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AFFINE ACTIONS WITH HITCHIN LINEAR PART

Jeffrey Danciger And Tengren Zhang

Abstract. Properly discontinuous actions of a surface group by affine automor-
phisms of R

d were shown to exist by Danciger–Gueritaud–Kassel. We show, however,
that if the linear part of an affine surface group action is in the Hitchin component,
then the action fails to be properly discontinuous. The key case is that of linear part
in SO(n, n−1), so that the affine action is by isometries of a flat pseudo-Riemannian
metric on R

d of signature (n, n − 1). Here, the translational part determines a de-
formation of the linear part into PSO(n, n)-Hitchin representations and the crucial
step is to show that such representations are not Anosov in PSL(2n, R) with respect
to the stabilizer of an n-plane. We also prove a negative curvature analogue of the
main result, that the action of a surface group on the pseudo-Riemannian hyper-
bolic space of signature (n, n − 1) by a PSO(n, n)-Hitchin representation fails to be
properly discontinuous.
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1 Introduction

This paper is about an application of some rapidly developing tools from higher
Teichmüller-Thurston theory to the study of properly discontinuous group actions
in affine geometry, flat pseudo-Riemannian geometry, and also pseudo-Riemannian
hyperbolic geometry.

An affine manifold is a manifold M equipped with a flat, torsion-free affine
connection ∇. If the geodesic flow of ∇ is complete, then M is called a complete
affine manifold. Equivalently, a complete affine manifold is the quotient M = Γ\R

d

of a proper affine action, i.e. a properly discontinuous action of a group Γ by affine
automorphisms of R

d. Here the group Γ, which identifies with the fundamental
group π1M , is required to be torsion free (otherwise the quotient is an orbifold
rather than a manifold). Complete affine manifolds are generalizations of complete
Euclidean manifolds, for which the connection ∇ is the Levi-Civita connection of
a complete flat Riemannian metric or equivalently the action by Γ preserves the
standard Euclidean metric on R

d. In this case, by Bieberbach’s theorems, Γ contains
a finite index subgroup Γ0

∼= Z
k for which the corresponding finite cover of M

deformation retracts onto a totally geodesic k-torus.
By contrast to the setting of Euclidean geometry, the general picture of what

complete affine manifolds M can look like is much more mysterious. The Aus-
lander conjecture [Aus64, AMS13] gives a conjectural analogue of Beiberbach’s
theorem for the case that M is compact. However, in the non-compact case, it
is unclear what restrictions the presence of a complete affine structure puts on
the topology of M . Indeed in 1983, Margulis [Mar83, Mar87] found examples of
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proper affine actions by non-abelian free groups in dimension three, destroying
the natural intuition that a complete flat affine structure ought to obstruct word
hyperbolicity in the fundamental group. The geometry, topology, and deforma-
tion theory of complete affine three-manifolds with free fundamental group, now
known as Margulis spacetimes, has been studied thoroughly in recent years, see e.g.
[DG95, GM00, GLM09, CDG16, CG17, DGK16b, DGK16c, DGK, CDG17].

Recently, Danciger–Guéritaud–Kassel [DGK18b] found examples of proper affine
actions for any right-angled Coxeter group, and consequently any subgroup of such
a group. While this class of groups is very large and rich, let us focus on the sub-class
of surface groups, i.e. the fundamental groups π1S of closed orientable surfaces S of
genus g � 2. In this case, the construction of [DGK18b] gives examples of proper
affine actions in dimension as low as d = 6.

Here we take up the problem of classifying proper affine actions by surface groups
π1S, or equivalently complete affine manifolds which are homotopy equivalent to a
surface S. The advantage in considering surface groups is that tools to study repre-
sentations of surface groups have developed rapidly over recent years. Indeed, this
paper will make use of some recent results in higher Teichmüller-Thurston theory in
order to obstruct properness for affine actions coming from a well-studied component
of representations, called the Hitchin component.

The group of affine automorphisms Aff(Rd) = GL(d, R) � R
d decomposes as

the semi-direct product of the linear automorphisms GL(d, R) with the translation
subgroup R

d. Hence an affine action of the group Γ consists of two pieces of data

(ρ, u) : Γ → Aff(Rd) = GL(d, R) � R
d

where here ρ : Γ → GL(d, R), a homomorphism, is called the linear part, and u :
Γ → R

d, a cocycle twisted by ρ, is called the translational part. The main theorem
is:

Theorem 1.1. Suppose that (ρ, u) : π1S → Aff(Rd) = GL(d, R) � R
d is a proper

affine action. Then the linear part ρ does not lie in a Hitchin component.

Here, the term Hitchin component refers to a special connected component (in
fact, multiple related components) of representations that was singled out by Hitchin
[Hit92] for its connection to Teichmüller theory. Goldman [Gol88] proved that the
space Hom(π1S, PSL(2, R)) has 4g − 3 components, where g is the genus of S. The
discrete faithful representations sort into two components, called the Teichmüller
components, corresponding to oriented hyperbolic structures on S of each possible
orientation. For G an adjoint real split semi-simple Lie group, such as G = PSL(d, R),
the compositions of representations in the Teichmüller components with the princi-
pal representation τG : PSL(2, R) → G are called Fuchsian representations and the
connected components of Hom(π1S, G) containing all deformations of Fuchsian rep-
resentations are called G-Hitchin components and their elements called G-Hitchin
representations (we suppress the G when clear from context). See Section 3.1. In
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the case G = PSL(d, R), if d is odd, there is one Hitchin component and if d is
even, there are two Hitchin components which are nonetheless referred to as “the”
Hitchin component since the two components are related by an automorphism of
PSL(d, R). Hitchin showed that, like the Teichmüller components for PSL(2, R), a
G-Hitchin component is (after dividing out by conjugation) homeomorphic to a ball
of dimension dim(G) · (2g − 2) inside which the locus of Fuchsian representations
make up a 6g − 6 dimensional sub-manifold (also a ball).

Labourie [Lab01] proved that a (lift of a) Fuchsian representation ρ is never the
linear part of a proper affine action and Theorem 1.1 extends Labourie’s result to
the entire Hitchin component. We note that in the case d = 3, the key case of
Theorem 1.1 follows from Mess [Mes07] and Goldman-Margulis [GM00]. We also
note that, unlike the case d = 2, for d � 3 the space Hom(π1S, PSL(d, R)) has only
three (resp. six) connected components if d is odd (resp. if d is even). However,
the behavior of the representations in the other two (or four) components is very
different and still quite mysterious, making a study of proper affine actions with
linear part in those components intractible at this time.

Hitchin representations have many nice properties. In particular, Labourie [Lab06]
showed that every PSL(d, R)-Hitchin representation is Anosov ; indeed he invented
the notion of Anosov representation, now central in higher Teichmüller-Thurston
theory, for the purpose of studying the PSL(d, R)-Hitchin component. Anosov rep-
resentations were generalized by Guichard–Wienhard [GW12] to the setting of rep-
resentations of any word hyperbolic group into a semi-simple Lie group G. There is
a notion of Anosov for each parabolic subgroup P of G. For G an adjoint real split
semi-simple Lie group, the G-Hitchin representations satisfy this notion for the min-
imal parabolic (the Borel subgroup) B, or equivalently for all of the parabolic sub-
groups of G. Anosov representations, including some recent characterizations due to
Guichard–Guéritaud–Kassel–Wienhard [GGKW17] and Kapovich–Leeb–Porti
[KLP14, KLP15], will be the essential tool for the proof of Theorem 1.1.

1.1 Flat pseudo-Riemannian geometry in signature (n, n−1). The affine
transformation (ρ(γ), u(γ)) ∈ Aff(Rd) fixes a point if ρ(γ) does not have one as an
eigenvalue. Hence if (ρ, u) is a free affine action by π1S, then the linear part ρ(γ) has
one as an eigenvalue, for all γ ∈ π1S, and the same property passes to the Zariski
closure of ρ(π1S). In the context of Theorem 1.1, Guichard’s characterization of
the possible Zariski closures of Hitchin representations [Gui] allows us to reduce to
the case that d = 2n − 1 is odd (with n � 2), and that the linear part ρ(π1S) ⊂
SO(n, n − 1) is contained in the special orthogonal group of the standard indefinite
symmetric bilinear form of signature (n, n − 1). The vector space R

d together with
this form will be denoted by R

n,n−1 and the affine space of this vector space, equipped
with the induced flat pseudo-Riemannian metric, will be denoted by E

n,n−1. Hence,
in this case the affine action (ρ, u) is by isometries of E

n,n−1. Theorem 1.1 is a
corollary of:
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Theorem 1.2. Suppose (ρ, u) : π1S → Isom+(En,n−1) = SO(n, n − 1) � R
n,n−1

is an action by isometries of E
n,n−1 with linear part ρ a SO(n, n − 1)-Hitchin repre-

sentation. Then the action is not proper.

In fact, if n is odd, Theorem 1.1 follows from an observation of Abels-Margulis-
Soifer [AMS97] (see Remark 7.6), so we need only treat the case that n is even.
However, for much of the setup we will not distinguish between the case n odd and
n even.

The strategy for Theorem 1.1 follows the key point of view in the work of
Danciger–Guéritaud–Kassel [DGK16b, DGK16c, DGK16a, DGK] on proper actions
by free groups in E

2,1 and their quotients, called Margulis spacetimes. In that con-
text, Margulis spacetimes were studied as limits of their negative curvature coun-
terparts, namely three-dimensional AdS spacetimes which are quotients of anti de
Sitter space AdS3 = H

2,1. Similarly, here we will study the above isometric actions
on E

n,n−1 by thinking of these as infinitesimal versions of isometric actions on the
pseudo-Riemannian hyperbolic space H

n,n−1.

1.2 Deforming into hyperbolic geometry of signature (n, n − 1). The
pseudo-Riemannian hyperbolic space H

n,n−1 is the model for constant negative cur-
vature in signature (n, n − 1). The projective model for H

n,n−1 is:

H
n,n−1 = P {x ∈ R

n,n
� {0} : 〈x, x〉n,n < 0} ⊂ P(Rn,n),

where here R
n,n denotes the vector space R

2n equipped with the standard symmetric
bilinear form 〈·, ·〉n,n of signature (n, n). The projective special orthogonal group
PSO(n, n) acts transitively on H

n,n−1 as the orientation preserving isometry group
of a complete metric of constant negative curvature with signature (n, n − 1). With
coordinates respecting the orthogonal splitting R

n,n = R
n,n−1 ⊕ R

0,1, the stabilizer
in PSO(n, n) of the basepoint x0 = [0 : · · · : 0 : 1] is precisely the orthogonal
group O(n, n−1) acting on the R

n,n−1 factor in the standard way and acting on the
R

0,1 = R · x0 factor as ±id.
Now consider a Hitchin representation ρ : π1S → SO(n, n − 1). Denote by

ιn,n : SO(n, n − 1) ↪→ PSO(n, n) the natural inclusion for the orthogonal split-
ting R

n,n = R
n,n−1 ⊕ R

0,1 above. Then ιn,n ◦ ρ stabilizes the basepoint x0 ∈ H
n,n−1

and acts on the tangent space of that point, a copy of R
n,n−1, in the standard way

by linear isometries. Consider a deformation path �ε : π1S → PSO(n, n) based at
�0 = ιn,n ◦ ρ. Any such deformation �ε (for ε not necessarily small, or possibly
zero) is a PSO(n, n)-Hitchin representation and such representations make up the
PSO(n, n)-Hitchin component. The derivative of �ε at time ε = 0 is naturally a
cocycle v : π1S → pso(n, n) twisted by the adjoint action of �0, which splits as an
invariant orthogonal sum

pso(n, n) = so(n, n − 1) ⊕ R
n,n−1,

where the action in the first factor is by the adjoint representation and the ac-
tion in the second factor is by the standard representation. Hence the projection
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u of the infinitesimal deformation v to the R
n,n−1 factor gives a cocycle of trans-

lational parts for an affine action (ρ, u) on E
n,n−1. The geometric way to think of

this fact is as follows: As ε → 0, the action of each �ε(γ) moves the basepoint x0

less and less, and by zooming in on the basepoint at just the right rate as ε → 0
and taking a limit (in an appropriate sense), the action converges to an affine ac-
tion (ρ, u) on E

n,n−1 whose action on the basepoint is translation by the derivative
d
dε

∣
∣
∣
∣
ε=0

�ε(γ)x0 ∈ Tx0H
n,n−1 = R

n,n−1, where here we identify the tangent space

Tx0H
n,n−1 with R

n,n−1.
Now, since ιn,n◦ρ has trivial centralizer in PSO(n, n), results of Goldman [Gol84]

on representation varieties of surface groups imply that any ρ-cocycle u : π1S →
R

n,n−1 is realized as the R
n,n−1 part of the derivative of a smooth deformation path

�ε as above (and the so(n, n − 1) part may be taken to be trivial). We prove a
key lemma (Lemma 8.2) that connects a criterion [GLM09, GT17] for properness
of the affine action (ρ, u) on E

n,n−1 with the first order behavior of the two mid-
dle eigenvalues of elements �ε(γ), an inverse pair λn, λ−1

n which converges to the
two one-eigenvalues of ιn,n ◦ ρ(γ) as ε → 0. From this eigenvalue behavior, we use
[GGKW17, KLP14, KLP15] to prove that if (ρ, u) acts properly on R

n,n−1, then the
representations �ε satisfy an unexpected Anosov condition. Specifically, for ε > 0
small enough, ι2n ◦ �ε is Anosov with respect to the stabilizer Pn of an n-plane in
R

2n, where here ι2n : PSO(n, n) → PSL(2n, R) is the inclusion, see Theorem 8.7.
Theorem 1.2 then follows from the next theorem, which is a main technical result
of the paper:

Theorem 1.3. If � : π1S → PSO(n, n) is a PSO(n, n)-Hitchin representation,
then ι2n ◦ � : π1S → PSL(2n, R) is not Pn-Anosov.

As discussed above, PSO(n, n)-Hitchin representations enjoy all possible forms of
Anosovness available in PSO(n, n). However, a PSO(n, n)-Hitchin representation has
no reason to be Pn-Anosov in the larger group PSL(2n, R), and the representations
landing in the subgroup ιn,nSO(n, n − 1) (of the form above ιn,n ◦ ρ) obviously fail
this condition. Theorem 1.3 says that Pn-Anosovness in PSL(2n, R) never happens,
even by accident, to the inclusion of a PSO(n, n)-Hitchin representation.

The proof of Theorem 1.3 uses more than just Anosovness of PSO(n, n)-Hitchin
representations, specifically it uses that PSO(n, n)-Hitchin representations satisfy
Fock–Goncharov positivity [FG06]. However, we remark that the proof of The-
orem 1.2 outlined above only requires Theorem 1.3 for PSO(n, n)-Hitchin repre-
sentations which are small deformations of SO(n, n − 1)-Hitchin representations.
We remark that a proof of Theorem 1.3 in that case can be achieved without the
full strength of positivity in PSO(n, n), using in its place some special properties of
SO(n, n − 1)-Hitchin representations (Labourie’s Property (H) from [Lab06]) and
an argument about persistence of such properties under small deformation into
PSO(n, n), but we do not give this proof here.
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Remark 1.4. Sourav Ghosh has announced independent work [Gho18] that has
overlap with some of our results. Specifically, Lemma 8.2 and Theorem 8.7, showing
that a proper action on E

n,n−1 whose linear part is Anosov with respect to the stabi-
lizer of an isotropic (n − 1)-plane corresponds to a deformation path into PSO(n, n)
for which the inclusions into PSL(2n, R) are Pn-Anosov, is also proved by Ghosh.
Theorem 8.7 is one of the two main inputs in our proof of Theorem 1.2, the other
being Theorem 1.3 which Ghosh does not obtain. We also remark that, whereas we
focus on surface groups only, Ghosh works in the more general setting of actions by
any word hyperbolic group.

1.3 Proper actions in H
n,n−1. We also use Theorem 1.3, together with a

properness criterion, Theorem 6.1, based on techniques from [GGKW17] to show
the negative curvature analogue of Theorem 1.2.

Theorem 1.5. A PSO(n, n)-Hitchin representation � : π1S → PSO(n, n) does
not act properly on H

n,n−1.

We note that proper actions by surface groups on H
n,n−1 do exist when n is

even (Okuda [Oku13]), but not when n is odd (Benoist [Ben96]). Note that in the
case n = 2, Theorem 1.5 follows from work of Mess [Mes07] or of Guéritaud–Kassel
[GK17]. In that case H

n,n−1 = H
2,1 is the three-dimensional anti-de Sitter space,

whose study is greatly simplified by the accidental isomorphism between PSO(2, 2)0
and PSL(2, R) × PSL(2, R). The n = 2 case of the proof given here of Theorem 1.5,
through Theorem 1.3, is fundamentally different. Indeed, the work of Mess and of
Guéritaud–Kassel does not naturally generalize to higher H

n,n−1, though it does
generalize to the setting of some other homogeneous spaces whose structure group
is a product.

1.4 Overview of proofs and organization. The paper naturally splits into
two main parts, namely Sections 2–6 and Sections 7–8. The proof of Theorem 1.3
is given in Section 5, which builds on Sections 2–4. Section 2 gives background
information about flag manifolds. Section 3 introduces Hitchin representations and
positivity and then proves a new transversality result, Corollary 3.7, for triples on the
positive curve associated to a PSO(n, n)-Hitchin representation. Section 4 introduces
Anosov representations, reviews some relevant recent results about them, and also
proves Proposition 4.7, a key dynamical input for Theorem 1.3. Section 6 proves
a general theorem, Theorem 6.1, connecting properness of actions on H

n,n−1 with
certain Anosov conditions and then proves Theorem 1.5.

In the second, more geometric part of the paper, Section 7 reviews the properness
criterion (Theorem 7.10) for actions on E

n,n−1 with Anosov linear part. This criterion
is stated in terms of a signed length function associated to such an affine action.
We introduce a new length function in the setting of H

n,n−1, defined analogously.
Section 8 gives the main geometric transition arguments connecting the behavior of
actions on E

n,n−1 with that of actions on H
n,n−1. We explain how a E

n,n−1 action
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determines a path of H
n,n−1 actions, which are in a certain sense nearby, and prove

Lemma 8.2, which relates the length function for the E
n,n−1 action to the first order

behavior of the length functions for the associated path of H
n,n−1 actions. We then

prove Theorem 8.7, relating proper discontinuity of an E
n,n−1 action with certain

Anosov behavior of the nearby H
n,n−1 actions. Finally, we prove Theorem 1.2 and

then Theorem 1.1.

2 Grassmannians and Flag Manifolds

In this paper, three semi-simple Lie groups will appear frequently, namely G :=
PSL(d, R) with d � 2, and G′ := PSO(n, n) and G′′ := SO(n, n − 1) with n � 2.
After introducing these groups, the goal of this section will be to give a description
of the relevant flag manifolds on which these groups act, and to then give some basic
facts about them that will be used throughout the paper.

First, recall that SL(d, R) is the space of volume preserving linear automorphims
of the vector space R

d. Fixing a basis of R
d, SL(d, R) identifies with the group of d×d

real matrices of determinant one. The group PSL(d, R) is the quotient of SL(d, R)
by its center, which is trivial if d is odd, or is {±id} if d is even.

Next, consider the symmetric anti-diagonal matrix,

Jd =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
0 1 . . . 0 0
1 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

In the case d = 2n is even, the signature of Jd is (n, n) (meaning it has n positive
eigenvalues and n negative eigenvalues). We will use the notation 〈·, ·〉n,n to denote
the symmetric bilinear form on R

2n whose matrix is J2n:

〈x, y〉n,n =
2n∑

i=1

xiy2n+1−i

where (x1, . . . , x2n) and (y1, . . . , y2n) are the coordinates of x, y ∈ R
2n with respect to

the standard basis (e1, . . . , e2n). We prefer to work in this basis in the initial part of
the paper. However, in the final sections of the paper it will be more natural to work
in a basis (e′

1, . . . , e
′
2n) which diagonalizes the form 〈·, ·〉n,n. We will use the notation

R
n,n to denote the vector space R

2n together with the symmetric bilinear form
〈·, ·〉n,n. We equip R

n,n with the orientation making the standard basis positive and
define SO(n, n) < SL(2n, R) to be the orientation preserving automorphism group
of R

n,n, that is the special linear automorphisms of R
2n which preserve 〈·, ·〉n,n. We

define PSO(n, n) to be the projection of SO(n, n) to PSL(2n, R).
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In the case d = 2n− 1 is odd, the signature of J2n−1 is (n, n− 1) (meaning J2n−1

has n positive eigenvalues and n − 1 negative eigenvalues). We will use the notation
〈·, ·〉n,n−1 to denote the symmetric bilinear form on R

2n−1 whose matrix is J2n−1:

〈x, y〉n,n−1 =
n−1∑

i=1

(xiy2n−i + x2n−iyi) + xnyn

where (x1, . . . , x2n−1) and (y1, . . . , y2n−1) are the coordinates of x, y ∈ R
2n−1 with

respect to the standard basis (f1, . . . , f2n−1) of R
2n−1. We will use the notation

R
n,n−1 to denote the vector space R

2n−1 together with the symmetric bilinear form
〈·, ·〉n,n−1. We equip R

n,n−1 with the orientation making the standard basis positive
and define SO(n, n − 1) = PSO(n, n − 1) to be the orientation preserving auto-
morphism group of R

n,n−1, that is the special linear automorphisms of R
2n−1 that

preserve the symmetric bilinear form 〈·, ·〉n,n−1.
We will often embed R

n,n−1 in R
n,n in the following way. The vector en − en+1

has negative signature in R
n,n. Hence the orthogonal complement (en − en+1)⊥ has

signature (n, n − 1) and we think of it as a copy of R
n,n−1. More specifically, we

embed R
2n−1 as a subspace of R

2n by the linear map

fi �→ ei for 1 � i � n − 1,

fi �→ ei+1 for n + 1 � i � 2n − 1,

fn �→ 1√
2
(en + en+1).

Then, the restriction of the form 〈·, ·〉n,n to (the image of) R
2n−1 is precisely the

(image of the) form 〈·, ·〉n,n−1. Hence we will write R
n,n = R

n,n−1 ⊕ R
0,1, where on

the right-hand side R
n,n−1 is understood to be the image of R

2n−1 under the above
map and R

0,1 is understood to be the span of en − en+1, and each is equipped with
the restriction of 〈·, ·〉n,n.

2.1 Grassmanians and Isotropic Grassmannians. We introduce some nat-
ural compact homogeneous spaces associated to the main Lie groups of interest.

For 1 � k � d − 1, let Grk(Rd), denote the space of k-dimensional vector sub-
spaces in R

d, known as the Grassmannian of k-planes in R
d.

In the case d = 2n, and 1 � k � n, let Grk(Rn,n) ⊂ Grk(R2n) denote the space
of isotropic k-planes:

Grk(Rn,n) :=
{

H ∈ Grk(R2n) : 〈x, x〉n,n = 0 for all x ∈ H
}

.

For n + 1 � k � 2n, denote

Grk(Rn,n) :=
{

H ∈ Grk(R2n) : H⊥ ∈ Gr2n−k(Rn,n)
}

where H⊥ denotes the orthogonal space to H with respect to 〈·, ·〉n,n. Note that ⊥
defines a canonical isomorphism Grk(Rn,n) ∼= Gr2n−k(Rn,n).
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Similarly, for 1 � k � n − 1,

Grk(Rn,n−1) :=
{

H ∈ Grk(R2n−1) : 〈x, x〉n,n = 0 for all x ∈ H
}

is the space of isotropic k-planes in R
2n−1. For for n � k � 2n − 1, define

Grk(Rn,n−1) :=
{

H ∈ Grk(R2n) : H⊥ ∈ Gr2n−1−k(Rn,n)
}

where here H⊥ denotes the orthogonal space to H with respect to 〈·, ·〉n,n−1. Note
that ⊥ defines a canonical isomorphism Grk(Rn,n−1) ∼= Gr2n−1−k(Rn,n−1).

Proposition 2.1.

(1) For all 1 � k � d − 1, G := PSL(d, R) acts transitively on Grk(Rd). Hence
Grk(Rd) = G/Pk is a homogeneous space of G, where Pk denotes the stabilizer
of the k-plane span{e1, . . . , ek}.

(2) For all 1 � k � 2n − 1, k �= n, G′ := PSO(n, n) acts transitively on Grk(Rn,n).
Hence Grk(Rn,n) = G′/P ′

k is a homogeneous space of G′, where P ′
k denotes the

stabilizer of the isotropic k-plane span{e1, . . . , ek}.
(3) For all 1 � k � 2n − 2, G′′ := SO(n, n − 1) acts transitively on Grk(Rn,n−1).

Hence, Grk(Rn,n−1) = G′′/P ′′
k is a homogeneous space of G′′, where P ′′

k denotes
the stabilizer of the isotropic k-plane span{f1, . . . , fk}.

Proof. The proofs are well-known linear algebra exercises. Let us quickly recall a
proof of (2) to highlight what is different about the situation k = n, to be discussed
after this proof.

