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ABSTRACT

Personal information and other types of private data are valuable
for both data owners and institutions interested in providing tar-
geted and customized services that require analyzing such data. In
this context, privacy is sometimes seen as a commodity: institu-
tions (data buyers) pay individuals (or data sellers) in exchange for
private data. In this study, we examine the problem of designing
such data contracts, through which a buyer aims to minimize his
payment to the sellers for a desired level of data quality, while the
latter aim to obtain adequate compensation for giving up a certain
amount of privacy. Specifically, we use the concept of differential
privacy and examine a model of linear and nonlinear queries on
private data. We show that conventional algorithms that introduce
differential privacy via zero-mean noise fall short for the purpose
of such transactions as they do not provide sufficient degree of
freedom for the contract designer to negotiate between the com-
peting interests of the buyer and the sellers. Instead, we propose
a biased differentially private algorithm which allows us to cus-
tomize the privacy-accuracy tradeoff for each individual. We use a
contract design approach to find the optimal contracts when using
this biased algorithm to provide privacy, and show that under this
combination the buyer can achieve the same level of accuracy with
a lower payment as compared to using the unbiased algorithms,
while incurring lower privacy loss for the sellers.

CCS CONCEPTS

« Security and privacy — Economics of security and privacy.

1 INTRODUCTION

Advances in data centers have enabled storing large amounts of
data containing private information of individuals/firms. These
data have value for institutions interested in analyzing them for
a variety of purposes such as targeted advertising. Individuals are
not willing to share their data due to privacy concerns; even when
they are not concerned with how institutions use their respective
data, they can still be reluctant to share due to the possibility of
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Figure 1: Interaction of buyer and sellers.

data breaches. Within this context, privacy has become a commod-
ity that institutions often have to pay monetary or non-monetary
compensation for using it. For instance, Datacoup is a new startup
offering monthly payment in return for the access to users’ online
accounts and credit card transactions. While Datacoup protects
users’ identities as well as credit card numbers, it provides aggre-
gated and/or de-identified information about the users to any third
party, including advertisers, data buyers and analytics partners [1].

Studies of privacy as a commodity include arbitrage-free privacy-
preserving pricing mechanisms, see e.g., [11], designing contracts
for data privacy and utility [14], auctions and direct mechanisms
for selling privacy [8, 9], as well as dynamic privacy pricing [15]. A
more detailed literature review is given in Section 2.

In this paper, we consider a single buyer, whose goal is to mini-
mize his payment to data owners, also referred to as sellers, provided
that the purchased data satisfy a certain level of accuracy. The sell-
ers value their privacy, but are willing to sell their data provided the
cost of their privacy loss, measured by the concept of differential
privacy [6], is adequately compensated by the payment.

The transaction takes place as follows. The buyer announces his
desired accuracy level of a certain computational output, e.g., in
the form of a query over certain types of data, to a trusted third
party, also referred as the data broker. The data broker collects rele-
vant data from different individuals/sellers and generates such an
output, which he then releases to the buyer. The buyer pays each
individual, through the broker, an amount commensurate with the
privacy loss the individual experiences as a result of the release of
the computational output. Figure 1 illustrates these interactions. A
data contract among these parties stipulates the payment amount
and quantifies accuracy as well as privacy guarantees associated
with the payment. In the current model the broker is assumed to be
a neural, non-profit entity, but our analysis and conclusions hold
if the broker charges a fixed processing fee. A key component of
this framework is a differentially private algorithm that preserves
the privacy of the input data and returns a differentially private
output for the query. Toward this end, we propose a randomized
algorithm that, in contrast to most commonly used algorithms that
add a zero-mean noise to the data, see e.g., [11], adds not only a
zero-mean noise to the private data, but also a bias. As we will show,
the introduction of this bias allows the broker to add less noise to
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the data and increase the accuracy of the output simultaneously.
Furthermore, it provides an additional degree of freedom that the
broker can use to judiciously determine individual privacy losses
based on individual privacy valuations. As a result, we show that by
choosing the bias term carefully, a contract can be designed for the
buyer to obtain the desired accuracy level at a lower cost, as com-
pared to when an unbiased algorithm is used, while at the same time
the sellers experience less privacy loss. In other words, both buyer
and sellers benefit from using this algorithm. It is worth noting
that [9] also introduces a biased differentially private algorithm for
linear queries and one-dimensional data which offers only a single
privacy level to the participant sellers. We generalize the algorithm
introduced by [9] in the following aspects: i) Our algorithm is able
to assign different privacy loss to the sellers, ii) We also extend our
algorithm for nonlinear queries and multidimensional data.

