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Abstract

Evaluating AMR parsing accuracy involves

comparing pairs of AMR graphs. The major

evaluation metric, SMATCH (Cai and Knight,

2013), searches for one-to-one mappings be-

tween the nodes of two AMRs with a greedy

hill-climbing algorithm, which leads to search

errors. We propose SEMBLEU, a robust met-

ric that extends BLEU (Papineni et al., 2002)

to AMRs. It does not suffer from search er-

rors and considers non-local correspondences

in addition to local ones. SEMBLEU is fully

content-driven and punishes situations where

a system’s output does not preserve most in-

formation from the input. Preliminary experi-

ments on both sentence and corpus levels show

that SEMBLEU has slightly higher consistency

with human judgments than SMATCH. Our

code is available at http://github.com/

freesunshine0316/sembleu.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-

narescu et al., 2013) is a semantic formalism

where the meaning of a sentence is encoded as

a rooted, directed graph. Figure 1 shows two

AMR graphs in which the nodes (such as “girl”

and “leave-11”) represent AMR concepts and the

edges (such as “ARG0” and “ARG1”) represent re-

lations between the concepts. The task of parsing

sentences into AMRs has received increasing at-

tention, due to the demand for better natural lan-

guage understanding.

Despite the large amount of work on AMR pars-

ing (Flanigan et al., 2014; Artzi et al., 2015; Pust

et al., 2015; Peng et al., 2015; Buys and Blunsom,

2017; Konstas et al., 2017; Wang and Xue, 2017;

Ballesteros and Al-Onaizan, 2017; Lyu and Titov,

2018; Peng et al., 2018; Groschwitz et al., 2018;

Guo and Lu, 2018), little attention has been paid

to evaluating the parsing results, leaving SMATCH
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Figure 1: Two AMR examples meaning “The girl asked

the boy to leave.” and “The woman made two pies.”,

respectively. Their SMATCH score is 25 (%).

Figure 2: Average, minimal and maximal SMATCH

scores over 100 runs on 100 sentences. The running

time increases from 6.6 seconds (r=1) to 21.0 (r = 4).

(Cai and Knight, 2013) as the only overall perfor-

mance metric. Damonte et al. (2017) developed a

suite of fine-grained performance measures based

on the node mappings of SMATCH (see below).

SMATCH suffers from two major drawbacks:

first, it is based on greedy hill-climbing to find

a one-to-one node mapping between two AMRs

(finding the exact best mapping is NP-complete).

The search errors weaken its robustness as a met-

ric. To enhance robustness, the hill-climbing

search is executed multiple times with random

restarts. This decreases efficiency and, more im-

portantly, does not eliminate search errors. Fig-

ure 2 shows the means and error bounds of

SMATCH scores as a function of the number of

restarts r over 100 runs on 100 sentences. We can

see that the variances are still significant when r is



large. Furthermore, by corresponding with other

researchers, we have learned that previous papers

on AMR parsing report SMATCH scores using dif-

fering values of r.

Another problem is that SMATCH maps one

node to another regardless of their actual content,

and it only considers edge labels when comparing

two edges. As a result, two different edges, such as

“ask-01 :ARG1 leave-11” and “make-01 :ARG1

pie” in Figure 1, can be considered identical by

SMATCH. This can lead to a overly large score

for two completely different AMRs. As shown in

Figure 1, SMATCH gives a score of 25% for the

two AMRs meaning “The girl asked the boy to

leave” and “The woman made two pies”, which

convey obviously different meanings.1 The situa-

tion could be worse for two different AMRs with

few types of edge labels, where the score could

reach 50% if all pairs of edges between them were

accidentally matched.

To tackle the problems above, we introduce

SEMBLEU, an accurate metric for comparing

AMR graphs. SEMBLEU extends BLEU (Papineni

et al., 2002), which has been shown to be effec-

tive for evaluating a wide range of text generation

tasks, such as machine translation and data-to-text

generation. In general, a BLEU score is a preci-

sion score calculated by comparing the n-grams

(n is up to 4) of a predicted sentence to those of

a reference sentence. To punish very short predic-

tions, it is multiplied by a brevity penalty, which

is less than 1.0 for a prediction shorter than its ref-

erence. To adapt BLEU for comparing AMRs, we

treat each AMR node (such as “ask-01”) as a uni-

gram, and we take each pair of directly connected

AMR nodes with their relation (such as “ask-01

:ARG0 girl”) as a bigram. Higher-order n-grams

(such as “ask-01 :ARG1 leave-11 :ARG0 boy”)

are defined in a similar way.