By the isomorphism Grk(Rn,n) � Gr2n−k(Rn,n), we may assume 1 � k � n − 1.
Let H ∈ Grk(Rn,n), an isotropic k-plane. Let v1, . . . , vk be a basis of H. Since the
form 〈·, ·〉n,n is non-degenerate, there exists vectors v′

1, . . . , v
′
k so that 〈vi, v

′
j〉 = δij

for 1 � i, j � k. By adjusting v′
1, . . . , v

′
k with elements of H we may further arrange

that v′
1, . . . , v

′
k span an isotropic k-plane H ′, which necessarily intersects H trivially.

Then H ⊕ H ′ is a non-degenerate subspace of R
n,n which therefore has signature

(k, k). Its orthogonal complement (H ⊕H ′)⊥ has signature (n−k, n−k) and a basis
w1, . . . , wn−k, w

′
1, . . . , w

′
n−k with the property that w1, . . . , wn−k and w′

1, . . . , w
′
n−k

each span isotropic (n − k)-planes and satisfy 〈wi, w
′
j〉 = δij . Then the following

defines an orthogonal transformation of R
n,n:

ei �→ vi for all 1 � i � k,

ei �→ wi−k for all k + 1 � i � n,

ei �→ w′
2n−k−i+1 for all n + 1 � i � 2n − k,

ei �→ v′
2n+1−i for all 2n − k + 1 � i � 2n.

This automorphism maps the standard isotropic k-plane, spanned by e1, . . . , ek to
H. However, this automorphism might not preserve orientation. To fix that issue,
we may precompose with the orientation reversing automorphism which swaps en

and en+1 and leaves all other basis vectors fixed. Of course, since k < n, this does
not change the fact that span{e1, . . . , ek} �→ H. ��
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By contrast to Proposition 2.1.(2), the PSO(n, n) action on Grn(Rn,n) has two
orbits. Here is an invariant that distinguishes them (which can already be seen in the
proof above). For any H ∈ Grn(Rn,n), choose a basis (v1, . . . , vn) of H. This extends
uniquely to a basis (v1, . . . , vn, v′

n, . . . , v′
1) of R

2n so that H ′ = span{v′
1, . . . , v

′
n} is

also an isotropic n-plane and 〈vi, v
′
j〉n,n = δij for 1 � i, j � n. Then define

τ(H) :=
v1 ∧ · · · ∧ vn ∧ v′

n ∧ . . . v′
1

e1 ∧ · · · ∧ e2n
∈ {±1}, (2.1)

In fact, τ(H) does not depend on the choice of the basis (v1, . . . , vn) for H: In
the procedure above, a change of the basis v1, . . . , vn of H, represented by a n × n
matrix, leads to a change of the basis v′

1, . . . , v
′
n of H ′ by the exact same matrix,

hence any change of orientation in the basis for H is canceled out by the same change
of orientation in the basis for H ′. We define:

Gr+
n (Rn,n) := {H ∈ Grn(Rn,n) : τ(H) = +1},

Gr−
n (Rn,n) := {H ∈ Grn(Rn,n) : τ(H) = −1}

and refer to the first as the Grassmannian of positive isotropic n-planes and to the
second as the Grassmannian of negative isotropic n-planes. See Figure 1 for the case
n = 2.

Remark 2.2. There is no intrinsic difference between the space of positive isotropic
n-planes and the space of negative isotropic n-planes. Indeed, an element of
PO(n, n)\PSO(n, n) reverses the orientation of R

n,n and hence takes the positive
isotropic n-planes to the negative ones and vice versa. Hence any argument about
Gr+

n (Rn,n) that does not use a particular choice of orientation on R
n,n also applies

to Gr−
n (Rn,n).

Proposition 2.3. The action of G′ = PSO(n, n) on Grn(Rn,n) has two orbits,
Gr+

n (Rn,n) and Gr−
n (Rn,n). Each isotropic (n − 1)-plane H0 ∈ Grn−1(Rn,n) is con-

tained in a unique positive isotropic n-plane H+ ∈ Gr+
n (Rn,n) and a unique negative

isotropic n-plane H− ∈ Gr−
n (Rn,n). The maps

�+ : Grn−1(Rn,n) → Gr+
n (Rn,n),

�− : Grn−1(Rn,n) → Gr−
n (Rn,n)

defined respectively by H0 �→ H+ and H0 �→ H− are G′-equivariant fiber bundle
projections, with fiber a copy of RP

n−1.

Proof. Consider H0 := span{e1, . . . , en−1} ∈ Grn−1(Rn,n). Then H+ := span{e1,
. . . , en} and H− := span{e1, . . . , en−1, en+1} are the unique isotropic n-planes con-
taining H0. We see this as follows. Let H⊥

0 = span{e1, . . . , en+1} ⊃ H0 denote the
orthogonal space to H0. Then the inner product 〈·, ·〉n,n descends to a well-defined
inner product on the quotient H⊥

0 /H0 which has signature (1, 1). Hence H⊥
0 /H0

contains exactly two isotropic lines whose inverse images in H⊥
0 are H+ and H−.



J. DANCIGER AND T. ZHANG GAFA

Figure 1: The subset Gr1(R2,2) in Gr1(R4) = RP
3 is the well-known doubly ruled hyper-

boloid. The lines of one of the rulings make up Gr+2 (R2,2) while the lines of the other make
up Gr−2 (R2,2). The projection map �+ (resp. �−) simply maps a point of Gr1(R2,2) to the
line of the + ruling (resp. the − ruling) containing it.

Note also that τ(H+) = +1 and τ(H−) = −1. By transitivity of the G′-action on
Grn−1(Rn,n) (Proposition 2.1.(2)), the maps �+ and �− may be expressed respec-
tively as gH0 �→ gH+ and gH0 �→ gH−. Since every (n − 1)-plane contained in an
isotropic n-plane is also isotropic, its clear that �+ and �− are surjective, and that
the fiber above H+ (resp. H−) is the space P(H∗

+) of (n− 1)-planes in H+ (resp. the
space P(H∗−) of (n − 1)-planes in H−), a copy of RP

n−1. ��

2.2 Flag manifolds and parabolic subgroups. For each 1 � k < d, the
Grassmannian Grk(Rd) = G/Pk is a special example of a flag manifold of G =
PSL(d, R) and the stabilizer Pk < G of a k-plane in R

d is an example of a parabolic
subgroup. More generally, by a flag manifold of G, we will mean a compact homoge-
neous space of the form G/P for some parabolic subgroup P < G. Before discussing
parabolic subgroups in general, let us first introduce the most important example,
the Borel subgroup.

In general, a Borel subgroup B of an algebraic group G defined over R is a
maximal Zariski closed and Zariski connected solvable subgroup. The Lie groups G
that we will work with in this paper are unions of connected components (for the real
topology) of the real points G(R) of some algebraic group G, so we will understand
the term Borel subgroup to mean a subgroup of the form B = B(R)∩G. In the case
that G = PSL(d, R), a Borel subgroup B < G is the stabilizer of a full flag F , i.e. a
maximal increasing sequence of vector subspaces of R

d:

F (1) ⊂ F (2) ⊂ · · · ⊂ F (d−1)

where for each 1 � k � d − 1, F (k) ∈ Grk(Rd) is a k-subspace. For example, the
standard full flag is defined by

F (k) = span{e1, . . . , ek}
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for all 1 � k � d − 1. The stabilizer of the standard flag is the subgroup of upper
triangular matrices, which we will call the standard Borel subgroup. The action of G
on the space of full flags is transitive and all Borel subgroups are conjugate. Hence
the space of full flags identifies with FB = G/B, where B is any Borel subgroup.
For G′ = PSO(n, n), a Borel subgroup is given by the subgroup B′ < G′ of elements
which are upper triangular (i.e. the intersection with G′ of the standard Borel in
PSL(2n, R)). For G′′ = SO(n, n−1), a Borel subgroup is again given by the subgroup
B′′ < G′′ of elements which are upper triangular (i.e. the intersection with G′′ of the
standard Borel in SL(2n − 1, R) = PSL(2n − 1, R).) The associated flag manifolds
will be described soon.

Definition 2.4. A parabolic subgroup of a semi-simple Lie group G (which is as-
sumed to be the union of finitely many connected components of the set of real
points G(R) of some algebraic group G defined over R) is any subgroup P which
contains a Borel subgroup B. We call the homogeneous space FP = G/P a flag
manifold.

Two parabolic subgroups P, Q < G are said to be opposite if P ∩ Q is a reduc-
tive subgroup of G. Given a parabolic subgroup P < G, all parabolic subgroups
opposite to P are conjugate to one another. For example, the parabolic subgroups
opposite to a Borel subgroup B are also Borel subgroups and are conjugate to B.
For another example, if G = PSL(d, R) then the stabilizer Pk < G of the standard
k-plane span{e1, . . . , ek} is a parabolic subgroup, whose associated flag manifold
is G/Pk = Grk(Rd). The stabilizer of any transverse (d − k)-plane, for example
span{ek+1, . . . , ed}, is an opposite parabolic to Pk, and any such subgroup is conju-
gate to Pd−k.

We shall consider mainly the case of a parabolic subgroup P < G which is
conjugate to an opposite of itself. In this case, the action of G on the product
FP × FP admits a unique open orbit, which we may think of as the subspace of
pairs of opposite parabolic subgroups, or alternatively as the pairs of transverse
flags in FP . Let us now give some examples of P, FP , and OP in the three settings
of interest. The reader may easily verify the following claims.

Example 2.5. Let G = PSL(d, R), and recall that the subgroup B of upper trian-
gular matrices in G is a Borel subgroup. As we saw above, the flag manifold FB is
naturally:

FB =
{

F =
(

F (1), . . . , F (d−1)
)

:
F (k) ∈ Grk(Rd) for all 1 � k < d,

F (i) ⊂ F (j) for all 1 � i � j � d − 1

}

.

The space of transverse flags OB is

OB =
{

(F1, F2) ∈ FB × FB : F
(k)
1 + F

(d−k)
2 = R

d for all 1 � k < d
}

.

More generally, let I ⊂ {1, . . . , d − 1} be a subset of indices and let F be
the standard flag of type I, meaning F contains the standard subspace F (i) =



J. DANCIGER AND T. ZHANG GAFA

span{e1, . . . , ei} of dimension i if and only if i ∈ I. Then the stabilizer PI of F is a
parabolic subgroup of G and FI = G/PI identifies with the space of flags of type I.
Further PI is conjugate to its opposite parabolic subgroups if and only if I = σI
for the involution σ : i �→ d − i. In this case the space of transverse pairs of flags is

OI =
{

(F1, F2) ∈ FI × FI : F
(k)
1 + F

(d−k)
2 = R

d for all k ∈ I
}

.

For d = 2n even, we highlight two important cases. First, if I = {n}, then
FI = Grn(R2n) is the Grassmannian of n-planes in R

2n, and PI = Pn is the stabilizer
of an n-plane. Second, if I = {n−1, n+1}, then FI = Fn−1,n+1 is the space of pairs
of an (n−1)-plane contained in an (n+1)-plane and PI = Pn−1,n+1 is the stabilizer
of such a flag. For d = 2n − 1 odd, an important case will be that of I = {n − 1, n},
for which FI = Fn−1,n is the space of pairs of an (n − 1)-plane contained in an
n-plane and PI = Pn−1,n is the stabilizer of such a flag.

Example 2.6. Let G′′ = SO(n, n − 1). Then the subgroup B′′ < G′′ of upper trian-
gular matrices is a Borel subgroup (i.e. B′′ = G′′ ∩ B for B the standard Borel in
PSL(2n − 1, R) = SL(2n − 1, R)). The space FB′′ = G′′/B′′ may be described as

FB′′ =

⎧

⎨

⎩
F =
(

F (1), . . . , F (2n−1)
)

:
F (k) ∈ Grk(Rn,n−1),
F (2n−1−k) = (F (k))⊥,

F (k) ⊂ F (k+1), for 1 � k � 2n − 2

⎫

⎬

⎭
.

In other words FB′′ is the space of all full flags of R
2n−1 for which each subspace

of dimension less than half is isotropic and each subspace of dimension greater than
half is the orthogonal space to the isotropic subspace of complementary dimension.
Note that all of the data specifying such a flag is contained in the subspaces of
dimension less than half. Nonetheless, it is useful to keep track of the subspaces of
dimension larger than half as well. The space of transverse pairs is given by

OB′′ =
{

(F1, F2) ∈ FB′′ × FB′′ : F
(i)
1 + F

(2n−1−i)
2 = R

2n−1 for all i
}

.

Similarly to the above, a subset I ⊂ {1, . . . , 2n−1} of indices specifies a flag manifold
FI containing the flags of type I which obey the orthogonality rules above when
applicable. The stabilizer of the standard flag of type I is the parabolic subgroup
PI . Unlike above, PI = PI , where I = I∪σI denotes the symmetrization of I under
the involution σ : i �→ 2n−1− i. Indeed all parabolic subgroups of G′′ are conjugate
to their opposites. Hence, we will always assume I = I is symmetric. The maximal
parabolic subgroups of G′′ are of the form P ′′

k := P{k,2n−1−k} for 1 � k � n − 1.

Example 2.7. Let G′ = PSO(n, n). The subgroup B′ of upper triangular matrices
in G′ is again an example of a Borel subgroup. Then the associated flag manifold
FB′ = G/B′ may be described as the space of flags F of the form

F (1) ⊂ · · · ⊂ F (n−1) ⊂ F
(n)
+ , F

(n)
− ⊂ F (n+1) ⊂ · · · ⊂ F (2n−1), (2.2)
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where

• F (k) ∈ Grk(Rn,n) for all 1 � k � 2n − 1, k �= n,
• F (2n−k) = (F (k))⊥ for all k �= n,
• F

(n)
+ ∈ Gr+

n (Rn,n) and F
(n)
− ∈ Gr−

n (Rn,n).

As in the previous example, the information given in the flag F is more than needed
to specify the associated point of FB′ . Indeed, the subspaces F (1) ⊂ · · · ⊂ F (n−1)

entirely determine F . However, it will be useful to have notation for the other sub-
spaces as well.

The other parabolic subgroups of G′ are each given by the stabilizer of an
incomplete flag made up of a subset of the subspaces of (2.2). Since the stabi-
lizer in G′ of F (i) for any i �= n is equal to the stabilizer in G′ of F (2n−i), it
suffices to consider symmetric flags. However, we note one important difference
between G′ and G′′. The stabilizer P ′+

n < G′ of the positive isotropic n-plane
H+ := span{e1, . . . , en} and the stabilizer and P ′−

n < G′ of the negative isotropic n-
plane H− := span{e1, . . . , en−1, en+1} are each maximal parabolic subgroups of G′.
Their intersection P ′+

n ∩ P ′−
n = P ′

n−1 is the stabilizer of the isotropic (n − 1)-plane
H0 = span{e1, . . . , en−1}, which is a parabolic subgroup, but not a maximal one.

Remark 2.8. In the case n is even, any two transverse isotropic n-planes have
the same sign, hence P ′+

n and P ′−
n are each conjugate to their opposite parabolic

subgroups. In the case n is odd, however, any two transverse isotropic n-planes have
opposite sign, hence any opposite parabolic subgroup to P ′+

n is conjugate to P ′−
n

and vice versa.

2.3 Affine charts for flag manifolds. The flag manifolds of G = PSL(d, R)
admit natural affine coordinate charts, which will be useful for the computations in
Sections 4 and 5.

Let us start with the Grassmannian Grk(Rd) = G/Pk. For any Y ∈ Grd−k(Rd),
denote by UY the space of k-planes which are transverse to Y :

UY := {X ∈ Grk(Rd) : X ∩ Y = 0},

an open subset of Grk(Rd). Fix X ∈ UY . Then any linear map ψ ∈ Hom(X, Y )
determines another element of UY , namely the graph of ψ,

Gψ := {x + ψ(x) ∈ R
d : x ∈ X}.

Observe that Gψ is also transverse to Y since the decomposition R
d = X + Y is a

direct sum. It is easy to verify that the map ψ �→ Gψ is a homeomorphism

Hom(X, Y ) ∼= UY . (2.3)

This equips the chart UY ⊂ Grk(Rd) with a linear vector space structure, in which
X is the origin. This linear structure gives natural coordinates on the tangent space

TXGrk(Rd) = TXUY
∼= Hom(X, Y ). (2.4)
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Note that choosing a different basepoint, say Z ∈ UY , yields a different vector space
structure Hom(Z, Y ) ∼= UY , which differs from the first by an affine isomorphism.
Hence, independent of basepoint, UY is equipped with an affine structure and we
call UY an affine chart of Grk(Rd). The affine charts {UY : Y ∈ Grd−k} cover
Grk(Rd) and satisfy the invariance property that gUY = UgY for all g ∈ G and
Y ∈ Grd−k(Rd).

Next, consider the space FI of flags of type I = {i1, . . . , ip} ⊂ {1, . . . , d}. Any
flag transverse to a flag of FI has type σI, where recall that σ denotes the involution
i �→ d − i. Choose Y ∈ FσI and let

UY := {Z ∈ FI : Z(ik) ∩ Y (d−ik) = 0, for all 1 � k � p}.

Fix a basepoint X ∈ UY , and let Z ∈ UY another point. Using the above recipe,
we may realize each subspace Z(ik) of Z uniquely as the graph of a linear map
ψik

: X(ik) → Y (d−ik). Further the linear maps are related to one another as follows.
Define subspaces V1 = X(i1), Vk = X(ik) ∩ Y (d−ik−1) for all 1 < k < p, and Vp =
Y (d−ip). Note that the dimension of Vk is ik − ik−1 and the subspaces form a direct
sum decomposition

R
d = V1 ⊕ · · · ⊕ Vp (2.5)

The ik subspace X(ik) of X is the direct sum X(ik) = V1 ⊕ · · · ⊕ Vk and the d − ik
subspace of Y is the direct sum Y (d−ik) = Vk+1 ⊕ · · · ⊕ Vp. The condition that
Z(ik) ⊂ Z(i�) for k < � is equivalent to the condition that for each 1 � i � k and
each � � j � p, the projection to the Vj factor of the restriction to Vi is the same
for ψi�

as it is for ψik
. Hence, Z ∈ UY determines unique linear maps ψi,j : Vi → Vj

for all 1 � i < j � p, so that

ψik
=

⊕

1�i�k<j�p

ψi,j .

This gives a homeomorphism

UY
∼=
⊕

1�i<j�p

Hom(Vi, Vj),

which equips UY with a linear structure for which X is the origin. This linear struc-
ture gives natural coordinates on the tangent space

TXFI = TXUY
∼=
⊕

1�i<j�p

Hom(Vi, Vj).

As above, note that choosing a different basepoint, say Z ∈ UY , yields a different
vector space structure on UY , which differs from the first by an affine isomorphism.
Hence, independent of basepoint, UY is equipped with an affine structure and we
call UY an affine chart of FI . The affine charts {UY : Y ∈ FσI} cover FI and satisfy
the invariance property that gUY = UgY for all g ∈ G and Y ∈ FσI .
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Let us remark on one special case of the above construction. If I = {1, . . . , d},
then FI = FB is the space of full flags. In this case σI = I. Let X, Y ∈ FB be any
transverse pair of flags. Then the decomposition (2.5) takes the form

R
d = L1 ⊕ · · · ⊕ Ld

where Li := X(i) ∩ Y (d−i+1) are lines, so we use the letter L rather than V . The
linear coordinates above on UY for which X is the origin take the form

UY
∼=
⊕

1�i<j�d

Hom(Li, Lj)

and as before these coordinates give coordinates at the tangent space level:

TXFB = TXUY
∼=
⊕

1�i<j�d

Hom(Li, Lj).

It will be natural for our purposes to embed each flag manifold for G′ = PO(n, n)
and G′′ = SO(n, n−1) in a flag manifold of G = PSL(d, R) (for d = 2n or d = 2n−1),
and work in the above coordinates. An important example is the following. The space
Grn−1(Rn,n) of isotropic (n − 1)-planes is naturally a smoothly embedded subman-
ifold of the Grassmannian Grn−1(R2n) of all (n − 1)-planes. The tangent space
TXGrn−1(Rn,n) is naturally a subspace of TXGrn−1(R2n) and may be expressed
in the coordinates (2.4). In fact, TXGrn−1(Rn,n) corresponds to the homomor-
phisms ψ ∈ Hom(X, Y ) which are anti-symmetric, in the sense that 〈ψ(v), w〉n,n =
−〈v, ψ(w)〉n,n holds for all v, w ∈ X. We conclude this section with a proposition
that describes the fibers of the projections �± : Gr±

n (Rn,n) → Grn−1(Rn,n) of
Proposition 2.3 in these coordinates.

Proposition 2.9. Let X ∈ Grn−1(Rn,n) and let M = �+(X) ∈ Gr+
n (Rn,n). Let

Y ∈ Grn+1(Rn,n) be transverse to X. Then in the coordinates (2.4), the tangent
space TX�M to the fiber �M = (�+)−1(M) is given by the subspace

Hom(X, M ∩ Y ) ⊂ Hom(X, Y ).

Proof. Since every (n−1)-dimensional subspace in M is isotropic, it follows that �M

is simply the Grassmannian of (n − 1)-dimensional subspaces in M . In the coordi-
nates (2.3), the smaller Grassmannian Grn−1(M) ⊂ Grn−1(R2n) identifies with the
subspace Hom(X, M ∩ Y ) ⊂ Hom(X, Y ). ��

3 Hitchin Representations and Positivity

Throughout the paper, we fix a closed surface S of genus g � 2 and denote by
Γ = π1S the fundamental group. Also, throughout this section, let G be an adjoint,
real split, semi-simple Lie group. In this section, we recall what it means for a rep-
resentation Γ → G to be in the G-Hitchin component (Section 3.1) and explain the
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important positivity property that such representations satisfy. This positivity prop-
erty was studied by Fock–Goncharov and is based on Lusztig’s notion of positivity
in G. It will be used to obtain one key ingredient, namely Corollary 3.7, for the proof
of Theorem 1.3. A deep understanding of positivity is not needed for the rest of the
paper, hence we will avoid giving the rather technical definition until Section 3.3 at
the end of this section. A reader who is not familiar with positive representations
may wish to treat Corollary 3.7 (in Section 3.1) as a black box, and return to the
details of Section 3.3, which is entirely self-contained, after reading the rest of the
paper. Section 3.2 gives some basic Lie theory prerequisites both for Section 3.3 and
for Section 4.

3.1 G-Hitchin representations. Let X (Γ, G) := Hom(Γ, G)/G, where G acts
on Hom(Γ, G) by conjugation. For G = PSL(2, R), the discrete and faithful repre-
sentations assemble into two connected components of Hom(Γ, PSL(2, R)), and their
conjugacy classes form a union of two connected components in X (Γ, PSL(2, R)).
A representation in either of these components, which are called the Teichmüller
components, corresponds to an oriented hyperbolic structure on the surface S, and
the orientation distinguishes the two components. Let us further equip S with an
orientation. Then we call the corresponding component of X (Γ, G), the Teichmüller
component of S (and we ignore the other component of discrete faithful representa-
tions). The G-Hitchin component is a generalization of the Teichmüller component
to the setting where PSL(2, R) is replaced with any adjoint, real split, semi-simple
Lie group G.

Let g denote the Lie algebra of G. Recall that a 3-dimensional subalgebra (TDS)
of g is a Lie subalgebra that is isomorphic to sl(2, R). A TDS h ⊂ g is called principal
if every non-zero element X ∈ h is regular, i.e. the dimension of the centralizer
of X is minimal among the centralizers of all elements in g. By work of Kostant
[Kos59], g contains a principal TDS, and any two principal TDS’s are conjugate by
an automorphism of G. Let

τG : PSL(2, R) → G

be a faithful homomorphism whose image is a subgroup of G whose Lie algebra is a
principal TDS in g. This determines the map

iG : X (Γ, PSL(2, R)) → X (Γ, G)
[ρ] �→ [τG ◦ ρ].

The component of X (Γ, G) containing the image of the Teichmüller component was
studied by Hitchin [Hit92].

Definition 3.1. The connected component of X (Γ, G) containing the image of the
Teichmüller component under iG is called the G-Hitchin component. A representa-
tion whose conjugacy class lies in the G-Hitchin component is called a G-Hitchin
representation.



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

Note that if G = PSL(2, R), the G-Hitchin component is exactly one of the
Teichmüller components. If there is no ambiguity, we will sometimes refer to a G-
Hitchin representation simply as a Hitchin representation.

Remark 3.2. The Hitchin component as we defined above is not quite well-defined.
It depends on our choice of orientation on S and also on a conjugacy class of homo-
morphism τG as above, of which there are finitely many corresponding to the outer
automorphism group of G. Differing choices may give distinct Hitchin components
of X (Γ, G) which are mapped isomorphically to one another by pre and/or post
composition by outer automorphisms.

