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Abstract 5 

In the last few decades, spectroscopic techniques such as near-infrared (NIR) and UV/Vis 6 
spectroscopies have gained wide applications. As a result, various soft sensors have been 7 
developed to predict sample properties from its spectroscopic readings. Because the readings at 8 
different wavelengths are highly correlated, it has been shown that variable selection could 9 
significantly improve a soft sensor’s prediction performance and reduce the model complexity. 10 
Currently, almost all variable selection methods focus on how to select the variables (i.e., 11 
wavelengths or wavelength segments) that are strongly correlated with the dependent variable to 12 
improve the prediction performance. Although many successful applications have been reported, 13 
such variable selection methods do have their limitations, such as high sensitivity to the choice of 14 
training data, and deteriorated performance when testing on new samples. One possible reason is 15 
the removal of useful wavelengths or segments of wavelengths during the calibration process, 16 
which could be “tilted” to overfit or capture the noise or unknown disturbances contained in the 17 
calibration data. As a result, the model prediction performance may deteriorate significantly when 18 
the model is extrapolated or applied to new samples. To address this limitation, we propose a 19 
feature-based soft sensor approach utilizing statistics pattern analysis (SPA). Instead of selecting 20 
certain wavelengths or wavelength segments, the SPA-based method considers the whole spectrum 21 
which is divided into segments, and extracts different features over each spectrum segment to build 22 
the soft sensor. In other words, the SPA model contains the complete information from the full 23 
spectrum without any selection or removal, which we believe is the main reason for the high 24 
robustness of the SPA-based method. In addition, we propose a Monte Carlo validation and testing 25 
(MCVT) procedure and three MCVT-based performance indices for consistent and fair 26 
comparison of different soft sensor methods across different datasets. The MCVT procedure and 27 
indices are generally applicable for model comparison in other applications. Four case studies are 28 
presented to demonstrate the performance of the feature-based soft sensor and to compare it with 29 
a full partial least squares (PLS), a least absolute shrinkage and selection operator (Lasso), and a 30 
synergy interval PLS (SiPLS) based models following the proposed MCVT procedure. In addition, 31 
we examine the potential of kernel PLS (KPLS) based soft sensor approaches, examine their 32 
performances, and discuss their pros and cons. 33 

Keywords: Soft sensor, Variable selection, Multivariate regression, Partial least squares, Kernel 34 
partial least squares, Statistics pattern analysis, NIR, UV/Vis, Chemometrics 35 

1 Introduction 36 
Spectroscopic techniques such as near-infrared (NIR) and UV/Vis spectroscopies have gained 37 
wide applications in the last few decades due to their advantages over other analytical techniques, 38 
such as non-invasiveness and low pre-treatment requirement. Beyond their traditional applications 39 
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in analytical chemistry, spectroscopic techniques have been applied in many different fields to 1 
determine properties such as octane number [1], moisture content [2], active chemicals in a 2 
samples [3], and microorganism concentration [4]. In order to correlate the spectroscopic readings 3 
of a sample to its properties of interest, multivariate regression models, also known as soft sensors, 4 
are often developed, which usually utilize multivariate statistical methods such as multiple linear 5 
regression (MLR), principal component regression (PCR), partial least squares (PLS) [5,6] and 6 
canonical variate analysis (CVA) [7]. Interestingly, although CVA identifies directions of 7 
maximum correlation between response and regressor variables while PLS may theoretically 8 
include directions that are irrelevant to response variable(s) [7,8], PLS is the most commonly used 9 
soft sensor platform and there seems no research showing the advantage of CVA over PLS for soft 10 
sensor modeling. In addition, when variable selection is implemented prior to soft sensor 11 
modeling, it is expected that the variable selection process would exclude regressor 12 
variables/features that are irrelevant to the response variable(s). Therefore, in this work we choose 13 
to use PLS as the modeling backbone for the proposed approach, although it is straightforward to 14 
extend the method to CVA based soft sensor. Meanwhile, nonlinear soft sensors that utilize 15 
artificial neural network (ANN) or kernel-based methods such as support vector regression (SVR), 16 
kernel-PLS (KPLS), etc. have also been proposed in the literature [9,10]. As most spectroscopic 17 
datasets have relatively small sample size (e.g., three out of four datasets used in this work have 18 
only 21-36 training samples and 16-28 validation samples), they are not sufficient to train a good 19 
NN model. Therefore, in this work, we examine KPLS based nonlinear soft sensor. It has been 20 
shown that KPLS is a very effective soft sensor approach competitive with other kernel-based 21 
approaches such as SVR [11–13]. Other advantages of KPLS include its robustness and 22 
straightforward generalization, and ease of tuning of the parameters [14].  23 

For absorption spectroscopic measurements, absorbance values at different wavelengths 24 
correspond to light absorbed by different components of a sample as illustrated in Figure 1, where 25 

 

Figure 1. NIR spectra of pharmaceutical tablets (different colors refer to different samples) 
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the NIR spectra of a pharmaceutical tablet dataset are shown. It can be seen from Figure 1 that 1 
there are many clear absorption bands of the active pharmaceutical ingredient (API) from 600 to 2 
1800 nm. Since the number of variables, which equals to the number of wavelengths where 3 
absorbances are measured, are usually large, substantial number of samples are required for 4 
building robust models. However, in some applications, the number of samples are limited. In 5 
those cases, the so-called “curse of dimensionality” would affect the predictive power of the model, 6 
where insufficient number of samples (compared to the number of variables) are used to build the 7 
model. On the other hand, it is well known that absorbance values at different wavelengths are not 8 
equally important in building such models. In addition, as shown in Figure 1, the absorbances of 9 
adjacent wavelengths offer similar information – because the general features of molecular spectra 10 
are of continuous bands. In other words, spectroscopic data contain large number of redundant or 11 
highly correlated spectral variables. Although multivariate regression methods based on dimension 12 
reduction approaches such as PCR and PLS have inherent capability of handling large number of 13 
correlated variables, it has been shown that variable selection, when combined with multivariate 14 
regression, can significantly improve the soft sensor’s prediction performance, reduce the model 15 
complexity, as well as provide better insight into the nature of the process/system of interest 16 
[10,15–17]. The goal of variable selection for spectroscopic data is to identify the subset of 17 
wavelengths that are closely related to the interested properties of a sample such that the model 18 
built using the subset of the wavelengths can better estimate the properties for new samples. 19 
Another potential benefit of variable selection is to eliminate measurements at wavelengths 20 
containing significant noises for better accuracy and performance of the soft sensor models [18]. 21 