Our main contribution is two-fold. Firstly, we present a new
algorithm for generating differentially private estimates of a fam-
ily of linear and nonlinear queries, and show that this algorithm
allows the data broker to assign different privacy losses to different
individuals. Secondly, we use a contract design approach to derive
optimal data contracts that minimize the buyer’s payment while
satisfying his accuracy requirement and the seller’s privacy con-
straint. This is done under two scenarios, one with full information,
where the data broker knows the sellers’ privacy valuation, and
one with information asymmetry, where the broker does not know
their privacy valuation but its distribution. We show in both scenar-
ios, the broker can leverage the proposed algorithm to guarantee a
lower privacy loss to an individual with higher privacy valuation.

The remainder of the paper is organized as follows. We present
related work in Section 2 and preliminaries on differential privacy
and query in Section 3. A biased differentially private algorithm
is introduced in Section 4. In Section 5 we analyze the contract
design problem between one buyer and one seller, and between
one buyer and multiple sellers under full information. We discuss
the contract design problem for purchasing private data under
information asymmetry in Section 6. Section 7 concludes the paper,
and proofs of the theorems and generalization of our algorithm for
non linear queries as well as multi dimensional data are provided
in online Appendix [2].

2 RELATED WORK

Studies most relevant to the present paper are [5, 8, 9, 14]. In [14],
contracts are designed for a data market where data utility and
privacy are considered, with the main conclusion that when the
data collector requires a large amount of data, it is better to pur-
chase from those who care the least about their privacy. It, however,
does not provide any algorithm or mechanism to ensure privacy. A
truthful mechanism for purchasing privacy is proposed in [5, 8, 9].
Gosh and Roth [9] introduce a fixed price auction mechanism using
a biased algorithm which offers only a single privacy level to the
sellers participating in the mechanism. This work was extended
in [8], where the cost of privacy loss is correlated with the private
data. Cummings et.al [5] design a truthful mechanism for a data
aggregation problem where a buyer collects unbiased estimate of
each individual’s data and makes a payment based on the variance
of the estimate. The buyer then calculates the average of all un-
biased estimates to find a better estimate. It is worth noting that
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this mechanism is only applicable when the expected values of
individuals’ data are the same.

Privacy preserving mechanisms have also been studied in the
context of data aggregation and task bidding in crowd sensing
[10, 13], and in the context of security information exchange [12].

3 PRELIMINARIES

In this section, we review the notion of differential privacy pro-
posed in [6, 7], which is widely used in the machine learning and
optimization literature [3, 16, 17] to quantify privacy leakage. Then
we will introduce a type of linear query.

We consider n individuals indexed by {1, 2, - -- ,n}.Letd; € X be
individual i’s private data where X is a subset of real numbers. Ex-
tension to higher dimensional data is discussed in online Appendix
[2]. An individual incurs a cost if his privacy is violated.

Differential privacy and accuracy: Consider database D =
(d1,da,- -+ ,dn) € X™, the collection of n individuals’ data. Database
D = (di,dz,-- ,dy) and DD = @, a'",. .. d?) are said to be
neighbors if dj = d;.l) forallj #iandd; # dgl). In other words, D

and D) are neighbors if and only if individual i’s data is different
in D and D).

Definition 3.1 (e-Differential Privacy [6, 7]). An algorithm A :
X™ — R s ¢;-differentially private with respect to individual i, if

for all neighboring databases D € X" and D) e xn differing only
Pr{A(D)eS}

in element i, and for any S C R we have, Pr{ADD)cs] < exp{ei}.

This suggests that A(.) is in general a randomized algorithm. A
common method for making an algorithm e;-differentially private
is adding Laplace noise to its output. Let N(b) be the symmetric
Laplacian noise with zero mean and parameter b. Then N(b) has a

variance of 2b% and a distribution given by: f(x) = ﬁ exp{—%} .

