PSL(d, R)-Hitchin
component. Guichard-Wienhard [GW12] generalized the notion to the setting of rep-
resentations of word hyperbolic groups in reductive Lie groups and developed the
general theory in this setting. The quick review of Anosov representations presented
here will focus on the more specialized setting of interest, namely representations
from a surface group I' = 7.5 to an adjoint, real split, semisimple Lie group G. As
above, there are three Lie groups of interest for our purposes, namely G = PSL(d, R),
G’ = PSO(n,n), and G” = SO(n,n — 1).
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4.1 The definition.  Throughout, we fix a hyperbolic metric on the surface S
and denote by T'S the unit tangent bundle of S. The boundary OI" of the group T’
identifies with the visual boundary of the universal cover S = H? of S. We choose
an orientation on S which induces an orientation on S which in turn induces a cyclic
ordering on OI' 2 S'. We identify the unit tangent bundle of S with the space of
cyclically ordered triples in 0T in the usual way:

T'S ={(y,z,2) € > 1y < z <z < y}.

Specifically, if y < z < z < y in 0T, then there is a unique unit tangent vector
v based at a point p of S so that v is tangent to the geodesic (y,x) connecting
y to x, v points away from y toward z, and the geodesic ray [p,z) meets (y,z)
orthogonally. The geodesic flow ¢; on TS lifts to the geodesic flow @; on TS , which
in these coordinates has the form ¢(y, z,x) = (y,2(t),z), where z : R — I is a
continuous, injective map so that z(0) = z, limy_ 2(t) = x and limy_._, 2(t) = y.
Although OI' does not have any canonical smooth structure, if o' is endowed with
the smooth structure induced by the hyperbolic structure on S, then the function
z(t) is smooth. The geodesic flow for a different hyperbolic metric on S, written
in the same coordinates, is simply a continuous reparameterization of y;, meaning
that the flow lines are the same, but the function z(t) is altered by an orientation
preserving homeomorphism of R. We ignore such subtleties and simply remark that
the choice of hyperbolic metric has no meaningful effect on the coming definitions.

The notion of Anosov representation depends on a (conjugacy class) of parabolic
subgroup P < G. We restrict here to the case that the parabolic subgroup P is
conjugate to any opposite parabolic subgroup. This will be the case in the settings
of interest and it slightly simplifies the setup. Recall the flag space Fp := G/P
defined in Section 2.2. There is a unique open G-orbit in the product Fp x Fp,
namely the subspace of transverse pairs, which we denote by O C Fp x Fp. Let
p: ' — G a representation. Associated to p is the space

Y, = (T'S x O)/T,

where the action on O C Fp x Fp is the diagonal action by p and the action on
TS is by deck translations. The smooth manifold Y, is naturally a flat G-bundle
over T1S whose fibers are isomorphic to O as G-sets.

Now, let

TVY, = (T'S x TO)/T

denote the vertical tangent bundle to ),. The local product structure on O C Fp x
Fp determines a splitting 7O = E+* @& E~ of TO into two isomorphic sub-bundles
E™T,E~. This splitting induces a splitting

VY, =& @&

of the vertical tangent bundle into two sub-bundles El‘f, &, over Y.
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The geodesic flow ¢; on T'S lifts to a flow, again denoted ¢; on the product
bundle T1S x O by acting trivially in the second factor: ¢(v,0) := (P, o). The
differential d@; defines a lift of the flow @; to the vertical tangent bundle 718 x TO,
which is again trivial in the second factor and in particular preserves the product
structure on each tangent space of O. Both flows descend to the bundles ), and
VY, over TS, and are denoted ¢; and dy; respectively. Indeed, the flow ¢, is
simply the lift of the geodesic flow on TS to ), using the flat connection, and the
flow dp; on TVY), is its differential.

DEFINITION 4.1. The representation p : I' — G is Anosov with respect to P or
alternatively, P-Anosov, if there exists a continuous section o : T'S — Y, of Y,
that is parallel under the flow ¢, and which satisfies the following.

(1) The flow dg; expands & along the section o(T'S): There exist constants
a,c € Rt so that for any v € T'S and any non-zero vector ft in the fiber of
&S over o(v),

ldsee (F )l g > ae™ £l

(2) The flow dy; contracts £, along the section o(T'S): There exist constants
b,d € RT so that for any v € T'S and any non-zero vector f~ in the fiber of
&, over o(v),

[dee(f ) lpuw < De™ | 7|,

In the above definition || - || is any continuously varying family of norms on the
(fibers of the) vertical tangent bundle TVY,. Since TS is compact, any two families
of norms on TVY, are equivalent along the section o(7"5) and the notion of P-
Anosov does not depend on the choice of norm (although the constants a, b, ¢, d do).
We will often work in the universal cover, where such a family of norms || - [ lifts
to a family of norms, also denoted | - ||, on the product bundle 715 x TO, which is
p-equivariant, meaning ||dp(y) f|ly., = ||f|l, for any v € TS and f € TO.

REMARK 4.2. In Definition 4.1, the contraction condition (2) follows from the ex-
pansion condition (1) and vice versa, see [GW12]. We will typically work only with
condition (1) here.

In Definition 4.1, the section o is unique [Lab06], and is usually called the Anosov
section. The data of the Anosov section can also be captured by a p-equivariant map
to the flag space Fp.

DEFINITION 4.3. Let p : I' — G be a representation, and & : OI' — Fp be a p-
equivariant continuous map. We say £ is dynamics preserving if for every v € T'\{id},
& maps the attracting fixed point v+ € 0T of v to the unique attracting fixed point
of p() in Fp.
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Fact 4.4 (Labourie, Guichard-Wienhard). Let p : I' — G be a P-Anosov rep-
resentation. Then there is a continuous, p-equivariant, dynamics preserving map
£ :0I' = Fp. Furthermore, the Anosov section o lifts to an equivariant map

G:T'S —T'S x Fp x Fp,
which is given by the formula o(y, z,x) = (y, z,z,£(x),£(y)).

The map £ given in Fact 4.4 is called the Anosov limit map or Anosov boundary
map of p. The dynamics preserving and continuity properties ensure that such a
map is necessarily unique. Since the (lift of the) Anosov section o takes values in
the transverse pairs O C Fp X Fp, the Anosov limit map & is necessarily transverse,
meaning that for all z,y € 9T" distinct, {(x) and {(y) are transverse points of Fp,
e, (¢(2),£(y)) € O.

There are many examples of Anosov representations of surface groups, including
both maximal representations and Hitchin representations, see [GW12]. For recent
examples of Anosov representations of right-angled Coxeter groups, see [DGK17,
DGK18al. Hitchin representations are the main examples of Anosov representations
of concern in this paper.

Theorem 4.5 (Labourie, Fock-Goncharov). Every G-Hitchin representation p :
I' — G is Anosov with respect to the Borel subgroup B C G, and the p-equivariant
positive curve of Theorem 3.6 is the Anosov limit map.

One important property of Anosov representations is that the condition is stable
under small deformation.

Fact 4.6 (Labourie). Let p € Hom(T', G) be a P-Anosov representation. Then there
is an open neighborhood U C Hom(I', G) of p so that every representation in U is
also P-Anosov.

4.2 B-Anosov representations in PSL(d,R). Let p : I' — PSL(d,R) be
Anosov with respect to the Borel subgroup B C PSL(d,R) and let £ : 9T' — Fp be
the Anosov limit map. We follow Section 2.3 to obtain natural coordinates on the
fibers of E[‘f. Let z,y € OI" be distinct. For each 1 <7 < d, let

Li(z,y) := €9 (z) n g1 (y)

which is a line, since the flags {(z) and £(y) are transverse (see Example 2.5). The
line decomposition R? = EB?Zl L;(x,y) varies continuously as x,y vary and is p-
equivaraint, in the sense that L;(v-x,v-y) = p(7)Li(x,y) for all v € T', and distinct
points x,y € OI'. Next, for each x # y in 91", the one-dimensional vector space

Hom(L;, Lj)(x,y) := Hom(L;(x, y), Lj(z,y))
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may be regarded as a subspace of End(R%) which varies continuously in x,y. This
gives a p-equivariant decomposition of the product bundle 715 x End(Rd) which
descends to the flat End(R?) bundle over TS associated to p:

d
I\(T"S x End(R")) = @) Hom(L;, L;),
ij=1

where here, by abuse, Hom(L;, L;) denotes the line bundle over TS whose fibers
are locally Hom(L;(z,y), L;j(z,y)). Next, let x,y € OI' be distinct and let Ugy,
be the affine chart for 7z defined in Section 2.3. We have the identification €, j
Hom(L;, Lj)(x,y) = Ue(y) C Fp with the origin mapping to {(x). In particular, we
identify

Te()Fi = @ Hom(Li, Lj)(z,y). (4.1)

1<J

This gives coordinates on 5; along the section o(T1S):

o€} = PHom(L;, L;).

i<j

All of the splittings described above are invariant under the geodesic flow, and
the Anosov expansion condition (1) of Definition 4.1 is satisfied if and only if it is
satisfied on each line bundle factor of (4.1). Therefore condition (1) of Definition 4.1
is equivalent to the existence of constants a,c > 0 so that for any ¢ < j, any
v € TS, and any f in the fiber Hom(L;, L;), above a point v € TS of the bundle
Hom(L;, Lj), we have

ldeefllpw > ae|I £

where here || - || is any continuous family of norms on the fibers of Hom(L;, L;)
(for example, coming from the restriction of a continuous family of norms on the
flat End(R?) bundle associated to p). Equivalently, in the lift to 7S, the condition
becomes: there exists a,c¢ > 0 so that for any y < z < z < y in 0 and any
f € Hom(L;, Lj)(x,y),

HdcptfHLpt(y,z,w) = ||f”(y,z(t),x) > aeCtHfH(y,z,z)? (42)

where now || - || denotes a continuously varying, p-equivariant family of norms on
Hom(L;, L;)(,3).
Let us now prove a useful proposition.

PROPOSITION 4.7. Let p € Hom(I', PSL(d,R) be B-Anosov and define the bundles
Hom(L;, L) as above. Let 1 < p < q < r < s < d be positive integers, with

(p,s) # (q,7). Then there are constants A,C > 0, so that for any (y,z,z) € T'S,
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where y < z < x < y in 9T, and any non-zero f € Hom(L,, Ly)(z,y) and f' €
Hom(Ly, L, )(x,y), and any t > 0 we have:

Il =00 o Fll,z.)
||f/”(y,z(t),x) - ||f/||(y,z,a:)

For the above proposition, recall the notation (y, z(t), z) := ¢:(y, 2z, ) and that
the norms || - || on each Hom(L;, L;)(x,y) are a fixed family of p-equivariant norms

AeCt

varying continuously over TS,

Proof. Since TS is compact, all norms on any of the line bundles Hom(L;, L;) are
equivalent. Hence, we may choose norms that are convenient to work with. For each

k, let || - kyk;;) be a family of norms on the hne bundle Hom(Ly, Lg+1). Then, for

any i < j, we may define a family of norms || -

(y o) OO Hom(L;, L;) as follows. For
any f € Hom(L;, Lj)(z,y), factor f as a composition f = f;o fiy10---0 fj_1, where
each fr € Hom(Ly, Li41)(z,y) and define

i, kk+1
() H”f ll g e0)-

Note that, since the Hom(Ly, Ly11) are line bundles, the choice of the factorization
of f amounts to choosing scalars in each factor and does not affect the result, hence
Il - y ) 18 well-defined. We now prove the result using these norms.

Let y < z <2z <y in O, and let f € Hom(Ly, Ly)(z,y) and f € Hom(L,, L,)
(x,y) both be non-zero. Next, factor f as the composition
f=gofoh

where g € Hom(L,, Ls) and h € Hom(L,, L,). Then, by the definition of the norm
above we have that ||f”(y,z,x) = HgH(y,z,m) ”f/H(y,z,x)||h||(y,z,;r) at each point (y7 2y :L‘) €

/1

T'S. In the case that p = ¢, we may assume IAll(y,2,z) = 1 constant. Similarly, if
r = s, we may assume ||gl|(, ) = 1 constant. Then:

11|yt
nen z(t),x h z(t),x
||f/H (ol H H (y, )H ||(y7 (t),z)

= ”g” (y,2,7) ||h” (y,z,x)AGCt

where we use that p < q or 7 < s so that at least one of ||gll¢ -).2), 1Pll(y,2(t)2)
expands as in (4.2), while the other may also expand or otherwise is constant by the
discussion above. Hence
I lwz0.2) - 19wzl e 1 .2.0)
1/ eyz)2) 1Ny, 2,2)
Ml @,z
Nz

AeC’t

Ct
Ae™". 0
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4.3 Characterizations of Anosov in terms of Cartan and Lyapunov pro-
jections. In this section, we discuss a recent characterization of Anosovness, due
independently to Kapovich-Leeb—Porti [KLP17b, KLP14, KLP15] (see also [KLP16]
for a survey of this work) and Guichard—Gueritaud—Kassel-Wienhard [GGKW17],
which will be essential for the main result. We follow [GGKW17]. In this section we
assume that G is a semi-simple Lie group whose adjoint group Ad(G) is contained
in the group of inner automorphisms of the complexification g¢ of the Lie algebra
g. This assumption, which holds in particular for the three groups of primary con-
cern here (PSL(d,R), PSO(n,n), and SO(n,n — 1), will guarantee that the Cartan
projection (defined below) is well-defined, see [Kna02, Ch. 7].