Due to the benefits mentioned above, variable selection is viewed as a critical step in spectroscopic 22 
chemometrics model development and has drawn significant interest in the last few years. For 23 
example, Zou et al. (2010) provided a review of different variable selection methods for soft 24 
sensors using NIR data [18], and Balabin and Smirnov (2011) compared 16 different variable 25 
selection methods using a biodiesel dataset [16]. It is worth noting that there are many applications 26 
of variable selection in other areas [19–24], but it is not the focus of this work to review them here. 27 
Although variable selection, when done properly, often improves the spectrum model prediction 28 
performance, it does carry some limitations. As shown in the case studies presented in this work, 29 
variable selection can produce soft sensor models that are sensitive to the choice of training and 30 
validation data, i.e., data used for model calibration. Due to the noises and unknown disturbances 31 
contained in the training data, the wavelengths selected to optimize the calibration performance 32 
based on the training and validation data may be “tilted” to overfit or to capture the noise or 33 
unknown disturbances contained in the calibration data. As a result, the model prediction 34 
performance may deteriorate significantly when model is extrapolated or applied to new samples. 35 
In fact, this limitation is not unique to spectroscopic chemometrics models; instead, it is true to all 36 
data-driven soft sensor models, which is in essence a balance between model accuracy and 37 
robustness. To help address this limitation, we propose a new feature-based soft sensor approach 38 
by adapting the statistics pattern analysis (SPA) framework we developed for process monitoring. 39 
In the SPA enabled feature-based soft sensor modelling approach, the whole sample spectrum is 40 
divided into segments, and different features of each spectrum segment, instead of the spectrum 41 
readings themselves, are utilized to build the soft sensor model. In this way, the information 42 
contained in the whole spectrum is utilized but the number of variables used for model building is 43 
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significantly reduced. In addition, the effect of noise can be reduced or removed in the feature 1 
extraction process. The performance of the proposed method is extensively tested in this work and 2 
is compared with a full PLS model utilizing all variables, a shrinkage method least absolute 3 
shrinkage and selection operator (Lasso) and an interval based variable selection method synergy 4 
interval PLS (SiPLS) [25]. In addition, we explore nonlinear KPLS based soft sensor applied to 5 
the original full spectra, as well as to the SPA features. We examine their performances and discuss 6 
their pros and cons. Four datasets from different fields, including agriculture, petroleum, 7 
pharmaceutical and biochemical, are chosen to show the versatile applicability of the proposed 8 
feature-based approach. For consistent and fair comparison, we propose a Monte Carlo validation 9 
and testing (MCVT) procedure and three MCVT-based performance indices for evaluating the 10 
performance of different soft sensor methods across different datasets. It is worth noting that the 11 
MCVT procedure and the MCVT-based performance indices are generally applicable for model 12 
comparison in other applications. 13 

The rest of the paper is organized as follows. Section 2 reviews PLS and KPLS based soft sensors 14 
applied to spectroscopic data. Section 3 reviews Lasso and SiPLS based variable selection 15 
methods. Section 4 presents the proposed feature-based soft sensor. The datasets used in this study 16 
are introduced in Section 5. Section 6 presents the proposed Monte Carlo validation and testing 17 
(MCVT) procedure and three MCVT based soft sensor performance indices. Section 7 discusses 18 
results of the case studies and Section 8 draws conclusions. 19 

2 Brief review of PLS and KPLS based soft sensors 20 
As discussed in Sec. 1, there are many linear and nonlinear soft sensors developed in the literature 21 
for spectroscopic data analysis. Here we briefly review PLS and KPLS based soft sensors studied 22 
in this work. 23 

2.1 PLS based soft sensor 24 
The construction of PLS based soft sensor using full or selected wavelengths follows the same 25 
procedure as follows. First, the spectra are used to construct the independent variable matrix 𝑿, 26 
which has the dimension of n × p, where n is the numbers of samples, and p is the number of all 27 
or selected wavelengths. Each row of 𝑿 corresponds to a sample spectrum of absorbance at all or 28 
selected wavelengths. Then, the physical or chemical properties of the samples are used to 29 
construct the dependent variable vector 𝑦 with the dimension of n × 1 where the number of 30 
properties is 1. Finally, a linear PLS regression model is developed to correlate 𝑦  with 𝑿 by 𝑦 31 
=𝑿β + , where β is a p × 1 regression coefficient vector, and  is a noise term for the model which 32 
has the same dimensions as 𝑦 . Usually, the variables in 𝑿 and 𝑦  are centered by subtracting their 33 
means and scaled by dividing by their standard deviations. The formulation can be 34 
straightforwardly extended to the cases with multiple properties. In this work, the plsregress 35 
function from Matlab Statistics and Machine Learning Toolbox is used to build the PLS models. 36 

