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Abstract

Statistical process monitoring (SPM) is an important component in the long-term reliable operation
of any system and its importance can only become greater in the era of smart manufacturing (SM).
Previously we proposed statistics pattern analysis (SPA) based on the idea of using various
statistics to quantify process characteristics, and monitoring these statistics instead of process
variables themselves to perform process monitoring. In this work we provide a comprehensive
review on recent progresses made in SPA framework, which underpins a roadmap of SPM we
outlined recently. Both sample-wise feature extraction and variable-wise feature extraction are
discussed, with new applications in both fault detection and diagnosis, and soft sensor
development. Specifically, we provide the first systematic examination on the SPA’s capability in
handling process characteristics including dynamics, nonlinearity and data non-Gaussianity; and
compare its performance to representative state-of-the-art SPM methods to highlight the enhanced
capability of feature-based monitoring. In addition, the performance of SPA is tested using the
benchmark industrial simulator TEP for fault detection and diagnosis, plus a wet lab and an
industrial case studies for soft sensor development. Finally, the advantages and potential
limitations of SPA in addressing the new challenges presented by smart manufacturing big data
are discussed.

Keywords: statistical process monitoring, fault detection, fault diagnosis, soft sensor, smart
manufacturing, statistics pattern analysis.

1 Introduction

The goal of process monitoring is to detect the onset and identify the root cause of any change that
causes a manufacturing environment to deviate from its desired operation. Process monitoring is
an important component and key enabler for the long-term reliable operation of any process
(Severson et al., 2016). It has been recognized that the importance of process monitoring can only
become greater when the controlled systems are getting more complex, equipped with more
sensors, operated under non-steady state, controlled at tighter margins, and getting yet closer to
autonomous operations in the era of smart manufacturing (He and Wang, 2018).

Principal component analysis (PCA), partial least squares (PLS), and their variants based
multivariate SPM methods, which are the state-of-the-arts for industrial applications, have
limitations when applied to the processes that are not operated at steady-state. This is mainly due
to the underlying assumption for the PCA and PLS based SPM methods that the process data are
assumed to be independent and identically distributed (i.i.d.) samples drawn from a multivariate
Gaussian distribution. When a process exhibits strong dynamics, nonlinearity or non-Gaussian
distribution, to name a few, the performance of these SPM methods may deteriorate significantly,
depending on how well the normal process operation data can be approximated by a multivariate
Gaussian distribution.
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To address these limitations, many SPM methods, such as kernel PCA (KPCA), and independent
component analysis (ICA), have been developed recently. However, as discussed in Section 2,
these methods have their own challenges such as the difficulty in selecting parameters (He and
Wang, 2017; Qin, 2012). On the other hand, a feature based method that we recently proposed,
termed statistics pattern analysis (SPA), has demonstrated superior performance in different
applications such as fault detection, fault diagnosis and soft sensor or virtual metrology for both
batch and continuous processes (He and Wang, 2018, 2011; Stone et al., 2017; Wang and He,
2010). Since then, many extensions and variants of SPA have been proposed by others(Deng et
al., 2016; Deng and Tian, 2013; He and Xu, 2016; Ma et al., 2011; Ning et al., 2014; Song et al.,
2015; Zhang et al., 2015). Recently, Rendall et al. (2017) proposed feature oriented batch analytics
platform where SPA was cited as a representative feature-based approach.

In this work, we provide a comprehensive review on the recent progresses made on the SPA
framework, which includes features other than statistics of process variables for process
monitoring, and examine its capability in addressing various challenges discussed above, i.e.,
process dynamics, nonlinearity and non-Gaussianity. In addition, we expand the sample-wise
feature extraction (i.e., various features are computed using a group of samples of a given variable
obtained at different time instants) to variable-wise feature extraction (i.e., various features are
computed using a group of variables sampled at the same time instant), and demonstrate its
usefulness in soft sensor development for spectroscopic data analysis. In this work, several new
case studies, both simulated and industrial, are provided to compare the performance of SPA with
other representative monitoring and soft sensor methods. The rest of the paper is organized as the
following: Section 2 provides an update of a road map for SPM and briefly reviews the SPA
framework; Section 3 examines the performance of SPA in fault detection, fault diagnosis and soft
sensing using simulated and industrial case studies, and compares SPA with several representative
methods in addressing process dynamics, nonlinearity and non-Gaussianity. Section 4 discusses
how SPA can help address the challenges of big data generated in smart manufacturing and Section
5 draws conclusions.