Let G = Kexp(a™)K be a Cartan decomposition of G, where here K < G is
a maximal compact subgroup and a™ is a choice of closed positive Weyl chamber
contained in a Cartan subalgebra a of the Lie algebra g. Then each g € G may
be factored as g = kexp(a)k’, where k, k' € K and the element a € a™ is unique.
The associated Cartan projection p: G — at is the map defined by p(g) = a. Let
A : G — at denote the Lyapunov projection, which satisfies A\(g) = lim, u(g"™)/n
(and which is defined independent of the choice of Cartan decomposition in the
definition of u). Before stating the alternative characterizations of Anosov, let us
give the relevant examples of the two projections.

REMARK 4.8. Note that while the Cartan projection is well-defined for PSO(n,n), it
is not well-defined for the index two supergroup PO(n,n). Indeed the decomposition
PO(n,n) = Kexp(a®t)K holds, but the a™ part is not unique. The reason is that
there is an orientation reversing element in the maximal compact K for PO(n,n)
which preserves a™ but acts non-trivially on it.

EXAMPLE 4.9. Let G = PSL(d,R). Recall from Example 3.8 that the Lie algebra of
G is psl(d, R), the algebra of traceless d x d real-valued matrices, and we may choose
its positive Weyl chamber a™ to be the diagonal matrices of the form diag(a, ..., aq)
with > a; = 0 and a; > a;41 for all 1 < i < d — 1. Then for g € G, the Lyapunov
projection A(g) = diag(Ai(g),...,Ai(g)) where the diagonal entries A;(g) are the
logarithms of the absolute value of the eigenvalues of ¢ listed in weakly decreasing
order. The entries of the Cartan projection pu(g) = diag(u1(g),...,pqa(g)) are the
singular values of ¢ listed in weakly decreasing order. The simple roots a, ..., aq_1 €
A measure the difference in consecutive singular values: o;(1(g)) = pi(g) — pi+1(9)-

Similarly a;(A(g)) = Ai(g) — Aiv1(9)-

EXAMPLE 4.10. Let G’ = PSO(n,n) C G = PSL(2n,R). Recall from Example 3.9
that the Cartan subalgebra a’ C pso(n,n) consists of all diagonal matrices of the
form diag(ai,...,an, —an, ..., —ai), and is thus realized as a subspace of the Cartan
subalgebra a C psl(n,R). The postive Weyl chamber o', however, may not be
chosen as a subset of the positive Weyl chamber a™; observe that the restriction
to a’ of the simple root a,, : a — R given by «, : diag(ay,...,a2,) — an — ant1
is not a root in G’. Indeed, taking the simple roots A" = {o/,...,al,} for G’ as
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in Example 3.9, the positive Weyl chamber a’" is the subset of diagonal matrices
diag(ai,...,an, —an,...,—ay) for which a; > a;41 for all 1 < i < n — 2, and for
which a,_1 > ay,, —a,. In particular, for a; > --- > a,, the two matrices

expdiag(ai,...,an-1,0n, —Qp, —Ap_1,...,—a1),

exp diag(a17 <oy An—1, =0n, Qp, —Ap—1, - .-, _al)

are not conjugate in G’, though they are conjugate in G. For g € G, if N(g) =
diag(N(9), ..., AL (9),—A,(g),...,—N(g)) is the Lyapunov projection of g in G’
and A(g) = diag(A1(9g),- .., A2n(g)) is the Lyapunov projection of g in G, then

[ ] A;(g) = )\z(g) = )\2n+1_i(g) for all 1 < 7 <n-— 1,
® M\(9) = —Anr1(g), and X, (g) = M\u(g) or A7, (9) = —An(9g).

To determine whether X (g) = \u(g) or X,(9) = —A\n(9), let H be the sum of the
eigenspaces corresponding to the eigenvalues A\1(g), ..., A\y(g). Then X, (g) = A\ (g) if
7(H) = +1, i.e. H is a positive isotropic n-plane, and X, (g) = =\, (g) if 7(H) = —1.
A similar statement holds for the Cartan projections.

EXAMPLE 4.11. Let G” = SO(n,n—1). As we did in Section 2, we use the orthogonal
splitting R®" = R*»"~! @ R%! to embed G” as a subgroup of G’ = PSO(n,n) to get
G" C G' € G =PSL(2n,R). Then the Cartan subalgebra a” for G” as described in
Example 3.10 embeds in the Cartan subalgeba a for G' as the subspace of 2n x 2n
diagonal matrices of the form

a/ = {diag(ay,...,an_1,0,0,—an_1,...,—a)}.

The choice of simple roots A” = {af,...,all_;} for G” described in Example 3.10
are precisely the restrictions of the first n — 1 simple roots for G as described in
Example 3.8 to a”. Hence, the positive Weyl chamber a”’* embeds in the intersection
of the positive Weyl chambers a'* N a™ for G and G, as the subset with a; >
3 an1 >0 = ay. For g € GV, if (M(g),., NI_,(9),—N1_,(g), —\!(g)) is the
Lyapunov projection in G” and (A1(g), ..., A2n(g)) is the Lyapunov projection in G,
then A\, (g) = A+1(9) = 0 and A.(g) = Xi(9) = —Aap+1-i(g) foralli =1,....,n— 1.
A similar statement holds for the Cartan projections.

Here is the recent characterization of Anosov representations that we will use.
It was independently shown by Kapovich-Leeb—Porti [KLP17b, KLP14, KLP15]
and by Guéritaud-Guichard—Kassel-Wienhard [GGKW17]. First, some brief setup:
There is a well-known bijection between non-empty subsets §p C A and conjugacy
classes of parabolic subgroups [P] of G. Specifically, for any conjugacy class [P]
of proper parabolic subgroups, fp C A is the subset with the following property:
There is a (necessarily unique) representative P in that conjugacy class [P], called
the standard representative, whose Lie algebra is spanned by the centralizer gg of
the Cartan subalgebra a (in the cases of interest here gy = a), each of the positive



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

root spaces, and by the root spaces g_, for all positive roots « not in the span of
A\Op.

We state the following result in the special case that P is conjugate to its opposite,
in which case the corresponding set of roots #p is invariant under the opposition
involution. In the following, |y| denotes the word-length of v € T' with respect to
some fixed generating set and |y|oc = lim, |[7"|/n denotes the stable length, or
alternatively the translation length in the Cayley graph of T'.

Theorem 4.12. Let GG be a reductive Lie group, P be a parabolic subgroup, and
Op C A be the corresponding subset of simple roots. Assume P is conjugate to its
opposites. Then for any hyperbolic group I' and any representation p : I' — G, the
following are equivalent.

(1) p is P-Anosov

(2) There is a continuous, p-equivariant, transverse, dynamics preserving map & :
OI' — Fp, and for any a € 0p, a(pu(p(y))) — o0 asy — oo in I

(2’) There is a continuous, p-equivariant, transverse, dynamics preserving map
¢ : 0 — Fp, and constants ¢,C > 0 so that for any a« € 0p and v € T,
a(u(p(v))) = cly| = C.

(3) There is a continuous, p-equivariant, transverse, dynamics preserving map & :
OI' — Fp, and for any a € Op, a(A(p(7y))) — 00 as |y|eoc — 00 in T,

(3’) There is a continuous, p-equivariant, transverse, dynamics preserving map & :
OI' — Fp, and a constant ¢ > 0 so that for any « € 0p andy € T, a(A(p(7))) =

cv]oo-

REMARK 4.13. We will, in this paper, use Conditions (2) and (3) to show Anosov-
ness (Condition (1)) of representations. We included the strengthened versions (2’)
and (3’) of Conditions (2) and (3) respectively for reference. We also mention that
Kapovich-Leeb—Porti [KLP17a] proved an even stronger version of the equivalence
(1) <= (2’), namely that for a representation p : I' — G of a finitely generated
group I, the group I' is word hyperbolic and p is P-Anosov if and only if

(27) There are constants ¢, C' > 0 so that for any o € p and v € T, a(u(p(v))) =
chl-C.

As an immediate consequence of Theorem 4.12, we have the following useful
property that was originally due to Guichard—Wienhard [GW12].

Fact 4.14. Let P,(Q C G be parabolic subgroups, and let P’ and )’ be the standard
representatives in the conjugacy classes [P] and [Q]. Then P'NQ’ C G is a parabolic
subgroup, and p € Hom(T', G) is P' N Q'-Anosov if and only if it is P-Anosov and
Q-Anosov.

4.4 The Anosov property under inclusions of Lie groups. Let:: G — G
be an inclusion of reductive Lie groups. Consider a parabolic subgroup P’ ¢ G’ and
a P’-Anosov representation p : I' — G’. Guichard—Wienhard [GW12, Prop. 4.4]
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give a recipe for determining the parabolic subgroups P of G (if any) for which the
composition to p is P-Anosov. In particular, it is clear, e.g. from Theorem 4.12, that
if the roots in #p restrict to roots in fp, then ¢ o p is P-Anosov.

EXAMPLE 4.15. Consider the inclusion 19,1 : G” — G for G” = SO(n,n — 1) and
G = PSL(2n — 1,R) as in Example 4.11 above. Let B” denote the Borel subgroup
in G”, with corresponding collection of roots g, = A” the full collection of simple
roots. Then for our choice of simple roots A and A” for G and G as in Example 3.8
and Example 3.10 respectively, we see that for all simple roots a; € A, the restriction
of a; to a” is a simple root of A”. Specifically, the restriction of a; to a” is o if
1<i<n—1loray, ; ,ifn <i<2n—2. Hence the subsets §” of A” are in one-one
correspondence with the subsets 6 of A which are invariant under the opposition
involution. A representation p : I' — G” is P”-Anosov if and only if 19,1 0 p is P-
Anosov, where P” < G” and P < G are the parabolic subgroups whose associated
subsets of simple roots § and 6" correspond as above.

EXAMPLE 4.16. Consider the inclusion g, : G' — G for G = PSL(2n,R) and
G’ = PSO(n,n) as in Example 4.10 above. Let B’ denote the Borel subgroup in ¢,
so that g = A’ is the full collection of simple roots. Then for our choice of simple
roots A and A’ for G and G’ as in Example 3.8 and Example 3.9 respectively,
we see that the simple roots in A whose restriction to a’ are simple roots in A’
are Qaq,...,0np—1,ntl,-..,@,—1. Here, note that the restriction of ag,—; agrees
with that of a; for all ¢ = 1,...,n — 1. Hence, if o : ' — G’ is a B’-Anosov
representation, then to,00 : I' — G is P3-Anosov for P, C G, the parabolic subgroup
whose associated collection of simple roots is Op, = {a1,...,an-1, 0041, .., @21}
This is precisely the stabilizer of a flag which is nearly complete but misses the n-
dimensional subspace. However, since the restriction of the middle root «,, to a’ is
equal to a), — o/, _; which is not a root in A’ (and this can not be fixed even with
freedom to adjust using the Weyl group), t2, o 0 need not be Anosov with respect
to the Borel subgroup B in G.

ExAMPLE 4.17. Consider the inclusion ¢y, : G — G’ for G” = SO(n,n — 1) and
G’ = PSO(n,n) as described in Example 4.11. The stabilizer P/ ; < G” of an
isotropic (n — 1)-plane in R™"~! corresponds to the subset §pr = {all_;} C A"
of the set of simple roots of G”. Similarly, the stabilizer P, _; < G’ of an isotropic
(n—1)-plane in R™" corresponds to the subset 0p = {a,_;,a;,} C A’ of the set of
simple roots of G”. From Example 4.11, the representation ¢, , embeds the Cartan
sub-algebra a” for G” into the Cartan subalgebra a’ for G’ and we observe that the
restrictions of o/, _; and o/, to a” each coincide with o/ ;. Hence p : I' — G” is
P!’ _,-Anosov if and only if ¢, , 0 p is P/ _;-Anosov.

The following proposition gives the condition under which a B’-Anosov repre-
sentation in G’ = PSO(n,n) becomes Anosov with respect to the Borel subgroup B
in G = PSL(2n,R) under inclusion. In the following denote by P, C G the stabilizer
of an n-plane, whose corresponding collection of simple root is Op, = {c, }.
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PROPOSITION 4.18. Let o : I' — G’ = PSO(n,n) and let 19, : G' — G = PSL(2n, R)
be the inclusion. Suppose that o is B’-Anosov and that o, o o is P,,-Anosov. Then

(1) the g-equivariant limit curve & : OI' — Fp, and the o, o g-equivariant curve
¢: 0T — Fp, = Gr,(R2") satisfy that & = &™) or ¢ = &™) (where £ (2) =
(f’(a:))(in) are as in Example 2.7).

(2) ton 00 is B-Anosov, and the associated i, 0 p-equivariant limit curve £’ : 9T —
Fp in the space of complete flags, satisfies that &) = ¢'0) for all i # n, and
either "™ = ¢ or ¢nm) — ¢/,

Proof. Proof of (1): Let v € ' non-trivial, and let v+ € 9T be the attracting fixed
point for the action of v on 9. Since 19, 0 ¢ is P,-Anosov, £(yT) is the unique at-
tracting n-plane for the action of ¢, 0 0(7) = o(7) on Gr,(R?*") and we observe that
&(y™) must be isotropic, since the eigenvectors of o(v) for eigenvalues larger than
one are isotropic and pairwise orthogonal. Further, again by simple eigenvalue con-
siderations, the attracting fixed point &(»=1(y%) of p(7) in the isotropic Grassman-
nian Gr,,_;(R™") is also the unique attracting fixed point in the full Grassmannian
Gr,_1(R?"). It follows that &'~V () c £(y1). By density of the points v+ in 9T,
it follows that ¢(»=1D(n) C &(n) for all € OT'. Further, for each n € AT, £(n) is an
isotropic n-plane containing the isotropic (n — 1)-plane "~ (1), so £(n) = f:fn) (n)
or &(n) = 55") (n) and hence by continuity of £, we have that £ = §3rn) or £ = 55")
on all of OT.