SEMBLEU has several advantages over

SMATCH. First, it gives an exact score for each

pair of AMRs without search errors. Second, it is

very efficient to calculate. On a dataset of 1368

pairs of AMRs, SEMBLEU takes 0.5 seconds,

while SMATCH takes almost 2 minutes using

the same machine. Third, it captures high-order

relations in addition to node-to-node and edge-to-

edge correspondences. This gives complementary

judgments to the standard SMATCH metric for

1https://amr.isi.edu/eval/smatch/

compare.html gives more details.

evaluating AMR parsing quality. Last, it does not

give overly large credit to AMRs that represent

completely different meanings.

Our initial evaluations suggest that SEMBLEU

has higher consistency with human judgments

than SMATCH on both corpus-level and sentence-

level evaluations. We also show that the number

of n-grams extracted by SEMBLEU is roughly lin-

ear in the AMR scale. Evaluation on the outputs

of several recent models show that SEMBLEU is

mostly consistent with SMATCH for results rank-

ing, but with occasional disagreements.

2 Our metric

Our method is based on BLEU, which we briefly

introduce, before showing how to extend it for

matching AMR graphs.

2.1 Preliminary knowledge on BLEU

As shown in Equation 1, the BLEU score for candi-

date c and reference z is calculated by multiplying

a modified precision with a brevity penalty (BP ).

BLEU = BP · exp

(

n
∑

k=1

wk log pk

)

(1)

BP is defined as e
min{1−

|z|
|c|

,0}
, which gives a value

of less than 1.0 when the candidate length (|c|)
is smaller than the reference length (|z|). pk and

wk are the precision and weight for matching k-

grams, and pk is defined as

pk =
|kgram(z) ∩ kgram(c)|

|kgram(c)|
, (2)

where kgram is the function for extracting all k-

grams from its input.

2.2 SEMBLEU

To introduce SEMBLEU, we make the follow-

ing changes to adapt BLEU to AMR graphs.

First, we define the size of each AMR (G) as

the number of nodes plus the number of edges:

|G| = |G.nodes| + |G.edges|. This size is

used to calculate the brevity penalty (BP ). Intu-

itively, edges carry important relational informa-

tion. Also, we observed many situations where a

system-generated AMR preserves most of the con-

cepts in the reference, but misses many edges.

Another change is to the n-gram extraction

function (kgram in Equation 2). AMRs are di-

rected acyclic graphs, thus we start extracting n-

grams from the roots. This is analogous to starting



Fg n Extracted n-grams

(a)

1 ask-01; girl; leave-11; boy

2

ask-01 :ARG0 girl;

ask-01 :ARG1 leave-11;

leave-11 :ARG0 boy;

3 ask-01 :ARG1 leave-11 :ARG0 boy;

(b)

1 woman; make-01; pie; 2

2

make-01 :ARG0 woman;

make-01 :ARG1 pie;

pie :quant 2;

3 make-01 :ARG1 pie :quant 2;

Table 1: n-grams (separated by “;”) extracted from the

AMRs in Figure 1 with our extraction algorithm. Fg

represents the corresponding subfigure.

to extract plain n-grams from sentence left end-

points. Note that the order of each n-gram is de-

termined only by the number of nodes within it.

For instance, “ask-01 :ARG0 girl” is considered

as a bigram, not a trigram.

Our n-gram extraction method adopts breadth-

first traversal to enumerate every possible starting

node for extracting n-grams. From each starting

node p, it extracts all possible k-grams (1 ≤ k ≤
n) beginning from p. At each node, it first stores

the current k-gram before enumerating every de-

scendant of the node and moving on. Taking the

AMR graphs in Figure 1 as examples, the n-grams

extracted by our method are shown in Table 1.

Processing inverse relations One important

characteristic of AMR is the inverse relations,

such as “ask-01 :ARG0 girl” ⇒ “girl :ARG0-of

ask-01”, for preserving the properties of being

rooted and acyclic. Both the original and inverse

relations carry the same semantic meaning. Fol-

lowing SMATCH, we unify both types of relations

by reverting all inverse relations to their original

ones, before calculating SEMBLEU scores.

Efficiency As an important factor, the effi-

ciency of SEMBLEU largely depends on the num-

ber of extracted n-grams. One potential problem

is that there can be a large number of extracted n-

grams for very dense graphs. For a fully connected

graph with N nodes, there are O(Nn) possible n-

grams. Luckily, AMRs are tree-like graphs (Chi-

ang et al., 2018) that are very sparse. For a tree

with N nodes, the number of n-grams is bounded

by O(n · N), which is linear in the tree scale. As

tree-like graphs, we expect the number of n-grams

extracted from AMRs to be roughly linear in the

graph scale. Our experiments empirically confirm

this expectation.