Definition 3.2 (Accuracy). We say algorithm A(.) is K-accurate for
query Q(D) if E [(A(D) - Q(D))*] < K, VD € X", i, algorithm A
is K-accurate if its Mean Squared Error (MSE) is at most K. Smaller
K indicates a more accurate algorithm.

There are other definitions for accuracy (e.g., see [7]), but the
above choice does not affect the applicability of our methodology
and main conclusions.

A type of linear query:

Definition 3.3 (Linear Query). A linear Query Q : X" — R over
the database D = (d1,d2, - - - ,dy) is a linear function evaluated as
follows: Q(D) = X1, g; - d; , where g; € R are constants.

Without loss of generality, we will assume that X = [0, 1] and
qi = 1,Vi. Note that if ¢; # 1, then we can assume that d; € [0, q;]
and Q(D) is the summation of d;’s. The generality of a summation
form of query lies in the fact that it is sufficient to implement many
machine learning algorithms in a differentially private manner [4].
Extension to non-linear queries is discussed in Appendix [2].

We next examine the relationship between accuracy K and pri-
vacy loss € in this type of linear query. Intuitively, we expect an
algorithm with high accuracy to also have high privacy loss. Below
we find a lower bound on the total privacy loss >}, €; as a function
of K.
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THEOREM 3.4 (LOWER BoUND oN ToTAaL Privacy Loss). If algo-
rithm A(D) is K-accurate and K < (n/2)%,! then the total privacy loss

_ 2
is at least In (n ;(/f) . Moreover, ifK < (m/2)2, then at leastn—m+1

individuals experience non-zero privacy loss.

Theorem 3.4 implies that as K — 0, privacy loss approaches
infinity logarithmically. We will introduce an algorithm in Section
4 under which the total privacy loss is close to the lower bound
when K is close to (n/2)?.

4 UNBIASED AND BIASED ALGORITHMS

As mentioned, a common way to provide differential privacy to an
algorithm is to add zero-mean noise.

THEOREM 4.1 (AN UNBIASED ALGORITHM). Let Ay, (D) = Q(D) +
N(b). Then Ay(D) is %—diﬁrerentially private with respect to each
individual. Moreover, A, (D) is 2b%-accurate.

Ay(D) = Q(D) + N(b) is an unbiased algorithm, as
E[Ay4(D) — Q(D)] = 0. We next introduce a biased estimate Ay ¢4y (D)
of Q(D) such that E[Apew(D)] # Q(D).

THEOREM 4.2 (A BIASED ALGORITHM). Let Apew(D) = X7, a; -
di + X1 5% + N(b) where 0 < a; < 1, Vi. Then Apey(D)

2
is [( " 1_2ai) + ZbZ]—accurate. Moreover, the algorithm is %—

differentially private with respect to individual i.

Algorithm Ajew(D) is a biased algorithm with the following
bound on the bias:

1 1—a; N 1—a;
ElAnen(D) - QI =1 Y far =+ 5 < 3150 )

Therefore, increase in a; decreases the algorithm’s bias, improves
its accuracy, and increases its privacy loss. Note that the bias does
not depend on parameter b, and that Ay ¢4, (D) reduces to A, (D) by
setting a; = 1, Vi.

5 CONTRACT DESIGN UNDER FULL
INFORMATION

5.1 A single buyer and a single seller

We begin by presenting a model of a single buyer and a single seller:
the individual has data D = (d) and the buyer wants to find an
estimate of d.

The individual has cost function c¢(v,.) : R+ — R4, where v is
the seller’s type or his valuation of privacy; this is also referred
to as his privacy attitude. The seller incurs a cost of ¢(v, €) if he
experiences privacy loss €. We assume that c(v, €) is increasing in
privacy valuation v and privacy loss €, and the cost of revealing
data is zero if there is zero privacy loss, i.e., c(v,0) = 0, Vi.

The data transaction is facilitated by a contract (p, €, K), whereby
by accepting it the seller receives payment p and reports actual data
d to the data broker, while the broker uses an algorithm to find an
estimate of Q(D) which is e-differentially private and K-accurate;
this estimate is then reported to the buyer.