Example 3.3. Consider G = PSL(d, R). Then τG : PSL(2, R) → PSL(d, R) is the
irreducible representation, unique up to automorphisms of PSL(d, R), obtained from
the action of SL(2, R) on the (d − 1)st symmetric tensor power

⊗(d−1)
sym R

2 ∼= R
d of

R
2. It is easy to check that for h ∈ PSL(2, R) non-trivial, τG(h) is regular. More

specifically, if the eigenvalues of h are λ, λ−1 (well-defined up to ±1), then the
eigenvalues of τG(h) are λd−1, λd−3, . . . , λ−(d−3), λ−(d−1) (also well-defined up to ±1).
The G-Hitchin representations are the continuous deformations in Hom(Γ, G) of
τG ◦ j : Γ → G, where j : Γ → PSL(2, R) is in the Teichmüller component.

Let ω denote the area form on R
2. Then ω defines a natural bilinear form b on the

tensor power
⊗(d−1)

R
2, which may be defined on simple tensors by the formula:

b(u1 ⊗ · · · ⊗ ud−1, v1 ⊗ · · · ⊗ vd−1) = ω(u1, v1) · · ·ω(ud−1, vd−1).

Restricting to the subspace
⊗(d−1)

sym R
2 of symmetric tensors in

⊗(d−1)
R

2 gives a
non-degenerate bilinear form which is

• anti-symmetric if d = 2n is even, or
• symmetric, if d = 2n − 1 is odd, with

– signature (n − 1, n) if n is even, or
– signature (n, n − 1) if n is odd.

The image of τG preserves b, hence when d = 2n is even, τG(PSL(2, R)) is contained in
a conjugate of PSp(2n, R) and when d = 2n−1 is odd (so that PSL(d, R) = SL(d, R)),
τG(PSL(2, R)) is contained in a conjugate of SO(n, n − 1).

Example 3.4. Consider G′′ = SO(n, n−1). Thinking of G′′ < G = PSL(2n−1, R) =
SL(2n − 1, R), we may assume the irreducible representation τG from Example 3.3
takes values in G′′. Further, for each non-trivial element h ∈ PSL(2, R), τG(h) is
regular as an element of G′′. Hence we may take τG′′ = τG. Hence, the natural
inclusion G′′ ↪→ G induces an inclusion of the G′′-Hitchin component into the G-
Hitchin component.

Example 3.5. Consider G′ = PSO(n, n) < G = PSL(2n, R). Given an orthogonal
splitting R

n,n = R
n,n−1 ⊕ R

0,1, the action of h ∈ Aut(Rn,n−1) = SO(n, n − 1) = G′′

on R
n,n−1 extends to R

n,n by acting trivially in the R
0,1 factor. We denote by
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ιn,n : G′′ → G′ the composition of the natural inclusion SO(n, n − 1) → SO(n, n)
with the projection SO(n, n) → PSO(n, n) and note that ιn,n is injective since the
action of h ∈ SO(n, n − 1) on R

n,n is never −1.
Let τG′ = ιn,n ◦ τG′′ , where τG′′ is as in Example 3.4. Then the image of τG′ is

a principal PSL(2, R) in G′. Indeed, for each non-trivial element h ∈ PSL(2, R), the
centralizer of τG′(h) in G′ is a Cartan subgroup A′ < G′. Note that if the eigenvalues
of h are λ, λ−1 (well-defined up to ±1), then the eigenvalues of τG′(h) are

λ2(n−1), λ2(n−2), . . . , λ2, 1, 1, λ−2, . . . , λ−2(n−2), λ−2(n−1),

and the eigenvalue 1 has multiplicity two. Hence τG′(h) is not regular as an element
of G = PSL(2n, R). However, τG′(h) is regular in G′, since the 1 eigenspace has
signature (1, 1) and decomposes into a sum of two isotropic lines which are preserved
by (a finite index subgroup of) the centralizer.

Since τG′ = ιn,n ◦ τG′′ , the inclusion ιn,n : G′′ → G′ induces an inclusion of
the G′′-Hitchin component into the G′-Hitchin component. However, the inclusion
ι2n : G′ → G = PSL(2n, R) does not map the G′-Hitchin component to the G-Hitchin
component.

Labourie [Lab06], Guichard [Gui08], and Fock–Goncharov [FG06] established
the following characterization of G-Hitchin representations. We fix both a hyper-
bolic metric and an orientation on the surface S. The boundary of the group ∂Γ
then identifies with the visual boundary of the universal cover S̃ ∼= H

2 of S. The
orientation on S induces an orientation on S̃ which in turn induces a cyclic order-
ing on ∂Γ ∼= S1. Let B < G denote a Borel subgroup of G and FB = G/B the
corresponding flag manifold.

Theorem 3.6 (Labourie, Guichard, Fock–Goncharov). Let ρ : Γ → G be a repre-
sentation. Then ρ is a G-Hitchin representation if and only if there exists a continuous
ρ-equivariant curve ξ : ∂Γ → FB which sends positive triples in ∂Γ to positive triples
in FB.

The curve ξ : ∂Γ → FB is called a positive curve and turns out to be the same
as the Anosov limit curve for ρ, see Theorem 4.5 in Section 4.1. We delay discus-
sion of positivity until Section 3.3, whose main purpose is to prove a transversality
statement, Proposition 3.17, about positive triples of flags in FB′ = G′/B′ in the
case G′ = PSO(n, n). We remark that in this case, the positive curve of Theorem 3.6
actually takes any distinct triple (not just a positive triple) to a positive triple of
flags, see Appendix B. The following result is a direct corollary of Proposition 3.17
and may be used as a black box in the rest of the paper.

Corollary 3.7. Let G′ = PSO(n, n), let � : Γ → G′ be a G′-Hitchin representation.
Then the �-equivariant positive curve ξ : ∂Γ → FB′ satisfies
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ξ(n−1)(x) +
(

ξ(n−1)(z) ∩ ξ(n+2)(y)
)

+ ξ
(n)
± (y) = R

2n.

for all pairwise distinct triples (y, z, x) in ∂Γ.

3.2 Lie theory background. Here we give some brief Lie Theory background
needed in particular for Section 3.3, but also for other parts later in the paper such
as Section 4.3.

For any opposite pair of Borel subgroups B+, B− ⊂ G, let U± ⊂ B± denote the
unipotent radicals. The identity component of B+ ∩ B−, denoted A, is a maximal,
connected, abelian Lie subgroup of G, i.e. a Cartan subgroup of G. Let g be the
Lie algebra of G, and let u±, b±, a ⊂ g be the Lie subalgebras corresponding to the
subgroups U±, B±, A ⊂ G. Then let a+ ⊂ a denote the positive Weyl chamber so
that the corresponding simple root spaces all lie in b+, and let Δ denote the set of
simple roots corresponding to a+. For every simple root α : a → R, let Hα : R → a

denote the corresponding simple coroot.
Before continuing we give some concrete examples of the Lie theoretic objects

defined above in the special cases of interest throughout this paper, namely for the
Lie groups G = PSL(d, R), G′ = PSO(n, n), and G′′ = SO(n, n − 1). Let δi,j = δi,j;d

denote the d × d square matrix with 1 as its (i, j)-entry and all other entries are 0.
We will also denote δi := δi,i.

Example 3.8. Let G = PSL(d, R). Then the Lie algebra g = psl(d, R) is the set of
traceless d × d real-valued matrices. Let B+ < G (resp. B− < G) be the subgroup
of upper (resp. lower) triangular matrices in G, and let U± < B± be the subgroups
whose diagonal entries are 1. Then (B+, B−) is an opposite pair of Borel subgroups
in G, U± is the unipotent radical of B±, and A is the set of diagonal matrices in G
with positive diagonal entries. The abelian Lie algebra a ⊂ g is the space of traceless
diagonal matrices, and a+ is the subset of a consisting of matrices whose diagonal
entries are in weakly decreasing order going down the diagonal. The simple roots are
Δ = {α1, . . . , αn−1} where αi : diag(a1, . . . , an) �→ ai − ai+1, and the corresponding
co-roots are Hαi

(t) = t(δi − δi+1).

Example 3.9. Let G′ = PSO(n, n) < PSL(2n, R) = G. The Lie algebra is given by

g′ = pso(n, n) := {X ∈ sl(2n, R) : XT · J2n + J2n · X = 0}.

Again, let B′+ < G′ (resp. B′− < G) be the subgroup of upper (resp. lower) triangu-
lar matrices in G′ and let U ′± be the subgroup of B′± whose diagonal entries are 1.
Then (B′+, B′−) is an opposite pair of Borel subgroups, U ′± < B′± is the unipotent
radical, and

A′ =
{

diag
(

a1, . . . , an,
1
an

, . . . ,
1
a1

)

: ai > 0
}
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is a Cartan subgroup of G′. The Lie algebra of A′ is

a′ = {diag (a1, . . . , an, −an, . . . ,−a1) : ai ∈ R} ,

and the positive Weyl chamber is

a′+ = {diag(a1, . . . , an, −an, . . . ,−a1) ∈ a : a1 � · · · � an, −an � · · · � −a1} ,

where note that an may be either positive, negative, or zero. The simple roots are
Δ′ = {α′

1, . . . , α
′
n} where

α′
i : diag(a1, . . . ,−a1) �→

{
ai − ai+1 if i = 1, . . . , n − 1
an−1 + an if i = n

,

and the corresponding co-roots are

Hα′
i
(t) =

{
t(δi − δi+1 + δ2n−i − δ2n+1−i) if i = 1, . . . , n − 1
t(δn−1 + δn − δn+1 − δn+2) if i = n.

.

Example 3.10. Let G′′ = SO(n, n − 1) < SL(2n − 1, R) = PSL(2n − 1, R). The Lie
algebra is given by

g′′ = so(n, n − 1) := {X ∈ psl(2n − 1, R) : XT · J2n−1 + J2n−1 · X = 0}.

Let B′′+ < G (resp. B′′− < G) be the subgroup of upper (resp. lower) triangular
matrices in G′′, and let U ′′± < B′′± be the subgroups whose diagonal entries are
1. As before, (B′′+, B′′−) is an opposite pair of Borel subgroups in G′′, U ′′± is the
unipotent radical of B′′±, and the Cartan subgroup is given by:

A′′ =
{

diag
(

a1, . . . , an−1, 1,
1

an−1
, . . . ,

1
a1

)

: ai > 0
}

.

Then the Lie algebra of A′′ is

a′′ = {diag (a1, . . . , an−1, 0, −an−1, . . . ,−a1) : ai ∈ R} ,

and the positive Weyl chamber a′′+ is again the subset of a′′ whose entries are
in weakly decreasing order, going down the diagonal. The simple roots are Δ′′ =
{α′′

1, . . . , α
′′
n−1} where

α′′
i : diag(a1, . . . ,−a1) �→

{
ai − ai+1 if i = 1, . . . , n − 2
an−1 if i = n − 1

,

and the corresponding co-roots are give by Hα′′
i
(t) = t(δi − δi+1 + δ2n−1−i − δ2n−i).
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3.3 Positivity. In this section, we recall Lusztig’s notion of positivity in an
adjoint, real split, semi-simple Lie group G, and give some of the basic properties.
For more details, refer to Fock–Goncharov [FG06], Lusztig [Lus94], or Guichard–
Wienhard [GW16]. The theory is easiest to understand in the context of G =
PSL(d, R); indeed this is usually the main example given in an introduction to the
topic. However, since our goal is Corollary 3.7, we will focus here on the lesser known
case of G′ = PSO(n, n).

Recall that a 3-dimensional subalgebra (TDS) of g is a Lie subalgebra that is
isomorphic to sl(2, R). We begin with the following standard fact.

Proposition 3.11. For every α ∈ Δ, there are linear maps X+
α : R → u+, X−

α :
R → u− so that

[Hα(1), X+
α (1)] = 2X+

α (1),
[Hα(1), X−

α (1)] = −2X−
α (1), and

[X+
α (1), X−

α (1)] = Hα(1). (3.1)

In particular, {Hα(t) + X+
α (a) + X−

α (b) ∈ g : a, b, t ∈ R} is a TDS.

This motivates the following definition.

Definition 3.12. For any α ∈ Δ, let x±
α := exp ◦X±

α . The data

(

B+, B−, {x+
α }α∈Δ, {x−

α }α∈Δ

)

is a pinning of G.

Example 3.13. Let G′ = PSO(n, n). Choose B′± as in Example 3.9, with Δ′ =
{α′

1, . . . , α
′
n} the corresponding set of simple roots. Then, for all i = 1, . . . , n − 1,

define

X+
α′

i
(t) = t(δi,i+1 − δ2n−i,2n+1−i),

X−
α′

i
(t) = t(δi+1,i − δ2n+1−i,2n−i)

and for i = n, define

X+
α′

n
(t) = t(δn−1,n+1 − δn,n+2),

X−
α′

n
(t) = t(δn+1,n−1 − δn+2,n).

For all i = 1, . . . , n, it is elementary to check that (3.1) holds with α = α′
i. Let

x±
α′

i
(t) = exp(X±

α′
i
(t)) = Id2n + X±

α′
i
(t)

where here Id2n denotes the (2n) × (2n) identity matrix. Then, the data (B′+, B′−,
{x+

α′
i
}n

i=1, {x−
α′

i
}n

i=1) is an example of a pinning of G′.
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Choose a pinning (B+, B−, {x+
α }α∈Δ, {x−

α }α∈Δ) of G, and let a+ ⊂ a be the
positive Weyl chamber and Δ the simple roots determined by B+, B−. For any
α ∈ Δ, let sα ∈ GL(a) be the reflection about the kernel of α (using the Killing form
restricted to a). Recall that the Weyl group W = W (a) is the subgroup of GL(a)
generated by Q := {sα : α ∈ Δ}. It is well-known that W (a) is a finite group, and
that there is a unique element w0 ∈ W (a), usually called the longest word element,
so that w0(a+) = −a+. Write w0 = sαi1

· · · sαim
as a reduced word in Q, and define

the subset U+
>0 by

U+
>0 := {x+

αi1
(t1) · · · · · x+

αim
(tm) : ti > 0 ∀i = 1, . . . , m} (3.2)

The subset U+
>0 ⊂ U+ does not depend on the choice of reduced word representative

for w0. In fact U+
>0 is a semi-group (although this is not obvious).

Example 3.14. Let G′ = PSO(n, n), and let (B′+, B′−, {x+
α′

i
}n

i=1, {x−
α′

i
}n

i=1) be the
pinning described in Example 3.13. The unipotent radicals U ′± ⊂ B′±, the corre-
sponding positive Weyl chamber a′+ ⊂ a′ and the simple roots Δ′ = {α′

1, . . . , α
′
n}

are as described in Example 3.9. To simplify notation, let si := sα′
i
. Then define

μ1 := sn−1 · sn ∈ W (a′), and for all k = 2, . . . , n − 1, define

μk := sn−k · μk−1 · sn−k.

Then μ1 · μ2 · · · · · μn−1 is a reduced word expression of w0. Using this expression,
one may describe the positive elements U ′+

>0 of U ′+. For example, if n = 2, then
w0 = s1s2 and hence a typical element of U ′+

>0 has the form:

x+
α′

1
(t1)x+

α′
2
(t2) =

⎛

⎜
⎜
⎝

1 t1 0 0
0 1 0 0
0 0 1 −t1
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 t2 0
0 1 0 −t2
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 t1 t2 −t1t2
0 1 0 −t2
0 0 1 −t1
0 0 0 1

⎞

⎟
⎟
⎠

.

For larger n, we give an inductive formula describing U ′+
>0 in Appendix A, but the

formula is somewhat messy. Luckily, we will be able to avoid working with an explicit
description of U ′+

>0.

Next, we give the definition of positive triple of flags.

Definition 3.15. Let F+ ∈ FB(G) (resp. F− ∈ FB(G)) be the flag stabilized by
B+ (resp. by B−). A triple of flags (F1, F2, F3) ∈ FB(G)3 is called positive if there
is some g ∈ G so that g · (F1, F2, F3) = (F+, u · F−, F−), for some u ∈ U+

>0.



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

Remark 3.16. The notion of positivity in Definition 3.15 depends on a choice of
pinning. Any two conjugate pinnings give the same notion of positivity. However,
in this setting it is not always the case that two different pinnings are conjugate
(this is exactly the same subtlety, often ignored, that leads to multiple isomorphic
Hitchin components in Remark 3.2). In order for Theorem 3.6 to hold as stated, one
must choose a pinning for G which is compatible with the choice of representation
τG defining the notion of G-Hitchin representation. On the other hand, since any
two pinnings differ by some automorphism of G, we may, after applying such an
automorphism, assume that a G-Hitchin representation satisfies Theorem 3.6 for
the notion of positive determined by any particular pinning we chose to work with.

Note that if (F1, F2, F3) is a positive triple, then in particular the three flags
{F1, F2, F3} are pairwise transverse. We now prove a stronger transversality result,
which is the main technical result of this section. Let G′ = PSO(n, n) and let B′ < G′

be a Borel subgroup with FB′ = G′/B′ the associated flag manifold. Recall from
Example 2.7 that an element F ∈ FB′ may be regarded as a flag

F (1) ⊂ · · · ⊂ F (n−1) ⊂ F
(n)
+ , F

(n)
− ⊂ F (n+1) ⊂ · · · ⊂ F (2n−1),

where F (i) ∈ Gri(Rn,n) is an isotropic i-plane and F (2n−i) = (F (i))⊥ for 1 � i � n−1
and F

(n)
+ ∈ Gr+

n (Rn,n) (resp. F
(n)
− ∈ Gr−

n (Rn,n)) is the unique isotropic n-plane
which contains F (n−1) and which has positive signature τ(F (n)

+ ) = 1 (resp. has
negative signature τ(F (n)

− ) = −1). See Section 2.1.

Proposition 3.17. Let G′ = PSO(n, n) and let B′ < G′ be a Borel subgroup with
FB′ = G′/B′ the associated flag manifold. Then for any positive triple (Y, Z, X) ∈
(FB′)3, we have:

X(n−1) +
(

Z(n−1) ∩ Y (n+2)
)

+ Y
(n)
+ = R

2n, and (3.3)

X(n−1) +
(

Z(n−1) ∩ Y (n+2)
)

+ Y
(n)
− = R

2n. (3.4)

Proof. By Remark 3.16, we may work with any pinning which is convenient. We
choose the pinning (B′+, B′−, {x+

α′
i
}n

i=1, {x−
α′

i
}n

i=1) of Example 3.13. We will prove (3.3)
directly. The other statement (3.4) is equivalent. To see this, consider the orientation
reversing element g ∈ PO(n, n)\PSO(n, n) which exchanges the nth and (n + 1)th

basis vectors and fixes the other basis vectors. Then, on the one hand, g flips the
sign of the isotropic n-planes. On the other hand g exchanges the roots α′

n−1 and
α′

n and exchanges the elements x+
α′

n−1
(t) and x+

α′
n
(t), leaving all other one parameter

subgroups xα′
i
(t) of the pinning pointwise fixed. Noting that x+

α′
n−1

(t) and x+
α′

n
(s)

commute for any s, t > 0, we observe that the action of g fixes each point of the set
U ′+

>0 of Example 3.14. Hence g takes positive triples of flags to positive triples of flags
but exchanges the positive and negative isotropic n-planes of each flag. Hence (3.3)
implies (3.4).
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We now prove (3.3). Since the transversality condition (3.3) is unchanged by
multiplication by g ∈ G′, we may assume that Y = F+ and X = F− are the flags
fixed by B′+ and B′− respectively, and that Z = uF− for u ∈ U ′+

>0. The element u
has the form

u = x+
αi1

(t1) · · · · · x+
αim

(tm), (3.5)

which is difficult to work with directly. We will use a conjugation trick to simplify
the proof.

The Cartan subgroup A′ < G′ stabilizes both Y and X, hence for a ∈ A′:

a(Y, Z, X) = a(F+, uF−, F−) = (F+, aua−1F−, F−).

We shall use a carefully chosen (path of such) element(s) to simplify the situation.
Observe that if 1 � i � n − 1, then

ax+
α′

i
(t)a−1 = a(id2n + X+

α′
i
(t))a−1

= id2n + t

(
ai

ai+1
δi,i+1 − a2n−i

a2n+1−i
δ2n−i,2n+1−i

)

= x+
α′

i

(
ai

ai+1
t

)

.

where here a = diag
(

a1, . . . , an, 1
an

, . . . , 1
a1

)

. Similarly, if i = n,

ax+
α′

n
(t)a−1 = a(id2n + X+

α′
n
(t))a−1

= id2n + t

(
an−1

an+1
δn−1,n+1 − an

an+2
δn,n+2

)

= x+
α′

n
(anan−1t) .

In particular, aua−1 ∈ U+
>0. Also, observe that by choosing a ∈ A′ so that a1 �

a2 � · · · � an � 1, we can make each of the finitely many terms ax+
α′

i
(t)a−1 of (3.5)

arbitrarily close to the identity. In fact, we may define a path s �→ as ∈ A′ so that
asu(as)−1 smoothly converges to the identity as s → 0, as follows. For s > 0, let
as = diag(sn, sn−1, . . . , s, 1, 1, s−1, . . . , s−n). Then for all 1 � i � n,

asx+
α′

i
(t)(as)−1 = x+

α′
i
(st),

and hence

us := asu(as)−1 = x+
αi1

(st1) · · · · · x+
αim

(stm)

is a path smoothly converging to the identity element in G′ as s → 0. The tangent
vector to this path is
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d
ds

∣
∣
∣
∣
s=0

us = X+
α′

1
(r1) + · · · + X+

α′
n
(rn) (3.6)

where here rj =
∑

ik=j tk > 0 for all 1 � j � n.
It is sufficient to show that (3.3) holds to first order for the path (Y, Z, X) =

(Y, Zs, X) := (F+, usF
−, F−), as this will mean that (3.3) will hold for all s > 0

sufficiently small, and hence for s = 1. We must simply show that the tangent vector
to the path s �→ Vs :=

(

usX
(n−1)
) ∩ Y (n+2) in Gr1(R2n) = P(R2n) is transverse to

the hyperplane P

(

X(n−1) ⊕ Y
(n)
+

)

. This is straightforward in coordinates:

Y
(n)
+ = Re1 + · · · + Ren, and

X(n−1) = Ren+2 + · · · + Re2n, hence

X(n−1) ⊕ Y
(n)
+ = Re1 + . . . + Ren + Ren+2 + · · · + Re2n.

From (3.6), we read off that,

d
ds

∣
∣
∣
∣
s=0

usen+2 = −rnen − rn−1en+1.

Hence, in terms of the identification

TX(n−1)Grn−1(R2n) = Hom(X(n−1), Y (n+1))

=
⊕

2n�i�n+2>j�1

Hom(Rei, Rej),

from Section 2.3, we see that d
ds

∣
∣
s=0

usX
(n−1) has a non-trivial component in Hom

(Ren+2, Ren+1). It then follows that our path s �→ Vs, based at V0 = X(n−1) ∩
Y (n+2) = Ren+2, has tangent vector dVs

ds

∣
∣
s=0

∈ TV0P(R2n) which is transverse to the

hyperplane P

(

X(n−1) ⊕ Y
(n)
+

)

. ��
Corollary 3.7 follows immediately from Proposition 3.17.

4 Anosov Representations

Here we review Anosov representations and prove several useful lemmas about them.
Labourie [Lab06] introduced the notion of Anosov representation in order to charac-
terize the good dynamical behavior of the representations in the PSL(d, R)-Hitchin
component. Guichard–Wienhard [GW12] generalized the notion to the setting of rep-
resentations of word hyperbolic groups in reductive Lie groups and developed the
general theory in this setting. The quick review of Anosov representations presented
here will focus on the more specialized setting of interest, namely representations
from a surface group Γ = π1S to an adjoint, real split, semisimple Lie group G. As
above, there are three Lie groups of interest for our purposes, namely G = PSL(d, R),
G′ = PSO(n, n), and G′′ = SO(n, n − 1).
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4.1 The definition. Throughout, we fix a hyperbolic metric on the surface S
and denote by T 1S the unit tangent bundle of S. The boundary ∂Γ of the group Γ
identifies with the visual boundary of the universal cover S̃ ∼= H

2 of S. We choose
an orientation on S which induces an orientation on S̃ which in turn induces a cyclic
ordering on ∂Γ ∼= S1. We identify the unit tangent bundle of S̃ with the space of
cyclically ordered triples in ∂Γ in the usual way:

T 1S̃ = {(y, z, x) ∈ ∂Γ3 : y < z < x < y}.

Specifically, if y < z < x < y in ∂Γ, then there is a unique unit tangent vector
v based at a point p of S̃ so that v is tangent to the geodesic (y, x) connecting
y to x, v points away from y toward x, and the geodesic ray [p, z) meets (y, x)
orthogonally. The geodesic flow ϕt on T 1S lifts to the geodesic flow ϕ̃t on T 1S̃, which
in these coordinates has the form ϕt(y, z, x) = (y, z(t), x), where z : R → ∂Γ is a
continuous, injective map so that z(0) = z, limt→∞ z(t) = x and limt→−∞ z(t) = y.
Although ∂Γ does not have any canonical smooth structure, if ∂Γ is endowed with
the smooth structure induced by the hyperbolic structure on S̃, then the function
z(t) is smooth. The geodesic flow for a different hyperbolic metric on S, written
in the same coordinates, is simply a continuous reparameterization of ϕt, meaning
that the flow lines are the same, but the function z(t) is altered by an orientation
preserving homeomorphism of R. We ignore such subtleties and simply remark that
the choice of hyperbolic metric has no meaningful effect on the coming definitions.