Proof of (2): By Example 4.16, we see that t9, 0 0 is Py-Anosov. Also, note that
Op, Ubp, = A, so the intersection of the standard representatives of [P;] and [P,] is
a Borel subgroup. Since t9, o ¢ is assumed to be P,-Anosov, Fact 4.14 implies (2).

(|

5 Proof of Theorem 1.3

We now prove Theorem 1.3. Let o : I' — G’ = PSO(n,n) be a PSO(n,n)-Hitchin
representation, and let to, : PSO(n,n) < PSL(2n,R) be the inclusion. Assume for
contradiction that to, 0 ¢ is Anosov with respect to the stabilizer P, < PSL(2n,R) of
an n-plane in R?". By Theorem 4.5, ¢ is Anosov with respect to the Borel subgroup
B’ of PSO(n,n). Let ¢ : OT' — Fp/ denote the Anosov limit map. By Proposi-
tion 4.18, 19y, o ¢ is Anosov with respect to the Borel subgroup B of PSL(2n,R).
Further, the Anosov limit map ¢ : OI' — Fp satisfies that £ = &) for all i # n,
and either £ = ¢’ Sf) or £ = 5@). Assume without loss of generality (see Re-
mark 2.2) that the former holds. First note that if n is odd, then Remark 2.8 implies

that for any x,y € OI', the n-planes §Srn) (x) and fsrn) (y) fail to be transverse, a con-
tradiction which completes the proof in the case n is odd. We now give the proof in
the more interesting case that n is even.

The strategy of the proof will be to use the Anosov dynamics, plus the extra
transversality condition provided by Corollary 3.7, to show:
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LEMMA 5.1. The subset £~ (9T') € Gr,,_1(R™") is a differentiable sub-manifold
that is everywhere tangent to the fibers of the natural projection w™ : Gr,_1(R™")
— Gr,} (R™") from Proposition 2.3, and is therefore contained in a single fiber.

Lemma 5.1 immediately gives a contradiction which completes the proof of The-
orem 1.3 as follows.

Proof of Theorem 1.3. Assuming Lemma 5.1, we have that §<"—1>(ar) is contained
in a single fiber of " and it follows that & (x1) = & (z,) for all 21,2y € T,
We assumed that £ = §$n), SO

€M (z1) = @M (€D (1)) = (€ (22)) = €M (a2),

which contradicts the injectivity of £ (and the transversality of £ (”_1)). This con-
cludes the proof of Theorem 1.3. O

We now focus on proving Lemma 5.1. Recall from Section 4.2 the line decompo-
sition R*"* = @1221 L;(x,y) associated to a pair of distinct points z,y € JI'. Observe
that

g(nil)(‘r) = Ll(xay) ©---D LN—l(may)

Let Ugtni1)(y) denote the affine chart of Gry,_1(R*") consisting of all (n — 1)-planes

transverse to €1 (y). We use the identification in Section 2.3 to obtain local co-

ordinates for U, £t (g)

Ugniny) — Hom(E" V(@) 6" V) = @ Hom(Li,Lj)(,y)  (5.1)

1<i<n<j<2n

Then for each y < z < = < y in OT' we observe that £~V (z) ¢ Ugtnin(yy and we
express it in coordinates as

5("‘1)(2) — (uij(y, z, x))1<i<n<j<2” '

Then w;j(y,z,z) = 0 for all 1 < i < n < j < 2n and we wish to calculate the
“derivatives” of the u;;(y, z,z) as z — x.

LEMMA 5.2. For all y < z < z <y in OI', we have that u,_1 ,(y,z,x) # 0.
Proof. Note that
Ln-1(z,y) = €07V (2) N €MD (y) = €77V (2) N (Lnoa () @ €7D ()

is exactly the graph of the linear map

P un15@z2) : Lna(z,y) — £ (y).

n<j<2n
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The condition that u,—1,(y,2,2) = 0 is exactly the condition that L,_i(z,y) C
Ly_1(z,y)®¢ (n) (y). However, this cannot happen, since it would violate the transver-
sality statement of Corollary 3.7 (a consequence of positivity of the limit curve £’):

€m V(@) + Lo1(z,y) + €M (y) = R .

Next, for each i, j, choose continuously varying norms || - || on the fibers of the

bundle Hom(L;, L;), defined in Section 4.2. The lift of these norms, again denoted

||-||, gives a continuously varying, p-equivariant family of norms on Hom(L;, L;)(z,y)
depending on a cyclically ordered triple y < z < x < y.

LEMMA 5.3. There exists C' > 0 so that the following hold for all triples y < z <
x <y in OI.
(1) ||ui,j(y,z,x)\|(y7z’x) L<Cforalll<i<n<j<2n.

1
(2) C < un—10(y: 2, 2) || (g,20) < C-

Proof. Observe that the definition of u, ;(y, z,x) is p-equivariant, hence u; ; defines
a section of the bundle Hom(L;, L;) over T'S. Statement (1) then follows from
the compactness of T1S. The lower bound of Statement (2) also follows from the
compactness of 715 in light of the fact that the section Up—1,n is nowhere zero by
Lemma 5.2. O

Next, fix the points z,y € 0T and let C, C T£<V,L71>(x)Grn,1(]R2") denote the
tangent cone to the curve 1) (0T"). The linear coordinates on the patch Ugn1) () C
Gr,_1(R?") give coordinates for Tgnfl)(x)Grn,l(RQ"), and in those coordinates C,,
consists of all (v¢7j)1<i<ngj<2n so that there exists a sequence zp, — x in OI' and
s — o0 in R so that

skt j (Y, 25, T) — Vi foralll<i<n<j<2n (5.2)

LEMMA 5.4. Let (Ui,j)1<i<n<j<2n S Ca; be non-zero. Then Vij = 0 for all (Z,]) 7é
(n—1,n).

Proof. Let z;, — x in OI' and let s — oo in R so that (5.2) holds. For each i, j,
choose a non-zero element b; ; spanning Hom(L;, L;)(z,y) and write

uij(y, 2, ) =: Gi,j (2)bi ;-
Let p < n < g with (p,q) # (n — 1,n). Then

||Up,q(y, %k x)”(y,zm,z) |Cp,q(zk)| ||bp7q||(y,zk,m)

ln—10 (s 21 ) (y,e02) 1Gn=10(2)| 1or—1mll g 20,)

”bp,q”(y,zkvz)

By Proposition 4.7, the term - - on the right-hand side goes to infinity.
But by Lemma 5.3, the left-hand side is bounded. It follows that

|<p,q(zlc)|

PRI
|Cn71,n(zk)|
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hence we must have s;(pq(21) — 0, else s;(p—1.n(2x) — £oo which means siu,—1,
(y, 2k, x) diverges and that contradicts the definition of s;. Hence spup 4(y, 21, ) — 0
showing that v, , = 0. O

Lemma 5.4 implies that the tangent cone C,, to £~ (8I) at the point £~V (z)
is contained in the line corresponding, in the coordinates (5.1), to Hom(Ly_1, Ly,)
(x,y) (note this does not depend on y), so it is equal to that line or to a ray contained
in the line. Let us show now that C, is the full line.

LEMMA 5.5. Let 21,22 € OI'\{y} be distinct. Then

un—l,n(ya 21, l‘) 7é un—l,n(yv 22, SU)

Proof. This follows easily from Lemma 5.2 and the following formula for chang-
ing coordinates on the affine chart Ugwm+n(y) to move the origin from €=D(z) to

£ (z1):
unfl,n(yv 22, Zl) = (Unfl,n(ya 22, $) - Unfl,n(ya 21, 37)) o H:il

where 112 : €D (z) — €=D(z) is the projection induced by the direct sum
decomposition &1 (z) @& (y) = R?™. In particular, if w,—1.,(y, 22, ) = Un_1.n
(y, 21, ), then u,—1 5 (y, 22, 21) = 0, which would contradict Lemma 5.2. O

We now prove Lemma 5.1.

Proof of Lemma 5.1. Lemma 5.4 implies that the tangent cone C, to £™~1(9I") at
the point £~ (z) is contained in the line corresponding, in the coordinates (5.1), to
Hom(L,—1, Ly,)(z,y), which varies continuously with « € 9I'. Lemma 5.5, together
with the continuity of u,_1, and the observation that wu,_1,(y,z,z) = 0, implies
that C, is the entire line, and not just a ray. It now follows that 5(”*1)(81“) is
a differentiable sub-manifold of dimension one (although the parameterization of
£=1(aI') by AT is not necessarily C1).

Since Gr,,_1(R™") is smoothly embedded in Gr,_1(R?"), we may work in the
coordinates (5.1) on Gr,_1(R?"). Proposition 2.9 tells us that in these coordi-
nates, the tangent space to the fiber l¢,m-1)(,) above §("_1)(a;) of the projection
wt : Gr,_1(R™™) — Gr;} (R™") is Hom(£~Y(z), L, (x,y)). Hence Lemma 5.4 and
Lemma 5.5 imply that £~ (9T) is tangent to Letn1)(z) at =1 (z). Since this holds
for all points £~V (z) on £"~1(AT), we conclude that £~ (AT) is contained in a
single fiber, concluding the proof of Lemma 5.1. O

6 Properly Discontinuous Actions on H™"~1

We now prove Theorem 1.5 which states that the action of a surface group on the
pseudo-Riemannian hyperbolic space H*"~! by a PSO(n,n)-Hitchin representation
is not properly discontinuous. Theorem 1.5 follows directly from Theorem 1.3 and
from the following theorem. Let 2, : PSO(n,n) — PSL(2n,R) denote the inclusion.
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Theorem 6.1. Suppose p : I' — PSO(n,n) is Anosov with respect to the stabi-
lizer P!, of an isotropic (n— 1)-plane. Then the g-action of T on H™"~! is properly
discontinuous if and only if 19, 0 o : I' — PSL(2n,R) is Anosov with respect to the
stabilizer P, of an n-plane.

We will now prove this theorem. We will use the techniques of Guéritaud—Guichard—
Kassel-Wienhard [GGKW17].

Let us first recall (a version of) the properness criterion due independently to
Benoist and to Kobayashi. In the following, a’ denotes a Cartan sub-algebra in
the Lie algebra g’ of a semi-simple Lie group G’, and | - || is any norm on a’. We
assume, as in Section 4.3, that the adjoint group Ad(G’) is contained in the group
of inner automorphisms of the complexification g¢ of the Lie algebra g so that the
Cartan projection u' : G/ — o' is well-defined. For the case G’ = PSO(n,n), see
Example 4.10.

Theorem 6.2 (Benoist [Ben96], Kobayashi [Kob89]). Let G’ be a semi-simple Lie
group and H' < G’ a reductive subgroup. Let o : I' — G’ be a discrete faithful
representation of a finitely generated group I'. Then the p-action of T' on G'/H' is
properly discontinuous if and only if ||u(o()) — w(H')|| — 0o as vy — oo in T.

In the setting of interest, G’ = PSO(n,n) and H' = O(n,n — 1) is the subgroup
which stabilizes the orthogonal splitting R®" = R™"~! ¢ R%! so that G'/H' =
H™"~1 (see Section 1.2). Recall from Example 4.10 that the positive Weyl chamber
a't for G’ may be thought of as the subset of the diagonal matrices of the form
diag(ay,...,an, —ap,...,—ay) where

ap = a2 2 -+ 2 p-1 2 ap, —0n
but a,, is allowed to have either sign. The Cartan projection of H’ is then given by
w(H') = {diag(a1,...,an, —an,...,—a1) €a :a, = 0}.

Hence, in this setting, the criterion for properness of the action of I' on G'/H’ in
Theorem 6.2 reduces to the simple condition that the n'* diagonal entry of the
Cartan projection p} (o(7)) escapes all compact subsets of R as v — oo in I'. Note
that p,(o(v)) does not necessarily need to be positive, unlike p(o(v)) for i < n.
However, by the following result of Kassel [Kas08], we can deduce that u),(o(7))
diverges to infinity in a consistent direction (i.e. always positive or always negative).
Note that here p/(H) separates a’t into two connected components.

Theorem 6.3 (Kassel). Let G',H',T, and o be as in Theorem 6.2 and suppose
further that G’ and H' are both connected, that T' is not virtually cyclic, and
that rankg(H') = rankg(G’) — 1. If the g-action of I' on G'/H’ is proper, then
all but finitely many points of u(o(I")) lie in a single component of the complement
o P\ (HY).
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Observe that
rankrO(p, ¢) = rankgPSO(p, ¢) = min(p, q),

and that rank is invariant under taking finite index subgroups. Hence the theorem
applies in the case G’ = PSOg(n,n) and H = O(n,n — 1) "PSOy(n, n). However, it
is easy to check that the same result continues to hold in the case of interest here,
namely G’ = PSO(n,n) and H' = O(n,n — 1) and we will apply the theorem in this
case without further remark.