2.3 Comparison with SMATCH

In general, SMATCH breaks down the problem of

comparing two AMRs into comparing the small-

est units: nodes and edges. It treats each AMR

as a bag of nodes and edges, and then calculates

an F1 score regarding the correctly mapped nodes

and edges. Given two AMRs, SMATCH searches

for one-to-one mappings between the graph nodes

by maximizing the overall F1 score, and the edge-

to-edge mappings are automatically determined

by the node-to-node mappings. Since obtaining

the optimal mapping is NP-complete (by reduc-

tion from subgraph isomorphism), it uses a greedy

hill-climbing algorithm to find a mapping, which

is likely to be suboptimal.

One key difference is that SEMBLEU generally

considers more global features than SMATCH. The

only features that both metrics have in common

are the node-to-node correspondences (also called

unigrams for SEMBLEU). Each bigram of SEM-

BLEU consists two AMR nodes and one edge that

connects them, thus the bigrams already capture

larger contexts than SMATCH. In addition, the

higher-order n-grams of SEMBLEU capture even

larger correspondences. This can be a trade-off.

Generally, more high-order matches indicate bet-

ter parsing performance, but sometimes we want

to give partial credit for distinguishing partially

correct results from the fully wrong ones. As a

result, combining SMATCH with SEMBLEU may

give more comprehensive judgment.

Another difference is the way to determine edge

(relation) equivalence. SMATCH only checks edge

labels, thus two edges with the same label but con-

veying different meanings can be considered as

equivalent by SMATCH.2 On the other hand, SEM-

BLEU considers not only the edge labels but also

the content of their heads and tails, as shown by

the extracted n-grams in Table 1.

Take the AMRs in Figure 1 as an example,

SMATCH maps “girl”, “ask-01” and “leave-11”

in (a) to “woman”, “make-01” and “pie” in (b).

As a result, it considers that “ask-01 :ARG0 girl”

and “ask-01 :ARG1 leave-11” in (a) are correctly

mapped to “make-01 :ARG0 woman” and “make-

2One example is shown in the SMATCH tutorial https:
//amr.isi.edu/eval/smatch/tutorial.html.



Metric CAMR vs JAMR CAMR vs Gros CAMR vs Lyu JAMR vs Gros JAMR vs Lyu Gros vs Lyu

SMATCH 67.9 99.9 100.0 100.0 100.0 90.3
SEMBLEU 69.0 99.9 100.0 100.0 100.0 90.9

Table 2: Corpus-level bootstrap accuracies (%) for each system pair.

01 :ARG1 pie” in (b), which does not make

sense. Conversely, SEMBLEU does not consider

that these edges are correctly matched.

3 Experiments

We compare SEMBLEU with SMATCH on the out-

puts of 4 systems over 100 sentences from the test-

set of LDC2015E86. These systems are: CAMR,3

JAMR,4 Gros (Groschwitz et al., 2018) and Lyu

(Lyu and Titov, 2018). For each sentence, follow-

ing Callison-Burch et al. (2010), annotators decide

relative orders instead of a complete order over

all systems. In particular, 4 system outputs are

randomly grouped into 2 pairs to make 2 com-

parisons. For each pair, we ask 3 annotators to

decide which one is better and choose the major-

ity vote as the final judgment. All the annotators

have several years experience on AMR-related re-

search, and the judgments are based on their im-

pression on how well a system-generated AMR

retains the meaning of the reference AMR. Out

of the 200 comparisons, annotators are fully agree

on 142, accounting for 71%. With the judgments,

we study consistencies of both metrics on sentence

and corpus levels.

We consider all unigrams, bigrams and trigrams

for SEMBLEU, and the weights (wks in Equation

1) are equivalent (1/3 for each). For sentence-

level evaluation, we follow previous work to use

NIST geometric smoothing (Chen and Cherry,

2014). Following SMATCH, inverse relations such

as “ARG0-of”, are reversed before extracting n-

grams for making comparisons.

3.1 Corpus-level experiment

For corpus-level comparison, we assign each sys-

tem a human score equal to the number of times

that system’s output was preferred.

Our four systems achieved human scores of

30, 33, 63 and 74. They achieved SEMBLEU

scores of 28, 30, 38 and 41, respectively, and

SMATCH scores of 56, 56, 63 and 67, respectively.

SEMBLEU is generally more consistent with the

3https://github.com/c-amr/camr
4https://github.com/jflanigan/jamr

Metric Percent (%)

SMATCH 76.5

SEMBLEU 81.5

SEMBLEU (n=1) 69.5

SEMBLEU (n=2) 78.0

SEMBLEU (n=4) 80.0

Table 3: Sentence-level accuracies, where the highest

n-gram order is set to 3 by default, unless specified.

human judgments. In particular, there is a tie

between CAMR and JAMR for SMATCH scores,

while SEMBLEU scores are more discriminating.