2.2 KPLS based soft sensor 37 
Many variations of nonlinear PLS have been proposed in literature [26–29], among which KPLS 38 
has been extensively studied [11,12,30]. In KPLS, the independent variable matrix 𝑿 is mapped 39 
onto a higher dimensional feature space using a non-linear function 𝚽(𝑿). This mapped data 40 
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appears as a dot products of the mapping functions in dual space, and thus by applying “kernel 1 
trick” the dot product of the mapping function can be replaced by kernel function (𝑲 = 𝚽𝚽𝑇). A 2 
PLS soft sensor is then constructed in the mapped space corresponding to a nonlinear function in 3 
the original input space. More detailed derivations and discussions of KPLS can be found in 4 
[11,12,31,32]. In this work a radial basis function (RBF) or Gaussian kernel shown below is 5 
deployed. 6 

𝑲(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) (1) 7 

where 𝜎 is the kernel parameter. 8 

3 Brief review of Lasso and SiPLS based variable selection methods 9 
As discussed in Sec. 1, there are many variable selection methods developed in the literature for 10 
spectroscopic data analysis. In this section we briefly review Lasso and SiPLS based variable 11 
selection methods studied in this work. 12 

3.1 Least absolute shrinkage and selection operator (Lasso) 13 
Lasso selects variables by minimizing the square of the L2 norm of the residual vector with a 14 
penalty on the L1 norm of the coefficient vector [33] as below. 15 

𝐽(𝛽) = argmin
𝛽

(‖𝑦 − 𝑿𝛽‖2
2 + 𝜆‖𝛽‖1)  16 

where λ is a nonnegative regularization parameter to be optimized during model calibration or 17 
cross-validation. More detailed discuss on Lasso algorithm can be found in [33], and comparison 18 
of Lasso to other variable selection methods for PLS-based soft sensors in [34]. In this work, the 19 
lasso function from Matlab Statistics and Machine Learning Toolbox is used. 20 

3.2 Interval based variable selection approaches 21 
One of the early work under this category is called interval partial least squares (iPLS) [25]. In this 22 
method, a whole spectrum is divided into N non-overlapping segments of the same size (except 23 
the last segment) as shown in Figure 1. For each segment, a PLS model is developed. In order to 24 
find the segment that provide the best performance, the procedure is repeated with different value 25 
of N’s, and a standard cross-validation approach such as RMSECV (root mean squared error of 26 
cross-validation) can be used for performance evaluation. The segment with the best performance 27 
on the validation data, together with the optimal parameters such as the number of principal 28 
components (PCs), are used to develop a final PLS model for prediction on the test data. Case 29 
studies have shown that the performance of iPLS is comparable, rather than outperforming, other 30 
variable selection based methods such as principal variable (PV), forward stepwise selection (FSS) 31 
and recursively weighted regression (RWR). Since then, several variations of iPLS have been 32 
proposed, including backward interval PLS (biPLS), Moving window PLS (mwPLS), and Synergy 33 
interval PLS (SiPLS) [25,35]. In biPLS, the spectrum is divided into N segments and a PLS model 34 
is developed by leaving out one interval at a time. Intervals are removed until last, best performing 35 
interval is identified. In mwPLS, PLS models are calculated based on moving window approach, 36 
size of the window is fixed and window with best performing model is considered for future 37 
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predictions. SiPLS is another improved version of iPLS [25]. Compared to iPLS where only a 1 
single interval is used for model building, SiPLS allows the combination of multiple segments 2 
(e.g., 2, 3 or 4) to be selected for model building. The tuning parameters for SiPLS include the 3 
number of segments the spectrum to be divided into (i.e., N), the segments to be included in the 4 
model, and the number of principal components (PCs) to be retained in the model. In this study, 5 
only results obtained using SiPLS is compared as it was shown that SiPLS outperforms other 6 
interval based approaches [25]. The SiPLS Matlab code used in this work was downloaded from 7 
www.models.life.ku.dk/iToolbox. 8 

4 The proposed Statistics pattern analysis (SPA) enabled feature-based soft 9 
sensor 10 

As discussed above, good variable selection methods result in reduced models that are simpler, 11 
more robust and provide better prediction performance. However, when the training samples are 12 
not properly selected or there are not sufficient samples to cover the entire range of the properties 13 
to be predicted, the variable selection may be biased towards the covered property region while 14 
the extrapolability of the model can be poor. This can be evaluated by comparing the performance 15 
of the model on the validation samples to that of the test samples. A significant deterioration of 16 
performance on the test samples compared to that of the validation samples would indicate such a 17 
deficiency in variable selection. To address this potential issue while still significantly reducing 18 
the number of variables, we propose a feature-based soft sensor using statistics pattern analysis 19 
(SPA). 20 

Statistics pattern analysis (SPA) is a process monitoring framework that the authors developed 21 
previously [36–38], in which the statistics of process variables, instead of the process variables 22 
themselves, are monitored to determine the process operation status. SPA offers many advantages 23 
such as effectively addressing process nonlinearity and non-Gaussianity, non-synchronized batch 24 
trajectories, etc. Its effectiveness and performance in process monitoring have been demonstrated 25 
in multiple case studies [36–38]. 26 