The notion of Anosov representation depends on a (conjugacy class) of parabolic
subgroup P < G. We restrict here to the case that the parabolic subgroup P is
conjugate to any opposite parabolic subgroup. This will be the case in the settings
of interest and it slightly simplifies the setup. Recall the flag space FP := G/P
defined in Section 2.2. There is a unique open G-orbit in the product FP × FP ,
namely the subspace of transverse pairs, which we denote by O ⊂ FP × FP . Let
ρ : Γ → G a representation. Associated to ρ is the space

Yρ := (T 1S̃ × O)/Γ,

where the action on O ⊂ FP × FP is the diagonal action by ρ and the action on
T 1S̃ is by deck translations. The smooth manifold Yρ is naturally a flat G-bundle
over T 1S whose fibers are isomorphic to O as G-sets.

Now, let

T vYρ = (T 1S̃ × TO)/Γ

denote the vertical tangent bundle to Yρ. The local product structure on O ⊂ FP ×
FP determines a splitting TO = E+ ⊕ E− of TO into two isomorphic sub-bundles
E+, E−. This splitting induces a splitting

T vYρ = E+
ρ ⊕ E−

ρ

of the vertical tangent bundle into two sub-bundles E+
ρ , E−

ρ over Yρ.
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The geodesic flow ϕ̃t on T 1S̃ lifts to a flow, again denoted ϕ̃t on the product
bundle T 1S̃ × O by acting trivially in the second factor: ϕ̃t(ν, o) := (ϕ̃tν, o). The
differential dϕ̃t defines a lift of the flow ϕ̃t to the vertical tangent bundle T 1S̃ ×TO,
which is again trivial in the second factor and in particular preserves the product
structure on each tangent space of O. Both flows descend to the bundles Yρ and
T vYρ over T 1S, and are denoted ϕt and dϕt respectively. Indeed, the flow ϕt is
simply the lift of the geodesic flow on T 1S to Yρ using the flat connection, and the
flow dϕt on T vYρ is its differential.

Definition 4.1. The representation ρ : Γ → G is Anosov with respect to P or
alternatively, P -Anosov, if there exists a continuous section σ : T 1S → Yρ of Yρ

that is parallel under the flow ϕt and which satisfies the following.

(1) The flow dϕt expands E+
ρ along the section σ(T 1S): There exist constants

a, c ∈ R
+ so that for any ν ∈ T 1S and any non-zero vector f+ in the fiber of

E+
ρ over σ(ν),

‖dϕt(f+)‖ϕtν � aect‖f+‖ν .

(2) The flow dϕt contracts E−
ρ along the section σ(T 1S): There exist constants

b, d ∈ R
+ so that for any ν ∈ T 1S and any non-zero vector f− in the fiber of

E−
ρ over σ(ν),

‖dϕt(f−)‖ϕtν � be−dt‖f−‖ν .

In the above definition ‖ · ‖ is any continuously varying family of norms on the
(fibers of the) vertical tangent bundle T vYρ. Since T 1S is compact, any two families
of norms on T vYρ are equivalent along the section σ(T 1S) and the notion of P -
Anosov does not depend on the choice of norm (although the constants a, b, c, d do).
We will often work in the universal cover, where such a family of norms ‖ · ‖ lifts
to a family of norms, also denoted ‖ · ‖, on the product bundle T 1S̃ × TO, which is
ρ-equivariant, meaning ‖dρ(γ)f‖γ·ν = ‖f‖ν for any ν ∈ T 1S and f ∈ TO.

Remark 4.2. In Definition 4.1, the contraction condition (2) follows from the ex-
pansion condition (1) and vice versa, see [GW12]. We will typically work only with
condition (1) here.

In Definition 4.1, the section σ is unique [Lab06], and is usually called the Anosov
section. The data of the Anosov section can also be captured by a ρ-equivariant map
to the flag space FP .

Definition 4.3. Let ρ : Γ → G be a representation, and ξ : ∂Γ → FP be a ρ-
equivariant continuous map. We say ξ is dynamics preserving if for every γ ∈ Γ\{id},
ξ maps the attracting fixed point γ+ ∈ ∂Γ of γ to the unique attracting fixed point
of ρ(γ) in FP .
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Fact 4.4 (Labourie, Guichard–Wienhard). Let ρ : Γ → G be a P -Anosov rep-
resentation. Then there is a continuous, ρ-equivariant, dynamics preserving map
ξ : ∂Γ → FP . Furthermore, the Anosov section σ lifts to an equivariant map

σ̃ : T 1S̃ → T 1S̃ × FP × FP ,

which is given by the formula σ̃(y, z, x) = (y, z, x, ξ(x), ξ(y)).

The map ξ given in Fact 4.4 is called the Anosov limit map or Anosov boundary
map of ρ. The dynamics preserving and continuity properties ensure that such a
map is necessarily unique. Since the (lift of the) Anosov section σ̃ takes values in
the transverse pairs O ⊂ FP ×FP , the Anosov limit map ξ is necessarily transverse,
meaning that for all x, y ∈ ∂Γ distinct, ξ(x) and ξ(y) are transverse points of FP ,
i.e. (ξ(x), ξ(y)) ∈ O.

There are many examples of Anosov representations of surface groups, including
both maximal representations and Hitchin representations, see [GW12]. For recent
examples of Anosov representations of right-angled Coxeter groups, see [DGK17,
DGK18a]. Hitchin representations are the main examples of Anosov representations
of concern in this paper.

Theorem 4.5 (Labourie, Fock–Goncharov). Every G-Hitchin representation ρ :
Γ → G is Anosov with respect to the Borel subgroup B ⊂ G, and the ρ-equivariant
positive curve of Theorem 3.6 is the Anosov limit map.

One important property of Anosov representations is that the condition is stable
under small deformation.

Fact 4.6 (Labourie). Let ρ ∈ Hom(Γ, G) be a P -Anosov representation. Then there
is an open neighborhood U ⊂ Hom(Γ, G) of ρ so that every representation in U is
also P -Anosov.

4.2 B-Anosov representations in PSL(d,R). Let ρ : Γ → PSL(d, R) be
Anosov with respect to the Borel subgroup B ⊂ PSL(d, R) and let ξ : ∂Γ → FB be
the Anosov limit map. We follow Section 2.3 to obtain natural coordinates on the
fibers of E+

ρ . Let x, y ∈ ∂Γ be distinct. For each 1 � i � d, let

Li(x, y) := ξ(i)(x) ∩ ξ(n−i+1)(y)

which is a line, since the flags ξ(x) and ξ(y) are transverse (see Example 2.5). The
line decomposition R

d =
⊕d

i=1 Li(x, y) varies continuously as x, y vary and is ρ-
equivaraint, in the sense that Li(γ ·x, γ · y) = ρ(γ)Li(x, y) for all γ ∈ Γ, and distinct
points x, y ∈ ∂Γ. Next, for each x �= y in ∂Γ, the one-dimensional vector space

Hom(Li, Lj)(x, y) := Hom(Li(x, y), Lj(x, y))
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may be regarded as a subspace of End(Rd) which varies continuously in x, y. This
gives a ρ-equivariant decomposition of the product bundle T 1S̃ × End(Rd) which
descends to the flat End(Rd) bundle over T 1S associated to ρ:

Γ\(T 1S̃ × End(Rd)) =
d⊕

i,j=1

Hom(Li, Lj),

where here, by abuse, Hom(Li, Lj) denotes the line bundle over T 1S whose fibers
are locally Hom(Li(x, y), Lj(x, y)). Next, let x, y ∈ ∂Γ be distinct and let Uξ(y)

be the affine chart for FB defined in Section 2.3. We have the identification
⊕

i<j

Hom(Li, Lj)(x, y) 	−→ Uξ(y) ⊂ FB with the origin mapping to ξ(x). In particular, we
identify

Tξ(x)FB =
⊕

i<j

Hom(Li, Lj)(x, y). (4.1)

This gives coordinates on E+
ρ along the section σ(T 1S):

σ∗E+
ρ =
⊕

i<j

Hom(Li, Lj).

All of the splittings described above are invariant under the geodesic flow, and
the Anosov expansion condition (1) of Definition 4.1 is satisfied if and only if it is
satisfied on each line bundle factor of (4.1). Therefore condition (1) of Definition 4.1
is equivalent to the existence of constants a, c > 0 so that for any i < j, any
ν ∈ T 1S, and any f in the fiber Hom(Li, Lj)ν above a point ν ∈ T 1S of the bundle
Hom(Li, Lj), we have

‖dϕtf‖ϕtν � aect‖f‖ν

where here ‖ · ‖ is any continuous family of norms on the fibers of Hom(Li, Lj)
(for example, coming from the restriction of a continuous family of norms on the
flat End(Rd) bundle associated to ρ). Equivalently, in the lift to T 1S̃, the condition
becomes: there exists a, c > 0 so that for any y < z < x < y in ∂Γ and any
f ∈ Hom(Li, Lj)(x, y),

‖dϕtf‖ϕt(y,z,x) = ‖f‖(y,z(t),x) � aect‖f‖(y,z,x), (4.2)

where now ‖ · ‖ denotes a continuously varying, ρ-equivariant family of norms on
Hom(Li, Lj)(x, y).

Let us now prove a useful proposition.

Proposition 4.7. Let ρ ∈ Hom(Γ, PSL(d, R) be B-Anosov and define the bundles
Hom(Li, Lj) as above. Let 1 � p � q < r � s � d be positive integers, with

(p, s) �= (q, r). Then there are constants A, C > 0, so that for any (y, z, x) ∈ T 1S̃,
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where y < z < x < y in ∂Γ, and any non-zero f ∈ Hom(Lp, Ls)(x, y) and f ′ ∈
Hom(Lq, Lr)(x, y), and any t > 0 we have:

‖f‖(y,z(t),x)

‖f ′‖(y,z(t),x)
�

‖f‖(y,z,x)

‖f ′‖(y,z,x)
AeCt.

For the above proposition, recall the notation (y, z(t), x) := ϕt(y, z, x) and that
the norms ‖ · ‖ on each Hom(Li, Lj)(x, y) are a fixed family of ρ-equivariant norms
varying continuously over T 1S̃.

Proof. Since T 1S is compact, all norms on any of the line bundles Hom(Li, Lj) are
equivalent. Hence, we may choose norms that are convenient to work with. For each
k, let ‖ · ‖k,k+1

(y,z,x) be a family of norms on the line bundle Hom(Lk, Lk+1). Then, for

any i < j, we may define a family of norms ‖ · ‖i,j
(y,z,x) on Hom(Li, Lj) as follows. For

any f ∈ Hom(Li, Lj)(x, y), factor f as a composition f = fi ◦ fi+1 ◦ · · · ◦ fj−1, where
each fk ∈ Hom(Lk, Lk+1)(x, y) and define

‖f‖i,j
(y,z,x) :=

j−1
∏

k=i

‖fk‖k,k+1
(y,z,x).

Note that, since the Hom(Lk, Lk+1) are line bundles, the choice of the factorization
of f amounts to choosing scalars in each factor and does not affect the result, hence
‖ · ‖i,j

(y,z,x) is well-defined. We now prove the result using these norms.
Let y < z < x < y in ∂Γ, and let f ∈ Hom(Lp, Ls)(x, y) and f ′ ∈ Hom(Lq, Lr)

(x, y) both be non-zero. Next, factor f as the composition

f = g ◦ f ′ ◦ h

where g ∈ Hom(Lr, Ls) and h ∈ Hom(Lp, Lq). Then, by the definition of the norm
above we have that ‖f‖(y,z,x) = ‖g‖(y,z,x)‖f ′‖(y,z,x)‖h‖(y,z,x) at each point (y, z, x) ∈
T 1S̃. In the case that p = q, we may assume ‖h‖(y,z,x) = 1 constant. Similarly, if
r = s, we may assume ‖g‖(y,z,x) = 1 constant. Then:

‖f‖(y,z(t),x)

‖f ′‖(y,z(t),x)
= ‖g‖(y,z(t),x)‖h‖(y,z(t),x)

� ‖g‖(y,z,x)‖h‖(y,z,x)AeCt

where we use that p < q or r < s so that at least one of ‖g‖(y,z(t),x), ‖h‖(y,z(t),x)

expands as in (4.2), while the other may also expand or otherwise is constant by the
discussion above. Hence

‖f‖(y,z(t),x)

‖f ′‖(y,z(t),x)
�

‖g‖(y,z,x)‖f ′‖(y,z,x)‖h‖(y,z,x)

‖f ′‖(y,z,x)
AeCt

=
‖f‖(y,z,x)

‖f ′‖(y,z,x)
AeCt. ��
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4.3 Characterizations of Anosov in terms of Cartan and Lyapunov pro-
jections. In this section, we discuss a recent characterization of Anosovness, due
independently to Kapovich–Leeb–Porti [KLP17b, KLP14, KLP15] (see also [KLP16]
for a survey of this work) and Guichard–Gueritaud–Kassel–Wienhard [GGKW17],
which will be essential for the main result. We follow [GGKW17]. In this section we
assume that G is a semi-simple Lie group whose adjoint group Ad(G) is contained
in the group of inner automorphisms of the complexification gC of the Lie algebra
g. This assumption, which holds in particular for the three groups of primary con-
cern here (PSL(d, R), PSO(n, n), and SO(n, n − 1), will guarantee that the Cartan
projection (defined below) is well-defined, see [Kna02, Ch. 7].

Let G = K exp(a+)K be a Cartan decomposition of G, where here K < G is
a maximal compact subgroup and a+ is a choice of closed positive Weyl chamber
contained in a Cartan subalgebra a of the Lie algebra g. Then each g ∈ G may
be factored as g = k exp(a)k′, where k, k′ ∈ K and the element a ∈ a+ is unique.
The associated Cartan projection μ : G → a+ is the map defined by μ(g) = a. Let
λ : G → a+ denote the Lyapunov projection, which satisfies λ(g) = limn μ(gn)/n
(and which is defined independent of the choice of Cartan decomposition in the
definition of μ). Before stating the alternative characterizations of Anosov, let us
give the relevant examples of the two projections.

Remark 4.8. Note that while the Cartan projection is well-defined for PSO(n, n), it
is not well-defined for the index two supergroup PO(n, n). Indeed the decomposition
PO(n, n) = K exp(a+)K holds, but the a+ part is not unique. The reason is that
there is an orientation reversing element in the maximal compact K for PO(n, n)
which preserves a+ but acts non-trivially on it.

Example 4.9. Let G = PSL(d, R). Recall from Example 3.8 that the Lie algebra of
G is psl(d, R), the algebra of traceless d×d real-valued matrices, and we may choose
its positive Weyl chamber a+ to be the diagonal matrices of the form diag(a1, . . . , ad)
with

∑
ai = 0 and ai � ai+1 for all 1 � i � d − 1. Then for g ∈ G, the Lyapunov

projection λ(g) = diag(λ1(g), . . . , λd(g)) where the diagonal entries λi(g) are the
logarithms of the absolute value of the eigenvalues of g listed in weakly decreasing
order. The entries of the Cartan projection μ(g) = diag(μ1(g), . . . , μd(g)) are the
singular values of g listed in weakly decreasing order. The simple roots α1, . . . , αd−1 ∈
Δ measure the difference in consecutive singular values: αi(μ(g)) = μi(g) − μi+1(g).
Similarly αi(λ(g)) = λi(g) − λi+1(g).

Example 4.10. Let G′ = PSO(n, n) ⊂ G = PSL(2n, R). Recall from Example 3.9
that the Cartan subalgebra a′ ⊂ pso(n, n) consists of all diagonal matrices of the
form diag(a1, . . . , an, −an, . . . ,−a1), and is thus realized as a subspace of the Cartan
subalgebra a ⊂ psl(n, R). The postive Weyl chamber a′+, however, may not be
chosen as a subset of the positive Weyl chamber a+; observe that the restriction
to a′ of the simple root αn : a → R given by αn : diag(a1, . . . , a2n) �→ an − an+1

is not a root in G′. Indeed, taking the simple roots Δ′ = {α′
1, . . . , α

′
n} for G′ as
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in Example 3.9, the positive Weyl chamber a′+ is the subset of diagonal matrices
diag(a1, . . . , an, −an, . . . ,−a1) for which ai � ai+1 for all 1 � i � n − 2, and for
which an−1 � an, −an. In particular, for a1 � · · · � an, the two matrices

exp diag(a1, . . . , an−1, an, −an, −an−1, . . . ,−a1),
exp diag(a1, . . . , an−1, −an, an, −an−1, . . . ,−a1)

are not conjugate in G′, though they are conjugate in G. For g ∈ G′, if λ′(g) =
diag(λ′

1(g), . . . , λ′
n(g), −λ′

n(g), . . . ,−λ′
1(g)) is the Lyapunov projection of g in G′

and λ(g) = diag(λ1(g), . . . , λ2n(g)) is the Lyapunov projection of g in G, then

• λ′
i(g) = λi(g) = λ2n+1−i(g) for all 1 � i � n − 1,

• λn(g) = −λn+1(g), and λ′
n(g) = λn(g) or λ′

n(g) = −λn(g).

To determine whether λ′
n(g) = λn(g) or λ′

n(g) = −λn(g), let H be the sum of the
eigenspaces corresponding to the eigenvalues λ1(g), . . . , λn(g). Then λ′

n(g) = λn(g) if
τ(H) = +1, i.e. H is a positive isotropic n-plane, and λ′

n(g) = −λn(g) if τ(H) = −1.
A similar statement holds for the Cartan projections.

Example 4.11. Let G′′ = SO(n, n−1). As we did in Section 2, we use the orthogonal
splitting R

n,n = R
n,n−1 ⊕ R

0,1 to embed G′′ as a subgroup of G′ = PSO(n, n) to get
G′′ ⊂ G′ ⊂ G = PSL(2n, R). Then the Cartan subalgebra a′′ for G′′ as described in
Example 3.10 embeds in the Cartan subalgeba a for G as the subspace of 2n × 2n
diagonal matrices of the form

a′′ = {diag(a1, . . . , an−1, 0, 0, −an−1, . . . ,−a1)}.

The choice of simple roots Δ′′ = {α′′
1, . . . , α

′′
n−1} for G′′ described in Example 3.10

are precisely the restrictions of the first n − 1 simple roots for G as described in
Example 3.8 to a′′. Hence, the positive Weyl chamber a′′+ embeds in the intersection
of the positive Weyl chambers a′+ ∩ a+ for G′ and G, as the subset with a1 �
· · · � an−1 � 0 = an. For g ∈ G′′, if (λ′′

1(g), . . . , λ′′
n−1(g), −λ′′

n−1(g), −λ′′
1(g)) is the

Lyapunov projection in G′′ and (λ1(g), . . . , λ2n(g)) is the Lyapunov projection in G,
then λn(g) = λn+1(g) = 0 and λ′

i(g) = λi(g) = −λ2n+1−i(g) for all i = 1, . . . , n − 1.
A similar statement holds for the Cartan projections.

Here is the recent characterization of Anosov representations that we will use.
It was independently shown by Kapovich–Leeb–Porti [KLP17b, KLP14, KLP15]
and by Guéritaud–Guichard–Kassel–Wienhard [GGKW17]. First, some brief setup:
There is a well-known bijection between non-empty subsets θP ⊂ Δ and conjugacy
classes of parabolic subgroups [P ] of G. Specifically, for any conjugacy class [P ]
of proper parabolic subgroups, θP ⊂ Δ is the subset with the following property:
There is a (necessarily unique) representative P in that conjugacy class [P ], called
the standard representative, whose Lie algebra is spanned by the centralizer g0 of
the Cartan subalgebra a (in the cases of interest here g0 = a), each of the positive
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root spaces, and by the root spaces g−α for all positive roots α not in the span of
Δ\θP .

We state the following result in the special case that P is conjugate to its opposite,
in which case the corresponding set of roots θP is invariant under the opposition
involution. In the following, |γ| denotes the word-length of γ ∈ Γ with respect to
some fixed generating set and |γ|∞ = limn |γn|/n denotes the stable length, or
alternatively the translation length in the Cayley graph of Γ.

Theorem 4.12. Let G be a reductive Lie group, P be a parabolic subgroup, and
θP ⊂ Δ be the corresponding subset of simple roots. Assume P is conjugate to its
opposites. Then for any hyperbolic group Γ and any representation ρ : Γ → G, the
following are equivalent.

(1) ρ is P -Anosov
(2) There is a continuous, ρ-equivariant, transverse, dynamics preserving map ξ :

∂Γ → FP , and for any α ∈ θP , α(μ(ρ(γ))) → ∞ as γ → ∞ in Γ.
(2’) There is a continuous, ρ-equivariant, transverse, dynamics preserving map

ξ : ∂Γ → FP , and constants c, C > 0 so that for any α ∈ θP and γ ∈ Γ,
α(μ(ρ(γ))) � c|γ| − C.

(3) There is a continuous, ρ-equivariant, transverse, dynamics preserving map ξ :
∂Γ → FP , and for any α ∈ θP , α(λ(ρ(γ))) → ∞ as |γ|∞ → ∞ in Γ.

(3’) There is a continuous, ρ-equivariant, transverse, dynamics preserving map ξ :
∂Γ → FP , and a constant c > 0 so that for any α ∈ θP and γ ∈ Γ, α(λ(ρ(γ))) �
c|γ|∞.

Remark 4.13. We will, in this paper, use Conditions (2) and (3) to show Anosov-
ness (Condition (1)) of representations. We included the strengthened versions (2’)
and (3’) of Conditions (2) and (3) respectively for reference. We also mention that
Kapovich–Leeb–Porti [KLP17a] proved an even stronger version of the equivalence
(1) ⇐⇒ (2’), namely that for a representation ρ : Γ → G of a finitely generated
group Γ, the group Γ is word hyperbolic and ρ is P -Anosov if and only if

(2”) There are constants c, C > 0 so that for any α ∈ θP and γ ∈ Γ, α(μ(ρ(γ))) �
c|γ| − C.

As an immediate consequence of Theorem 4.12, we have the following useful
property that was originally due to Guichard–Wienhard [GW12].

Fact 4.14. Let P, Q ⊂ G be parabolic subgroups, and let P ′ and Q′ be the standard
representatives in the conjugacy classes [P ] and [Q]. Then P ′ ∩Q′ ⊂ G is a parabolic
subgroup, and ρ ∈ Hom(Γ, G) is P ′ ∩ Q′-Anosov if and only if it is P -Anosov and
Q-Anosov.

4.4 The Anosov property under inclusions of Lie groups. Let ι : G′ ↪→ G
be an inclusion of reductive Lie groups. Consider a parabolic subgroup P ′ ⊂ G′ and
a P ′-Anosov representation ρ : Γ → G′. Guichard–Wienhard [GW12, Prop. 4.4]
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give a recipe for determining the parabolic subgroups P of G (if any) for which the
composition ι◦ρ is P -Anosov. In particular, it is clear, e.g. from Theorem 4.12, that
if the roots in θP restrict to roots in θP ′ , then ι ◦ ρ is P -Anosov.

Example 4.15. Consider the inclusion ι2n−1 : G′′ ↪→ G for G′′ = SO(n, n − 1) and
G = PSL(2n − 1, R) as in Example 4.11 above. Let B′′ denote the Borel subgroup
in G′′, with corresponding collection of roots θB′′ = Δ′′ the full collection of simple
roots. Then for our choice of simple roots Δ and Δ′′ for G and G′′ as in Example 3.8
and Example 3.10 respectively, we see that for all simple roots αi ∈ Δ, the restriction
of αi to a′′ is a simple root of Δ′′. Specifically, the restriction of αi to a′′ is α′′

i if
1 � i � n−1 or α′′

2n−1−i if n � i � 2n−2. Hence the subsets θ′′ of Δ′′ are in one-one
correspondence with the subsets θ of Δ which are invariant under the opposition
involution. A representation ρ : Γ → G′′ is P ′′-Anosov if and only if ι2n−1 ◦ ρ is P -
Anosov, where P ′′ < G′′ and P < G are the parabolic subgroups whose associated
subsets of simple roots θ and θ′′ correspond as above.

Example 4.16. Consider the inclusion ι2n : G′ ↪→ G for G = PSL(2n, R) and
G′ = PSO(n, n) as in Example 4.10 above. Let B′ denote the Borel subgroup in G′,
so that θB′ = Δ′ is the full collection of simple roots. Then for our choice of simple
roots Δ and Δ′ for G and G′ as in Example 3.8 and Example 3.9 respectively,
we see that the simple roots in Δ whose restriction to a′ are simple roots in Δ′

are α1, . . . , αn−1, αn+1, . . . , α2n−1. Here, note that the restriction of α2n−i agrees
with that of αi for all i = 1, . . . , n − 1. Hence, if � : Γ → G′ is a B′-Anosov
representation, then ι2n◦� : Γ → G is Pn̂-Anosov for Pn̂ ⊂ G, the parabolic subgroup
whose associated collection of simple roots is θPn̂

= {α1, . . . , αn−1, αn+1, . . . , α2n−1}.
This is precisely the stabilizer of a flag which is nearly complete but misses the n-
dimensional subspace. However, since the restriction of the middle root αn to a′ is
equal to α′

n − α′
n−1 which is not a root in Δ′ (and this can not be fixed even with

freedom to adjust using the Weyl group), ι2n ◦ � need not be Anosov with respect
to the Borel subgroup B in G.