!In the next sections, we will show that If K > (n/2)?, there exists algorithm A(D)

which is K-accurate and 0-differentially private with respect to each individual. More
precisely, A(D) could be pure noise if K > (n/2)%.
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Under the full information scenario, we assume the seller’s pri-
vacy attitude v is public information. To ensure the seller accepts
contract (p, €, K), the contract has to satisfy the Individual Ratio-
nality (IR) constraint that the payment it receives sufficiently com-
pensates for its privacy cost, i.e., (IR): p > c(v,€) .

The goal is to find a K-accurate estimate of Q(D) = (d) with
the minimum amount of payment. If algorithm A,y (.) is used to
find an estimate of Q(D), then the contract design problem can be
written as follows:

min p
{0<a<1,b>0,p,e=a/b}
st. (IR) p > c(v,e), (AC)((1-a)/2)%+2b% <K (2)

where AC denotes the accuracy constraint, following the privacy
and accuracy property of Apew(.) derived earlier in Thm 4.2. Note
that in this case minimizing p equals to minimizing privacy loss €.

If we apply the unbiased algorithm A,(.) (setting a = 1), then
the corresponding optimization problem becomes:

min p st (IR) p > c(v,1/b), (AC) 2b* <K 3)
{b>0,p}

Note that both IR and AC constraints are binding in the above
problems, otherwise one can always increase b and decrease p. As
a result, the optimal solution (p*, b*) to (3) is given by b* = /K /2,
p* = c(v, \/Z/_K), while the optimal solution to (2) can be found
using the following theorem.

THEOREM 5.1. The optimal solution (p*, a*, b*) to (2) is as follows.

1IfK > 1/4, thenp* = 0,a* =0, and b* = \/(4K — 1)/8.

2)IfK < 1/4, then a* = 1 — 4K, b* = /(K — 4K?)/2, and p* =
o(v, & = (2/K) - 8).

3) IfK = 1/4, then there is no solution to (2).

Thm 5.1 implies that at sufficiently low accuracy levels (K > 1/4)
the optimal strategy for the seller is to not provide any data, or
alternatively, for the data broker to report simply the noise. Thm
5.1 also leads to the following result.

1) K > (1/4): Privacy loss under A,(.) is 4/(2/K) while under
Apew(.)itis zero. Thus A, eqw(.) decreases the cost from c(v, \/Z/_K)
to zero.

2) K < (1/4): Privacy loss under A,(.) is 4/(2/K) while under
Anew(.)is /(2/K) — 8; thus again Ay (.) reduces privacy loss and
the resulting cost. Notice that as the IR constraint is binding, mini-
mizing p is equivalent to minimizing e. Therefore, € = 4/(2/K) — 8
is the minimum privacy loss that we can obtain under algorithm
Anew and subject to accuracy K.

As stated earlier, Thm 3.4 suggests that a K-accurate estimate
of Q(D) has privacy loss at least 2In(1 — VK) - InK. The privacy
loss 4/(2/K) — 8 under Ajew(.) approaches this lower bound as
K — 1/4. Figure 2 compares the minimum privacy loss using
algorithms A, (.) and Apeq (). Clearly Aper () outperforms Ay (L)
in terms of the cost/privacy-accuracy tradeoff: by introducing a
bias, Apew(.) uses less noise (as compared to A, (.)) to reach a given
privacy loss which improves accuracy.

5.2 A model of N sellers

We now consider the scenario with n sellers and a single buyer with
query on database D = (d,da, - - - ,dn), where data d; belongs to
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Figure 2: Minimum privacy loss under different
algorithms.

seller i. Moreover, seller i has privacy valuation v;. Without loss
of generality we assume v1 < vy < -+ < v,. Similar as before, we
assume the individual privacy cost function c¢(v;, €;) is increasing
in i’s type v; and privacy loss €;, and ¢(v;, 0) = 0. The buyer wishes
to obtain an estimate for query Q(D) = X1, d;, with accuracy K
and minimum payment.