In the original SPA based process monitoring approach, the statistics are calculated along the time 27 
dimension and PCA is performed on the statistics for fault detection and diagnosis. There is no 28 
response variable involved. Also, the statistics cannot be obtained on an individual sample. There 29 
must be a group/window of samples in order to estimate the statistics. In the proposed SPA feature-30 
based soft sensor, the statistics are calculated along the variable (i.e., wavelength) dimension and 31 
the statistics are correlated to response variable(s) through PLS. In this case, statistics is estimated 32 
based on an individual sample and the properties are estimated individually for each test sample. 33 
Specifically, as shown in Figure 2, in the SPA-based soft sensor we first divide each spectrum into 34 
𝑠 non-overlapping segments, which is similar to SiPLS; then 𝑓 different features are extracted 35 
from each spectrum segment for each sample, which are raw spectrum readings without any 36 
scaling. The extracted features, such as the mean, standard deviation, skewness, kurtosis, are used 37 
as the regressors (totally 𝑠 × 𝑓 features for each sample) to build the soft sensor model. With 𝑛 38 
samples, the dimension of 𝑋 would be 𝑛 × (𝑠 × 𝑓) and the dimension of 𝑌 would be 𝑛 × 1 for a 39 
single property, or 𝑛 × 𝑚 for 𝑚 properties. Both 𝑋 and 𝑌 are auto-scaled to zero mean and unit 40 
variance for PLS modeling. The spectrum segmentation intervals (or number of segments), 41 
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statistics used for model building, and number of PC’s for PLS are optimized based on cross 1 
validation. In this way, information from the whole spectrum will be utilized for model building, 2 
but with significantly reduced number of variables. The schematic diagram of the proposed SPA 3 
feature-based soft sensor approach is shown in Figure 2. 4 

There are several benefits associated with the SPA feature-based soft sensor. First, it utilizes the 5 
information from the whole spectrum to build the soft sensor model, which provides better model 6 
robustness; second, by extracting features of the spectrum segment in each interval, which involves 7 
computing the average of certain functions of absorption at different wavelength, it reduces the 8 
effect of noise; finally, it offers the flexibility to utilize nonlinear features and higher order statistics 9 
to better capture the nonlinear relationships between sample absorbance spectrum and property, 10 
although it is worth noting that there are other ways to capture the data nonlinearity (e.g., [39]). In 11 
addition, a nonlinear regression method such as KPLS can be used in place of PLS to further 12 
capture the nonlinear relationships, if any, between SPA features and properties of interest. 13 

In this study the following eight different features/statistics are considered as the candidate features 14 
to be modeled: mean (𝜇), standard deviation (𝜎) or Variance (𝜎2), skewness (𝛾), kurtosis (𝜅), 15 
average of first derivative of spectrum over an interval (AFD), average of second derivative of 16 
spectrum over an interval (ASD), slope of linear regression line (SLL) and coefficient of squared 17 
term for second order regression line (SSL). 𝜇 and 𝜎 represent the overall change in a given 18 
spectrum segment. 𝛾, 𝜅, SLL and SSL provide information on different aspects that characterize 19 
the shape of the spectrum in an interval. AFD and ASD give rate of change and rate of rate of 20 
change of absorbance spectrum with respect to wavelength. Note that the first and second 21 
derivatives of the absorbance spectrum, instead of spectrum itself, have been used for spectral 22 
analysis [40–42]. 23 

5 Case studies 24 
In order to comprehensively compare SPA with PLS full model and reduced models based on 25 
Lasso and SiPLS, four datasets from different fields are used in this work. 26 

1. Corn dataset: This dataset consists of 80 samples of NIR absorbance spectra from three 27 
spectrometers and corresponding property values of moisture, oil, protein and starch. 28 
Wavelength range is 1100nm to 2498nm at 2nm interval. In this paper moisture property and 29 

 

Figure 2. Schematic of SPA feature-based soft sensor 
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NIR spectra from mp6spec was used for study and comparison, any other property can also be 1 
used. More detailed discussion of the dataset can be found in [43]. 2 

2. Gasoline dataset: This dataset consists of 60 samples of NIR absorbance spectra and 3 
corresponding octane number. Wavelength range is 900nm to 1700nm at 2nm interval. More 4 
detailed discussion of the dataset can be found in [44]. 5 

3. Pharmaceutical tablets dataset: This dataset consists of 655 samples of NIR absorbance 6 
spectra of pharmaceutical tablets and corresponding values of total weight, hardness and 7 
Active pharmaceutical ingredients (API). Wavelength range is 600nm to 1798 nm at 2nm 8 
interval. In this paper API of the tablets was used for comparison and study. This dataset has 9 
already been divided into calibration, validation and test sets. More detailed discussion of the 10 
dataset can be found in [45,46]. 11 

4. Co-culture dataset: This dataset consists of 47 samples of UV/Vis absorbance spectra of 12 
E.coli and S. cerevisiae co-culture with known individual cell mass concentration. In this data 13 
spectra were clearly separated into 6 groups. Wavelength range is 300nm to 900nm at 1nm 14 
interval. Detailed description of the dataset and the experimental design can be found in [4]. 15 

 Spectra of all four datasets used for this study are shown in Figure 3.  16 

For consistent and fair comparison across different datasets, the datasets were divided into training, 17 
validation and test sub-sets in consistent proportions. For small datasets (i.e., corn, gasoline and 18 
coculture datasets), about 20% of all samples were left out as test samples while the remaining 19 
~80% of all samples were used for model calibration (i.e., training and validation). For 20 

  
(a) (b) 

  
(c) (d) 

Figure 3. NIR spectra of (a) corn, (b) gasoline, (c) pharmaceutical tablet and (d) coculture 
datasets (different colors refer to different samples) 
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pharmaceutical dataset that has 655 samples, ~30% of all samples were left out as test samples 1 
while ~70% of all samples were used for calibration. In addition, to avoid model overfitting, based 2 
on the recommendation suggested by [47], about 45% of all calibration samples were left out for 3 
validation (i.e., data used for the optimization of the model parameters) while the rest of the 4 
calibration samples (about 55% of all calibration samples) were used for training (i.e., data actually 5 
used to build the models). Details of the data division for all datasets are given in Table 1. 6 
Literature [34] and our experiences suggest that such division of training and validation (i.e., ~55% 7 
vs. ~45%) results in models that are generally without overfitting issues. This is confirmed by the 8 
results of this work as discussed in details in Section 6. In addition, for small datasets such as most 9 
spectrum based datasets, the performance could be significantly affected by the data division (e.g., 10 
how many samples in training and testing respectively, and specific samples included in each 11 
group). To address this potential bias, we propose a Monte Carlo validation and testing (MCVT) 12 
procedure such that multiple (25 in this work) training and testing sets are randomly selected in 13 
each MC run and the average and standard deviation of the performances across different MC runs 14 
are used to robustly and fairly evaluate the soft sensor performance. Details are provided in the 15 
next section. 16 