Example 4.17. Consider the inclusion ιn,n : G′′ → G′ for G′′ = SO(n, n − 1) and
G′ = PSO(n, n) as described in Example 4.11. The stabilizer P ′′

n−1 < G′′ of an
isotropic (n − 1)-plane in R

n,n−1 corresponds to the subset θP ′′
n−1

= {α′′
n−1} ⊂ Δ′′

of the set of simple roots of G′′. Similarly, the stabilizer P ′
n−1 < G′ of an isotropic

(n−1)-plane in R
n,n corresponds to the subset θP ′

n−1
= {α′

n−1, α
′
n} ⊂ Δ′ of the set of

simple roots of G′′. From Example 4.11, the representation ιn,n embeds the Cartan
sub-algebra a′′ for G′′ into the Cartan subalgebra a′ for G′ and we observe that the
restrictions of α′

n−1 and α′
n to a′′ each coincide with α′′

n−1. Hence ρ : Γ → G′′ is
P ′′

n−1-Anosov if and only if ιn,n ◦ ρ is P ′
n−1-Anosov.

The following proposition gives the condition under which a B′-Anosov repre-
sentation in G′ = PSO(n, n) becomes Anosov with respect to the Borel subgroup B
in G = PSL(2n, R) under inclusion. In the following denote by Pn ⊂ G the stabilizer
of an n-plane, whose corresponding collection of simple root is θPn

= {αn}.
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Proposition 4.18. Let � : Γ → G′ = PSO(n, n) and let ι2n : G′ ↪→ G = PSL(2n, R)
be the inclusion. Suppose that � is B′-Anosov and that ι2n ◦ � is Pn-Anosov. Then

(1) the �-equivariant limit curve ξ′ : ∂Γ → FB′ and the ι2n ◦ �-equivariant curve

ξ : ∂Γ → FPn
= Grn(R2n) satisfy that ξ = ξ

′(n)
+ or ξ = ξ

′(n)
− (where ξ

′(n)
± (x) =

(ξ′(x))(n)
± are as in Example 2.7).

(2) ι2n ◦� is B-Anosov, and the associated ι2n ◦�-equivariant limit curve ξ′′ : ∂Γ →
FB in the space of complete flags, satisfies that ξ′′(i) = ξ′(i) for all i �= n, and

either ξ′′(n) = ξ
′(n)
+ or ξ′′(n) = ξ

′(n)
− .

Proof. Proof of (1): Let γ ∈ Γ non-trivial, and let γ+ ∈ ∂Γ be the attracting fixed
point for the action of γ on ∂Γ. Since ι2n ◦ � is Pn-Anosov, ξ(γ+) is the unique at-
tracting n-plane for the action of ι2n ◦�(γ) = �(γ) on Grn(R2n) and we observe that
ξ(γ+) must be isotropic, since the eigenvectors of �(γ) for eigenvalues larger than
one are isotropic and pairwise orthogonal. Further, again by simple eigenvalue con-
siderations, the attracting fixed point ξ′(n−1)(γ+) of �(γ) in the isotropic Grassman-
nian Grn−1(Rn,n) is also the unique attracting fixed point in the full Grassmannian
Grn−1(R2n). It follows that ξ′(n−1)(γ+) ⊂ ξ(γ+). By density of the points γ+ in ∂Γ,
it follows that ξ′(n−1)(η) ⊂ ξ(η) for all η ∈ ∂Γ. Further, for each η ∈ ∂Γ, ξ(η) is an
isotropic n-plane containing the isotropic (n − 1)-plane ξ′(n−1)(η), so ξ(η) = ξ

′(n)
+ (η)

or ξ(η) = ξ
′(n)
− (η) and hence by continuity of ξ, we have that ξ = ξ

′(n)
+ or ξ = ξ

′(n)
−

on all of ∂Γ.
Proof of (2): By Example 4.16, we see that ι2n ◦ � is Pn̂-Anosov. Also, note that

θPn̂
∪ θPn

= Δ, so the intersection of the standard representatives of [Pn̂] and [Pn] is
a Borel subgroup. Since ι2n ◦ � is assumed to be Pn-Anosov, Fact 4.14 implies (2).

��

5 Proof of Theorem 1.3

We now prove Theorem 1.3. Let � : Γ → G′ = PSO(n, n) be a PSO(n, n)-Hitchin
representation, and let ι2n : PSO(n, n) ↪→ PSL(2n, R) be the inclusion. Assume for
contradiction that ι2n ◦� is Anosov with respect to the stabilizer Pn < PSL(2n, R) of
an n-plane in R

2n. By Theorem 4.5, � is Anosov with respect to the Borel subgroup
B′ of PSO(n, n). Let ξ′ : ∂Γ → FB′ denote the Anosov limit map. By Proposi-
tion 4.18, ι2n ◦ � is Anosov with respect to the Borel subgroup B of PSL(2n, R).
Further, the Anosov limit map ξ : ∂Γ → FB satisfies that ξ(i) = ξ′(i) for all i �= n,
and either ξ(n) = ξ′(n)

+ or ξ(n) = ξ
′(n)
− . Assume without loss of generality (see Re-

mark 2.2) that the former holds. First note that if n is odd, then Remark 2.8 implies
that for any x, y ∈ ∂Γ, the n-planes ξ

(n)
+ (x) and ξ

(n)
+ (y) fail to be transverse, a con-

tradiction which completes the proof in the case n is odd. We now give the proof in
the more interesting case that n is even.

The strategy of the proof will be to use the Anosov dynamics, plus the extra
transversality condition provided by Corollary 3.7, to show:



J. DANCIGER AND T. ZHANG GAFA

Lemma 5.1. The subset ξ(n−1)(∂Γ) ⊂ Grn−1(Rn,n) is a differentiable sub-manifold
that is everywhere tangent to the fibers of the natural projection �+ : Grn−1(Rn,n)
→ Gr+

n (Rn,n) from Proposition 2.3, and is therefore contained in a single fiber.

Lemma 5.1 immediately gives a contradiction which completes the proof of The-
orem 1.3 as follows.

Proof of Theorem 1.3. Assuming Lemma 5.1, we have that ξ(n−1)(∂Γ) is contained
in a single fiber of �+ and it follows that ξ

′(n)
+ (x1) = ξ

′(n)
+ (x2) for all x1, x2 ∈ ∂Γ.

We assumed that ξ(n) = ξ
′(n)
+ , so

ξ(n)(x1) = �+(ξ(n−1)(x1)) = �+(ξ(n−1)(x2)) = ξ(n)(x2),

which contradicts the injectivity of ξ(n) (and the transversality of ξ(n−1)). This con-
cludes the proof of Theorem 1.3. ��

We now focus on proving Lemma 5.1. Recall from Section 4.2 the line decompo-
sition R

2n =
⊕2n

i=1 Li(x, y) associated to a pair of distinct points x, y ∈ ∂Γ. Observe
that

ξ(n−1)(x) = L1(x, y) ⊕ · · · ⊕ Ln−1(x, y)

ξ(n+1)(y) = Ln(x, y) ⊕ · · · ⊕ L2n(x, y)

Let Uξ(n+1)(y) denote the affine chart of Grn−1(R2n) consisting of all (n − 1)-planes
transverse to ξ(n+1)(y). We use the identification in Section 2.3 to obtain local co-
ordinates for Uξ(n+1)(y):

Uξ(n+1)(y)
	−→ Hom(ξ(n−1)(x), ξ(n+1)(y)) =

⊕

1�i<n�j�2n

Hom(Li, Lj)(x, y) (5.1)

Then for each y < z � x < y in ∂Γ we observe that ξ(n−1)(z) ∈ Uξ(n+1)(y) and we
express it in coordinates as

ξ(n−1)(z) �→ (uij(y, z, x))1�i<n�j�2n .

Then uij(y, x, x) = 0 for all 1 � i < n � j � 2n and we wish to calculate the
“derivatives” of the uij(y, z, x) as z → x.

Lemma 5.2. For all y < z < x < y in ∂Γ, we have that un−1,n(y, z, x) �= 0.

Proof. Note that

Ln−1(z, y) = ξ(n−1)(z) ∩ ξ(n+2)(y) = ξ(n−1)(z) ∩ (Ln−1(x, y) ⊕ ξ(n+1)(y))

is exactly the graph of the linear map
⊕

n�j�2n

un−1,j(y, z, x) : Ln−1(x, y) → ξ(n+1)(y).
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The condition that un−1,n(y, z, x) = 0 is exactly the condition that Ln−1(z, y) ⊂
Ln−1(x, y)⊕ξ(n)(y). However, this cannot happen, since it would violate the transver-
sality statement of Corollary 3.7 (a consequence of positivity of the limit curve ξ′):

ξ(n−1)(x) + Ln−1(z, y) + ξ(n)(y) = R
2n.

��
Next, for each i, j, choose continuously varying norms ‖ · ‖ on the fibers of the

bundle Hom(Li, Lj), defined in Section 4.2. The lift of these norms, again denoted
‖·‖, gives a continuously varying, ρ-equivariant family of norms on Hom(Li, Lj)(x, y)
depending on a cyclically ordered triple y < z < x < y.

Lemma 5.3. There exists C > 0 so that the following hold for all triples y < z <
x < y in ∂Γ.

(1) ‖ui,j(y, z, x)‖(y,z,x) � C for all 1 � i < n � j � 2n.

(2)
1
C

� ‖un−1,n(y, z, x)‖(y,z,x) � C.

Proof. Observe that the definition of ui,j(y, z, x) is ρ-equivariant, hence ui,j defines
a section of the bundle Hom(Li, Lj) over T 1S. Statement (1) then follows from
the compactness of T 1S. The lower bound of Statement (2) also follows from the
compactness of T 1S in light of the fact that the section un−1,n is nowhere zero by
Lemma 5.2. ��

Next, fix the points x, y ∈ ∂Γ and let Cx ⊂ Tξ(n−1)(x)Grn−1(R2n) denote the
tangent cone to the curve ξ(n−1)(∂Γ). The linear coordinates on the patch Uξ(n+1)(y) ⊂
Grn−1(R2n) give coordinates for Tξ(n−1)(x)Grn−1(R2n), and in those coordinates Cx

consists of all (vi,j)1�i<n�j�2n so that there exists a sequence zk → x in ∂Γ and
sk → ∞ in R so that

skui,j(y, zk, x) → vi,j for all 1 � i < n � j � 2n (5.2)

Lemma 5.4. Let (vi,j)1�i<n�j�2n ∈ Cx be non-zero. Then vi,j = 0 for all (i, j) �=
(n − 1, n).

Proof. Let zk → x in ∂Γ and let sk → ∞ in R so that (5.2) holds. For each i, j,
choose a non-zero element bi,j spanning Hom(Li, Lj)(x, y) and write

ui,j(y, z, x) =: ζi,j(z)bi,j .

Let p < n � q with (p, q) �= (n − 1, n). Then

‖up,q(y, zk, x)‖(y,zk,x)

‖un−1,n(y, zk, x)‖(y,zk,x)
=

|ζp,q(zk)|
|ζn−1,n(zk)|

‖bp,q‖(y,zk,x)

‖bn−1,n‖(y,zk,x)
.

By Proposition 4.7, the term ‖bp,q‖(y,zk,x)

‖bn−1,n‖(y,zk,x)
on the right-hand side goes to infinity.

But by Lemma 5.3, the left-hand side is bounded. It follows that

|ζp,q(zk)|
|ζn−1,n(zk)| → 0
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hence we must have skζp,q(zk) → 0, else skζn−1,n(zk) → ±∞ which means skun−1,n

(y, zk, x) diverges and that contradicts the definition of sk. Hence skup,q(y, zk, x) → 0
showing that vp,q = 0. ��

Lemma 5.4 implies that the tangent cone Cx to ξ(n−1)(∂Γ) at the point ξ(n−1)(x)
is contained in the line corresponding, in the coordinates (5.1), to Hom(Ln−1, Ln)
(x, y) (note this does not depend on y), so it is equal to that line or to a ray contained
in the line. Let us show now that Cx is the full line.

Lemma 5.5. Let z1, z2 ∈ ∂Γ\{y} be distinct. Then

un−1,n(y, z1, x) �= un−1,n(y, z2, x).

Proof. This follows easily from Lemma 5.2 and the following formula for chang-
ing coordinates on the affine chart Uξ(n+1)(y) to move the origin from ξ(n−1)(x) to
ξ(n−1)(z1):

un−1,n(y, z2, z1) = (un−1,n(y, z2, x) − un−1,n(y, z1, x)) ◦ Πz1
x

where Πz1
x : ξ(n−1)(z1) → ξ(n−1)(x) is the projection induced by the direct sum

decomposition ξ(n−1)(x)⊕ξ(n+1)(y) = R
2n. In particular, if un−1,n(y, z2, x) = un−1,n

(y, z1, x), then un−1,n(y, z2, z1) = 0, which would contradict Lemma 5.2. ��
We now prove Lemma 5.1.

Proof of Lemma 5.1. Lemma 5.4 implies that the tangent cone Cx to ξ(n−1)(∂Γ) at
the point ξ(n−1)(x) is contained in the line corresponding, in the coordinates (5.1), to
Hom(Ln−1, Ln)(x, y), which varies continuously with x ∈ ∂Γ. Lemma 5.5, together
with the continuity of un−1,n and the observation that un−1,n(y, x, x) = 0, implies
that Cx is the entire line, and not just a ray. It now follows that ξ(n−1)(∂Γ) is
a differentiable sub-manifold of dimension one (although the parameterization of
ξ(n−1)(∂Γ) by ∂Γ is not necessarily C1).

Since Grn−1(Rn,n) is smoothly embedded in Grn−1(R2n), we may work in the
coordinates (5.1) on Grn−1(R2n). Proposition 2.9 tells us that in these coordi-
nates, the tangent space to the fiber �ξ(n−1)(x) above ξ(n−1)(x) of the projection
�+ : Grn−1(Rn,n) → Gr+

n (Rn,n) is Hom(ξ(n−1)(x), Ln(x, y)). Hence Lemma 5.4 and
Lemma 5.5 imply that ξ(n−1)(∂Γ) is tangent to �ξ(n−1)(x) at ξ(n−1)(x). Since this holds
for all points ξ(n−1)(x) on ξ(n−1)(∂Γ), we conclude that ξ(n−1)(∂Γ) is contained in a
single fiber, concluding the proof of Lemma 5.1. ��

6 Properly Discontinuous Actions on H
n,n−1

We now prove Theorem 1.5 which states that the action of a surface group on the
pseudo-Riemannian hyperbolic space H

n,n−1 by a PSO(n, n)-Hitchin representation
is not properly discontinuous. Theorem 1.5 follows directly from Theorem 1.3 and
from the following theorem. Let ι2n : PSO(n, n) → PSL(2n, R) denote the inclusion.
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Theorem 6.1. Suppose � : Γ → PSO(n, n) is Anosov with respect to the stabi-
lizer P ′

n−1 of an isotropic (n−1)-plane. Then the �-action of Γ on H
n,n−1 is properly

discontinuous if and only if ι2n ◦ � : Γ → PSL(2n, R) is Anosov with respect to the
stabilizer Pn of an n-plane.

We will now prove this theorem. We will use the techniques of Guéritaud–Guichard–
Kassel–Wienhard [GGKW17].

Let us first recall (a version of) the properness criterion due independently to
Benoist and to Kobayashi. In the following, a′ denotes a Cartan sub-algebra in
the Lie algebra g′ of a semi-simple Lie group G′, and ‖ · ‖ is any norm on a′. We
assume, as in Section 4.3, that the adjoint group Ad(G′) is contained in the group
of inner automorphisms of the complexification gC of the Lie algebra g so that the
Cartan projection μ′ : G′ → a′+ is well-defined. For the case G′ = PSO(n, n), see
Example 4.10.

Theorem 6.2 (Benoist [Ben96], Kobayashi [Kob89]). Let G′ be a semi-simple Lie
group and H ′ < G′ a reductive subgroup. Let � : Γ → G′ be a discrete faithful
representation of a finitely generated group Γ. Then the �-action of Γ on G′/H ′ is
properly discontinuous if and only if ‖μ(�(γ)) − μ(H ′)‖ → ∞ as γ → ∞ in Γ.

In the setting of interest, G′ = PSO(n, n) and H ′ ∼= O(n, n − 1) is the subgroup
which stabilizes the orthogonal splitting R

n,n = R
n,n−1 ⊕ R

0,1, so that G′/H ′ =
H

n,n−1 (see Section 1.2). Recall from Example 4.10 that the positive Weyl chamber
a′+ for G′ may be thought of as the subset of the diagonal matrices of the form
diag(a1, . . . , an, −an, . . . ,−a1) where

a1 � a2 � · · · � an−1 � an, −an

but an is allowed to have either sign. The Cartan projection of H ′ is then given by

μ(H ′) = {diag(a1, . . . , an, −an, . . . ,−a1) ∈ a+ : an = 0}.

Hence, in this setting, the criterion for properness of the action of Γ on G′/H ′ in
Theorem 6.2 reduces to the simple condition that the nth diagonal entry of the
Cartan projection μ′

n(�(γ)) escapes all compact subsets of R as γ → ∞ in Γ. Note
that μ′

n(�(γ)) does not necessarily need to be positive, unlike μ′
i(�(γ)) for i < n.

However, by the following result of Kassel [Kas08], we can deduce that μ′
n(�(γ))

diverges to infinity in a consistent direction (i.e. always positive or always negative).
Note that here μ′(H) separates a′+ into two connected components.

Theorem 6.3 (Kassel). Let G′, H ′, Γ, and � be as in Theorem 6.2 and suppose
further that G′ and H ′ are both connected, that Γ is not virtually cyclic, and
that rankR(H ′) = rankR(G′) − 1. If the �-action of Γ on G′/H ′ is proper, then
all but finitely many points of μ(�(Γ)) lie in a single component of the complement
a′+\μ(H ′).
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Observe that

rankRO(p, q) = rankRPSO(p, q) = min(p, q),

and that rank is invariant under taking finite index subgroups. Hence the theorem
applies in the case G′ = PSO0(n, n) and H ′ = O(n, n − 1) ∩ PSO0(n, n). However, it
is easy to check that the same result continues to hold in the case of interest here,
namely G′ = PSO(n, n) and H ′ = O(n, n − 1) and we will apply the theorem in this
case without further remark.

Proof of Theorem 6.1. Let � : Γ → PSO(n, n) be P ′
n−1-Anosov. We begin with the

reverse implication, which is straightforward. Suppose ι2n ◦ � is Pn-Anosov. Let μ :
PSL(2n, R) → a+ denote the Cartan projection of G = PSL(2n, R) as in Example 4.9.
Then by Theorem 4.12, μn(ι2n ◦�(γ)) → ∞ as γ → ∞ in Γ. Since μn(ι2ng) = |μ′

n(g)|
for all g ∈ PSO(n, n), it follows that |μ′

n(ι2n ◦ �(γ))| → ∞ as γ → ∞ in Γ. Hence,
the �-action on H

n,n−1 = G′/H ′ is proper by Theorem 6.2, since μ′
n(H ′) = 0.

We now prove the forward implication. Let ξ(n−1) : ∂Γ → Grn−1(Rn,n−1) be the
Anosov limit curve, and let ξ

(n)
+ : ∂Γ → Gr+

n (Rn,n) and ξ
(n)
− : ∂Γ → Gr−

n (Rn,n)
denote the �-equivariant, continuous embeddings defined by ξ

(n)
± = �± ◦ ξ(n−1),

where �+ (resp. �−) is the projection taking an isotropic (n − 1)-plane to the
unique positive (resp. negative) istropic n-plane containing it, see Proposition 2.3.

Now assume that � determines a proper action of Γ on H
n,n−1. Then by The-

orem 6.2 and the discussion just above, we have that μ′
n(�(γ)) leaves every com-

pact set as γ → ∞ in Γ. Further, by Theorem 6.3, either μ′
n(�(γ)) → +∞ or

μ′
n(�(γ)) → −∞ and the sign is consistent for all escaping sequences in Γ. With-

out loss in generality, we assume μ′
n(�(γ)) → +∞ whenever γ → ∞ in Γ. It then

follows that for any γ ∈ Γ\{1}, the nth value λ′
n(�(γ)) = limm→∞ μ′

n(�(γm))/m
of the Lyapunov projection is non-negative. Now, fix γ ∈ Γ\{1}, and observe that
ξ(n−1)(γ+)⊥∩ξ(n−1)(γ−)⊥ is a �(γ)-invariant subspace on which the restriction of the
inner product has signature (1, 1), where here γ± = limm→±∞ γm ∈ ∂Γ. It follows
that the restriction of �(γ) to this (1, 1) subspace is diagonalizable, and the corre-
sponding eigenvalues are precisely the exponentials of ±λ′

n(�(γ)). If λ′
n(�(γ)) = 0,

then ξ(n−1)(γ+)⊥ ∩ξ(n−1)(γ−)⊥ projects to a line in H
n,n−1 which is point-wise fixed

by the action of �(γ), contradicting properness of the action. Hence λ′
n(�(γ)) > 0.

It then follows that the n-plane ξ
(n)
+ (γ+) is the attracting fixed point for the action

of �(γ) on the full Grassmannian Grn(R2n) of n-planes in R
2n. Hence, composing

with the inclusion Gr+
n (Rn,n) ↪→ Grn(R2n), the map ξ

(n)
+ determines a continuous

embedding ∂Γ → Grn(R2n) which is equivariant and dynamics preserving for the
representation ι2n ◦ � : Γ → PSL(2n, R). Hence, the implication (2) =⇒ (1) in
Theorem 4.12 shows that ι ◦ � is Anosov with respect to the stabilizer Pn of an
n-plane in R

2n. ��
Theorem 1.5 follows directly from Theorems 6.1, 1.3, and the fact that Hitchin

representations are Anosov with respect to the Borel subgroup (Theorem 4.5).
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7 Constant Curvature Geometry in Signature (n, n − 1)

We now turn to some of the geometry needed for Theorem 1.2. In order to understand
properly discontinuous actions by isometries of the pseudo-Riemannian Euclidean
space E

n,n−1, we recall the notion of signed translation length in E
n,n−1, known as

the Margulis invariant (Section 7.3). The proof of Theorem 1.2 involves deforming
into pseudo-Riemannian hyperbolic geometry H

n,n−1, and it will be important to
have a theory of signed translation length in that setting as well. We develop the
notion of signed translation length in each of E

n,n−1 and H
n,n−1 in parallel.

Before we proceed, we will perform a change of basis on R
2n that we will use for

the rest of this article. Recall that in Section 2, we specified the bilinear form 〈·, ·〉n,n

on R
2n using the matrix J2n in the standard basis e1, . . . , e2n of R

2n: if x, y ∈ R
2n

are written as x = (x1, . . . , x2n)T and y = (y1, . . . , y2n)T in the standard basis of
R

2n, then

〈x, y〉n,n =
2n∑

i=1

xiy2n+1−i.

Let e′
1, . . . , e

′
2n be the basis of R

2n defined by

e′
i :=

⎧

⎪⎨

⎪⎩

1√
2
(ei + e2n+1−i) if i � n

1√
2
(ei−n − e3n+1−i) if i � n + 1

.

If x, y ∈ R
2n are written as x = (x1, . . . , x2n)T and y = (y1, . . . , y2n)T in the basis

e′
1, . . . , e

′
2n, then

〈x, y〉n,n =
n∑

i=1

xiyi −
2n∑

i=n+1

xiyi.

In Sections 7 and 8, we will think of e′
1, . . . , e

′
2n as the standard basis of R

2n instead
of e1, . . . , e2n, as this will be more convenient. Henceforth, all coordinates, matrices,
and vectors will be written using the basis e′

1, . . . , e
′
2n.
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7.1 H
n,n−1 and E

n,n−1 as real projective geometries. Both H
n,n−1 and

E
n,n−1 naturally embed in real projective geometry. Indeed, the projective model

for H
n,n−1 is given by:

H
n,n−1 :=

{

[x] ∈ P(R2n) : 〈x, x〉n,n < 0
}

.

The projective orthogonal group PO(n, n) < PGL(2n, R) for this inner
product preserves H

n,n−1 and is the isometry group of a geodesically complete
pseudo-Riemannian metric gH of signature (n, n − 1). The metric gH is the natural
metric coming from restriction of 〈·, ·〉n,n to the tangent spaces of the hyperboloid
〈x, x〉n,n = −1, which double covers H

n,n−1.
The restriction of 〈·, ·〉n,n to the vector space R

2n−1 = span{e′
1, . . . , e

′
2n−1}, de-

termines a complete, flat metric gE of signature (n, n − 1) on the parallel affine
hyperplane defined by x2n = 1, and hence on the corresponding affine chart of
projective space. We henceforth identify this affine chart with E

n,n−1:

E
n,n−1 := {[x1 : . . . : x2n−1 : 1]} ⊂ P(R2n).