Proof of Theorem 6.1. Let o : T' — PSO(n,n) be P! _;-Anosov. We begin with the
reverse implication, which is straightforward. Suppose ta, 0 ¢ is P,-Anosov. Let p :
PSL(2n,R) — a™ denote the Cartan projection of G = PSL(2n,R) as in Example 4.9.
Then by Theorem 4.12, pi,(t2,00(7)) — 00 as v — oo in I'. Since p, (t2n.9) = |1, (9)|
for all g € PSO(n,n), it follows that |u, (12, © 0(7))] — o0 as v — oo in I'. Hence,
the g-action on H™"~! = G’/H’ is proper by Theorem 6.2, since p,(H') = 0.

We now prove the forward implication. Let £~V : 9I' — Gr,,_1(R™"~1) be the
Anosov limit curve, and let §5r") : O — Grf (R™™) and 5(_n) :0I' — Gr,, (R™")

denote the p-equivariant, continuous embeddings defined by SE_L”) = wy o D),
where w, (resp. w_) is the projection taking an isotropic (n — 1)-plane to the
unique positive (resp. negative) istropic n-plane containing it, see Proposition 2.3.
Now assume that o determines a proper action of I' on H™" 1. Then by The-
orem 6.2 and the discussion just above, we have that ! (o(7)) leaves every com-
pact set as v — oo in I'. Further, by Theorem 6.3, either u,, (o(v)) — oo or
i (0(y)) — —oo and the sign is consistent for all escaping sequences in I'. With-
out loss in generality, we assume pu,(o(7)) — 400 whenever v — oo in I'. It then
follows that for any v € T'\{1}, the n'" value X, (o(7)) = lim,, oo it (0(7™))/m
of the Lyapunov projection is non-negative. Now, fix v € I'\{1}, and observe that
=D (4 ) Eng=1 (y) L is a p(y)-invariant subspace on which the restriction of the
inner product has signature (1,1), where here v* = lim,, .10, 7™ € 9. It follows
that the restriction of p(v) to this (1,1) subspace is diagonalizable, and the corre-
sponding eigenvalues are precisely the exponentials of +X] (o(7)). If A, (o(7y)) = 0,
then £"=1 (4 1)L NV (47) L projects to a line in H™"~! which is point-wise fixed
by the action of o(v), contradicting properness of the action. Hence X, (o(7)) > 0.
It then follows that the n-plane §Srn) (v1) is the attracting fixed point for the action
of o(vy) on the full Grassmannian Gr, (R?") of n-planes in R?". Hence, composing
with the inclusion Gr; (R™") — Gr,(R?"), the map 55?) determines a continuous
embedding OI' — Gr,(R?") which is equivariant and dynamics preserving for the
representation to, o o : I' — PSL(2n,R). Hence, the implication (2) = (1) in
Theorem 4.12 shows that ¢ o o is Anosov with respect to the stabilizer P, of an
n-plane in R?". O

Theorem 1.5 follows directly from Theorems 6.1, 1.3, and the fact that Hitchin
representations are Anosov with respect to the Borel subgroup (Theorem 4.5).
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7 Constant Curvature Geometry in Signature (n,n — 1)

We now turn to some of the geometry needed for Theorem 1.2. In order to understand
properly discontinuous actions by isometries of the pseudo-Riemannian Euclidean
space E™"~! we recall the notion of signed translation length in E™"~! known as
the Margulis invariant (Section 7.3). The proof of Theorem 1.2 involves deforming
into pseudo-Riemannian hyperbolic geometry H™"~ !, and it will be important to
have a theory of signed translation length in that setting as well. We develop the
notion of signed translation length in each of E™"~1 and H™"~! in parallel.

Before we proceed, we will perform a change of basis on R?" that we will use for
the rest of this article. Recall that in Section 2, we specified the bilinear form (-, ), »,

on R?" using the matrix Jo, in the standard basis e, ..., eq, of R?: if 2,y € R?®
are written as x = (x1,...,22,)7 and ¥ = (y1,...,%2,)7 in the standard basis of
R?"_ then
2n
(@, Y)nn = Z TiYon+1—i-
i=1

Let €},...,e5 be the basis of R?" defined by

1 e
\ﬁ(ei + €2n41-4) ifi<n

¢ = .
ﬁ(ez?n —e3ny1—) ifizn+1
If 2,y € R? are written as = (21,...,22,)" and y = (y1,...,%2n)" in the basis
el,...,eh,, then
n 2n
(@ Ynn = D Ty — > Tl
i=1 i=n-+1

In Sections 7 and 8, we will think of €, ..., €, as the standard basis of R*" instead
of e1,...,ea,, as this will be more convenient. Henceforth, all coordinates, matrices,

and vectors will be written using the basis €], ..., €5, .
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7.1 H™"! and E™" ! as real projective geometries. Both H™"~! and
E™"~! naturally embed in real projective geometry. Indeed, the projective model
for H™"~! is given by:

H™" 1= {[z] € P(R") : (z,2)nn < 0} .

The projective orthogonal group PO(n,n) < PGL(2n,R) for this inner
product preserves H™"~! and is the isometry group of a geodesically complete
pseudo-Riemannian metric g™ of signature (n,n — 1). The metric g is the natural
metric coming from restriction of (:,-),, to the tangent spaces of the hyperboloid
(z,7)nn = —1, which double covers H™"~ L,

The restriction of (-, ), to the vector space R*"~1 = span{e},... e}, 1}, de-
termines a complete, flat metric g® of signature (n,n — 1) on the parallel affine
hyperplane defined by x9, = 1, and hence on the corresponding affine chart of
projective space. We henceforth identify this affine chart with E™»"~1:

BV =[xy : ... zop_1 ¢ 1]} € P(R?™).

The subgroup of the projective general linear group PGL(2n,R) that preserves this
affine chart and its flat metric gives the isometry group of E™»" 1

Isom(E™" 1) = { [13 ﬂ € PGL(2n,R): A€ O(n,n—1),v € RQ”_l} , (7.1)

where here O(n,n — 1) denotes the orthogonal group for the restriction, to be de-
noted (-, ) nn—1, of (-, Ynn to R*"~1. The vector subspace R*"~1 together with inner
product (-,)pnn—1 is denoted R™" 1 as usual. We will henceforth restrict to the
orientation preserving isometry groups PSO(n,n) of H™" ! and Isom, (E™"~1) of
E™"~1 which consists of the elements as in (7.1) with A € SO(n,n —1). The reason
for this is that the discussion of properly discontinuous actions, in Sections 7.2 and
7.3, will make important use of the orientation. A theory of properly discontinuous
actions in the general setting will follow from elementary considerations, but is not
needed for the main goal of the paper.

We fix once and for all an orientation on R™™ defined by the n-form e} A--- A€, .
and an orientation on R™"~! defined by the n-form e} A --- A€, ;. The diffeomor-
phism E™"~! — R™"~! given by |21 : -+ : 29,1 : 1] = (21,..., 29, 1) then defines
an orientation on E™"~1,

7.2 Translation lengths in H*"~1.  We follow the conventions from Exam-
ple 4.10 and think of G’ = PSO(n,n) as embedded in G = PSL(2n,R), denoting by
A and X the respective Lyapunov projections.

Consider an element g € G’ whose Lyapunov projection \'(g) satisfies that

MNi(g) == X1(9) > A(9), =N (g) > =A_1(g) = --- = =Xi(9) (7.2)
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where here X/, (g) may be positive, in which case X, (g) = \,(g), or negative, in which
case A (g) = —An(g), or zero. With our future application in mind, we note that this
assumption holds for all non-trivial elements of a PSO(n, n)-Hitchin representation.
Thinking of g as an element of the (projective) matrix group G, the entries (7.2) of
the Lyapunov projection are the logarithms of the moduli of the eigenvalues of g. Let
Vntl(g) denote the sum of the generalized eigenspaces associated to the eigenvalues
Ni(9),-.-sA,_1(g), and let V" ,(g) denote the sum of the generalized eigenspaces
associated to the eigenvalues —\.,_;(g),...,—N(g). Then (V' ,(9),V, 1(g)) is a
pair of transverse isotropic (n — 1)-spaces. The orthogonal complement of V. | (g) @
V.~ ,(g)isa(1,1)-subspace L;} (9)®L;, (9), where L, (g), L;, (g) are defined as follows.
In the case that X, (g) # —X,(g), L, (g) (resp. L., (g)) denotes the eigenspace for the
eigenvalue exp A, (g) (resp. exp(—A! (g))), and we note that by definition of X', the
subspace Vntl ® L, (g) is a positive isotropic n-plane; it is precisely this convention
that defines the sign of X (g). If X, (g) = =\, (g) = 0, then L}(g9) & L, (g) is a
decomposition of the 1 = exp(0) eigenspace into isotropic lines so that V. ,(g) @
L} (g) is a positive isotropic n-plane.

Here is a geometric picture of the action of g on H™"~!. Each of the subspaces
P(V.F),P(V" ) in P(R?") are contained in the ideal boundary

oHm L = {[] € PR : (x, ) ppn = 0}

of H™"~L. The subspace P(V." | (g)®V,_;(g)) intersects H™"~! in a totally geodesic
copy of H"1"=2 and the action of g repels from P(V,_;(g)) and attracts toward
P(V." 1(g)). For example, if g is diagonalizable with distinct eigenvalues, then for
each 1 <i < n—1, exp\.(g) is an eigenvalue of g with eigenline L} and exp(—\(g))
is an eigenvalue with eigenline L; such that L] @ L; has signature (1,1). The
projection P(LS @ L;) to P(R?") intersects H™"~! in a line with ideal endpoints
P(L),P(L;) € OH™" !, which is invariant under g, is Riemannian, and has a well-
defined orientation defined by labeling IP’(L;’) the positive endpoint. The picture of
the action on P(V," ,(g9) ® V.. ,(g)) is slightly more complicated in the case that g
is not diagonalizable and we do not attempt a thorough description here.

The important behavior we wish to observe is in the g-invariant Riemannian line
o = (g) =P(L; @ L,;) NH»" ! with endpoints P(L;"),P(L,;) € OH™"" L. The
translation along the axis 7, which is sometimes referred to as the slow axis, may
be either toward or away from P(L;"), depending on the sign of X, (g). Hence, the
translation amount

Z(g) = 2X\,(9) (7.3)

has a well-defined sign. Note that under the same assumptions on g € PSO(n,n) as
above, the action of the cyclic group (g) on H™"~! is properly discontinuous if and
only if #(g) # 0.

REMARK 7.1. If ¢ € PSO(n,n) has Lyapunov projection X (g) as in (7.2) above,
then .Z(g) = (~=1)".Z(g~"). This follows easily because V= (g~') = V.7 | (g), but
L (g~ = LT (g) if n is even while L (¢g~1) = L (g) if n is odd.
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REMARK 7.2. It follows from Theorem 6.3 that if g, h € PSO(n,n) have Lyapunov
projections X (g), N'(h) as in (7.2) above, if (g, h) is not virtually cyclic, and if further
Z(g) and Z(h) have opposite sign, then (g, h) does not act properly discontinuously
on H™"~1. This is the analogue of Margulis’s Opposite Sign Lemma from the setting
of affine geometry, see Lemma 7.5 below. In particular, in light of Remark 7.1, if n
is odd, then the only groups which admit proper actions by isometries of H™"~! are
virtually cyclic, see Benoist [Ben96].

7.3 Translation lengths in E™"~!: the Margulis invariant. Recall that
an element g € Isom (E™"~1) < PSL(2n,R) has the form

9= [1‘(‘)9 ﬂ € PSL(2n,R) (7.4)
where v, € R?"~! is called the translational part and Ay € SO(n,n — 1) is called
the linear part. Here we think of SO(n,n — 1) as the subgroup of PSL(2n,R) which
preserves the vector space R?”~! spanned by the first 2n — 1 coordinate basis vectors
of R?", and which preserves the form (-, “Yn.n, and hence preserves its restriction, de-
noted (-, *}nn—1, to R?"~1. The form (-, -),, n—1 on R?"~! makes the affine hyperplane
T2, = 1, and hence the corresponding affine chart of projective space P(R?"), into a
copy of E™"~1 whose orientation preserving isometry group has the form above.

Let g € Isom (E»"~1) < PSL(2n,R) and note that the Lyapunov projection A(g)
is equal to the Lyapunov projection \”(A,) of the linear part A,, where we follow
the convention of Example 4.11 and think of G = SO(n,n — 1) as embedded in
G’ = PSO(n,n) with both embedded in G = PSL(2n,R). With our future application
to actions on E™" 1 whose linear part is Hitchin in mind, let us assume that the
Lyapunov projection \(g) satisfies:

A(g) Z - 2 Am1(9) > Aalg) = 0= =Xn(9) > —An-1(9) 2 - = —Mi(g). (7.5)

Then the affine transformation g has a unique invariant line A, which we will describe
now. The values listed in (7.5) are precisely the logarithms of the moduli of the
eigenvalues of g, repeated with multiplicity. Let V' ;(g) denote the sum of the

generalized eigenspaces associated to the A\i(g), ..., \p—1(g), and let V,_;(g) denote
the sum of the generalized eigenspaces associated to the —A,—1(g),...,—A1(g). In
fact, V" 1(g9),V,",(g) are contained in R?"~! C R?" and are sums of generalized
eigenspaces for the linear part A, of g. Each of V. 1(g),V,_;(g) is an isotropic
(n — 1)-plane for the form (-,-),,—1 and the pair (V. ;(g),V, ,(g)) is transverse,
meaning the span has signature (n — 1,n — 1). The generalized eigenspace Vj(g)
of g for the eigenvalue 1 = exp(0) is two-dimensional and contains the eigenline
Lo(g) € R?*"! for the eigenvalue 1 = exp(0) of A,. Since Vo NR?**~! = L, we have
that A = A(g) := P(Vo) NE™"~! is an affine line parallel to the direction of Ly. We
may orient Ly and hence A as follows. Choose a positively oriented basis

(FF o f fo fos - 1) € (REH2E (7.6)
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for R2»—1 5o that

5p3”(f1+7 S frj—l) = Vn+—1’
span(fy,.... 1) =V. 1,
Rfo = Lo.