Table 1 Division of data into training, validation and test subsets 17 

Dataset Training (%) Validation (%) Test (%) Total (%) 
Corn 36 (45.0%) 28 (35.0%) 16 (20.0%) 80 (100%) 
Gasoline  27 (45.0%) 21 (35.0%) 12 (20.0%) 60 (100%) 
Pharma 263 (40.2%) 196 (29.9%) 196 (29.9%) 655 (100%) 
Co-culture 21 (44.7%) 16 (34.0%) 10 (21.3%) 47 (100%) 

6 Monte Carlo validation and testing (MCVT) procedure and MCVT-based 18 
performance indices 19 

To systematically test the proposed method and compare its performance with full PLS, Lasso and 20 
SiPLS models, a Monte Carlo validation and testing (MCVT) procedure is proposed, which is 21 
based on Monte Carlo cross-validation (MCCV) [34], but adapted for the purpose of comparing 22 
performances across different methods. The MCVT procedure is outlined in Figure 4. In each outer 23 
(i.e., prediction) MC loop, the MC sampling approach is applied on the full dataset to partition it 24 
randomly into a combined training-validation set and a test set based on specified proportions (e.g., 25 
proportions in Table 1). In each inner cross-validation MC loop, the MC sampling is applied on 26 
the training-validation set to generate a training set and a validation set, again, based on specified 27 
proportions such as those given in Table 1. A soft sensor model is built based on the training set 28 
and the validation set is projected onto the model with different model parameters to obtain a series 29 
of performance indices (i.e., normalized root mean squared errors (𝑁𝑅𝑀𝑆𝐸𝑉  ) as defined in Eqn. 30 
1 but they can be other indices) as a function of model parameters (MP’s). Table 2 lists MP’s to 31 
be optimized for each soft sensor method. It is worth noting that the spectrum 32 
partition/segmentation is an important parameter to be tuned or optimized for interval based 33 
methods SiPLS and SPA. Table 2 also indicates that the calibration processes of SiPLS and SPA 34 
are more computationally intensive than those of full PLS and Lasso based soft sensors. 𝑁𝑅𝑀𝑆𝐸𝑉 35 
has a dimension of 𝑝1 × 𝑝2 × ⋯ × 𝑝𝑛 where 𝑝𝑖 is the number of discrete values of model parameter 36 
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𝑖 to be evaluated. The inner MC loop is repeated 𝑀𝑉 times (which is 100 in this work) to generate 1 
𝑀𝑉 𝑁𝑅𝑀𝑆𝐸𝑉’s, which complete the inner MC loop. The 𝑁𝑅𝑀𝑆𝐸𝑉’s are averaged over the 𝑀𝑉 2 
MC runs to generate 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉. The MP’s (e.g., number of PC’s, etc.) that result in the lowest 3 
𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉 is used to build a prediction model using the combined calibration set. The test set is 4 
then projected onto the prediction model to generate the performance index 𝑁𝑅𝑀𝑆𝐸𝑃. The outer 5 
MC loop is repeated 𝑀𝑃 times (which is 25 in this work), resulting in 𝑀𝑃 × 𝑀𝑉 inner (calibration) 6 
MC loops, to generate 𝑀𝑃 𝑁𝑅𝑀𝑆𝐸𝑃’s. The mean of 𝑁𝑅𝑀𝑆𝐸𝑃’s (i.e., 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑃 as defined in Eqn. 7 
3) then can be used to evaluate the accuracy of the method while the standard deviation of 8 
𝑁𝑅𝑀𝑆𝐸𝑃’s (i.e., 𝜎𝑁𝑅𝑀𝑆𝐸𝑃

 as defined in Eqn. 4) can be used to assess the precision, or 9 
robustness/consistency of the method. Other performance indices can also be included, such as 10 
average normalized mean prediction error (𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ as defined in Eqn. 6) for quantifying prediction 11 
bias. 12 

Table 2. Parameters to be optimized for all methods 13 

Method Parameters to be calibrated No. of parameters to be 
calibrated 

Full PLS No. of PC’s 1 
Lasso 𝜆 1 
SiPLS No. of segments the spectrum is divided into; 

Segments used in the model; No. of PC’s 
3 

SPA (this 
work) 

No. of segments the spectrum is divided into; 
Statistics/features used in the model; No. of PC’s 

3 

 14 
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Figure 4. Flow diagram of the proposed Monte Carlo validation and testing procedure for 
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As mentioned previously, the following three MCVT-based performance indices are proposed to 1 
evaluate the performance of each soft sensor in this work. 2 

Normalized root mean squared error (𝑁𝑅𝑀𝑆𝐸) as percentage of the measurement range: 3 

𝑁𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦−𝑦̂)𝑖

2 𝑛
𝑖=1

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
× 100% (2) 4 

Average 𝑁𝑅𝑀𝑆𝐸 (𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ):  5 

𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑁𝑅𝑀𝑆𝐸𝑖

𝑀
𝑖=1

𝑀
 (3) 6 

Standard deviation of NRMSE (𝜎𝑁𝑅𝑀𝑆𝐸) 7 

𝜎𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑁𝑅𝑀𝑆𝐸𝑖−𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑀
𝑖=1