The subgroup of the projective general linear group PGL(2n, R) that preserves this
affine chart and its flat metric gives the isometry group of E

n,n−1:

Isom(En,n−1) =
{[

A v
0 1

]

∈ PGL(2n, R) : A ∈ O(n, n − 1), v ∈ R
2n−1

}

, (7.1)

where here O(n, n − 1) denotes the orthogonal group for the restriction, to be de-
noted 〈·, ·〉n,n−1, of 〈·, ·〉n,n to R

2n−1. The vector subspace R
2n−1 together with inner

product 〈·, ·〉n,n−1 is denoted R
n,n−1 as usual. We will henceforth restrict to the

orientation preserving isometry groups PSO(n, n) of H
n,n−1 and Isom+(En,n−1) of

E
n,n−1, which consists of the elements as in (7.1) with A ∈ SO(n, n− 1). The reason

for this is that the discussion of properly discontinuous actions, in Sections 7.2 and
7.3, will make important use of the orientation. A theory of properly discontinuous
actions in the general setting will follow from elementary considerations, but is not
needed for the main goal of the paper.

We fix once and for all an orientation on R
n,n defined by the n-form e′

1 ∧· · ·∧e′
2n,

and an orientation on R
n,n−1 defined by the n-form e′

1 ∧ · · · ∧ e′
2n−1. The diffeomor-

phism E
n,n−1 → R

n,n−1 given by [x1 : · · · : x2n−1 : 1] �→ (x1, . . . , x2n−1) then defines
an orientation on E

n,n−1.

7.2 Translation lengths in H
n,n−1. We follow the conventions from Exam-

ple 4.10 and think of G′ = PSO(n, n) as embedded in G = PSL(2n, R), denoting by
λ′ and λ the respective Lyapunov projections.

Consider an element g ∈ G′ whose Lyapunov projection λ′(g) satisfies that

λ′
1(g) � · · · � λ′

n−1(g) > λ′
n(g), −λ′

n(g) > −λ′
n−1(g) � · · · � −λ′

1(g) (7.2)
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where here λ′
n(g) may be positive, in which case λ′

n(g) = λn(g), or negative, in which
case λ′

n(g) = −λn(g), or zero. With our future application in mind, we note that this
assumption holds for all non-trivial elements of a PSO(n, n)-Hitchin representation.
Thinking of g as an element of the (projective) matrix group G, the entries (7.2) of
the Lyapunov projection are the logarithms of the moduli of the eigenvalues of g. Let
V +

n−1(g) denote the sum of the generalized eigenspaces associated to the eigenvalues
λ′

1(g), . . . , λ′
n−1(g), and let V −

n−1(g) denote the sum of the generalized eigenspaces
associated to the eigenvalues −λ′

n−1(g), . . . ,−λ′
1(g). Then (V +

n−1(g), V −
n−1(g)) is a

pair of transverse isotropic (n−1)-spaces. The orthogonal complement of V +
n−1(g)⊕

V −
n−1(g) is a (1, 1)-subspace L+

n (g)⊕L−
n (g), where L+

n (g), L−
n (g) are defined as follows.

In the case that λ′
n(g) �= −λ′

n(g), L+
n (g) (resp. L−

n (g)) denotes the eigenspace for the
eigenvalue expλ′

n(g) (resp. exp(−λ′
n(g))), and we note that by definition of λ′, the

subspace V +
n−1 ⊕ L+

n (g) is a positive isotropic n-plane; it is precisely this convention
that defines the sign of λ′

n(g). If λ′
n(g) = −λ′

n(g) = 0, then L+
n (g) ⊕ L−

n (g) is a
decomposition of the 1 = exp(0) eigenspace into isotropic lines so that V +

n−1(g) ⊕
L+

n (g) is a positive isotropic n-plane.
Here is a geometric picture of the action of g on H

n,n−1. Each of the subspaces
P(V +

n−1), P(V −
n−1) in P(R2n) are contained in the ideal boundary

∂H
n,n−1 =

{

[x] ∈ P(R2n) : 〈x, x〉n,n = 0
}

of H
n,n−1. The subspace P(V +

n−1(g)⊕V −
n−1(g)) intersects H

n,n−1 in a totally geodesic
copy of H

n−1,n−2 and the action of g repels from P(V −
n−1(g)) and attracts toward

P(V +
n−1(g)). For example, if g is diagonalizable with distinct eigenvalues, then for

each 1 � i � n−1, expλ′
i(g) is an eigenvalue of g with eigenline L+

i and exp(−λ′
i(g))

is an eigenvalue with eigenline L−
i such that L+

i ⊕ L−
i has signature (1, 1). The

projection P(L+
i ⊕ L−

i ) to P(R2n) intersects H
n,n−1 in a line with ideal endpoints

P(L+
i ), P(L−

i ) ∈ ∂H
n,n−1, which is invariant under g, is Riemannian, and has a well-

defined orientation defined by labeling P(L+
i ) the positive endpoint. The picture of

the action on P(V +
n−1(g) ⊕ V −

n−1(g)) is slightly more complicated in the case that g
is not diagonalizable and we do not attempt a thorough description here.

The important behavior we wish to observe is in the g-invariant Riemannian line
A = A (g) := P(L+

n ⊕ L−
n ) ∩ H

n,n−1 with endpoints P(L+
n ), P(L−

n ) ∈ ∂H
n,n−1. The

translation along the axis A , which is sometimes referred to as the slow axis, may
be either toward or away from P(L+

n ), depending on the sign of λ′
n(g). Hence, the

translation amount

L (g) := 2λ′
n(g) (7.3)

has a well-defined sign. Note that under the same assumptions on g ∈ PSO(n, n) as
above, the action of the cyclic group 〈g〉 on H

n,n−1 is properly discontinuous if and
only if L (g) �= 0.

Remark 7.1. If g ∈ PSO(n, n) has Lyapunov projection λ′(g) as in (7.2) above,
then L (g) = (−1)nL (g−1). This follows easily because V ±

n−1(g
−1) = V ∓

n−1(g), but
L±

n (g−1) = L∓
n (g) if n is even while L±

n (g−1) = L±
n (g) if n is odd.
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Remark 7.2. It follows from Theorem 6.3 that if g, h ∈ PSO(n, n) have Lyapunov
projections λ′(g), λ′(h) as in (7.2) above, if 〈g, h〉 is not virtually cyclic, and if further
L (g) and L (h) have opposite sign, then 〈g, h〉 does not act properly discontinuously
on H

n,n−1. This is the analogue of Margulis’s Opposite Sign Lemma from the setting
of affine geometry, see Lemma 7.5 below. In particular, in light of Remark 7.1, if n
is odd, then the only groups which admit proper actions by isometries of H

n,n−1 are
virtually cyclic, see Benoist [Ben96].

7.3 Translation lengths in E
n,n−1: the Margulis invariant. Recall that

an element g ∈ Isom+(En,n−1) < PSL(2n, R) has the form

g =
[
Ag vg

0 1

]

∈ PSL(2n, R) (7.4)

where vg ∈ R
2n−1 is called the translational part and Ag ∈ SO(n, n − 1) is called

the linear part. Here we think of SO(n, n − 1) as the subgroup of PSL(2n, R) which
preserves the vector space R

2n−1 spanned by the first 2n−1 coordinate basis vectors
of R

2n, and which preserves the form 〈·, ·〉n,n, and hence preserves its restriction, de-
noted 〈·, ·〉n,n−1, to R

2n−1. The form 〈·, ·〉n,n−1 on R
2n−1 makes the affine hyperplane

x2n = 1, and hence the corresponding affine chart of projective space P(R2n), into a
copy of E

n,n−1, whose orientation preserving isometry group has the form above.
Let g ∈ Isom+(En,n−1) < PSL(2n, R) and note that the Lyapunov projection λ(g)

is equal to the Lyapunov projection λ′′(Ag) of the linear part Ag, where we follow
the convention of Example 4.11 and think of G′′ = SO(n, n − 1) as embedded in
G′ = PSO(n, n) with both embedded in G = PSL(2n, R). With our future application
to actions on E

n,n−1 whose linear part is Hitchin in mind, let us assume that the
Lyapunov projection λ(g) satisfies:

λ1(g) � · · · � λn−1(g) > λn(g) = 0 = −λn(g) > −λn−1(g) � · · · � −λ1(g). (7.5)

Then the affine transformation g has a unique invariant line A, which we will describe
now. The values listed in (7.5) are precisely the logarithms of the moduli of the
eigenvalues of g, repeated with multiplicity. Let V +

n−1(g) denote the sum of the
generalized eigenspaces associated to the λ1(g), . . . , λn−1(g), and let V −

n−1(g) denote
the sum of the generalized eigenspaces associated to the −λn−1(g), . . . ,−λ1(g). In
fact, V +

n−1(g), V −
n−1(g) are contained in R

2n−1 ⊂ R
2n and are sums of generalized

eigenspaces for the linear part Ag of g. Each of V +
n−1(g), V −

n−1(g) is an isotropic
(n − 1)-plane for the form 〈·, ·〉n,n−1 and the pair (V +

n−1(g), V −
n−1(g)) is transverse,

meaning the span has signature (n − 1, n − 1). The generalized eigenspace V0(g)
of g for the eigenvalue 1 = exp(0) is two-dimensional and contains the eigenline
L0(g) ⊂ R

2n−1 for the eigenvalue 1 = exp(0) of Ag. Since V0 ∩ R
2n−1 = L0, we have

that A = A(g) := P(V0) ∩ E
n,n−1 is an affine line parallel to the direction of L0. We

may orient L0 and hence A as follows. Choose a positively oriented basis

(f+
1 , . . . , f+

n−1, f0, f
−
n−1, . . . , f

−
1 ) ∈ (R2n−1)2n−1 (7.6)



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

for R
2n−1 so that

span(f+
1 , . . . , f+

n−1) = V +
n−1,

span(f−
1 , . . . , f−

n−1) = V −
n−1,

Rf0 = L0.

Then 〈f+
i , f+

j 〉 = 〈f−
i , f−

j 〉 = 〈f+
i , f0〉 = 〈f−

i , f0〉 = 0 for all 1 � i, j � n − 1, and
〈f0, f0〉 > 0. Further we may arrange that

〈f+
i , f−

j 〉
{

= 0 if i �= j
< 0 if i = j

.

This together with the positive orientation of the basis determines the direction of f0

and we orient L0 so that the f0 direction is positive. This determines an orientation
on any parallel affine line, in particular on the translation axis A.

Remark 7.3. Alternatively, we may orient the line L0(g) as follows. Since L0(g)
is positive for 〈·, ·〉n,n−1, the two-plane L0 ⊕ Re2n has signature (1, 1) for the form
〈·, ·〉n,n and hence splits as a direct sum of isotropic lines L+

0 ⊕ L−
0 where we choose

the labeling so that the isotropic n-plane V +
n−1 ⊕ L+

0 is positive. Then, there is a
unique � ∈ L0(g) so that � + e2n ∈ L+

0 . We orient L0(g) in the direction of �. This
agrees with the orientation defined above.

Since the line A is Riemannian, oriented, 〈g〉-invariant, and its direction is given
by f0, we may measure the signed translation distance of g along A by the formula,

α(g) := 〈g · x − x, f0〉n,n−1, (7.7)

where x is any point in A.

Remark 7.4. A simple computation shows that the right-hand side of Equation 7.7
yields the same quantity for any x ∈ E

n,n−1 (not just for x ∈ A):

α(g) = 〈g · x − x, f0〉n,n−1 = 〈v, f0〉n,n−1 (7.8)
= dA(ΠA(x), ΠA(g · x)) (7.9)

where here ΠA : E
n,n−1 → A denotes the orthogonal projection and dA(y, x) denotes

plus or minus the Riemannian distance between y and x along A with positive sign
if and only if the pair (y, x) is positive for the orientation induced by f0.

The quantity α(g) is often called the Margulis invariant of the transformation g.
It plays a crucial role in determining proper discontinuity of group actions on E

n,n−1.
Indeed, the action of the cyclic group 〈g〉 is properly discontinuous if and only
if α(g) �= 0. The following lemma, known as the Opposite Sign Lemma, goes
back to Margulis’s original work [Mar83] on properly discontinuous groups of
isometries of E

2,1.
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Lemma 7.5 (Margulis [Mar83], Abels-Margulis-Soifer [AMS97]). Assume that g, h ∈
Isom+(En,n−1) have linear parts Ag, Ah as in (7.5). Assume further that 〈g, h〉 is not
virtually cyclic. If α(g), α(h) have opposite sign, then 〈g, h〉 does not act properly
discontinuously on E

n,n−1.

In order to prove Theorem 1.2, we will need a properness criterion for actions
on E

n,n−1. The necessary condition for properness implied by Lemma 7.5, namely
consistent sign of the Margulis invariant, is not sufficient. Indeed, there are discrete
subgroups of H < Isom+(E2,1) (for example free on two-generators) with the prop-
erty that α(g) is well-defined and positive for all g ∈ H � {1}, but H fails to act
properly discontinuously on E

2,1 (see [GLMM]). Nonetheless, a necessary and suf-
ficient criterion for properness in terms of the Margulis invariant does exist in the
context of interest here (see the upcoming Section 7.5). It is phrased in terms of
geodesic currents.

Remark 7.6. Suppose that g ∈ Isom+(En,n−1) has the property that the Lyapunov
projection λ′′(Ag) of the linear part of g satisfies

λ′′
1(Ag) � · · · � λ′′

n−1(Ag) > 0 > −λ′′
n−1(Ag) � · · · � −λ′′

1(Ag).

Observe that α(g) = (−1)nα(g−1). In particular, Lemma 7.5 implies that if 〈g, h〉 ⊂
Isom+(En,n−1) is not virtually cyclic, then 〈g, h〉 cannot act properly discontinuously
on E

n,n−1 when n is odd.

7.4 The space of geodesic currents. We now return to our surface group
Γ = π1S. As in Section 4.1, we fix a hyperbolic metric on the surface S for this
entire discussion. We let ϕt denote the geodesic flow on T 1S.

Definition 7.7. A geodesic current μ is a finite, ϕt-invariant, Borel measure on the
unit tangent bundle T 1S. We denote the space of geodesic currents on S by C(S).

Remark 7.8. Geodesic currents were introduced by Bonahon [Bon88] in his descrip-
tion of the Thurston boundary of Techmüller space. Definition 7.7, which follows
Goldman–Labourie–Margulis [GLM09], is slightly different than Bonahon’s origi-
nal definition in that the currents of Definition 7.7 are oriented, while those from
Bonahon’s setting are not.

The most basic example of a geodesic current is the current associated to an
oriented closed geodesic c on S. Denote by μc the geodesic current that is uniformly
supported on the tangent field of c and whose total mass is

∫

T 1S
dμc = �(c),

where �(c) denotes the length of c. This defines a map from the oriented closed
geodesics CG(S) into the space C(S) of geodesic currents.

As a consequence of the Banach-Alaoglu Theorem, we have the following fact.
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Fact 7.9. Equip C(S) with the weak-* topology. The space of probability currents

C1(S) :=
{

μ ∈ C(S) :
∫

T 1S
dμ = 1

}

.

is compact.

7.5 The Margulis invariant for currents and the properness criterion.
Here we will discuss a properness criterion for actions on E

n,n−1, due originally to
Goldman–Labourie–Margulis [GLM09] in the case of free and surface groups acting
on E

2,1, and extended by Ghosh–Treib [GT17] to the case of word hyperbolic groups
acting with Anosov linear part in any E

n,n−1. This is one of several key tools needed
for Theorem 1.2. We shall discuss the properness criterion in the context of interest,
namely Γ = π1S is the fundamental group of a closed surface S of negative Euler
characteristic. As in the previous section we equip S with a fixed hyperbolic metric.

Let (ρ, u) : Γ → Isom+(En,n−1) = SO(n, n− 1)� R
2n−1 be an action of the group

Γ by isometries of E
n,n−1. Here ρ : Γ → SO(n, n − 1) denotes the linear part of the

action, a homomorphism, and u : Γ → R
2n−1 denotes the translational part, which

is a ρ-cocycle:

u(γ1γ2) = u(γ1) + ρ(γ1)u(γ2).

Suppose the linear part ρ : Γ → SO(n, n− 1) = G′′ is Anosov with respect to the
stabilizer P ′′

n−1 of an isotropic (n−1)-plane in R
n,n−1. Then each non-trivial element

g = (ρ(γ), u(γ)) satisfies (7.5) and therefore the Margulis invariant α(ρ(γ), u(γ))
is defined. Recall that oriented closed geodesics c ∈ CG(S) are in one-one corre-
spondence with non-trivial conjugacy classes [γ] ⊂ Γ. Since the Margulis invariant
is invariant under conjugation, we may naturally associate to the oriented closed
geodesic c = [γ], the Margulis invariant α(ρ(γ), u(γ)).

Theorem 7.10 (Goldman–Labourie–Margulis, Ghosh–Treib). Suppose the linear
part ρ : Γ → SO(n, n − 1) of the affine action (ρ, u) is P ′′

n−1-Anosov. Then:

(1) There exists a unique continuous linear functional α(ρ,u) : C(S) → R such that
for each c = [γ] ∈ CG(S),

α(ρ,u)(μc) = α(ρ(γ), u(γ)). (7.10)

(2) The action (ρ, u) of Γ on E
n,n−1 is properly discontinuous if and only if α(ρ,u)(μ)

�= 0 for all μ ∈ C(S)\{0}.

Note that Theorem 7.10.(2) implies the Opposite Sign Lemma 7.5, since the space
C(S) \ {0} of non-trivial currents is connected.

In order to study properly discontinuous affine actions with Anosov linear part,
as in Theorem 7.10, Ghosh–Treib [GT17] generalize the ideas of [GLM09] and in-
troduce a notion of affine Anosov. We will not recall their definition here. However,
since it will be useful for the proof of Theorem 1.2, let us explain the construction
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of the functional α(ρ,u) in Theorem 7.10.(1). Let (ρ, u) as in the theorem state-
ment. In order to discuss Anosov properties of representations in Isom+(En,n−1),
which is not reductive, we think of Isom+(En,n−1) as a subgroup of PSL(2n, R).
Observe that since ρ is P ′′

n−1-Anosov, the representation (ρ, 0), when viewed as a
representation into PSL(2n, R), is Anosov with respect to the stabilizer Pn−1,n+1 in
PSL(2n, R) of a flag made up of an (n − 1)-space contained in a (n + 1)-space, see
Section 4.4. Since (ρ, u) is conjugate in PSL(2n, R) to (ρ, εu) for any ε > 0, and since
(ρ, εu) → (ρ, 0) as ε → 0, it follows from Fact 4.6 that (ρ, u), when viewed as a rep-
resentation into PSL(2n, R), is also Pn−1,n+1-Anosov. Let ξ(n−1) : ∂Γ → Grn−1(R2n)
and ξ(n+1) : ∂Γ → Grn+1(R2n) denote the corresponding boundary maps. Then note
that ξ(n−1) does not depend on the translational part u; it is simply the composi-
tion of the boundary map for the P ′′

n−1-Anosov representation ρ : Γ → SO(n, n − 1)
with the inclusion Grn−1(Rn,n−1) → Grn−1(R2n) induced by the inclusion R

n,n−1 =
R

2n−1 → R
2n as the subspace orthogonal to e′

2n. However, ξ(n+1) does depend on u.
Together, the Anosov boundary maps define a splitting of the flat R

2n-bundle
associated to (ρ, u) into sub-bundles that are invariant under the geodesic flow Dϕt:

V(ρ,u) = Γ\(T 1S̃ × R
2n) = V + ⊕ V0 ⊕ V − (7.11)

where V +, V − have rank n−1 and V0 has rank two. Thought of as (ρ, u)-equivariant
maps V ± : T 1S̃ → Grn−1(R2n) and V0 : T 1S̃ → Gr2(R2n), the three maps depend
only on the y and x coordinates of the point (y, z, x) ∈ T 1S̃. Explicitly, V +(y, x) =
ξ(n−1)(x), V −(y, x) = ξ(n−1)(y) and V0(y, x) = ξ(n+1)(y) ∩ ξ(n+1)(x).

Since V +(y, x), V −(y, x) are each contained in R
2n−1, it follows that V0(y, x) ∩

R
2n−1 =: L0(y, x) is one-dimensional. Indeed the decomposition V +(y, x)⊕L0(y, x)⊕

V −(y, x) = R
2n−1 does not depend on the translational part u; it precisely induces

the decomposition of the flat R
2n−1 bundle Vρ associated to ρ coming from the

Anosov boundary map ξ(n−1):

Vρ = Γ\(T 1S̃ × R
2n−1) = V + ⊕ L0 ⊕ V −. (7.12)

Note that V +(y, x), V −(y, x) are isotropic subspaces of R
n,n−1 and L0(y, x) is

a positive line (meaning the restriction of 〈·, ·〉n,n−1 is positive definite) which is
orthogonal to V +(y, x) ⊕ V −(y, x) in R

n,n−1.
For (y, x) = (γ−, γ+) the pair of repelling and attracting fixed points for an ele-

ment γ ∈ Γ, the subspaces V +, V −, V0, L0 corresponds precisely to those coming from
the decomposition into generalized eigenspaces for g = (ρ(γ, u(γ)) of Section 7.3:

V ±(γ−, γ+) = V ±
n−1((ρ(γ), u(γ))),

V0(γ−, γ+) = V0((ρ(γ), u(γ))),
L0(γ−, γ+) = L0((ρ(γ), u(γ))).

By the discussion in Section 7.3, L0(γ−, γ+) is an oriented line and using the same
convention we define an orientation on L0(y, x) for all y �= x in ∂Γ. Hence, there is
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a unique positive unit vector f0(y, x) in each line L0(y, x), which defines the neutral
section f0 : T 1S → Vρ.

Now, consider the flat E
n,n−1-bundle over T 1S,

E(ρ,u) := Γ\(T 1S̃ × E
n,n−1), (7.13)

where here Γ acts on the E
n,n−1 factor by the (affine) isometries (ρ, u). The geodesic

flow ϕt lifts in the usual way to a flow on E(ρ,u) which is locally constant in the
fiber. Let s : T 1S → E(ρ,u) be a section which is differentiable along flow lines. The
derivative ∇ϕs along the geodesic flow takes values in the vertical tangent bundle
T vE(ρ,u) of E(ρ,u) which canonically identifies with the vector bundle Vρ. Then for a
current μ ∈ C(S), define:

α(ρ,u)(μ) :=
∫

ν∈T 1S
〈∇ϕs, f0〉 dμ (7.14)

where here 〈·, ·〉 is the inner product on Vρ coming from the inner product 〈·, ·〉n,n−1

on R
n,n−1. Let us see Theorem 7.10.(1): that (7.14) satisfies (7.10) in the case that

μ = μc is the current associated to the closed geodesic c ∈ CG(S). In the following,
dc : [0, �(c)] → T 1S is the tangent vector to the path traversing the geodesic c at
unit speed.

α(ρ,u)(μc) =
∫ �(c)

τ=0
〈(∇ϕs)(dc(τ)), f0(dc(τ))〉 dτ (7.15)

and the right-hand side may be evaluated by lifting to T 1S̃ where the bundles in
consideration become products. Let s̃ : T 1S̃ → E

n,n−1 be the lift of the section s,
a (ρ, u)-equivariant map. Choose a lift c̃ of c to S̃ and let dc̃ : [0, �(c)] → T 1S̃ be
the tangent vector to the unit speed parameterization of c̃. Then the right-hand side
of (7.15) becomes

α(ρ,u)(μc) =
∫ �(c)

τ=0
〈(∇ϕs̃)(dc̃(τ)), f0(dc̃(τ))〉 dτ

=
∫ �(c)

τ=0

〈
d
dt

∣
∣
∣
∣
t=0

s̃(dc̃(τ + t)), f0(dc̃(τ))
〉

dτ

=
∫ �(c)

τ=0

d
dt

∣
∣
∣
∣
t=0

〈s̃(dc̃(τ + t)), f0(dc̃(τ))〉 dτ

=
〈

s̃(dc̃(�(c))) − s̃(dc̃(0)), f0(γ−, γ+)
〉

=
〈

s̃(γ · dc̃(0)) − s̃(dc̃(0)), f0(γ−, γ+)
〉

=
〈

(ρ(γ), u(γ)) · s̃(dc̃(0)) − s̃(dc̃(0)), f0(γ−, γ+)
〉

= α(ρ,u)(c)

where here γ ∈ Γ is the element corresponding to the chosen lift c̃ of c, we observe
that f0(dc̃(τ)) = f0(γ−, γ+) is independent of τ , and we note the final equality
follows from (7.8).
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Before continuing to an analogous theory in the H
n,n−1 setting, let us first give

a useful interpretation of Formula (7.14). Formula (7.14) says that to calculate
α(ρ,u)(μ), one first measures the infinitesimal signed progress (along the geodesic
flow on T 1S) made by a section s of E(ρ,u) in the neutral direction f0 above each
point of T 1S , and then integrate it against μ. We will now interpret the neutral vec-
tor f0 as the vector field on E

n,n−1 whose pairing with a vector v based at any point
x ∈ E

n,n−1 measures the projection of v to an oriented translation axis A ⊂ E
n,n−1

parallel to f0. We define the translation axis A(ν) above ν ∈ T 1S using the middle
sub-bundle V0 from the decomposition (7.11). More precisely, suppose that ν ∈ T 1S
lifts to ν̃ = (y, z, x) ∈ T 1S̃. Then

A(y, x) := P(V0(y, x)) ∩ E
n,n−1 (7.16)

is an affine line E
n,n−1 whose direction is L0(y, x). Since (y, x) �→ A(y, x) is (ρ, u)-

equivariant, A defines an affine Riemannian line, denoted by A(ν), in the fiber E
n,n−1
ν

of E(ρ,u) which varies continuously with ν. The neutral vector f0(ν) at ν ∈ T 1S, which
is tangent to A(ν), defines an orientation of the corresponding line A(ν). We call
A(ν) the translation axis associated to ν ∈ T 1S. Note that A(ν) is locally constant
under the geodesic flow ϕt.