Then (£, ) = (/7. £7) = (FF.fo) = (F72fo) = 0 for all 1 < i,j < n— 1, and
(fo, fo) > 0. Further we may arrange that

=0 i
<f¢+afj>{<o ifi=j

This together with the positive orientation of the basis determines the direction of fj
and we orient Lg so that the fy direction is positive. This determines an orientation
on any parallel affine line, in particular on the translation axis A.

REMARK 7.3. Alternatively, we may orient the line Ly(g) as follows. Since Lg(g)
is positive for (:,-)p n—1, the two-plane Ly & Rey,, has signature (1,1) for the form
(-, )n.n and hence splits as a direct sum of isotropic lines Lar ® L, where we choose
the labeling so that the isotropic n-plane Vn+_1 @ L(J)r is positive. Then, there is a
unique ¢ € Lo(g) so that £ + ez, € L§. We orient Lo(g) in the direction of £. This
agrees with the orientation defined above.

Since the line A is Riemannian, oriented, (g)-invariant, and its direction is given
by fo, we may measure the signed translation distance of g along A by the formula,

a(g) = (9 x =X, fo)nn—1, (7.7)
where x is any point in A.

REMARK 7.4. A simple computation shows that the right-hand side of Equation 7.7
yields the same quantity for any x € E®»"~! (not just for x € A):

a(g) = <g X =X, f0>n,n—1 = <U7 f0>n,n—1 (78)
= da(Ila(x), a(g - x)) (7.9)

where here IT4 : E™"~! — A denotes the orthogonal projection and d 4(y, ) denotes
plus or minus the Riemannian distance between y and x along A with positive sign
if and only if the pair (y,x) is positive for the orientation induced by fj.

The quantity «(g) is often called the Margulis invariant of the transformation g.
It plays a crucial role in determining proper discontinuity of group actions on E™"~1,
Indeed, the action of the cyclic group (g) is properly discontinuous if and only
if a(g) # 0. The following lemma, known as the Opposite Sign Lemma, goes
back to Margulis’s original work [Mar83] on properly discontinuous groups of
isometries of E>!,
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LEMMA 7.5 (Margulis [Mar83], Abels-Margulis-Soifer [AMS97]). Assume that g, h €
Isom (E™"~1) have linear parts Ag, Ay, as in (7.5). Assume further that (g, h) is not
virtually cyclic. If a(g), a(h) have opposite sign, then (g, h) does not act properly
discontinuously on E™"~1,

In order to prove Theorem 1.2, we will need a properness criterion for actions
on E™"~1 The necessary condition for properness implied by Lemma 7.5, namely
consistent sign of the Margulis invariant, is not sufficient. Indeed, there are discrete
subgroups of H < Isom, (E?1) (for example free on two-generators) with the prop-
erty that a(g) is well-defined and positive for all ¢ € H ~ {1}, but H fails to act
properly discontinuously on E?! (see [GLMM]). Nonetheless, a necessary and suf-
ficient criterion for properness in terms of the Margulis invariant does exist in the
context of interest here (see the upcoming Section 7.5). It is phrased in terms of
geodesic currents.

REMARK 7.6. Suppose that g € Isom (E®"~1) has the property that the Lyapunov
projection \’(Ay) of the linear part of g satisfies
N(Ag) =2 X1 (Ag) > 0> =54 (Ag) = -+ = =N/(Ay).

n—1

Observe that a(g) = (—1)"a(g~!). In particular, Lemma 7.5 implies that if (g, h) C
Isom ¢ (E™"~1) is not virtually cyclic, then (g, h) cannot act properly discontinuously
on E»"~! when n is odd.

7.4 The space of geodesic currents. We now return to our surface group
I' = m.S. As in Section 4.1, we fix a hyperbolic metric on the surface S for this
entire discussion. We let ¢; denote the geodesic flow on T'8S.

DEFINITION 7.7. A geodesic current p is a finite, ¢,-invariant, Borel measure on the
unit tangent bundle T'S. We denote the space of geodesic currents on S by C(S).

REMARK 7.8. Geodesic currents were introduced by Bonahon [Bon88] in his descrip-
tion of the Thurston boundary of Techmiiller space. Definition 7.7, which follows
Goldman—-Labourie-Margulis [GLMO09], is slightly different than Bonahon’s origi-
nal definition in that the currents of Definition 7.7 are oriented, while those from
Bonahon’s setting are not.

The most basic example of a geodesic current is the current associated to an
oriented closed geodesic ¢ on S. Denote by p. the geodesic current that is uniformly
supported on the tangent field of ¢ and whose total mass is

/ d:uc = €(6)7
TS

where ¢(c) denotes the length of c. This defines a map from the oriented closed
geodesics CG(S) into the space C(5) of geodesic currents.
As a consequence of the Banach-Alaoglu Theorem, we have the following fact.
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Fact 7.9. Equip C(S) with the weak-* topology. The space of probability currents

Ci(S) = {u cc(s) /Tlsdﬂ _ 1}.

is compact.

7.5 The Margulis invariant for currents and the properness criterion.
Here we will discuss a properness criterion for actions on E»"~!, due originally to
Goldman—-Labourie-Margulis [GLMO09] in the case of free and surface groups acting
on E*! and extended by Ghosh-Treib [GT17] to the case of word hyperbolic groups
acting with Anosov linear part in any E™"~1. This is one of several key tools needed
for Theorem 1.2. We shall discuss the properness criterion in the context of interest,
namely I' = m S is the fundamental group of a closed surface S of negative Euler
characteristic. As in the previous section we equip S with a fixed hyperbolic metric.

Let (p,u) : I' — Isom (E™"~1) = SO(n,n — 1) x R?"~! be an action of the group
I’ by isometries of E*"~!, Here p: I' — SO(n,n — 1) denotes the linear part of the
action, a homomorphism, and u : I' — R?"~! denotes the translational part, which
is a p-cocycle:

u(m1y2) = u(n) + p(y1)u(y2)-

Suppose the linear part p: I' — SO(n,n —1) = G” is Anosov with respect to the
stabilizer P, of an isotropic (n—1)-plane in R»"~1. Then each non-trivial element
g = (p(7),u(y)) satisfies (7.5) and therefore the Margulis invariant a(p(7y), u(y))
is defined. Recall that oriented closed geodesics ¢ € CG(S) are in one-one corre-
spondence with non-trivial conjugacy classes [y] C I'. Since the Margulis invariant
is invariant under conjugation, we may naturally associate to the oriented closed
geodesic ¢ = [v], the Margulis invariant a(p(7), u(7)).

Theorem 7.10 (Goldman—Labourie-Margulis, Ghosh—Treib). Suppose the linear
part p: I' — SO(n,n — 1) of the affine action (p,u) is P'_;-Anosov. Then:

(1) There exists a unique continuous linear functional o, : C(S) — R such that
for each ¢ = [y] € CG(95),

(pu) (He) = alp(y), u(y))- (7.10)

(2) The action (p,u) of T' on E™"~! is properly discontinuous if and only if () (1)
# 0 for all p € C(S)\{0}.

Note that Theorem 7.10.(2) implies the Opposite Sign Lemma 7.5, since the space
C(S) \ {0} of non-trivial currents is connected.

In order to study properly discontinuous affine actions with Anosov linear part,
as in Theorem 7.10, Ghosh-Treib [GT17] generalize the ideas of [GLM09] and in-
troduce a notion of affine Anosov. We will not recall their definition here. However,
since it will be useful for the proof of Theorem 1.2, let us explain the construction
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of the functional a,,) in Theorem 7.10.(1). Let (p,u) as in the theorem state-
ment. In order to discuss Anosov properties of representations in Isom (E™"~1),
which is not reductive, we think of Isom, (E™"~!) as a subgroup of PSL(2n,R).
Observe that since p is P/ _;-Anosov, the representation (p,0), when viewed as a
representation into PSL(2n,R), is Anosov with respect to the stabilizer P, _1 41 in
PSL(2n,R) of a flag made up of an (n — 1)-space contained in a (n + 1)-space, see
Section 4.4. Since (p, u) is conjugate in PSL(2n,R) to (p,cu) for any € > 0, and since
(p,eu) — (p,0) as € — 0, it follows from Fact 4.6 that (p,u), when viewed as a rep-
resentation into PSL(2n, R), is also P,—1 p41-Anosov. Let ¢n=1) . o1 — Gr,_1(R?")
and £+ 1 9T — Gr,,41(R?") denote the corresponding boundary maps. Then note
that €1 does not depend on the translational part u; it is simply the composi-
tion of the boundary map for the P”_,-Anosov representation p : I' — SO(n,n — 1)
with the inclusion Gr,,_1(R®»"~1) — Gr,_1(R?") induced by the inclusion R®"~1 =
R?7~1 — R?" as the subspace orthogonal to ¢}, . However, £+ does depend on wu.

Together, the Anosov boundary maps define a splitting of the flat R?”-bundle
associated to (p,u) into sub-bundles that are invariant under the geodesic flow D¢;:

Vipwy =D\(T'SxR™) =Vi@ e V- (7.11)
where VT,V — ‘have rank n—1 and Vj has rank two. Thought of as (p, u)-equivariant
maps V* : T'S — Gr,_1(R*") and V; : T'S — Grg(]RQ”)f,vthe three maps depend
only on the y and  coordinates of the point (y, z,z) € T'S. Explicitly, V*(y, z) =
€ D(x), V= (y,2) = €07V (y) and Vo(y,x) = €7D (y) N €7D ().

Since V*(y,x),V~(y,z) are each contained in R?"~! it follows that Vg(y,z) N
R?"~1 =: Lo(y, x) is one-dimensional. Indeed the decomposition V' (y, z)®Lo(y, z)®
V= (y,z) = R*~! does not depend on the translational part u; it precisely induces
the decomposition of the flat R?"~! bundle V, associated to p coming from the

Anosov boundary map £™1:
V,=T\(T'S xR Y =Via LoV, (7.12)

Note that VT (y,x),V~(y, ) are isotropic subspaces of R™"~! and Lg(y,r) is
a positive line (meaning the restriction of (-,-), ,—1 is positive definite) which is
orthogonal to VT (y,z) ® V~(y,z) in R®»"~ L.

For (y,z) = (y~,7") the pair of repelling and attracting fixed points for an ele-
ment v € I, the subspaces V', V=, Vj, Lo corresponds precisely to those coming from
the decomposition into generalized eigenspaces for g = (p(7y,u(y)) of Section 7.3:

By the discussion in Section 7.3, Lo(y~,~") is an oriented line and using the same
convention we define an orientation on Lo(y,z) for all y # = in OI'. Hence, there is
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a unique positive unit vector fy(y,x) in each line Lo(y, z), which defines the neutral
section fo: T'S — V.
Now, consider the flat E®"~!-bundle over T'S,

E(pu) = D\(T'S x E™"71), (7.13)

where here I' acts on the E™"~! factor by the (affine) isometries (p,u). The geodesic
flow ¢ lifts in the usual way to a flow on E(,,) which is locally constant in the
fiber. Let s : T1S — E(y,u) be a section which is differentiable along flow lines. The
derivative Vs along the geodesic flow takes values in the vertical tangent bundle
TVE(p,u) of E(,4) which canonically identifies with the vector bundle V,. Then for a
current p € C(S), define:

1) 1= [ (Tesfo) d (7.14)

where here (-, -) is the inner product on V), coming from the inner product (-, ), n—1
on R™"~1 Let us see Theorem 7.10.(1): that (7.14) satisfies (7.10) in the case that
1 = pe is the current associated to the closed geodesic ¢ € CG(S). In the following,
de : [0,£(c)] — TS is the tangent vector to the path traversing the geodesic c at
unit speed.

£(c)
() (1) = / {(Vp)de(r)). fo(delr) dr (7.15)

and the right-hand side may be evaluated by lifting to T'S where the bundles in
consideration become products. Let 5 : T1S — Ef”b_l be the lift of the section s,
a (p, u)-equivariant map. Choose a lift ¢ of ¢ to S and let d¢ : [0,4(c)] — TS be
the tangent vector to the unit speed parameterization of ¢. Then the right-hand side
of (7.15) becomes

£(c)
) (112) = / VR, fodE(r))) dr
O
=/ <dt

TOdt

s(de(r + 1)), fg(dE(T))> dr

t=0

(s(de(r +1)), fo(de(r))) dr

t=0
= (8(de(¢(c))) — 5(de(0)), fo(rv™, 7))
= (3(y ) —5(de(0)), fo(y 57 "))
< -3(de(0)) = 5(de(0)), foly 7))
U p,u) (C)
where here 7 € I' is the element corresponding to the chosen lift ¢ of ¢, we observe

that fo(de(r)) = fo(y~,7") is independent of 7, and we note the final equality
follows from (7.8).
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Before continuing to an analogous theory in the H™"~! setting, let us first give
a useful interpretation of Formula (7.14). Formula (7.14) says that to calculate
A p,u) (u), one first measures the infinitesimal signed progress (along the geodesic
flow on T'S) made by a section s of E(p,u) in the neutral direction fy above each
point of T1S | and then integrate it against x. We will now interpret the neutral vec-
tor fo as the vector field on E™"~! whose pairing with a vector v based at any point
x € E™"~! measures the projection of v to an oriented translation axis A C E»n—1
parallel to fo. We define the translation axis A(v) above v € TS using the middle
sub-bundle Vj from the decomposition (7.11). More precisely, suppose that v € T'S
lifts to 7 = (y, z,x) € T1S. Then

Ay, z) == P(Vy(y,z)) NEV1 (7.16)

is an affine line E™"~! whose direction is Lo(y, ). Since (y,z) — A(y,z) is (p, u)-
equivariant, A defines an affine Riemannian line, denoted by A(v), in the fiber Ej"™
of E(,,,,) which varies continuously with v. The neutral vector fo(v) at v € T'S, which
is tangent to A(v), defines an orientation of the corresponding line A(v). We call
A(v) the translation azis associated to v € T'S. Note that A(v) is locally constant
under the geodesic flow .