𝑀−1
 (4) 8 

Normalized mean prediction error (NMPE) as percentage of the measurement mean:   9 

𝑁𝑀𝑃𝐸 =
∑ (𝑦−𝑦̂)𝑖 𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

× 100% (5) 10 

Average 𝑁𝑀𝑃𝐸 (𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅):  11 

𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑁𝑀𝑃𝐸𝑖

𝑀
𝑖=1

𝑀
 (6) 12 

where 𝑛 is the total number of validation (𝑛𝑉) or prediction (𝑛𝑃) samples in each MC run, and 𝑀 13 
is the total number of MC runs during validation (𝑀𝑉) or prediction (𝑀𝑃). 14 

7 Results and Discussion: 15 
All analyses follow the MCVT procedure discussed in the previous section (with 𝑀𝑉 = 100 and 16 
𝑀𝑃 = 25) and MCVT-based performance indices (i.e., 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝜎𝑁𝑅𝑀𝑆𝐸and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅) were 17 
compared among different methods. For the proposed SPA soft sensor, after optimization during 18 
calibration/validation, the statistics and features selected for different datasets are listed in Table 19 
3. As can be seen from Table 3, not all statistics and features are selected for all datasets. This is 20 
because the features are selected to minimize 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉, which is similar to variable selection, 21 
where there is a trade-off between information added by the feature and noise and/or bias added 22 
by the feature. 23 

Table 3. Statistics and features selected for different datasets 24 

Dataset Statistics and features selected 
Corn dataset 𝜇, 𝛾, 𝜅, ASD, SLL, SSL 
Gasoline dataset 𝜇, SLL 
Pharmaceutical dataset 𝜇, 𝛾, 𝜅, AFD, ASD, SLL, SSL 
Co-culture dataset 𝜇, 𝜎 

 25 
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The average model sizes in terms of number of variables/features in the final soft sensor model 1 
over the 25 outer/prediction MC runs are listed in Table 4. It can be seen that all models with 2 
variable selection are substantially smaller than the full model. SPA has the smallest model size in 3 
three cases and the moderate model size in the rest two cases. In addition, it was found that the 4 
interval based methods, i.e., SiPLS and SPA, are quite robust to spectrum segmentation (i.e., the 5 
number of segments the spectrum is divided into). Due to limited space and the scope of this work, 6 
the results are not presented. In the following, we discuss the findings from the comparison of 7 
different methods on different datasets. 8 

Table 4 Average number of variables/features of different soft sensors 9 

Dataset PLS SiPLS Lasso SPA 
Corn 700 152 141 84 
Gasoline 401 84 14 30 
Pharma 600 136 21 98 
Co-cult (E. coli) 601 129 102 34 
Co-cult (S. cerevisiae) 601 138 109 28 

 10 

7.1 Comparison among full PLS, SiPLS, Lasso and SPA based soft sensors 11 

Corn data: Figure 5 shows comparison of all three indices, for validation and predication, 12 
obtained from the four approaches: full PLS, SiPLS, Lasso and SPA based soft sensors. First, if 13 
we compare performance indices (i.e.,  𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝜎𝑁𝑅𝑀𝑆𝐸, and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅) of validation vs. prediction, 14 
there is a general trend of performance deterioration from validation to prediction, which is 15 
expected as the model parameters were optimized based on the validation data. However, the 16 
performance deteriorations are not drastic, indicating that there is no obvious overfitting of models. 17 
The second observation is that in general variable selection improves soft sensor performance. 18 
Although 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃’s of Lasso and SiPLS are slightly higher than the full model in this particular 19 
case study, the error is insignificant – less than 0.1% of the measurement mean. The third 20 
observation is that for SiPLS, the model prediction performances are noticeably worse than that of 21 
the validation, especially 𝜎𝑅𝑀𝑆𝐸, and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅. The likely reason is that the wavelengths selected by 22 
Lasso or SiPLS to optimize the prediction performance based on the calibration (i.e., training and 23 
validation) data may be “tilted” to overfit or capture the noise or unknown disturbances contained 24 
in the calibration data. As a result, when the model is extrapolated or applied to new samples, the 25 
performance may deteriorate noticeably. Finally, SPA outperforms Lasso and SiPLS in all 26 
performance metrics. We believe the likely reason is that SPA does not discard any wavelength. 27 
Instead, SPA extracts features over the whole spectrum, making it more robust against 28 
performance degradation from validation to prediction. Overall, SPA-based soft sensor provides 29 
the best performance. 30 
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(a) (b) (c) 

Figure 5. Comparison of soft sensors using corn data (moisture): (a) 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; (b) 𝜎𝑁𝑅𝑀𝑆𝐸; (c) 1 
𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 2 

Gasoline data: As shown in Figure 6, for the gasoline data, similar trend of performance 3 
deterioration from validation to prediction is observed as expected. But again, the insignificant 4 
difference in  𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  suggests no obvious overfitting of the models. In addition, the performance 5 
of SiPLS deteriorate noticeably from validation to prediction, especially 𝜎𝑁𝑅𝑀𝑆𝐸 and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅, 6 
which increased by more than three folds and eight folds, respectively. In contrast, the 7 
performances of Lasso and SPA are more consistent with reasonable increase in 𝜎𝑅𝑀𝑆𝐸 and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅.  8 

      
(a) (b) (c) 

Figure 6. Comparison of soft sensors using gasoline data: (a) 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; (b) 𝜎𝑁𝑅𝑀𝑆𝐸; (c) 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 9 

Pharmaceutical tablet data: As shown in Figure 7, for the pharmaceutical data,  the performances 10 
of Lasso, SiPLS and SPA are similar, which are slightly better than that of the full model in terms 11 
of 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ but with slightly higher 𝜎𝑁𝑅𝑀𝑆𝐸. SPA gives the smallest 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ among all 12 
four models. 13 