Next consider any oriented Riemannian line A in E
n,n−1 and let f0 ∈ R

n,n−1

denote a non-zero tangent vector to A. Let ΠA : E
n,n−1 → A denote the orthogonal

projection, defined by the property that ΠA(x) is the unique point in A so that
〈x − ΠA(x), f0〉n,n−1 = 0. Note that ΠA satisfies the equivariance property that
for any g ∈ Isom+(En,n−1), Πg·A(g · x) = g · ΠA(x). In particular, if A is invariant
under g, then ΠA(g · x) = gΠA(x). Note that the function (y, z, x) �→ ΠA(y,x) is
(ρ, u)-equivariant and hence descends to T 1S giving a continuous assignment of a
projection map ΠA(ν) : E

n,n−1
ν → A(ν) in the fiber above ν ∈ T 1S. Observe that for

any vector v ∈ TxE
n,n−1,

gEx(v, f0) = gEΠAx(dΠAv, f0)

where gE denotes the flat metric on E
n,n−1, and we interpret f0 ∈ R

n,n−1 as a parallel
vector field on E

n,n−1. Hence we may rewrite formula (7.14) as follows (see Figure 2):

α(ρ,u)(μ) =
∫

ν∈T 1S
gE(∇ϕs, f0) dμ

=
∫

ν∈T 1S
gE
(

dΠA(ν) ((∇ϕs)(ν)) , f0(ν)
)

dμ. (7.17)

7.6 Extending the length function L for H
n,n−1 to currents. We now

give an analogue of the construction from the previous section in the setting of H
n,n−1

geometry. We follow the notation conventions of Section 7.2 and Example 4.10,
thinking of G′ = PSO(n, n) as embedded in G = PSL(2n, R).
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Figure 2: The Margulis invariant α(ρ,u)(μ) is the rate at which the projection of s(ν) to the
translation axis A(ν) makes progress under the geodesic flow, averaged over ν ∈ T 1S against
the current μ. Here we use the flat connection to identify the fibers of E(ρ,u) above the flow
line ϕtν with a fixed copy of E

n,n−1 and note that the translation axis A(ϕtν) = A(ν) is
constant in t.

Consider a representation � : Γ → G′ which is Anosov with respect to the stabi-
lizer P ′

n−1 of an isotropic (n − 1)-plane and form the flat H
n,n−1 bundle associated

to �:

H
 := Γ\(T 1S̃ × H
n,n−1).

As usual, we lift the geodesic flow ϕt to H
 so that it is locally constant in the fiber.
Suppose now that there is a differentiable section s : T 1S → H
 (such a section
exists in the setting where we will apply this later). The present goal will be to work
by analogy to (7.17) and use the variation of the section s along the geodesic flow
to define a continuous length functional L
 on the space of geodesic currents C(S),
that satisfies

L
(μc) = L (�(γ)).

Here, [γ] = c and the function L of Section 7.2 is well-defined on �(γ) since � is
P ′

n−1-Anosov.
Let ξ(n−1) : ∂Γ → Grn−1(Rn,n) and ξ(n+1) : ∂Γ → Grn+1(Rn,n) be the associated

Anosov boundary maps and let ξ
(n)
+ : ∂Γ → Gr+

n (Rn,n) and ξ
(n)
− : ∂Γ → Gr−

n (Rn,n)
be the maps defined by ξ

(n)
± = �± ◦ ξ(n−1), where �+ (resp. �−) is the projection

taking an isotropic (n − 1)-plane to the unique positive (resp. negative) istropic n-
plane containing it, see Proposition 2.3. Then for each pair (y, x) of distinct points
in ∂Γ, define

L+
n (y, x) = ξ

(n)
+ (x) ∩ ξ(n+1)(y), (7.18)

L−
n (y, x) = ξ

(n)
− (x) ∩ ξ(n+1)(y). (7.19)

Note that in the case that (y, x) = (γ−, γ+) are the repelling and attracting fixed
points for an element γ ∈ Γ, we have:
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L+
n (γ−, γ+) = L+

n (�(γ)),
L−

n (γ−, γ+) = L−
n (�(γ))

where L±
n (g) is as defined in Section 7.2. Now, define

A
(y, x) = A (y, x) := P(L+
n (y, x) ⊕ L−

n (y, x)) ∩ H
n,n−1. (7.20)

Then A (γ−, γ+) is the slow axis for �(γ) as in Section 7.2. For any point (y, z, x) ∈
T 1S̃, we call A (y, x) the slow axis associated to (y, z, x); it is invariant under ϕt (i.e.
it is independent of z). Further, by the same convention as for A (γ−, γ+), described
in Section 7.2, the axis A (y, x) is endowed with a natural orientation, namely that for
which P(L+

n (y, x)) is the forward endpoint and P(L−
n (y, x)) the backward endpoint.

We equip A (y, x) with the (anti-symmetric) signed distance function dA (y,x)(·, ·),
where dA (y,x)([v], [w]) is plus/minus the Riemannian distance with positive sign if
and only ([v], [w]) is positive for the orientation. Let ν ∈ T 1S be the point that lifts
to ν̃ = (y, z, x) ∈ T 1S̃. Since the construction of A (y, x) is equivariant, A descends
to T 1S, giving a smooth assignment of an oriented Riemannian axis A (ν) in the
fiber H

n,n−1
ν above ν.

Next, consider any oriented Riemannian geodesic axis A in H
n,n−1. Write A =

P(L− ⊕ L+) where P(L−), P(L+) ∈ ∂H
n,n−1 are the negative and positive endpoints

of A respectively. Choose f+ ∈ L+ and f− ∈ L− so that 〈f+, f−〉 = −1. Define
U(A ) ⊂ H

n,n−1 to be the open subset of points [v] ∈ H
n,n−1 so that 〈v, f+〉〈v, f−〉 >

0 and note that U(A ) is independent of the choice of f+, f− as above. The region
U(A ) is a maximal neighborhood of the axis A on which the following “nearest
point” projection is defined. Let ΠA : U(A ) → A be given by the formula:

ΠA ([w]) :=
[−〈w, f+〉f− − 〈w, f−〉f+

]

. (7.21)

Again, note that ΠA is independent of the choice of f+, f− as above, and note also
that ΠA is smooth and varies smoothly as A varies. Further, note that ΠA satisfies
the equivariance property that for any g ∈ PSO(n, n), ΠgA (g · [v]) = g · ΠA ([v]).
In particular, if A is invariant under g, then ΠA (g · [v]) = gΠA ([v]). Note that the
functions (y, z, x) �→ U(A (y, x)) and (y, z, x) �→ ΠA (y,x) are �-equivariant and hence
descend to T 1S giving a smooth assignment of an open neighborhood U(A (ν)) of
A (ν), and a projection map ΠA (ν) of the fiber above ν ∈ T 1S to the axis A (ν) in
that fiber.

Next, let A denote any oriented Riemannian line in H
n,n−1. We define the vector

field f = fA on U(A ) to be the extension of the unit tangent field to A that satisfies
that dΠA fx = fΠA x for any x ∈ U(A ), and that f is orthogonal to the kernel of
the projection dΠA . Hence

gHx (v, f) = gHΠA x(dΠA v, f) (7.22)

holds for any tangent vector v ∈ TxU(A ), where here gH denotes the invariant metric
on H

n,n−1 of constant curvature −1. Then for a path x(t) in U(A ), the amount of



GAFA AFFINE ACTIONS WITH HITCHIN LINEAR PART

Figure 3: The length function L�(μ) is the rate at which the projection of s(ν) to the slow
axis A (ν) makes progress under the geodesic flow, averaged over ν ∈ T 1S against the
current μ. Here we use the flat connection to identify the fibers of H(ρ,u) above the flow line
ϕtν with a fixed copy of H

n,n−1 and note that the slow axis A (ϕtν) = A (ν) is constant in
t.

infinitesimal signed progress the projection ΠA (x(t)) is making along A at time
t = τ may be expressed as follows:

d
dt

∣
∣
∣
∣
t=0

dA (ΠA x(τ), ΠA x(τ + t)) = gHΠA x(τ)(dΠA x′(τ), f)

= gHx(τ)(x
′(τ), f). (7.23)

We now give the definition of the length function. Suppose the differentiable
section s : T 1S → H
 satisfies that s(ν) ⊂ U(A (ν)) for all ν ∈ T 1S. Define the
function L
 : C(S) → R by the formula

L
(μ) :=
∫

ν∈T 1S
gH(∇ϕs, f)dμ (7.24)

where here ∇ϕs is the derivative of s in the flow direction using the flat connection,
f = f(A (ν)) is the vector field defined as above in the subset U(A (ν)) of the fiber
above ν ∈ T 1S, and gH is the natural metric of constant curvature −1 on the fiber
H

n,n−1
ν above ν. See Figure 3.

The function L is clearly continuous and linear. Further:

Proposition 7.11. Suppose � is P ′
n−1-Anosov and s : T 1S → H
 is a section so

that s(ν) ∈ U(A (ν)) for all ν ∈ T 1S as above. Then, for any c = [γ] ∈ CG(S),

L
(μc) = L (�(γ)).

Proof. In the following, dc : [0, �(c)] → T 1S is the tangent vector to the path travers-
ing the geodesic c at unit speed. Then
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L
(μc) =
∫

ν∈T 1S
gH(∇ϕs, f) dμc

=
∫ �(c)

τ=0
gH ((∇ϕs)(dc(τ)), f(A (dc(τ)))) dτ

=
∫ �(c)

τ=0

d
dt

∣
∣
∣
∣
t=0

dA (dc(τ))(ΠA (dc(τ))s(dc(τ + t)), ΠA (dc(τ))s(dc(τ)) dτ (7.25)

where the last equality follows from (7.23). The right-hand side of (7.25) may be
evaluated by lifting to T 1S̃ where the bundle in consideration becomes a product.
Let s̃ : T 1S̃ → H

n,n−1 be the �-equivariant map lifting s. Choose a lift c̃ of c to S̃,
corresponding to an element γ ∈ Γ with [γ] = c and let dc̃ : [0, �] → T 1S̃ be the
tangent vector to the unit speed parameterization of c̃, where here � = �(c) is the
length of the closed geodesic c on S. Then the right-hand side of (7.25) becomes

L
(μc) =
∫ �

τ=0

d
dt

∣
∣
∣
∣
t=0

dA (dc̃(τ))(ΠA (dc̃(τ))s̃(dc̃(τ + t)), ΠA (dc̃(τ))s̃(dc̃(τ)) dτ

= dA (γ−,γ+)(ΠA (γ−,γ+)s̃(dc̃(�)), ΠA (γ−,γ+)s̃(dc̃(0)))

= dA (γ−,γ+)(ΠA (γ−,γ+)s̃(γ.dc̃(0)), ΠA (γ−,γ+)s̃(dc̃(0)))

= dA (γ−,γ+)

(

ΠA (γ−,γ+)�(γ) · s̃(dc̃(0)), ΠA (γ−,γ+)s̃(dc̃(0))
)

= dA (γ−,γ+)

(

�(γ) · ΠA (γ−,γ+)s̃(dc̃(0)), ΠA (γ−,γ+)s̃(dc̃(0))
)

= L (�(γ))

where here we observe that the axis A (dc̃(τ)) = A (γ−, γ+) is constant in the
integral and the fundamental theorem of calculus is applied in the first step above
to the signed distance function dA (γ−,γ+)(·, dc̃(0)) on the axis A (γ−, γ+). The final
two equalities follow respectively from the �-equivariance of s and the equivariance
property of ΠA discussed above. ��

Finally, let G′′ = SO(n, n − 1) be embedded in G′ = PSO(n, n) via the inclusion
ιn,n : G′′ ↪→ G′ as described in Example 4.11. Recall from Example 4.17 that if
ρ : Γ → G′′ is Anosov with respect to the stabilizer P ′′

n−1 < G′′ of an isotropic (n−1)-
plane in R

n,n−1, then ιn,n ◦ ρ is Anosov with respect to the stabilizer P ′
n−1 < G′ of

an isotropic (n − 1)-plane in R
n,n.

Lemma 7.12. Let ρ : Γ → G′′ be P ′′
n−1-Anosov. Then for � : Γ → G′ close enough to

ιn,n ◦ ρ, there exists a differentiable section s : T 1S → H
 such that s(ν) ∈ U(A (ν))
for all ν ∈ T 1S, and hence L
 : C(S) → R is well-defined.

Proof. For �0 = ι ◦ ρ, such a section exists, namely the projection s0 of the (ι ◦ ρ)-
equivariant map s̃0 : T 1S̃ → H

n,n−1, defined by s̃0(ν) = [e2n] constant. Indeed, in
this case [e2n] ∈ A (y, x) ⊂ U(A (y, x)) for all pairs (y, x) of distinct points in ∂Γ,
because [e2n] = [f+ + f−].
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Now consider a path �t : Γ → G′ based at �0 = ιn,n ◦ ρ. The bundles H
t
are all

isomorphic as smooth fiber bundles, so we may regard H
t
as a fixed fiber bundle

with continuously varying flat structure. Hence, the section s0 may be regarded as
a differentiable section of any of the bundles H
t

. The open subsets U(A (ν)) in
the fiber over ν of H
t

also depend on t, and the dependence is continuous because
the dependence of the Anosov boundary map ξ
t

: ∂Γ → Grn−1(Rn,n) on t is
continuous. More precisely, the union

⋃

ν∈T 1S H
n,n−1
ν \U(A (ν)) is a closed subset of

the bundle H
t
that varies continuously in t in the topology of uniform convergence

on compact subsets. Hence, since s0(T 1S) is compact, it remains contained in the
union

⋃

ν∈T 1S U(A (ν)), provided that t is sufficiently small. ��

Remark 7.13. By the same argument given in Section 6.2 of Goldman–Labourie–
Margulis [GLM09], one shows that L
 does not depend on the section s. We do not
give that argument here as we do not need it for our purposes.

8 E
n,n−1 as a Geometric Limit of H

n,n−1

We now give the crucial geometric input needed for the main result, namely the
understanding of group actions by isometries of the pseudo-Riemannian Euclidean
space E

n,n−1 as limits of group actions by isometries on the pseudo-Riemannian
hyperbolic space H

n,n−1. This geometric transition interpretation, which follows the
work of Danciger–Guéritaud–Kassel [DGK16b] in the setting of free groups acting on
R

2,1, will be used to make a connection to Theorem 1.3 in order to prove Theorem 1.2
and eventually Theorem 1.1.

8.1 E
n,n−1 as a limit of H

n,n−1 in real projective geometry. We continue
to work with the coordinates of Section 7.1, in which E

n,n−1 and H
n,n−1 are embed-

ded in P(R2n) with the isometry groups Isom+(En,n−1) = SO(n, n − 1) � R
2n−1 and

Isom+(Hn,n−1) = PSO(n, n) embedded in PSL(2n, R).
Consider a differentiable path r �→ gr in PSO(n, n) based at g0 = ι(h), where

h ∈ SO(n, n − 1) and where ι = ιn,n : SO(n, n − 1) ↪→ PSO(n, n) is the inclusion as
in Section 7.1. We write gr in the form:

gr =
[

Ar vr

wT
r br

]

,

where Ar is a (2n−1)×(2n−1) matrix, vr, wr ∈ R
2n−1, and br ∈ R. (These are well-

defined up to simultaneously changing signs.) Since g0 = ι(h), we see that A0 = h,
v0 = 0, w0 = 0 and b0 = 1.

Let cr : P(R2n) → P(R2n) be the projective transformation given by the matrix

cr =
[

1
r Id2n−1 0

0 1

]

,
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where Id2n−1 is the (2n − 1) × (2n − 1) identity matrix. Then observe that

lim
r→0

crgrc
−1
r = lim

r→0

[
Ar

1
r · vr

r · wT
r br

]

=
[

h u
0 1

]

, (8.1)

is the element (h, u) ∈ SO(n, n − 1) � R
2n−1 = Isom+(Rn,n−1), where u := d

dr

∣
∣
∣
r=0

vr

(where vr is chosen with the appropriate sign). This (essentially) shows that crPSO
(n, n)c−1

r converges as r → 0 to SO(n, n − 1) � R
2n−1 in the Chabauty topology on

closed subgroups of PSL(2n, R). In fact, the action of PSO(n, n) on H
n,n−1 converges

to the action of SO(n, n − 1) � R
2n−1 on E

n,n−1 under conjugation by cr in the
following sense. Let r �→ xr be a differentiable path in H

n,n−1 based at the basepoint
x0 = [0 : . . . : 0 : 1] ∈ H

n,n−1 which is stabilized by ι(SO(n, n − 1)). For sufficiently
small r, crxr lies in E

n,n−1, so crxr → x′ as r → 0 for some x′ ∈ E
n,n−1. Thinking

of R
n,n−1 = Tx0H

n,n−1, the tangent vector to the path xr at r = 0 is precisely the
displacement vector between x′ and the basepoint. Next,

crgrxr = crgrc
−1
r (crxr)

→ (h, u) · x′

as r → 0. Hence the geometry E
n,n−1 is a geometric limit of H

n,n−1 as sub-geometries
of real projective geometry, in the sense of Cooper–Danciger–Wienhard [CDW14].

Now, let ρ : Γ → SO(n, n−1) be a representation and let �r : Γ → PSO(n, n) be a
differentiable path of representations so that �0 = ι ◦ ρ. Define �cr

r : Γ → PSL(2n, R)
by

�cr
r (γ) := cr · �r(γ) · c−1

r .

By the above calculation,

lim
r→0

�cr
r = (ρ, u)

is a representation into SO(n, n − 1) � R
2n−1 with linear part ρ and translational

part the ρ-cocycle u : Γ → R.

Lemma 8.1. If (ρ, u) : Γ → SO(n, n−1)�R
2n−1 is any surface group representation

with irreducible linear part ρ, then there exists a path �r : Γ → PSO(n, n) so that
�0 = ι ◦ ρ and limr→0 �cr

r = (ρ, u) as above.

Proof. Since ρ is irreducible, ι ◦ ρ : Γ → PSO(n, n) has finite centralizer. Hence ι ◦ ρ
is a smooth point of Hom(Γ, PSO(n, n)) by Goldman [Gol84]. Hence any tangent
direction to ι ◦ ρ is integrable, in particular the tangent direction defined by the
pso(n, n) valued cocycle

γ �→
(

0 u(γ)
uT (γ)J 0

)

∈ pso(n, n),

where J = Idn ⊕ (−Idn−1) is the matrix for the form 〈·, ·〉n,n−1 (in the basis
e′
1, . . . , e

′
2n−1). Any path �r tangent to this direction satisfies the conclusion of the

lemma. ��
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8.2 The derivative formula. We now state and prove the key lemma. In the
following P ′′

n−1 < G′′ = SO(n, n − 1) denotes the stabilizer of an isotropic (n − 1)-
plane in R

n,n−1 and P ′
n−1 < G′ = PSO(n, n) denotes the stabilizer of an isotropic

(n − 1)-plane in R
n,n.

Lemma 8.2. Let (ρ, u) : Γ → SO(n, n − 1) � R
2n−1 be any representation whose

linear part ρ : Γ → SO(n, n − 1) is P ′′
n−1-Anosov. Let �r : Γ → PSO(n, n) be a

differentiable path based at �0 = ι ◦ ρ and satisfying limr→0 �cr
r = (ρ, u). Then the

length functions α(ρ,u),L
r
: C(S) → R of Sections 7.5 and 7.6 satisfy:

lim
r→0

1
r
L
r

(·) = α(ρ,u)(·) (8.2)

and the convergence is uniform on compact subsets of C(S), in particular on the
probability currents C1(S).

Note that for r sufficiently small, �r is P ′
n−1-Anosov by Fact 4.6, and L
r

is
well-defined by Lemma 7.12.

It is easy to verify that, in the context of the Lemma,

lim
r→0

1
r
L (�r(γ)) = α((ρ, u)(γ)),

for any γ ∈ Γ, hence the formula (8.2) holds pointwise on currents μc supported on
closed geodesics. The difficulty is to show the uniform convergence. In order to do
this, we show that the integrand from Equation (7.24) defining L may be arranged
to, after rescaling, converge uniformly to the integrand from Equation (7.14).

We must first examine a bit more carefully the notion that the geometries
crH

n,n−1 converge to E
n,n−1, as sub-geometries of real projective geometry. First

we note that csH
n,n−1 ⊂ crH

n,n−1 whenever 0 < r < s, and that
⋃

r→0

crH
n,n−1 ⊃ E

n,n−1. (8.3)

Next, we prove a statement about convergence of metrics, analogous to [DGK16b,
§7.4]. The space E

n,n−1 (respectively H
n,n−1) admits a pseudo-Riemannian metric

of zero (respectively constant negative) curvature which is invariant under the group
Isom+(En,n−1) = SO(n, n − 1) × R

2n−1 (respectively Isom+(Hn,n−1) = PSO(n, n)).
As in Section 7, we denote these metrics by gE and gH, and we view Isom+(En,n−1)
and Isom+(Hn,n−1) = PSO(n, n) as subgroups of PSL(2n, R). Since the stabilizer of
the basepoint x0 = [0, . . . , 0, 1] is the same in both isometry groups, we arrange that
gEx0

= gHx0
. For r > 0, consider the metric gr defined on cr · H

n,n−1 ⊂ P(R2n) by

gr := (cr)∗ gH,

where (cr)∗ is the pushforward by cr.
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Lemma 8.3. The sequence of metrics r−2 gr converges to gE uniformly on compact
subsets of E

n,n−1 as r → 0, where for a given compact set C ⊂ E
n,n−1 we only

consider r small enough so that gr is defined on C.

Proof. In what follows, we use the trivialization of the tangent bundle TE
n,n−1

to the affine chart E
n,n−1, denoting the associated parallel transport of a vector

v ∈ TxE
n,n−1 to TyE

n,n−1 again by v. First, note that for any tangent vector v ∈
TxE

n,n−1 we have (c−1
r )∗v = rv ∈ Tc−1

r (x)E
n,n−1. Thus, for v, w ∈ TxE

n,n−1,

r−2 gr
x(v, w) = r−2

(

(cr)∗gH
)

x
(v, w)

= r−2 gHc−1
r (x)

(

(c−1
r )∗v, (c−1

r )∗w
)

= gHc−1
r (x)(v, w).

Given a compact set C ⊂ E
n,n−1, the projective transformation c−1

r maps C into ar-
bitrarily small neighborhoods of the basepoint x0 as r → 0. Therefore, by continuity
of gH,

r−2 gr
x = gHc−1

r (x) −−−→
r→0

gHx0
= gEx0

= gEx

uniformly for x ∈ C (where we use again the trivialization of TE
n,n−1). ��

We also need a statement about convergence of the vector fields used to calculate
the translation length functions in H

n,n−1 and R
n,n−1.

Lemma 8.4. Let Ar be a continuous path of oriented Riemannian lines in H
n,n−1

so that A0 � x0. Let fAr
denote the vector field (7.22) defined on U(Ar).

(1) The open sets crU(Ar) converge to E
n,n−1 in the sense that for any compact

subset C ⊂ E
n,n−1, there exists r0 > 0, so that crU(Ar) ⊃ C for all 0 < r < r0.

(2) On any compact subset C ⊂ E
n,n−1, the vector fields r(cr)∗fAr

converge uni-
formly to the parallel unit vector field f0 on E

n,n−1 which agrees with the
positive unit vector in the direction of A0 in the tangent space Tx0P(R2n) =
Tx0H

n,n−1 = Tx0E
n,n−1.

Proof. For (1) simply observe that a small open neighborhood U of the basepoint
x0 is contained in U(A0) and hence in all U(Ar) for r sufficiently small. The open
sets crU , which in the affine chart E

n,n−1 are just dilated copies of U , eventually
contain any compact subset of the affine chart E

n,n−1.
We now prove (2). Consider x ∈ C and v ∈ TxE

n,n−1 and suppose r > 0 is
sufficiently small so that crU(Ar) ⊃ C. As in the proof of Lemma 8.3, we again
use the trivialization of the tangent bundle TE

n,n−1 to the affine chart E
n,n−1, and

denote again by v the constant vector field which agrees with the given v ∈ TxE
n,n−1.