We use the script-default 2 significant digits when

calculating SMATCH scores, as their variance can

be very large (Figure 2). To make fair comparison,

we also use 2 significant digits for SEMBLEU.

Bootstrap tests To conduct more compre-

hensive comparisons, we use bootstrap resampling

(Koehn, 2004) to obtain 1000 new datasets, each

having 100 instances. Every dataset contains the

references, 4 system outputs and the correspond-

ing human scores. Using the new datasets, we

check how frequently SEMBLEU and SMATCH are

consistent with human judgments on the corpus

level as a way to perform significant test.

Table 2 shows the accuracies of both metrics

across all 6 system pairs (such as CAMR vs Lyu).

Overall, SEMBLEU is equal to or slightly better

than SMATCH across all system pairs. The ad-

vantages are not significant at p < .05, perhaps

because of the small data size, yet human judg-

ments on large-scale data is very time consuming.

Comparatively, the precisions of both metrics on

CAMR vs JAMR is lower than the other system

pairs. It is likely because the gaps of this system

pair on both human and metric scores are much

smaller than the other system pairs. Still, SEM-

BLEU is better than SMATCH on this system pair,

showing that it may be more consistent with hu-

man evaluation.

3.2 Sentence-level experiment

For sentence-level comparison, we calculate the

frequency with which a metric is consistent with



Figure 3: Extracted n-grams as a function of the num-

ber of AMR graph nodes.

human judgments on a pair of sentences. Recall

that we make two pairs out of the 4 outputs for

each sentence, thus there are 200 pairs in total.

As shown in the upper group of Table 3, SEM-

BLEU is 5.0 points better than SMATCH, mean-

ing that it makes 10 more correct evaluations than

SMATCH over the 200 instances. This indicates

that SEMBLEU is more consistent with human

judges than SMATCH. The lower group shows

SEMBLEU accuracies with different order n. With

only unigram features (node-to-node correspon-

dences), SEMBLEU is much worse than SMATCH.

When incorporating bigrams and trigrams, SEM-

BLEU gives consistently better numbers, demon-

strating the usefulness of high-order features. Fur-

ther increasing n leads to a decrease of accuracy.

This is likely because humans care more about the

whole-graph quality than occasional high-order

matches.

3.3 Analysis on n-gram numbers

Figure 3 shows the number of extracted n-grams

as a function of the number of AMR nodes on

the devset of the LDC2015E86 dataset, which has

1368 instances. The number of extracted unigrams

is exactly the number of AMR nodes, which is ex-

pected. The data points become less concentrated

from bigrams to trigrams. This is because the

number of n-grams depends on not only the graph

scale, but also how dense the graph is. Overall,

the amount of extracted n-grams is roughly linear

in the number of nodes in the graph.

3.4 Evaluating with SEMBLEU

Table 4 shows the SEMBLEU and SMATCH scores

several recent models. In particular, we asked for

the outputs of Lyu (Lyu and Titov, 2018), Gros

(Groschwitz et al., 2018), van Nood (van Noord

and Bos, 2017) and Guo (Guo and Lu, 2018) to

evaluate on our SEMBLEU. For CAMR and JAMR,

Data Model SEMBLEU SMATCH

LDC2015E86

Lyu 52.7 73.7†
Guo 50.1 68.7†
Gros 50.0 70.2†

JAMR 46.8 67.0
CAMR 37.2 62.0

LDC2016E25
Lyu 54.3 74.4†

van Nood 49.2 71.0†

LDC2017T10

Guo 52.0 69.8†
Gros 50.7 71.0†

JAMR 47.0 66.0
CAMR 36.6 61.0

Table 4: SEMBLEU and SMATCH scores for several re-

cent models. † indicates previously reported result.

we obtain their outputs by running the released

systems. SEMBLEU is mostly consistent with

SMATCH, except for the order between Guo and

Gros. It is probably because Guo has more high-

order correspondences with the reference.

4 Conclusion

While one might expect a trade-off between speed

and correlation with human judgments, SEMBLEU

appears to outperform SMATCH in both dimen-

sions. The improvement in correlation with hu-

man judgments comes from the fact that SEM-

BLEU considers larger fragments of the input

graphs. The improvement in speed comes from

avoiding the search over mappings between the

two graphs. In practice, vertex mappings can be

identified by simply considering the vertex labels,

and the labels of their neighbors, through the n-

grams in which they appear. SEMBLEU can be

potentially used to compare other types of graphs,

including cyclic graphs.
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