If the broker uses algorithm Apeqy(.) to get an estimate of Q(D),
we have Anew(D) = N (a;-di+ 252 )+N(b) . With this algorithm,
individual i experiences privacy loss €; = (a;/b). Similar to the
optimization problem (2), we can write the problem for finding
contracts (p;, €;, K) as follows:

n
min Zpi
{0<a; <1, pi =0, €;=a;/b, b>0} o1

s.t. (IR) pi > c(vi,e)ie{1,2,---,n}
n 2
(40) (Z %) +2b2 <K. (4)
i=1

It is easy to verify that the (IR) constraint and (AC) constraint in (4)
are binding and optimization problem (4) can be written as follows,

n
min Z c(vi, €1)
{0<a;<1,b>0,6;=%t,i=1,2,--,n} =
n 1 2
—a
st (AC) (Z ) +2b° <K (5)
i=1
Ifvy =vy=---=vy =1and c(v,€) = v - €, then optimization

problem (5) is equivalent to minimizing total privacy loss under
algorithm Ay (.) subject to accuracy K.

A closed form solution is not easy to find in general and depends
on the form of the cost function. We next provide an example to
highlight the salient features of the biased algorithm in the context
of the contract design problem.

Example 5.2. Consider a case of two sellers with privacy attitudes
v1 = 5 and vy = 10 respectively, and the following cost function:
c(v,e)=v-(e€—1).

Using algorithm Ay (.), the broker offers the contract (p;, €1 =
a1/b,K) to seller 1 and (pz, €2 = a2/b, K) to seller 2. Figure 3 plots
the privacy loss of each seller as a function of K. It shows that
both individuals experience less loss as compared to using Ay (.).
Moreover, we see that Apeqy(.) allows the broker to take advantage

Figure 3: Privacy loss v.s. accuracy, under full in-
formation. Using A,.,, individuals experience
less privacy loss than using A,,.

Figure 4: Optimal values of a;, a, b v.s. accuracy,
under full information. As v, > v, the optimal
contract using A, sets a; < aj.

of the full information and assign different privacy loss to different
individuals to minimize the cost to the sellers (lower loss for those
with higher privacy valuation). Figure 4 shows the optimal values
for parameter ai, as, b; it suggests that Apeq(.) adds less noise to
the output as compared to algorithm Ay (.). This example helps
highlight the two reasons why Ap e (.) outperforms Ay (.):

1) Under Apeqw(.), the broker is able to assign different privacy
losses to the two individuals. To minimize the total cost, an individ-
ual with higher privacy valuation is afforded lower privacy loss in
the optimal contract.

2) Under Apew(.), the broker uses less noise (as compared to
Ay(.)) to provide the same privacy guarantee, which in turn in-
creases accuracy. In other words, as in the case of a single seller,
Anew(.) improves privacy-accuracy tradeoft.

Next we solve (4) under a linear cost model.

THEOREM 5.3. Letc(v,€) =v-€,K < (%)2 andsjy1 = (n—1i)—
4. Yit] _,ViZn—Z\/E,iSn—l.Letm+1bethe

(=) v+ EL, o)
first index where sp41 < 0 (if s; > 0, Vi, then set m = n). Then the

solution to problem (4) is given by:

ai=ay=---=da,_; =1, dy, =min{sm, 1}, ams1 = =ap =0
1 2K - o By a;
b= Sk~ ( ), pi = o o)

2 (n—m+1)-vm+ X7 vj b

Note that if K > (n/2)?, then a;

b=+ %/2)2 give a feasible solution to (4). This point is optimal

because its objective value is zero. Thus, if K > (n/2)?, then the
output will be a pure noise.

=ay = -+ =ay = 0and

6 CONTRACT DESIGN UNDER
INFORMATION ASYMMETRY

We now turn to the scenarios where the sellers’ privacy attitudes
are their private information unknown to the buyer or the broker,
and focus on the case of two sellers.? We will assume the broker
knows that the privacy attitudes come from a binary (high and
VH Wp.T

, i =1,2, where
v, wp.l-m

low types) distribution: v; = {

This is for simplicity of presentation; results obtained in this section remain valid for
more than two sellers.
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vy > vr. Moreover, we assume that v; and vy are independent.
In this case the optimal thing to do for the broker is to design a
menu of contracts {(pg, ey, K), (pr, €L, K)}, one for each of the
two types, such that a seller of a certain type will choose the con-
tract designed for his type, i.e., he will select (p;, ¢, K) if he is of
type v, where t € {L,H}. The IR constraint remains the same:
pr = c(vr,€r),t € {H,L}. An additional constraint in this case is
Incentive Compatibility (IC), which ensures that a seller does not
increase his utility by selecting the contract of the opposing type
(i.e., misrepresenting his own type):