Then (c−1
r )∗v = rv ∈ Tc−1

r (x)E
n,n−1. Next, observe that
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r−2gr
x(v, r(cr)∗fAr

) = r−2gHc−1
r (x)((cr)−1

∗ v, rfAr
)

= r−2gHc−1
r (x)(rv, rfAr

)

= gHc−1
r (x)(v, fAr

)
r→0−−−→ gHx0

(v, fA0)

= gEx0
(v, f0) = gEx(v, f0).

But on the other hand, the vector field r(cr)∗fAr
is bounded on C, independent of r,

hence by Lemma 8.3, the quantity r−2gr
x(v, r(cr)∗fAr

) differs from gEx(v, r(cr)∗fAr
)

by a uniform constant tending to zero with r. We conclude that the vector field
r(cr)∗fAr

converges to f0 uniformly on C. ��
The final ingredient needed for Lemma 8.2 is a statement about convergence of

sections of the bundles associated to the convergent path �cr
r → (ρ, u). In the context

of Lemma 8.2, define for each r � 0, the flat projective space bundle

Pr = Γ\T 1S̃ × P(R2n)

where for r > 0, the action of Γ on P(R2n) is by �cr
r and for r = 0, the action of Γ on

P(R2n) is by (ρ, u). For each r > 0, the map cr : P(R2n) → P(R2n) induces a fiberwise
embedding cr : H
r

→ Pr. Further, the fiberwise action of PSO(n, n) on H
r
is taken

by cr to the fiberwise action of crPSO(n, n)c−1
r on Pr. For r = 0, the embedding

E
n,n−1 ↪→ P(R2n) induces a fiberwise embedding E(ρ,u) → P0 which is invariant

under the fiberwise action of (ρ, u). Further, the fiberwise action of crPSO(n, n)c−1
r

on Pr converges to the action of SO(n, n − 1) � R
2n−1 on P0.

Let s : T 1S → E(ρ,u) be any differentiable section of the E
n,n−1 bundle associated

to (ρ, u). Using the embedding E(ρ,u) → P0, we regard s as a section of P0. The path
Pr is a continuous family of flat bundles. The underlying bundles are (smoothly)
isomorphic to a fixed projective space bundle and the path Pr may be thought of
as a continuously varying family of flat connections on that fixed bundle. Hence the
section s determines a family of sections sr : T 1S → Pr which lift to a family of
maps

s̃r : T 1S̃ → P(R2n)

which vary continuously in the compact open topology and satisfy that

• s̃0(T 1S̃) ⊂ E
n,n−1, and s0 is (ρ, u)-equivariant.

• s̃r is �cr
r -equivariant.

Lemma 8.5. Let (ρ, u) and �r be as in Lemma 8.2. Let sr : T 1S → Pr be a con-
tinuously varying family of sections as above. Then for r > 0 sufficiently small, we
have:

(1) sr(T 1S) ⊂ crH
r
, or in other words s̃r(T 1S̃) ⊂ crH

n,n−1, and

(2) for any (y, z, x) ∈ T 1S̃, s̃r(y, z, x) ⊂ crU(A
r
(y, x)).
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Proof. Note that (1) will follow from (2). We prove (2). Let F ⊂ T 1S̃ be a compact
fundamental domain. For all sufficiently small r > 0, s̃r(F ) is contained in a uniform
neighborhood U of the compact subset s̃0(F ) in E

n,n−1. For a fixed (y, z, x) ∈ F , the
Riemannian line A
0(y, x) contains the basepoint x0 ∈ H

n,n−1, so by Lemma 8.4.(1),
crU(A
r

(y, x)) contains U for all r > 0 sufficiently small. By compactness of F , we
have that

⋂

(y,z,x)∈F crU(A
r
(y, x)) ⊃ U for all r > 0 sufficiently small. Hence (2)

holds for all (y, z, x) ∈ F , and hence over all of T 1S̃ by equivariance. ��

We now give the proof of Lemma 8.2.

Proof of Lemma 8.2. Let sr : T 1S → Pr be a continuously varying family of sections
and assume r > 0 is sufficiently small as in Lemma 8.5 above. We may use the section
c−1
r sr : T 1S → H
r

to calculate the length function L
r
via Formula (7.24):

L
r
(μ) :=

∫

ν∈T 1S
gH(∇ϕ(c−1

r sr), f)dμ.

Let us calculate the integral by lifting everything to the product bundle T 1S̃×H
n,n−1.

Let F ⊂ T 1S̃ be a fundamental domain for the action of Γ = π1S and let μ̃ denote
the pullback of μ to T 1S̃. Then

r−1L
r
(μ) = r−1

∫

ν̃∈F
gH
(

(∇ϕ(c−1
r s̃r))(ν̃), fA�r (ν̃)

)

dμ̃

= r−1

∫

ν̃∈F
gH
(

((c−1
r )∗∇ϕs̃r)(ν̃), fA�r (ν̃)

)

dμ̃

= r−1

∫

ν̃∈F
gr
(

(∇ϕs̃r)(ν̃), (cr)∗fA�r (ν̃)

)

dμ̃

=
∫

ν̃∈F
r−2gr

(

(∇ϕs̃r)(ν̃), r(cr)∗fA�r (ν̃)

)

dμ̃. (8.4)

Let us now examine the integrand of right-hand side of (8.4). The oriented axes
A
r

(ν̃) converge to A
0(ν̃), where �0 = ι ◦ ρ, simply because the Anosov boundary
maps associated to the path �r of Anosov representations vary continuously in the C0

topology [GW12, Theorem 5.13]. The convergence is uniform over ν̃ in the compact
fundamental domain F . Writing ν̃ = (y, z, x), the axis A
0(ν̃) = ξn−1(y)⊥∩ξn−1(x)⊥

contains the basepoint x0 = [0 : . . . : 0 : 1] and the positive unit tangent direction
of A
0 at x0 is precisely the neutral vector f0(y, x) = f0(ν̃) ∈ R

2n−1 = Tx0H
n,n−1

associated to (y, x) for the representation ρ. Hence, by Lemmas 8.3 and 8.4,

lim
r→0

r−2gr
(

(∇ϕs̃r)(ν̃), r(cr)∗fA�r (ν̃)

)

= gE((∇ϕs̃0)(ν̃), f0(ν̃))
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and the convergence is uniform over F . Hence

lim
r→0

r−1L
r
(μ) =

∫

p̃∈F
gE((∇ϕs̃0)(ν̃), f0(ν̃))dμ̃

=
∫

T 1S
gE(∇ϕs0, f0)dμ

= α(ρ,u)(μ)

and the convergence is uniform for μ varying in a compact subset of C(S). ��
Remark 8.6. In the context of Lemma 8.2, the slow axes for �cr

r converge to the
translation axis for (ρ, u): for each (y, x) ∈ (∂Γ)2, crA
r

(y, x) → A(y, x). This follows
easily since the axes are constructed directly from Anosov boundary maps. Similarly,
the associated projection maps converge: crΠA�r (y,x) → ΠA(y,x). However, we did not
use this convergence in the proof of Lemma 8.2. We used only the statement that
the vector field fA�r

(y, x) converges as r → 0 to the neutral vector field f0(y, x).
This is a slightly weaker statement because while the vector field fA determines the
line A in H

n,n−1, a parallel vector field f0 does not determine one line, but only a
family of parallel lines.

We now have the ingredients needed to prove Theorem 1.2 and finally Theo-
rem 1.1.

8.3 Proof of Theorems 1.2 and 1.1. Let ιn,n : SO(n, n − 1) → PSO(n, n)
and ι2n : PSO(n, n) → PSL(2n, R) be the inclusions in the examples in Section 4.4.
Theorem 1.2 follows from the more general statement:

Theorem 8.7. Let ρ : Γ → SO(n, n − 1) = G′′ be Anosov with respect to the
stabilizer P ′′

n−1 of an isotropic (n−1)-plane. Let u : Γ → R
2n−1 be a ρ-cocycle so that

the affine action (ρ, u) on R
n,n−1 is properly discontinuous. Let �r : Γ → PSO(n, n)

be any path so that �0 = ιn,n ◦ ρ and �cr
r converges to (ρ, u) as in Lemma 8.1. Then

for all r > 0 sufficiently small, ι2n ◦ �r : Γ → PSL(2n, R) is Anosov with respect to
the stabilizer Pn of an n-plane in R

2n.

Proof. By Theorem 7.10, the Margulis invariant functional α(ρ,u) : C(S) → R is well-
defined and satisfies that α(ρ,u)(μ) �= 0 for any current μ ∈ C(S). Since the space of
currents is connected, α(ρ,u)(μ) has the same sign for all μ ∈ C(S), and without loss
in generality we assume α(ρ,u)(μ) > 0 for all μ ∈ C(S) (if not, simply conjugate by the
orientation reversing isometry −Id2n−1, which does not affect proper discontinuity,
but flips the sign of the Margulis invariants). In particular, there exists ε > 0 so
that

α(ρ,u)(C1(S)) > ε > 0

where C1(S) ⊂ C(S) denotes the currents with total mass one, a compact subset. It
then follows from Lemma 8.2 that for all r > 0 sufficiently small,

L
r
(C1(S)) > r

ε

2
. (8.5)
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Henceforth assume r > 0 is sufficiently small so that (8.5) holds. Note that the stable
length function γ �→ |γ|∞ is M -bi-Lipschitz to the length function γ �→ �([γ]) for the
fixed hyperbolic metric S for some M > 1. Equation 8.5 and Proposition 7.11 then
imply that for every γ ∈ Γ\{1}, the Lyapunov projection λ′(�r(γ)) satisfies that
λ′

n(�r(γ)) � M−1r ε
4 |γ|∞. In particular, λ′

n(�r(γ)) > 0. Letting γ+ = limm→∞ γm ∈
∂Γ, it then follows that ξ

(n)
+ (γ+) is the attracting fixed point for the action of �(γ)

on the full Grassmannian Grn(R2n) of n-planes in R
2n (recall that ξ

(n)
+ (γ+) is the

positive isotropic n-plane in R
n,n containing ξ(n−1)(γ+)). Hence, composing with the

inclusion Gr+
n (Rn,n) ↪→ Grn(R2n), the map ξ

(n)
+ determines a continuous embedding

∂Γ → Grn(R2n) which is equivariant and dynamics preserving for the representation
ι2n◦� : Γ → PSL(2n, R). Hence, the implication (3’) =⇒ (1) in Theorem 4.12 shows
that ι2n ◦ � is Pn-Anosov. ��
Proof of Theorem 1.2. Suppose (ρ, u) : π1Sg → Isom+(Rn,n−1) = SO(n, n − 1) �

R
2n−1 is an action by isometries of R

n,n−1 with linear part ρ a Hitchin representation
in SO(n, n− 1). Suppose for contradiction that the action is properly discontinuous.
Then, since ρ is irreducible, Lemma 8.1 gives the existence of a path �r : Γ →
PSO(n, n) such that �0 = ιn,n ◦ρ and �cr

r converges to (ρ, u). Since ρ is P ′′
n−1-Anosov,

Theorem 8.7 implies that for r > 0 sufficiently small, ι2n ◦�r : Γ → PSL(2n, R) is Pn-
Anosov. However, �r is a PSO(n, n) Hitchin representation for any r and therefore
cannot be Pn-Anosov by Theorem 1.3. ��
Proof of Theorem 1.1. Suppose for contradiction that a proper affine action (ρ, u) :
Γ → Aff(Rd) = GL(d, R) � R

d has linear part ρ a lift of a representation σ : Γ →
PSL(d, R) in the PSL(d, R) Hitchin component. We show that, up to conjugation,
ρ(Γ) < SO(n, n − 1).

First, let ρ′ be another lift of σ which takes values in SL(d, R). Then ρ and ρ′ differ
by a scalar: ρ(γ) = λ(γ)ρ′(γ), where λ : Γ → R

∗ is a homomorphism. Guichard [Gui]
has announced work showing that the Zariski closure ρ′(Γ)

Z
< SL(d, R) must contain

the principal SL(2, R), i.e. the image of the irreducible representation τd : SL(2, R) →
SL(d, R). The following is a list of algebraic subgroups with that property:
(1) all of SL(d, R).
(2) the image of the irreducible representation τd : SL(2, R) → SL(d, R).
(3) the orthogonal group SO(n, n − 1) if d = 2n − 1 is odd.
(4) the symplectic group Sp(2n, R) if d = 2n is even.
(5) the seven dimensional representation of G2 if d = 7, which is contained in

SO(4, 3).
Observe first that ρ and ρ′ must agree on the commutator subgroup [Γ, Γ]. Hence

ρ(Γ)
Z ⊃ ρ([Γ, Γ])

Z
= ρ′([Γ, Γ])

Z

= [ρ′(Γ), ρ′(Γ)])
Z

= [ρ′(Γ)
Z
, ρ′(Γ)

Z
] = ρ′(Γ)

Z
,
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where the last equality is easily checked for each of the groups listed above. Hence,
in particular, ρ(Γ)

Z
contains τd(SL(2, R)).

On the other hand, it is a basic linear algebra fact that an affine transformation
g = (Ag, ug) fixes a point unless Ag has one as an eigenvalue, see e.g. [KS75]. Hence
for all γ ∈ Γ\{1}, ρ(γ) has one as an eigenvalue and this property passes to the
Zariski closure ρ(Γ)

Z
. In the case that d = 2n is even, τd(SL(2, R)) contains, for

example

τ2ndiag(et, e−t) = diag(e(2n−1)t, e(2n−3)t, . . . , et, e−t, . . . , e−(2n−1)t)

which does not have one as an eigenvalue.
Hence d = 2n − 1 is odd. By the above, ρ(Γ)

Z ⊃ ρ′(Γ)
Z
. It is also true that

ρ(Γ)
Z ⊂ Π−1(ρ′(Γ)

Z
), where Π : GL(2n − 1, R) → SL(2n − 1, R) is the natural

projection, since the algebraic equations in SL(2n − 1, R) defining ρ′(Γ)
Z

pull back
to algebraic equations in GL(2n − 1, R). Further, if g1, g2 ∈ ρ(Γ)

Z
are such that

Π(g1) = Π(g2), then g1g
−1
2 ∈ ρ(Γ)

Z
is a multiple of the identity, hence equal to the

identity, by the eigenvalue one property. It follows that the projection Π maps ρ(Γ)
Z

to ρ′(Γ)
Z

one to one, and hence that ρ(Γ)
Z

= ρ′(Γ)
Z
. Therefore ρ(Γ)

Z
is (conjugate

to) one of the items on the above list, namely SO(n, n−1) (case 3) or G2 (case 5) or
τd(SL(2, R) (case 2). In all cases ρ(Γ)

Z
< SO(n, n − 1). Hence ρ(Γ) < SO(n, n − 1).

This contradicts Theorem 1.2 and concludes the proof of Theorem 1.1. ��
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Appendix A. Positivity in PSO(n, n)

While an explicit description of positive triples of flags for the Lie group G =
PSL(d, R) is given in almost every introduction to the study of positivity (see e.g.
[GW16]), an explicit description of the positive triples of flags for G′ = PSO(n, n)
seems to be absent from the literature. The purpose of this appendix is to give
one such description, by induction on n. Let B′± be the Borel subgroups of G′

described in Example 3.9. In Example 3.9, we also described the unipotent radi-
cals U ′± ⊂ B′±, the corresponding positive Weyl chamber a′+ ⊂ a′, and the simple
roots Δ′ = {α′

1, . . . , α
′
n}. Let (B′+, B′−, {x+

α′
i
}n

i=1, {x−
α′

i
}n

i=1) be the pinning described
in Example 3.13. We give an explicit inductive formula describing U ′+

>0, the set of
positive elements in U ′+ corresponding to the chosen pinning.

We will now inductively define, for any positive integer n and any k = 1, . . . , n−1,
a family of (2n)×(2n) matrices Mn,k whose entries depend on variables a1, . . . , ak, b1,
. . . , bk. When n = 2 and k = 1, define

M2,1 = M2,1(a1, b1) :=

⎛

⎜
⎜
⎝

1 a1 b1 −a1b1

0 1 0 −b1

0 0 1 a1

0 0 0 1

⎞

⎟
⎟
⎠

.

Now suppose that we have defined Mn,k = Mn,k(a1, . . . , ak, b1, . . . , bk). Then define
the (2n + 2) × (2n + 2) square matrices

Mn+1,k(a1, . . . , ak, b1, . . . , bk) :=

⎛

⎝

1 0 0
0 Mn,k 0
0 0 1

⎞

⎠ ,

and

Mn+1,n(a1, . . . , an, b1, . . . , bn) :=

⎛

⎝

1 v1 v3

0 Mn,n−1 v2

0 0 1

⎞

⎠ ,

where v1 is the 1× (2n) matrix, v2 is the (2n)× 1 matrix, and v3 is the 1× 1 matrix
given by
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v1 :=
(

an + bn , an · (Mn,n−1)1,2 , an · (Mn,n−1)1,3 , . . . , an · (Mn,n−1)1,2n

)

,

v2 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−bn · (Mn,n−1)1,2n

−bn · (Mn,n−1)2,2n
...

−bn · (Mn,n−1)2n−1,2n

−(an + bn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

vn := −an · bn · (Mn,n−1)1,2n = (−1)n−1
n−1∏

i=1

ai · bi.

In the above formulas, (Mn,n−1)i,j denotes the (i, j)-entry of Mn,n−1.
Let si := sα′

i
be the generators of the Weyl group W (a′) of G′ described in

Section 3.3, and let x+
i := x+

α′
i
. Recall from Example 3.14 that μ1 · μ2 · · · · · μn−1 is a

reduced word expression for the longest word element in W (a′), where μ1 := sn−1 ·sn,
and μk := sn−k · μk−1 · sn−k for all k = 2, . . . , n − 1. Using the description of x+

i in
Example 3.13, one can check via a straightforward induction argument that for all
k = 1, . . . , n − 1, the matrix Mn,k defined above satisfies

Mn,k =

(
n−2∏

i=n−k

x+
i (an−i)

)

· (x+
n−1(a1) · x+

n (b1)
) ·
(

n−k∏

i=n−2

x+
i (bn−i)

)

.

It follows immediately that

U+
>0(G) =

{

Mn({ak,l}, {bk,l}) :
k = 1, . . . , n − 1; l = 1, . . . , k;
ak,l, bk,l > 0 for all k, l

}

where Mn = Mn({ak,l}, {bk,l}) is the (2n) × (2n) matrix given by

Mn :=
n−1∏

k=1

Mn,k(ak,1, . . . , ak,k, bk,1, . . . , bk,k).

Appendix B. The Positive Curve for PSO(n, n)-Hitchin Representa-
tions

Here we prove the following proposition, which improves upon Theorem 3.6 in the
specific case of G′-Hitchin representations, where as usual G′ denotes PSO(n, n).

Proposition 9.1. Suppose � : Γ → G′ is a G′-Hitchin representation. Then the
associated positive curve ξ : ∂Γ → G′/B′ takes any triple of pairwise distinct points
(independent of the cyclic ordering) to a positive triple of flags.
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Remark 9.2. Recall that when we defined a positive triple of flags, we had to make
a choice of pinning (see Remark 3.16). Fock–Goncharov [FG06, Corollary 5.3] proved
that if (F1, F2, F3) is a triple of flags that is positive with respect to some pinning,
then (F3, F2, F1) is positive with respect to some (possibly different) pinning. How-
ever, this does not imply Proposition 9.1; we show here that when the Lie group is
PSO(n, n), then (F1, F2, F3) and (F3, F2, F1) are both positive with respect to the
same pinning.

Proof. Consider y, z, x ∈ ∂Γ pairwise distinct. We wish to show that (ξ(y), ξ(z), ξ(x))
is a positive triple. If (y, z, x) is positive for the cyclic ordering ∂Γ, then this is given
by Theorem 3.6. We assume (y, z, x) is not a positive triple.

Recall that we chose an oriented hyperbolic structure on S to identify ∂Γ with
∂H

2, the visual boundary of the upper half plane. Let j : Γ → PSL(2, R) be the
Fuchsian representation corresponding to this choice, let �0 := τG′ ◦ j : Γ → G′, and
let �t be a continuous path so that �1 = �. For each t, let ξt : ∂Γ → FB′ be the
�t-equivariant positive boundary map. The space of positive triples of flags make up
a union of connected components of the space of pairwise transverse triples of flags
( [Lus94, Proposition 8.14]). Thus if (ξ0(y), ξ0(z), ξ0(x)) is a positive triple, then so
is (ξt(y), ξt(z), ξt(x)) for all t, hence it is sufficient to prove that (ξ0(y), ξ0(z), ξ0(x))
is a positive triple.

Observe that τG′ extends to a homomorphism τG′ : PGL(2, R) → PO(n, n). Let
g ∈ PGL(2, R)\PSL(2, R) be any orientation reversing element. One easily computes
that

• τG′(g) ∈ PSO(n, n) if n is odd, or
• τG′(g) ∈ PO(n, n)\PSO(n, n) if n is even, hence τG′(g) = hm where h ∈

PSO(n, n) and m ∈ PO(n, n)\PSO(n, n) is the element which pointwise fixes
the copy of R

n,n−1 invariant under τG′(PSL(2, R)) ⊂ SO(n, n − 1) and flips the
sign of the orthogonal R

0,1.

The triple (gy, gz, gx) has positive orientation, hence the triple of flags

(ξ0(gy), ξ0(gz), ξ0(gx)) = τG′(g)(ξ0(y), ξ0(z), ξ0(x))

is positive by Theorem 3.6. If n is odd, it follows that (ξ0(y), ξ0(z), ξ0(x)) is also
positive, since τG′(g) ∈ PSO(n, n). Otherwise, if n is even, we have that τG′(g) = hm
as above. However, the τG′-equivariant embedding RP

1 → G′/B′, which defines ξ0,
is fixed by m, hence again have that (ξ0(y), ξ0(z), ξ0(x)) differs from (ξ0(gy), ξ0(gz),
ξ0(gx)) by an element of PSO(n, n) and hence is also positive. ��
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Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568.

[Mar83] G.A. Margulis. Free completely discontinuous groups of affine transforma-
tions, (in Russian), Dokl. Akad. Nauk SSSR 272 (1983), 785–788.

[Mar87] G.A. Margulis. Complete affine locally flat manifolds with a free fundamental
group, Journal of Soviet Mathematics 36 (1987), no. 1, 129–139, translated from
Zap. Naucha. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 134 (1984), p.
190–205.

[Mes07] G. Mess. Lorentz spacetimes of constant curvature. Geometriae Dedicata,
(1)126 (2007), 3–45

[Oku13] T. Okuda. Classification of semisimple symmetric spaces with proper-actions.
Journal of Differential Geometry, (2)94 (2013), 301–342.

J. Danciger, Department of Mathematics, The University of Texas at Austin, 1 University
Station C1200, Austin, TX 78712, USA. jdanciger@math.utexas.edu

T. Zhang, Department of Mathematics, National University of Singapore, 21 Lower Kent
Ridge Road, Singapore 119077, Singapore. matzt@nus.edu.sg

Received: December 20, 2018
Revised: June 28, 2019
Accepted: July 1, 2019


	Affine actions with Hitchin linear part
	Abstract
	1 Introduction
	1.1 Flat pseudo-Riemannian geometry in signature (n,n-1).
	1.2 Deforming into hyperbolic geometry of signature (n,n-1).
	1.3 Proper actions in mathbbHn,n-1.
	1.4 Overview of proofs and organization.

	2 Grassmannians and Flag Manifolds
	2.1 Grassmanians and Isotropic Grassmannians.
	2.2 Flag manifolds and parabolic subgroups.
	2.3 Affine charts for flag manifolds.

	3 Hitchin Representations and Positivity
	3.1 G-Hitchin representations.
	3.2 Lie theory background.
	3.3 Positivity.

	4 Anosov Representations
	4.1 The definition.
	4.2 B-Anosov representations in PSL(d,mathbbR).
	4.3 Characterizations of Anosov in terms of Cartan and Lyapunov projections.
	4.4 The Anosov property under inclusions of Lie groups.

	5 Proof of Theorem 1.3
	6 Properly Discontinuous Actions on mathbbHn,n-1
	7 Constant Curvature Geometry in Signature (n,n-1)
	7.1 mathbbHn,n-1 and mathbbEn,n-1 as real projective geometries.
	7.2 Translation lengths in mathbbHn,n-1.
	7.3 Translation lengths in mathbbEn,n-1: the Margulis invariant.
	7.4 The space of geodesic currents.
	7.5 The Margulis invariant for currents and the properness criterion.
	7.6 Extending the length function mathscrL for mathbbHn,n-1 to currents.

	8 mathbbEn,n-1 as a Geometric Limit of mathbbHn,n-1
	8.1 mathbbEn,n-1 as a limit of mathbbHn,n-1 in real projective geometry.
	8.2 The derivative formula.
	8.3 Proof of Theorems 1.2 and 1.1.

	Acknowledgements
	References