Next consider any oriented Riemannian line A in E»"~! and let f; € R™"!
denote a non-zero tangent vector to A. Let 114 : E»"~! — A denote the orthogonal
projection, defined by the property that IT4(x) is the unique point in A so that
(x — I 4(x), fo)nn—1 = 0. Note that II4 satisfies the equivariance property that
for any g € Isom (E™" 1), I, 4(g - x) = g - IL4(x). In particular, if A is invariant
under g, then IT4(g - x) = glla(x). Note that the function (y,z,x) = Il4(yz) is
(p, u)-equivariant and hence descends to 7S giving a continuous assignment of a
projection map IT 4, : E}™ ' — A(v) in the fiber above v € T1S. Observe that for
any vector v € TyE™" 1,

gE(U) fO) = g%Ax(dH.Avv fO)

where g denotes the flat metric on E™"~!, and we interpret fy € R™" ! as a parallel
vector field on E»"~ 1. Hence we may rewrite formula (7.14) as follows (see Figure 2):

p) (1) = / eTngE(Vgas,fo) dp

N / s g” (Aag) (Ves)() . fo(v)) dp. (7.17)

7.6 Extending the length function . for H*"~! to currents. We now
give an analogue of the construction from the previous section in the setting of H™"~1
geometry. We follow the notation conventions of Section 7.2 and Example 4.10,
thinking of G’ = PSO(n,n) as embedded in G = PSL(2n,R).
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Figure 2: The Margulis invariant o, (1) is the rate at which the projection of s(v) to the
translation axis A(v) makes progress under the geodesic flow, averaged over v € TS against
the current . Here we use the flat connection to identify the fibers of E(, ,) above the flow
line o, with a fixed copy of E®"~! and note that the translation axis A(pv) = A(v) is
constant in t.

Consider a representation ¢ : I' — G’ which is Anosov with respect to the stabi-
lizer P!, of an isotropic (n — 1)-plane and form the flat H™"~! bundle associated
to o:

=T\(T'S x H»" 1),

As usual, we lift the geodesic flow ¢; to H, so that it is locally constant in the fiber.
Suppose now that there is a differentiable section s : 715 — H o (such a section
exists in the setting where we will apply this later). The present goal will be to work
by analogy to (7.17) and use the variation of the section s along the geodesic flow
to define a continuous length functional .Z, on the space of geodesic currents C(.5),
that satisfies

Lo(pe) = Z(0(7))

Here [v] = ¢ and the function .Z of Section 7.2 is well-defined on p(7) since g is
e l—Anosov

Let €D 9T — Gr,_1(R™") and ¢t o1 — Gry+1(R™™) be the associated

Anosov boundary maps and let 55:1) : O — Gr;f (R™") and f(_n) :0I' — Gr,, (R™")

be the maps defined by 5(;) = w0 £ D where w, (resp. w_) is the projection
taking an isotropic (n — 1)-plane to the unique positive (resp. negative) istropic n-
plane containing it, see Proposition 2.3. Then for each pair (y,z) of distinct points

in OT", define

L (y,x) = €7 (x) n et (y), (7.18)
Ly (y.z) = €™ (2) n et (y). (7.19)

Note that in the case that (y,z) = (y~,7") are the repelling and attracting fixed
points for an element v € I'; we have:
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Li(vy7,7") = Li(e()),
L, (v",7) = Ly (e(7))

where L (g) is as defined in Section 7.2. Now, define
Ay, x) = o (y,2) = P(L} (y,2) & Ly, (y,2)) "H™" L. (7.20)

Then 7 (y~,~") is the slow axis for o(7) as in Section 7.2. For any point (y, z,) €
T'S, we call o (y, ) the slow azis associated to (y, z, x); it is invariant under ¢; (i.e.
it is independent of z). Further, by the same convention as for & (y~, ™), described
in Section 7.2, the axis o7 (y, x) is endowed with a natural orientation, namely that for
which P(L;f (y,x)) is the forward endpoint and P(L,, (y,z)) the backward endpoint.
We equip «/(y, ) with the (anti-symmetric) signed distance function d(y)(-,-),
where d(y.2)([v], [w]) is plus/minus the Riemannian distance with positive sign if
and only ([v], [w]) is positive for the orientation. Let v € T'S be the point that lifts
to v = (y,2,7) € T'S. Since the construction of .27 (y, ) is equivariant, &/ descends
to T1S, giving a smooth assignment of an oriented Riemannian axis <7 (v) in the
fiber H™ ! above v.

Next, consider any oriented Riemannian geodesic axis .7 in H™"~!. Write o/ =
P(L~ @ L") where P(L™),P(L*) € OH™"~! are the negative and positive endpoints
of & respectively. Choose fT € LT and f~ € L™ so that (f*, f~) = —1. Define
U(e7) € H™™~! to be the open subset of points [v] € H»"~! so that (v, f)(v, f7) >
0 and note that U () is independent of the choice of fT, f~ as above. The region
U(</) is a maximal neighborhood of the axis </ on which the following “nearest
point” projection is defined. Let II,, : U(</) — o7 be given by the formula:

Iy ([w]) := [~(w, ) f" = (w, f7)fT]. (7.21)

Again, note that II,, is independent of the choice of f, f~ as above, and note also
that Il is smooth and varies smoothly as &/ varies. Further, note that 11, satisfies
the equivariance property that for any g € PSO(n,n), Hyy (g - [v]) = g - Iy ([v]).
In particular, if &7 is invariant under g, then IT,/(g - [v]) = g1/ ([v]). Note that the
functions (y, z, z) — U( (y,x)) and (y, z,7) — Il ) are g-equivariant and hence
descend to TS giving a smooth assignment of an open neighborhood U(</ (v)) of
 (v), and a projection map Il (,) of the fiber above v € T'S to the axis .o7(v) in
that fiber.

Next, let .7 denote any oriented Riemannian line in H™"~!. We define the vector
field f = foy on U() to be the extension of the unit tangent field to <7 that satisfies
that dIl. fx = fi,x for any x € U(</), and that f is orthogonal to the kernel of
the projection dIl,. Hence

gg(va f) = g%,ﬂx(dﬂﬂv’ f) (722)

holds for any tangent vector v € Ty (o), where here g denotes the invariant metric
on H™"~! of constant curvature —1. Then for a path x(t) in U(/), the amount of
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Figure 3: The length function L,(u) is the rate at which the projection of s(v) to the slow
axis @/ (v) makes progress under the geodesic flow, averaged over v € T'S against the
current p. Here we use the flat connection to identify the fibers of H(, ,,) above the flow line
v with a fixed copy of H™"~! and note that the slow axis &7 (¢;v) = o/ (v) is constant in
t.

infinitesimal signed progress the projection Il (x(¢)) is making along </ at time
t = 7 may be expressed as follows:

d

a d&{ (HMX(T)a HMX(T + t)) - gﬁy/ x(T) (deX/(T)? f)
t=0

= () (X' (7). /) (7.23)

We now give the definition of the length function. Suppose the differentiable
section s : T1S — H, satisfies that s(v) C U(/(v)) for all v € T'S. Define the
function %, : C(S) — R by the formula

2= [ € Ton i (7.24)

where here Vs is the derivative of s in the flow direction using the flat connection,
f = f(/(v)) is the vector field defined as above in the subset U(<7(v)) of the fiber
above v € T'S, and g™ is the natural metric of constant curvature —1 on the fiber
HZ" ! above v. See Figure 3.

The function .Z is clearly continuous and linear. Further:

PROPOSITION 7.11. Suppose ¢ is P! ;-Anosov and s : T'S — H, is a section so
that s(v) € U(/ (v)) for all v € T1S as above. Then, for any ¢ = [y] € CG(9),

Lo(pe) = Z(0(7))

Proof. In the following, dc : [0, £(c)] — TS is the tangent vector to the path travers-
ing the geodesic ¢ at unit speed. Then
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Zy(ie) = / &% (V.. ) dyie

£(c)
_ / g™ (V) (de(r)), f( (de(7)))) dr

/K(C) d
B 7=0 dt
where the last equality follows from (7.23). The right-hand side of (7.25) may be
evaluated by lifting to T1S where the bundle in consideration becomes a product.
Let 3: T1S — H™"! be the o-equivariant map lifting s. Choose a lift ¢ of ¢ to S
corresponding to an element v € I’ with [y] = ¢ and let d¢ : [0,/] — TS be the
tangent vector to the unit speed parameterization of ¢, where here ¢ = ¢(c) is the
length of the closed geodesic ¢ on S. Then the right-hand side of (7.25) becomes
£ d . I
Zy(pe) = / Lt Gertate) (Mer(az( S(AE(T + ), Ty ey 5(4€(7)) d
T= =0
_dﬂ(w 'y*)(HQ/'y A1) S(dc(g)% of (v~ 'y* ( ( )))
= doy(y- 1) Ty (y- ) S(7- dC(O)), - +)8(de(0)))
= du(y- 7ty My +y0(7) - 3(de(0 )) o (v 1) 3(dE(0)))
:d&{('y—,’y‘*')( ( ) o (v~ t) S(dC( )) H&i'y 'y‘*’)s(dc(o)))
=Z(e(v))

where here we observe that the axis &/ (d¢(7)) = «/(y~,~T) is constant in the
integral and the fundamental theorem of calculus is applied in the first step above
to the signed distance function d(,- +)(-,d¢(0)) on the axis .o/ (y~,~y*). The final
two equalities follow respectively from the p-equivariance of s and the equivariance
property of Il discussed above. O

doy(ae(r)) Wz (@e(r) $(Ae(T + 1)), Wy (de(ry s(de(r)) dr (7.25)
t=0

Finally, let G” = SO(n,n — 1) be embedded in G’ = PSO(n,n) via the inclusion
tnn @ G" — G’ as described in Example 4.11. Recall from Example 4.17 that if
p: ' — G" is Anosov with respect to the stabilizer P/ ; < G” of an isotropic (n—1)-
plane in R™"~1  then ¢, , o p is Anosov with respect to the stabilizer P!_; < G’ of
an isotropic (n — 1)-plane in R™".

LEMMA 7.12. Let p: I' — G" be P)/_,-Anosov. Then for ¢ : I' — G’ close enough to
Lnn © p, there exists a differentiable section s : T*S — H, such that s(v) € U(</ (v))
for all v € TS, and hence %, : C(S) — R is well-defined.

Proof. For g9 = ¢ o p, such a section exists, namely the projection sq of the (o p)-
equivariant map 3o : T1S — H™"~ 1 defined by 3¢(v) = [e2,] constant. Indeed, in
this case [ea,] € & (y,x) C U(H (y,x)) for all pairs (y,z) of distinct points in OT,
because [ea,] = [f+ + f-].
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Now consider a path g; : I' — G’ based at gy = tn,n © p- The bundles H,, are all
isomorphic as smooth fiber bundles, so we may regard H,, as a fixed fiber bundle
with continuously varying flat structure. Hence, the section sy may be regarded as
a differentiable section of any of the bundles H,,. The open subsets U(</(v)) in
the fiber over v of H,, also depend on ¢, and the dependence is continuous because
the dependence of the Anosov boundary map &, : OI' — Gr,—1(R™") on t is
continuous. More precisely, the union J, ¢ g H" " N\U(o (v)) is a closed subset of
the bundle H,, that varies continuously in ¢ in the topology of uniform convergence
on compact subsets. Hence, since so(T'S9) is compact, it remains contained in the
union | J,cqmgU (4 (v)), provided that ¢ is sufficiently small. 0

REMARK 7.13. By the same argument given in Section 6.2 of Goldman-Labourie—
Margulis [GLMO09], one shows that .Z, does not depend on the section s. We do not
give that argument here as we do not need it for our purposes.

8 E™"~ ! as a Geometric Limit of H»" 1

We now give the crucial geometric input needed for the main result, namely the
understanding of group actions by isometries of the pseudo-Riemannian Euclidean
space E™"~! as limits of group actions by isometries on the pseudo-Riemannian
hyperbolic space H™"~!. This geometric transition interpretation, which follows the
work of Danciger—-Guéritaud—Kassel [DGK16b] in the setting of free groups acting on
R21!, will be used to make a connection to Theorem 1.3 in order to prove Theorem 1.2
and eventually Theorem 1.1.

8.1 E™"~! as a limit of H»"~! in real projective geometry. = We continue
to work with the coordinates of Section 7.1, in which E»"~1 and H®»"~! are embed-
ded in P(R?") with the isometry groups Isom, (E»"1) = SO(n,n — 1) x R?*~! and
Isom (H™"~1) = PSO(n,n) embedded in PSL(2n,R).