(IC) pu - c(vn,en) 2 pr. — c(vH,€L)

IC - > - ©)

(IC) pr —c(vr.eL) = p — c(vL. €n) -
The broker has two options, offering the same menu to both sellers,
or offering the menu to one of the sellers and not using data from
the other seller. Which option to invoke depends on which one
results in lower payment, given the problem parameters. We next
examine the contract design problem under each option in detail.

6.1 Broker offers both sellers the menu of
contracts

Given the constraint (6), by accepting a contract the seller essen-

tially reveals his type. Algorithm Ay ¢4y (.) is then used by the broker

to obtain an estimate of Q(D). Due to the uncertainty in the seller

types, Anew(.) returns the following possibilities:

aprdy + aprdy + SHL + 221 4 N(b) wp. 7P
apdy + apdy + 52 + 2 4 N(b) wp. (1 - 1)

2
ardy + agrdy + 52 + 180 4 N(b) wp. 2(1 - 1)
apdy +apdy + 58 + 58L L N(b) wp. (1 - 1)

Apew(D) =

and we have ey = (ag/b), er = (ar/b).

The goal of the data broker is to provide expected accuracy
K. Under algorithm Apeqy(.) the expected accuracy is given by:
e(ar,am,b) =% - 2% + (1 —ag)?)+ (1 - 7)? - 202 + (1 — ar)?)
+21-(1=m)- (2% + (1 —ag)/2 + (1 — ar)/2)?).

Accordingly, the contract design problem can be written as follows:
. 2 2
et n T (2pr)+ (1 —m)"-2pr) +27(1 - 7) - (pH + pL)

s.t. (IR) pi > c(vi,ai/b), i € {H,L}

(I0) pi — c(vi,ai/b) = pj — c(vi,aj/b), i,j € {H,L}

(AC) elar,apg,b) <K, i€ {H,L}

0<a; <1,p;>0,b>0,ie{HL} ()

To solve this problem we use the following lemma.

LEMMA 6.1. The following holds for the optimization problem (7):
1) Constraint pyy > c(vy, ag /b) is binding.

2) Constraint pp, > c(vp, ar,/b) is redundant.

3) Constraint p — c(vr, ar/b) > pyg — c(vr, ag/b) is binding.

It follows that the solution to (7) satisfies the followings:
a
pH = e, ). pL~c(vL.aL/b) = pr ~ c(vL. az/b)

= p1=clom ) +eerar/b) - ewr.an/b)  (6)
pH —c(vn,an/b) 2 pr. = c(vh, aL/b) =

a a a a
(o, 7)) = e(wr, ) 2 e(or ) —ewr. 50 (9)
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Using (8) and (9) we can remove py and py from problem (7) and
rewrite (7) as follows:

min 7% - (2c(vy, ag /b))
0<a;<1, b>0, ie{H,L}

+2-(1-m)* - (c(vm, am /b) + c(vr, aL /b) — c(vr, ap /b))

+27(1 = m) - (2¢(vy, ag /b) + c(vr,aL/b) - c(vr, ag /b))
st.  c(vy,ar/b) —c(vy,ag/b) = c(vp,ar /b) — c(vr, ag /b)
(AC) e(ar,ay,b) <K, ie{H,L} (10)

Notice that if 66(;? I 66(;2’6) (marginal cost increasing in
privacy valuation), then the constraint c(vg, “TL) - c(vy, aTH) >
c(vg, aTL) - c(vg, “TH) implies ag < aj, i.e., a seller with higher
privacy attitude experiences lower privacy loss. It is also worth
noting that if agy = 0 is the solution to (10), then the broker offers
only a single contract (instead of a menu) and a seller with lower
privacy attitude accepts that.

6.2 Broker offers only one seller the menu of
contracts

As in the previous case, by selecting from the menu the seller reveals
his type. The broker then uses A, ¢qv(.) according to the revealed
type, which returns the following:
A (D)={ aHd1+172aH+%+N(bH)
new apdi + 5L + 1+ N(bp)

and € = aH/bH, €], = aL/bL.