  14 
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(a) (b) (c) 

Figure 7. Comparison of soft sensors using pharmaceutical data: (a) 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; (b) 𝜎𝑁𝑅𝑀𝑆𝐸; (c) 1 
𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 2 

Co-culture data: For the coculture data, two sets of models are built to predict the concentrations 3 
of E. coli and S. cerevisiae separately. Separate models were used because the concentrations of 4 
the two species are properties that are not supposed to be correlated to each other. As shown in 5 
Figure 8, for E. coli, Lasso and SiPLS actually perform worse than the full model in prediction, 6 
but SPA performs noticeably better than the full model. Although the 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ of SPA is higher 7 
than that of the full model, its value of less than 0.05% of the measurement mean indicates already 8 
very accurate predictions. 9 

      
(a) (b) (c) 

Figure 8 Comparison of soft sensors using coculture data (E. coli): (a) 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; (b) 𝜎𝑁𝑅𝑀𝑆𝐸; (c) 10 
𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 11 

For S. cerevisiae, Lasso again performs worse than the full model, while SiPLS and SPA 12 
performing slightly better than the full model as shown in Figure 9. For 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅, again, the values 13 
from all models are less than 0.05% of the measurement mean indicates high accuracy of 14 
predictions from all models. When models for both species are considered, SPA performs better 15 
than Lasso and SiPLS. This further supports the SPA methodology of not removing any 16 
wavelength but rather extracting features from the full spectrum. 17 
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(a) (b) (c) 

Figure 9. Comparison of soft sensors using coculture data (S. cerevisiae): (a) 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; (b) 𝜎𝑁𝑅𝑀𝑆𝐸; 1 
(c) 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 2 

7.2 Discussions 3 
In this section, we discuss potential reasons for the improved performance from SPA feature-based 4 
soft sensor. In addition, we examine the potential of KPLS based soft sensor applied to either 5 
original spectra or SPA features. For the corn data, Figure 10 (a) shows the predicted vs. measured 6 
moisture content, which confirms that SPA performs better than full PLS, Lasso and SiPLS across 7 
the whole property region. More importantly, we want to note that SPA performs especially better 8 
at extreme or boundary regions, as highlighted by red ellipses in Figure 10, where the number of 9 
samples are usually fewer than other regions. For example, when the moisture content is below 10 
9.5, the predictions from the full PLS, Lasso and SiPLS models are widespread (i.e., large  𝜎𝑁𝑅𝑀𝑆𝐸) 11 
and with significant bias (i.e., high 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅). Similar observations are found for the gasoline (Figure 12 
10 (b)) and other datasets (not shown due to space limit). We postulate that the wavelengths 13 
selected by Lasso or SiPLS to optimize the performance based on the calibration data may be 14 
“tilted” to overfit or capture the noise or unknown disturbances contained in the calibration data, 15 
which are dominated by samples from the dense regions. As a result, the prediction performance 16 
of SiPLS may deteriorate significantly when the model is extrapolated or applied to samples from 17 
the sparse regions. As for the full PLS model, we believe the reason is because its performance is 18 
optimized by 𝑁𝑅𝑀𝑆𝐸, which means the spare regions with fewer samples would weigh less than 19 
the dense regions with more samples in determining the model parameters. As for SPA, although 20 
it is also optimized by 𝑁𝑅𝑀𝑆𝐸, it seems that the statistics and features extracted based on different 21 
regions of the full spectrum can alleviate this situation and the resulted model can extrapolate much 22 
better to the sparse regions with fewer samples than the models from PLS, Lasso and SiPLS. 23 
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(a) (b) 

Figure 10. Comparison of predicted vs. measured properties from different soft sensors using (a) 1 
corn data and (b) gasoline data. Red ellipses highlight the regions where SPA performs 2 
significantly better than the full PLS, Lasso and SiPLS models. 3 

In the previous section, we only compared linear soft sensors, although, strictly speaking, the 4 
mapping from the original spectrum to the SPA features is not linear. Here we explore the potential 5 
of KPLS as a nonlinear soft sensor for spectroscopic data analysis applications. For KPLS with a 6 
Gaussian kernel, the number of variables in the feature/kernel space equals the number of training 7 
samples, which is usually significantly larger than the number of variables under normal 8 
circumstances. However, this is not true for many spectroscopic data analysis applications as 9 
discussed previously. In those cases, KPLS actually shrinks the variable dimension in the kernel 10 
space. It is worth noting that this work is not intended to invalidate the merits of KPLS, but rather 11 
a case study to see if nonlinearity in the spectroscopic data can be captured for improving soft 12 
sensor performance given the severe constraint of the limited number of samples. In this work two 13 
scenarios are studied: the first scenario is to apply KPLS on the original full spectra; the second 14 
scenario is to apply KPLS on SPA features. The same MCVT procedure is followed to tune KPLS 15 
parameters, including the Gaussian kernel parameter 𝜎 and number of PC’s. For the first scenario 16 
where KPLS is applied on the full spectra of each dataset, the perform of KPLS is poor for all four 17 
datasets. Table 5 compares the 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ of 25 MC prediction runs for the 18 
pharmaceutical dataset, which is the largest dataset studied in this work with 263 training samples. 19 
Table 5 shows that KPLS performs even worse than full PLS. This is not surprising due to the 20 
severe constraint of limited number of samples. Therefore, the poor performance of KPLS does 21 
not indicate that there is no nonlinearity exists in the data, instead, it can only be said that KPLS 22 
cannot overcome the deficiency of variable shrinkage (instead of variable expansion in a regular 23 
KPLS application) due to the smaller number of samples (263) than that of variables (600). In the 24 
second scenario, we apply KPLS on top of SPA and term it SPA-KPLS. In other words, KPLS is 25 
replacing PLS and applied to SPA features. Again, the same MCVT procedure is followed to tune 26 