Consider a differentiable path r — g, in PSO(n,n) based at gy = ¢(h), where
h € SO(n,n — 1) and where ¢ = ¢y, : SO(n,n — 1) < PSO(n, n) is the inclusion as
in Section 7.1. We write g, in the form:

A v
gr = wz‘ br )
where A, is a (2n—1) x (2n— 1) matrix, v, w, € R*~! and b, € R. (These are well-
defined up to simultaneously changing signs.) Since gy = ¢(h), we see that Ay = h,

’UQZO, wozoandbozl.
Let ¢, : P(R?") — P(R?") be the projective transformation given by the matrix

o — %IdQn—l 0
T O 1 Y
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where Idg,—1 is the (2n — 1) x (2n — 1) identity matrix. Then observe that

A Loy h u
. —1 — 1 r r r _
ll—r>r(l) CrdrCr llm [r cwl b, } [O 1} ' (8.1)

—0 r

is the element (h,u) € SO(n,n — 1) x R*"~1 = Isom (R™"1), where u := 4| v,

(where v, is chosen with the appropriate sign). This (essentially) shows that ¢,PSO
(n,n)e; ! converges as r — 0 to SO(n,n — 1) x R?*"~! in the Chabauty topology on
closed subgroups of PSL(2n, R). In fact, the action of PSO(n,n) on H™"~! converges
to the action of SO(n,n — 1) x R?"~1 on E™"~! under conjugation by ¢, in the
following sense. Let r — x, be a differentiable path in H™"~! based at the basepoint
X0 =[0:...:0:1] € H*" ! which is stabilized by ¢(SO(n,n — 1)). For sufficiently
small 7, ¢,x, lies in E»"~! so ¢,x, — x’ as r — 0 for some x’ € E™"~1. Thinking
of R»"~1 = T H™"~! the tangent vector to the path x, at r = 0 is precisely the
displacement vector between x’ and the basepoint. Next,

CrgrXy = Crgrey t(erx,)
— (h,u) - x'

as r — 0. Hence the geometry E™"~ ! is a geometric limit of H""~! as sub-geometries
of real projective geometry, in the sense of Cooper—Danciger—Wienhard [CDW14].

Now, let p : ' — SO(n,n—1) be a representation and let g, : I' — PSO(n,n) be a
differentiable path of representations so that g9 = ¢ o p. Define ¢f* : T' — PSL(2n,R)
by

Qﬁr (7) =Cp Qr(’y) ' c;l'

By the above calculation,

lim o7 = (p,u)

r—0
is a representation into SO(n,n — 1) x R?"~! with linear part p and translational
part the p-cocycle u : I' — R.

LEMMA 8.1. If (p,u) : T' — SO(n,n— 1) x R?"~! is any surface group representation
with irreducible linear part p, then there exists a path g, : I' — PSO(n,n) so that
00 = to p and lim,_,g 05" = (p,u) as above.

Proof. Since p is irreducible, 1o p : I' — PSO(n,n) has finite centralizer. Hence ¢ o p
is a smooth point of Hom(I',PSO(n,n)) by Goldman [Gol84]. Hence any tangent
direction to ¢ o p is integrable, in particular the tangent direction defined by the
pso(n,n) valued cocycle

i (uT&)J U(()’Y)) € pso(n,n),

where J = Id, & (—Id,—1) is the matrix for the form (-,-),,—1 (in the basis
e, ... €5, 1). Any path o, tangent to this direction satisfies the conclusion of the
lemma. O
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8.2 The derivative formula. @ We now state and prove the key lemma. In the
following P/ | < G” = SO(n,n — 1) denotes the stabilizer of an isotropic (n — 1)-
plane in R®"~! and P/ ; < G’ = PSO(n,n) denotes the stabilizer of an isotropic
(n — 1)-plane in R™".

LeEMMA 8.2. Let (p,u) : I' — SO(n,n — 1) x R?"~! be any representation whose
linear part p : I' — SO(n,n — 1) is P/ _;-Anosov. Let g, : I' — PSO(n,n) be a
differentiable path based at oo = ¢ o p and satisfying lim, .o 0 = (p,u). Then the
length functions o, .y, Z,, : C(S) — R of Sections 7.5 and 7.6 satisfy:

o1

lim ~ 2, (1) = () (8.2)
and the convergence is uniform on compact subsets of C(S), in particular on the
probability currents Cy(S).

Note that for r sufficiently small, g, is P, _;-Anosov by Fact 4.6, and .Z, is
well-defined by Lemma 7.12.
It is easy to verify that, in the context of the Lemma,

lim ~ #(0,(7)) = a((p, u)(7)),

for any « € T', hence the formula (8.2) holds pointwise on currents y. supported on
closed geodesics. The difficulty is to show the uniform convergence. In order to do
this, we show that the integrand from Equation (7.24) defining . may be arranged
to, after rescaling, converge uniformly to the integrand from Equation (7.14).

We must first examine a bit more carefully the notion that the geometries
¢, H™"1 converge to E™"~! as sub-geometries of real projective geometry. First
we note that ¢c,H""~ ! C ¢, H»" ! whenever 0 < r < s, and that

U e:Hmn =t S ERL (8.3)

r—0

Next, we prove a statement about convergence of metrics, analogous to [DGK16b,
§7.4]. The space E™"~! (respectively H""~1) admits a pseudo-Riemannian metric
of zero (respectively constant negative) curvature which is invariant under the group
Isom (E»"~1) = SO(n,n — 1) x R?"~1 (respectively Isom (H*"~!) = PSO(n,n)).
As in Section 7, we denote these metrics by g® and g, and we view Isom, (E®"~1)
and Isom (H""~1) = PSO(n, n) as subgroups of PSL(2n,R). Since the stabilizer of
the basepoint xg = [0,...,0,1] is the same in both isometry groups, we arrange that
g =gn . For r >0, consider the metric g" defined on ¢, - H™"~! C P(R?") by

T

g = ()i g,

where (¢, )4 is the pushforward by c,.
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LEMMA 8.3. The sequence of metrics r—2g" converges to g* uniformly on compact
subsets of E™"~1 as r — 0, where for a given compact set C C E™"~ we only
consider r small enough so that g" is defined on C.

Proof. In what follows, we use the trivialization of the tangent bundle TE™"~!
to the affine chart E™"~! denoting the associated parallel transport of a vector
v € TyE™ 1 to TyIE"’"_1 again by v. First, note that for any tangent vector v €
TRE""~1 we have (¢;1)v = rv € T1(E™" 1. Thus, for v,w € TRE™"1,

g w) = 177 ((e)ag") (0 w)

=7 gc,_.l(x)((cr )« (cr )*w)

Given a compact set C C E™"~1  the projective transformation ¢, ! maps C into ar-
bitrarily small neighborhoods of the basepoint xg as » — 0. Therefore, by continuity
of g,

-2 H H E E
gy = 8cii(x) T o Bxo T Bxo T Bx
uniformly for x € C (where we use again the trivialization of TE™"~1). 0

We also need a statement about convergence of the vector fields used to calculate
the translation length functions in H™"~! and R™»"~ 1.

LEMMA 8.4. Let <, be a continuous path of oriented Riemannian lines in H™" !
so that % 3 xg. Let f.; denote the vector field (7.22) defined on U(<;.).

(1) The open sets c,U(<7,) converge to E™™~! in the sense that for any compact
subset C' C E™" 1 there exists ro > 0, so that c,U (<) D C for all0 < r < .

(2) On any compact subset C C E™"~1  the vector fields 7(c;)sfo. converge uni-
formly to the parallel unit vector field fy on E™"~! which agrees with the
positive unit vector in the direction of o in the tangent space Ty, P(R?") =
Tonn,nfl — Tonn,nfl'

Proof. For (1) simply observe that a small open neighborhood U of the basepoint
X is contained in U(<%) and hence in all U(.<7.) for r sufficiently small. The open
sets ¢,.U, which in the affine chart E™"~! are just dilated copies of U, eventually
contain any compact subset of the affine chart E»"1,

We now prove (2). Consider x € C and v € TyE™"~! and suppose r > 0 is
sufficiently small so that ¢, (%) D C. As in the proof of Lemma 8.3, we again
use the trivialization of the tangent bundle TE™"~! to the affine chart E»"~!, and
denote again by v the constant vector field which agrees with the given v € Ty E™" 1,
Then (¢; )0 =10 € T,1(E™" 1. Next, observe that
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T_Qg:c(va r(c”‘)*f%r) = T_Qggl(x)((c”‘)zlvv rf%r)
= 7'72gﬂc-];1(x) (7”7)77'f,pfr)
= gﬂc-]ifl(x) (Uv fﬁ?ﬂ)

= g (v, fat)
= gEU (rU, fO) = gE(Ua fO)

But on the other hand, the vector field (¢, )« fo. is bounded on C, independent of r,
hence by Lemma 8.3, the quantity r~2g’ (v, 7(c; )« fo,) differs from gZ(v, r(c;)sfor)
by a uniform constant tending to zero with r. We conclude that the vector field
r(cr )« for. converges to fo uniformly on C. O

The final ingredient needed for Lemma 8.2 is a statement about convergence of
sections of the bundles associated to the convergent path p¢~ — (p, u). In the context
of Lemma 8.2, define for each r > 0, the flat projective space bundle

P, =T\T'S x P(R™")

where for 7 > 0, the action of I on P(R?") is by ¢¢ and for r = 0, the action of I" on
P(R?") is by (p, u). For each 7 > 0, the map ¢, : P(R*") — P(R?") induces a fiberwise
embedding ¢, : H, — P,.. Further, the fiberwise action of PSO(n,n) on H,, is taken
by ¢, to the fiberwise action of ¢,PSO(n,n)c; ! on P,. For r = 0, the embedding
E™m=1 — P(R?") induces a fiberwise embedding E(,,) — Po which is invariant
under the fiberwise action of (p,u). Further, the fiberwise action of ¢,PSO(n,n)c,
on P, converges to the action of SO(n,n — 1) x R*"~! on Py,

Let s: T'S — E(,u) be any differentiable section of the E™"~! bundle associated
to (p,u). Using the embedding E(, ) — Po, we regard s as a section of Py. The path
P, is a continuous family of flat bundles. The underlying bundles are (smoothly)
isomorphic to a fixed projective space bundle and the path P, may be thought of
as a continuously varying family of flat connections on that fixed bundle. Hence the
section s determines a family of sections s, : 1S — P, which lift to a family of
maps

5. : T'S — P(R™)
which vary continuously in the compact open topology and satisfy that
° §0(T1§) C En»"1 and sg is (p, u)-equivariant.

e 5, is pfr-equivariant.

LEMMA 8.5. Let (p,u) and o, be as in Lemma 8.2. Let s, : T'S — P, be a con-
tinuously varying family of sections as above. Then for r > 0 sufficiently small, we
have:

(1) s:(T1S) C ¢,H,., or in other words 5.(T'S) C ¢,H™"!, and
(2) for any (y,z,x) € T'S, 3:(y, z,2) C c;U(H, (y,)).
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Proof. Note that (1) will follow from (2). We prove (2). Let .# C TS be a compact
fundamental domain. For all sufficiently small » > 0, 5,.(.%) is contained in a uniform
neighborhood U of the compact subset 30(.%) in E»"~L. For a fixed (y, z, ) € .Z, the
Riemannian line <7, (y, ) contains the basepoint xo € H™" ! so by Lemma 8.4.(1),
U (A, (y,x)) contains U for all r > 0 sufficiently small. By compactness of .7, we
have that [, , ez cld(Hp, (y,2)) D U for all r > 0 sufficiently small. Hence (2)

holds for all (y, z,z) € .%, and hence over all of TS by equivariance. O
We now give the proof of Lemma 8.2.

Proof of Lemma 8.2. Let s, : T'S — P, be a continuously varying family of sections
and assume r > 0 is sufficiently small as in Lemma 8.5 above. We may use the section
¢y ls, : TS — H,. to calculate the length function %, via Formula (7.24):

2= [ € (Volers). pn

Let us calculate the integral by lifting everything to the product bundle T1S xHM 1,
Let # C T'S be a fundamental domain for the action of I' = 7.5 and let 1 denote
the pullback of p to T1S. Then

L, (1) = ! / & (Vo(c'50)(). fuy, o))

vEF

=7t /»ey g (¢ ):Ve3:) @), for, () Rt
[ (O )

- /Ney r 28" ((Vps) @), r(cr)s far,, ) Afi- (8.4)

Let us now examine the integrand of right-hand side of (8.4). The oriented axes
a7, (V) converge to <7, (), where pg = ¢ o p, simply because the Anosov boundary
maps associated to the path o, of Anosov representations vary continuously in the C°
topology [GW12, Theorem 5.13]. The convergence is uniform over v in the compact
fundamental domain .%. Writing v = (y, 2, ), the axis <7, (V) = "~ !(y)=n¢"1(z)*
contains the basepoint xg = [0 : ... : 0 : 1] and the positive unit tangent direction
of 7, at xq is precisely the neutral vector fo(y,z) = fo(v) € R?""! = T H» !
associated to (y, z) for the representation p. Hence, by Lemmas 8.3 and 8.4,

ll_{r(l) 1"_2gr ((V¢§T)(ﬁ), r(cr)*fyim (ﬁ)) = gE((vwgo)(g)a fO(’Aj))
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and the convergence is uniform over .%. Hence

lim %, (u) = / B (VR @), fo?)d

r—0

= /15 g"(Vs0, fo)du

= o) (1)
and the convergence is uniform for p varying in a compact subset of C(.S). O

REMARK 8.6. In the context of Lemma 8.2, the slow axes for pf" converge to the
translation axis for (p, u): for each (y,x) € (912, ¢, o, (y,z) — A(y, ). This follows
easily since the axes are constructed directly from Anosov boundary maps. Similarly,
the associated projection maps converge: ¢;1l, () — IL4(y.). However, we did not
use this convergence in the proof of Lemma 8.2. We used only the statement that
the vector field fo, (y,z) converges as r — 0 to the neutral vector field fo(y,z).
This is a slightly weaker statement because while the vector field f,, determines the
line &7 in H™"~1, a parallel vector field fy does not determine one line, but only a
family of parallel lines.