Note in this case the noise parameter b is type-dependent since
only one individual contributes to the input.

The expected accuracy in this case is given by>:

e(ap,ap.br.by) = m-(2b% +((2-ap)/2)%)
+ (1-m)- @b +((2-ap)/2)?). (11)
Accordingly, the contract design problem is given by:
ozarzipzbbiso, seqy T PH 7T L)
s.t. (IR) p;i > c(vj,a;/b;), i € {H,L}
(IC) pi — c(vi,ai/bi) 2 pj — c(vi,aj/by), i,j € {H,L}
(AC) e(ar,ay,br,by) <K, i€ {H,L} (12)

Lemma 6.1 also holds for optimization problem (12).

w.p. T

wp. 1—-7m

6.3 Broker’s decision

Given problem parameters K, vy, vy, 7, the broker compares the
solutions to optimization problems (10) and (12), and chooses an
option that offers the lower payment and the associated menu of
contracts. These solutions are generally found numerically.

As a comparison, under algorithm A, (.) the data broker can
only offer a single contract (as A, (.) requires ag = ay = 1) and the
corresponding optimal contract under algorithm A, (.) is given by:
(AC): b* =+/K/2, €* =1/b*, (IR): p* = c(vy,1/b*).

We next present an example to highlight the comparison:
c(v,e)=v-€, vy =5 0L =1, 1=0.5.

Figure 5 illustrates the total payment under algorithm Apeq(.)
and Ay (.); here Apeqw(.) denotes the optimal choice between the

3Note that e(ar, ag, br, by) > %; thus if K < i then this is not a viable option,

and the broker should offer the menu to both sellers.
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Figure 5: Total payment v.s. accuracy, under infor-
mation asymmetry. The proposed method results in
much lower cost.
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——cpy using Apey(.)
6 —>—¢;, using Ape,(.)
—e—¢;, = €y using 4,(.)
2
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>
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23
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0 | '
0 0.2 0.4 0.6 0.8 1

accuracy (K)

Figure 6: Privacy loss v.s. accuracy, under informa-
tion asymmetry. The proposed method is able to dif-
ferentiate heterogenous privacy valuations.

two versions of the algorithm presented in the previous two subsec-
tions, as determined by whether the menu is offered to both sellers
(equation (10)) or only one of them (equation (12)). The results show
that the payment is significantly lower by using A,e(.). Figure
6 further illustrates the privacy loss of each seller as a function
of K. As seen, the contract designed for the lower privacy type
carries higher privacy loss (eg < €r) in order to decrease the total
payment; by contrast, under A, (.) the broker is not able to dif-
ferentiate between the two types. The two peaks in the ¢y curve
under Apeqw(.) are due to the following reasons. For K < 0.4, it is
optimal for the broker to offer both sellers a menu of contracts, one
for the high privacy type and one for the low privacy type, and a
seller will select the right one. In the region 0.4 < K < 0.65, it is
optimal for the broker to offer each agent a single contract (of the
low privacy type) such that a seller (if of a low type) accepts it, or
(if of a high type) rejects it and walks away. This accounts for the
discontinuity at K = 0.4. In the region K > 0.65, the broker offers
a single contract (of the low privacy type) to only one of the sellers
by random selection, and that seller accepts or rejects it depending
on his type, while the other seller is not offered anything. This
accounts for the discontinuity at K = 0.65.

7 CONCLUSION

In this study, we considered a data contract problem concerning
the purchasing of private data between a single buyer and multi-
ple sellers. We proposed a biased differentially private algorithm

M. Khalili, X. Zhang, and M. Liu

which allows a data broker to assign different privacy losses to
different individuals depending on their privacy valuations. Using
a contract design approach, we found the optimal pricing mech-
anism to minimize the cost of obtaining a K-accurate estimate of
linear and nonlinear queries. We showed that the broker can take
advantage of our proposed algorithm under both full information
and information asymmetric cases, and afford lower privacy loss to
individuals with higher privacy valuations. As a result, the cost to
the buyer is lower and individuals experience lower privacy loss as
compared to using a common unbiased algorithm.