17 
 

the KPLS parameters. The performances of SPA-KPLS on the four datasets are compared to PLS-1 
based SPA, and the results are listed in Table 6. Table 6 shows that KPLS does not improve the 2 
performance of SPA-based soft sensor in three out of four datasets (i.e., corn, gasoline and 3 
pharmaceutical datasets), which we believe can be attributed to the small number of training 4 
samples. However, KPLS does help in predicting E. coli and S. cerevisiae concentrations in the 5 
coculture dataset with only 21 samples for each strain. Although we do not have a definitive answer 6 
to explain this, we believe this is due to the significant similarity between the absorbance of the 7 
two strains, which makes the nonlinear interactions between the absorbance of the two strains an 8 
important factor in predicting their individual concentrations. In other words, the nonlinearity 9 
captured by KPLS outweighs the deficiency of dimension shrinkage due to limited samples. 10 

Table 5 Prediction performance of KPLS on the pharmaceutical dataset compared to PLS and SPA 11 
 

PLS SPA KPLS 
𝑵𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 4.69% 4.49% 5.03% 
𝑵𝑴𝑷𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ -0.022% -0.013% -0.032% 

 12 

Table 6 Prediction performance of SPA-KPLS compared to SPA 13 

    Corn Gasoline Pharma. E. coli S. cerevisiae 

𝑵𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
SPA 7.13% 3.18% 4.50% 0.62% 0.74% 
SPA-KPLS 8.04% 3.40% 4.73% 0.48% 0.44% 

𝑵𝑴𝑷𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ 
SPA -0.0093% -0.0047% -0.013% -0.050% 0.026% 
SPA-KPLS -0.055% -0.011% -0.0034% -0.015% 0.033% 

 14 

8 Conclusions and Future work  15 
In conclusion, although variable selection in general could significantly improve soft sensor 16 
performance and reduce model complexity, there are potential pitfalls. As demonstrated by 17 
multiple case studies in this work, variable selection methods can be sensitive to the choice of 18 
training data and their performance could deteriorate noticeably when applied to test samples. We 19 
believe the possible reason is that the wavelengths selected (or wavelengths removed for that 20 
matter) to optimize the performance based on the calibration (i.e., training and validation) data 21 
may be “tilted” to overfit or capture the noise or unknown disturbances contained in the calibration 22 
data. As a result, the model prediction performance may deteriorate significantly when the model 23 
is extrapolated or applied to new samples. To address this limitation, we propose a feature-based 24 
soft sensor approach by adapting the idea of SPA-based process monitoring framework we 25 
developed previously. Instead of selecting certain wavelengths or wavelength segments, the SPA 26 
feature-based soft sensor considers the whole spectrum, which is divided into segments, and 27 
extracts different features over each spectrum segment to build the soft sensor. In this way, there 28 
is no removal or exclusion of any wavelength or spectrum segment. As demonstrated in multiple 29 
case studies in this work, the proposed SPA feature-based soft sensor in general outperforms the 30 
original absorbance based soft sensor (i.e., the full PLS soft sensor) as well as the variable selection 31 
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method Lasso or SiPLS based soft sensor in terms of 𝑁𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝜎𝑁𝑅𝑀𝑆𝐸, and 𝑁𝑀𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅. The SPA 1 
feature-based soft sensor is more robust than Lasso and SiPLS based soft sensor as evidenced by 2 
the smaller performance dip from validation to prediction. In addition, the SPA feature-based soft 3 
sensor can extrapolate much better to the sparse regions with fewer samples than the soft sensors 4 
based on full PLS, Lasso or SiPLS. We believe the main reasons for the good performance and 5 
robustness of the SPA based soft sensor are due to the following two factors: (1) features of 6 
spectrum segments correlate better to the property of interest (in a linear fashion through PLS) 7 
than the original spectrum or selected wavelengths; (2) inclusion of all information from the whole 8 
spectrum without removal or exclusion of any wavelength or wavelength segment enhances the 9 
robustness of the soft sensor. Finally, for small datasets such as most spectrum based datasets, the 10 
soft sensor performance could be significantly affected by the data division (e.g., how many 11 
samples in training and testing respectively, and specific samples included in each group). To 12 
address this potential bias, we propose a Monte Carlo validation and testing (MCVT) procedure 13 
such that multiple (25 in this work) training and testing sets are randomly selected in each MC run 14 
and the average and standard deviation of the performances across different MC runs are used to 15 
robustly and fairly evaluate the soft sensor performance across different datasets, which are 16 
generally applicable for model comparison in other applications. Although linear soft sensor 17 
methods are much preferred in most applications for their simplicity and interpretability, we tested 18 
the potential of nonlinear KPLS applied to both original spectra and SPA features. The results 19 
indicate that when the number of samples are severely limited, applying KPLS to full spectra is 20 
not a good solution compared to PLS. However, when KPLS is applied to SPA features, although 21 
still suffering the deficiency of small sample size, the results are much improved. The results of 22 
the coculture dataset justify the advantage of KPLS over PLS when there are potentially strong 23 
nonlinear interactions. 24 

For future work, how to select features more systematically with less computation is worth further 25 
investigation. One potential route would be to integrate or adapt some variable selection 26 
approaches for feature selection. In addition, it is desirable if fundamental relations or theories 27 
could be developed for rational selection of features. Finally, integrating nonlinear regression 28 
methods, such as ANN and kernel-based approaches, into feature-based soft sensor is worth further 29 
investigation, especially for cases where large number of samples are available and/or potentially 30 
strong nonlinear interactions exist. 31 
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