We now have the ingredients needed to prove Theorem 1.2 and finally Theo-
rem 1.1.

8.3 Proof of Theorems 1.2 and 1.1. Let ¢, : SO(n,n — 1) — PSO(n,n)
and (g, : PSO(n,n) — PSL(2n,R) be the inclusions in the examples in Section 4.4.
Theorem 1.2 follows from the more general statement:

Theorem 8.7. Let p: I' — SO(n,n — 1) = G” be Anosov with respect to the
stabilizer P!, of an isotropic (n—1)-plane. Let u : T' — R?*"~1 be a p-cocycle so that
the affine action (p,u) on R™"~! is properly discontinuous. Let o, : I' — PSO(n,n)
be any path so that oy = tnn © p and o converges to (p,u) as in Lemma 8.1. Then
for all r > 0 sufficiently small, 13, o o : I' — PSL(2n,R) is Anosov with respect to
the stabilizer P, of an n-plane in R*".

Proof. By Theorem 7.10, the Margulis invariant functional o, : C(S) — R is well-
defined and satisfies that v, (1) # 0 for any current p € C(S). Since the space of
currents is connected, o, ., (1) has the same sign for all ¢ € C(S), and without loss
in generality we assume o, ,,) (1) > 0 for all 4 € C(5) (if not, simply conjugate by the
orientation reversing isometry —Ids,_1, which does not affect proper discontinuity,
but flips the sign of the Margulis invariants). In particular, there exists ¢ > 0 so
that

a(pyu)(C1<S)) >e>0

where C;(S) C C(S) denotes the currents with total mass one, a compact subset. It
then follows from Lemma 8.2 that for all > 0 sufficiently small,

£, (C1(9)) > rg. (8.5)
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Henceforth assume r > 0 is sufficiently small so that (8.5) holds. Note that the stable
length function v — |y|s is M-bi-Lipschitz to the length function v — ¢([y]) for the
fixed hyperbolic metric S for some M > 1. Equation 8.5 and Proposition 7.11 then
imply that for every v € I'\{1}, the Lyapunov projection X' (g,(7)) satisfies that
M (0r(7)) = M5 |7|oo. In particular, A, (o,(7)) > 0. Letting v = limy,—.00 ¥™ €

JT', it then follows that §(+n) (vT) is the attracting fixed point for the action of o(7)

on the full Grassmannian Gr,,(R?") of n-planes in R?" (recall that 55:1) (v1) is the
positive isotropic n-plane in R™" containing £~ (y1)). Hence, composing with the
inclusion Gr;} (R™") < Gr,(R?"), the map §Srn) determines a continuous embedding
Ol — Gr,(R?") which is equivariant and dynamics preserving for the representation
tonop : I' = PSL(2n,R). Hence, the implication (3’) == (1) in Theorem 4.12 shows
that o, 0 ¢ is P,-Anosov. O

Proof of Theorem 1.2. Suppose (p,u) : 7.8, — Isomy(R™" 1) = SO(n,n — 1) x
R?"~! is an action by isometries of R™"~! with linear part p a Hitchin representation
in SO(n,n —1). Suppose for contradiction that the action is properly discontinuous.
Then, since p is irreducible, Lemma 8.1 gives the existence of a path o, : ' —
PSO(n,n) such that g = ty,n0p and & converges to (p,u). Since p is P/_;-Anosov,
Theorem 8.7 implies that for » > 0 sufficiently small, t9,00, : I' — PSL(2n,R) is P,-
Anosov. However, g, is a PSO(n,n) Hitchin representation for any r and therefore
cannot be P,-Anosov by Theorem 1.3. O

Proof of Theorem 1.1. Suppose for contradiction that a proper affine action (p,u) :
I' — Aff(R?) = GL(d,R) x R? has linear part p a lift of a representation ¢ : I' —
PSL(d,R) in the PSL(d,R) Hitchin component. We show that, up to conjugation,
p(I') <SO(n,n —1).

First, let p’ be another lift of o which takes values in SL(d, R). Then p and p’ differ
by a scalar: p(v) = A(7)p'(7), where A : I' — R* is a homomorphism. Guichard [Gui]

has announced work showing that the Zariski closure p’ (P)Z < SL(d,R) must contain
the principal SL(2,R), i.e. the image of the irreducible representation 74 : SL(2,R) —
SL(d,R). The following is a list of algebraic subgroups with that property:
(1) all of SL(d,R).
(2) the image of the irreducible representation 74 : SL(2,R) — SL(d, R).
(3) the orthogonal group SO(n,n — 1) if d = 2n — 1 is odd.
(4) the symplectic group Sp(2n,R) if d = 2n is even.
(5) the seven dimensional representation of Gg if d = 7, which is contained in
SO(4, 3).

Observe first that p and p’ must agree on the commutator subgroup [I', I']. Hence
Z Z Z
p()" 2 p(Il,T])" = p'(II',T7)
=

OIS
— [P0, 707 = P,
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where the last equality is easily checked for each of the groups listed above. Hence,
in particular, mz contains 74(SL(2,R)).

On the other hand, it is a basic linear algebra fact that an affine transformation
g = (Ag,uy) fixes a point unless A, has one as an eigenvalue, see e.g. [KS75]. Hence
for all v € T'\{1}, p(v) has one as an eigenvalue and this property passes to the
Zariski closure mz. In the case that d = 2n is even, 74(SL(2,R)) contains, for
example

(2n—3)t _ t —t —(2n—1)t>

Tondiag(e?, e?) = diag(e® Ve s, e e e

which does not have one as an eigenvalue.

Hence d = 2n — 1 is odd. By the above, mz D mz. It is also true that
mz C H_l(mz), where II : GL(2n — 1,R) — SL(2n — 1,R) is the natural
projection, since the algebraic equations in SL(2n — 1,R) defining p’ (I‘)Z pull back

to algebraic equations in GL(2n — 1,R). Further, if g;,¢2 € p(F)Z are such that
T(g1) = M(g2), then g1g, " € p(F)Z is a multiple of the identity, hence equal to the
identity, by the eigenvalue one property. It follows that the projection IT maps p(F)Z

to p (F)Z one to one, and hence that p(F)Z =p/ (T ) Therefore p(T' )Z is (conjugate
to) one of the items on the above list, namely SO(n,n — 1) (case 3) or G (case 5) or
74(SL(2,R) (case 2). In all cases p(T )Z < SO(n,n —1). Hence p(T') < SO(n,n — 1).
This contradicts Theorem 1.2 and concludes the proof of Theorem 1.1. O
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Appendix A. Positivity in PSO(n,n)

While an explicit description of positive triples of flags for the Lie group G =
PSL(d,R) is given in almost every introduction to the study of positivity (see e.g.
[GW16]), an explicit description of the positive triples of flags for G’ = PSO(n,n)
seems to be absent from the literature. The purpose of this appendix is to give
one such description, by induction on n. Let B'* be the Borel subgroups of G’
described in Example 3.9. In Example 3.9, we also described the unipotent radi-
cals U'* C B'* the corresponding positive Weyl chamber o/t C o, and the simple
roots A’ = {a/,...,al,}. Let (B'Y, B, {m;t, i=1-{z,, }i-1) be the pinning described
in Example 3.13. We give an explicit inductive formula describing U’;O, the set of
positive elements in U’" corresponding to the chosen pinning.

We will now inductively define, for any positive integer n and any k = 1,...,n—1,
a family of (2n) x (2n) matrices M, ,, whose entries depend on variables ay, . .., a, b1,

..., b. When n = 2 and k = 1, define

1 al bl —a1b1
0 1 O —b

My = Ms(a1,b1) == 00 1 all
0 0 O 1

Now suppose that we have defined M, = M, x(a1,...,ax,b1,...,b;). Then define
the (2n + 2) x (2n + 2) square matrices

1 0 0
M,H_l’k(al,...,ak,bl,...,bk) = 0 Mn,k 0 5
0 0 1
and
1 U1 U3
Mn+17n(a1, ceey Oy, bl, Ce ,bn) = 0 annfl () y
0 0 1

where vy is the 1 x (2n) matrix, v is the (2n) x 1 matrix, and v3 is the 1 x 1 matrix
given by
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U1 = (an + bn: an - (Mn,n—1)1,2 y Qp - (Mn,n—1)1,37 ceey Qp e (Mn,n—1)1,2n)a
_bn . (Mn,n—l)l,Qn
_bn : (Mn,n—1)2,2n
V9 1= ,
_bn . (Mn,n71)2n71,2n
—(an + bn)

n—1
Up = —Qp - by (Mn,n—l)l,Qn - (_1)1171 H a; - by.
=1

In the above formulas, (M, ,,—1);; denotes the (i, j)-entry of My ,,—1.

Let s; := so be the generators of the Weyl group W(a’) of G’ described in
Section 3.3, and let ;" := :c;t{. Recall from Example 3.14 that pq - po - - - - In—1 s a
reduced word expression for the longest word element in W (a'), where iy := $,,—1-8p,
and pp = Sp—g - bk—1* Sn—k for all k =2 ..., n — 1. Using the description of x;r in
Example 3.13, one can check via a straightforward induction argument that for all
k=1,...,n—1, the matrix M, defined above satisfies

n—2 n—k
My = ( I1 :cf(am)) (o () - () ( 11 xﬂbni)).

i=n—k i=n—2

It follows immediately that

Uo(€) = {Mn({ak,l}a{bk,l}) Jk=L...,n-1I=1,.. ,k;}

Qg 1, bk,l > 0 for all k,l

where M, = My, ({ar}, {bk}) is the (2n) x (2n) matrix given by

n—1
My =[] Mus(ann, - aup b brk).
k=1

Appendix B. The Positive Curve for PSO(n,n)-Hitchin Representa-
tions

Here we prove the following proposition, which improves upon Theorem 3.6 in the
specific case of G’-Hitchin representations, where as usual G’ denotes PSO(n,n).

PROPOSITION 9.1. Suppose ¢ : I' — G’ is a G'-Hitchin representation. Then the
associated positive curve £ : OT' — G’ /B’ takes any triple of pairwise distinct points
(independent of the cyclic ordering) to a positive triple of flags.
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REMARK 9.2. Recall that when we defined a positive triple of flags, we had to make
a choice of pinning (see Remark 3.16). Fock—-Goncharov [FG06, Corollary 5.3] proved
that if (Fy, Fy, F3) is a triple of flags that is positive with respect to some pinning,
then (F3, Fy, F1) is positive with respect to some (possibly different) pinning. How-
ever, this does not imply Proposition 9.1; we show here that when the Lie group is
PSO(n,n), then (Fy, Fy, F3) and (F3, Fy, F1) are both positive with respect to the
same pinning.

Proof. Consider y, z,z € 0" pairwise distinct. We wish to show that (£(y), £(z),£(z))
is a positive triple. If (y, z, ) is positive for the cyclic ordering OI', then this is given
by Theorem 3.6. We assume (y, z, z) is not a positive triple.

Recall that we chose an oriented hyperbolic structure on S to identify 9I' with
OH?, the visual boundary of the upper half plane. Let j : I' — PSL(2,R) be the
Fuchsian representation corresponding to this choice, let gy := 7g: 07 : I' — G’, and
let o; be a continuous path so that ¢ = p. For each t, let & : 0I' — Fp/ be the
oi-equivariant positive boundary map. The space of positive triples of flags make up
a union of connected components of the space of pairwise transverse triples of flags
( [Lus94, Proposition 8.14]). Thus if (£o(y), &o(2),&o(x)) is a positive triple, then so
is (&(y), & (2), & (x)) for all ¢, hence it is sufficient to prove that (£o(y), &o0(2), o(2))
is a positive triple.

Observe that ¢ extends to a homomorphism 7¢/ : PGL(2,R) — PO(n,n). Let
g € PGL(2,R)\PSL(2,R) be any orientation reversing element. One easily computes
that

e 7¢:(g) € PSO(n,n) if n is odd, or

e 7¢:(g9) € PO(n,n)\PSO(n,n) if n is even, hence 7¢/(g) = hm where h €
PSO(n,n) and m € PO(n,n)\PSO(n,n) is the element which pointwise fixes
the copy of R™"~! invariant under 7/ (PSL(2,R)) C SO(n,n — 1) and flips the
sign of the orthogonal R%!.

The triple (gy, gz, gx) has positive orientation, hence the triple of flags

(€o(9y),60(92),&o(97)) = T (9)(&0(y), €o(2), Eo(x))

is positive by Theorem 3.6. If n is odd, it follows that ({o(y),&o0(2),&(z)) is also
positive, since 7¢/(g) € PSO(n, n). Otherwise, if n is even, we have that 7¢/(g) = hm
as above. However, the 7g-equivariant embedding RP' — G’/B’, which defines &,
is fixed by m, hence again have that (£y(y),&0(2), &o(x)) differs from (§o(gy), £0(g2),
&o(gx)) by an element of PSO(n,n) and hence is also positive. 0
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