REFERENCES

[1] Datacoup. http://datacoup.com/.

[2] Online Appendix. Available at http://bit.ly/2Fi4dk9w.

[3] M. Abadi, U. Erlingsson, I. Goodfellow, H. B. McMahan, I. Mironov, N. Papernot, K.

Talwar, and L. Zhang. 2017. On the Protection of Private Information in Machine

Learning Systems: Two Recent Approches. In 2017 IEEE 30th Computer Security

Foundations Symposium (CSF). 1-6.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. 2005. Practical

privacy: the SuLQ framework. In Proceedings of the twenty-fourth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems. ACM, 128-138.

Rachel Cummings, Katrina Ligett, Aaron Roth, Zhiwei Steven Wu, and Juba

Ziani. 2015. Accuracy for Sale: Aggregating Data with a Variance Constraint. In

Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science

(ITCS ’15). ACM, New York, NY, USA, 317-324.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265-284.

[7] Cynthia Dwork, Aaron Roth, and others. 2014. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical Computer Science 9,
3-4(2014), 211-407.

[8] Lisa K. Fleischer and Yu-Han Lyu. 2012. Approximately Optimal Auctions for

Selling Privacy when Costs Are Correlated with Data. In Proceedings of the 13th

ACM Conference on Electronic Commerce (EC ’12). ACM, New York, NY, USA,

568-585.

Arpita Ghosh and Aaron Roth. 2011. Selling Privacy at Auction. In Proceedings of

the 12th ACM Conference on Electronic Commerce (EC '11). ACM, New York, NY,

USA, 199-208.

Haiming Jin, Lu Su, Bolin Ding, Klara Nahrstedt, and Nikita Borisov. 2016. En-

abling privacy-preserving incentives for mobile crowd sensing systems. In 2016

IEEE 36th International Conference on Distributed Computing Systems (ICDCS).

IEEE, 344-353.

Chao Li, Daniel Yang Li, Gerome Miklau, and Dan Suciu. 2014. A Theory of

Pricing Private Data. ACM Trans. Database Syst. 39, 4, Article 34 (Dec. 2014),

28 pages.

Iman Vakilinia, Deepak K Tosh, and Shamik Sengupta. 2017. Privacy-preserving

cybersecurity information exchange mechanism. In 2017 International Symposium

on Performance Evaluation of Computer and Telecommunication Systems (SPECTS).

IEEE, 1-7.

Iman Vakilinia, Jiajun Xin, Ming Li, and Linke Guo. 2016. Privacy-preserving

data aggregation over incomplete data for crowdsensing. In 2016 IEEE Global

Communications Conference (GLOBECOM). IEEE, 1-6.

[14] L.Xu, C. Jiang, Y. Chen, Y. Ren, and K. J. R. Liu. 2015. Privacy or Utility in Data
Collection? A Contract Theoretic Approach. IEEE Journal of Selected Topics in
Signal Processing 9, 7 (Oct 2015), 1256-1269.

[15] L.Xu, C.Jiang, Y. Qian, Y. Zhao, J. Li, and Y. Ren. 2017. Dynamic Privacy Pricing:

A Multi-Armed Bandit Approach With Time-Variant Rewards. IEEE Transactions

on Information Forensics and Security 12, 2 (Feb 2017), 271-285.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. 2018. Improving the

Privacy and Accuracy of ADMM-Based Distributed Algorithms. arXiv preprint

arXiv:1806.02246 (2018).

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. 2018. Recycled admm:

Improve privacy and accuracy with less computation in distributed algorithms. In

2018 56th Annual Allerton Conference on Communication, Control, and Computing

(Allerton). IEEE, 959-965.

[4

[5

—
)

[10

[11

[12

(13

[16

[17


http://datacoup.com/
http://bit.ly/2Fi4k9w

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Unbiased and Biased Algorithms
	5 Contract Design under Full Information
	5.1 A single buyer and a single seller
	5.2 A model of N sellers

	6 Contract Design under Information Asymmetry
	6.1 Broker offers both sellers the menu of contracts
	6.2 Broker offers only one seller the menu of contracts
	6.3 Broker's decision

	7 Conclusion
	References