2 Statistics Pattern Analysis (SPA) Framework

Recently we presented a road map to capture the development of SPM in the last century (He and
Wang, 2018), which divides the development of SPM into three generations: 1% generation:
statistical process control (SPC); 2™ generation: multivariate statistical process monitoring
(MSPM); and 3™ generation: yet to be properly defined and named. With recent developments in
the field, it becomes clear that the 3™ generation SPM can be broadly categorized as feature space
monitoring (FSM), in contrast to the monitoring of the original variable space of the 1% and 2™
generations. The updated road map is shown in Figure 1. The road map suggests that the key
enabler of the successes achieved by a new generation of SPM methods was to utilize additional
information that the previous generation did not. Specifically, for the 1% generation, SPC enabled
the elimination of unnecessary adjustments made to the process through making use of the mean
(1t order statistics) and variance (2" order statistics) of product quality variable(s), therefore
significantly reduced process variation and improved product quality. For the 2" generation
methods, besides the information utilized by SPC, the variance/covariance of both product quality
variables and process variables were monitored as well. The added information allows the
detection of those faults that cannot be detected by SPC methods, therefore enables significantly
improved monitoring performance. For the 3™ generation methods, which is termed feature space
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monitoring or FSM, where features that capture the key process characteristics, such as
nonlinearity, non-Gaussianity which cannot be captured by variance/covariance matrix of process
data, are to be used for monitoring the process. Because of the additional information included in
FSM, it is expected to further improve the monitoring performance compared to the 2™ generation
SPM methods. As discussed later in a greater detail, the ever-increasing prevalence of big data
with 4V challenges, i.e., Volume, Velocity, Variety and Veracity (Zikopoulos et al., 2012), has
also necessitated the transition from the original space monitoring paradigm to the feature space
monitoring paradigm.

P A
3" Generation: FSM -%
8 Extract features to address process %’
% data dynamics, nonlinearity, S
= 2" Generation: MSPM  nonnormality, 4V’s of Big Data, etc. pet
-8 Explore correlations among > 3
& 1% Generation: SPC  process and quality variables. g
First quality control based on H ..3_
product quality distribution ' \ £
L] I
1920 1980 2000 Time \
~30 ~90 ~10 | /

Figure 1. An updated roadmap of statistical process monitoring (SPM) technology

It is worth noting that various methods have been developed to address process dynamics,
nonlinearity and non-Gaussianity, which can be viewed as the transition between 2" and 3"
generation methods. Here we briefly review the representative ones. To address process dynamics,
time lag shifting methods, including dynamic PCA (DPCA) (Ku et al., 1995) and its variants are
the most commonly used. However, it has been suggested that such time lagging may not fully
eliminate the dynamics among augmented samples, and results in auto-correlated scores in the
principal subspace. To address process nonlinearity, kernel based methods, such as kernel PCA
(KPCA) and its variants have been studied extensively (Lee et al., 2004a). In additions, neural
networks and principal curves based methods have been reported as well. However, it has been
reported that the performances of KPCA-based methods can be (highly) sensitive to the choice of
kernel and tuning parameters; even for the same kernel but different parameters, the resulted
features could be significantly different. It has been further suggested that there is no proper way
to guide the choice of kernel and determination of parameters other than cross-validation. In
additions, often times the mapped features are still nonlinearly correlated (Wang et al., 2013),
which limits the application of these methods. To address process data non-Gaussianity,
independent component analysis (ICA) has been proposed (Lee et al., 2004b). ICA is an alternative
linear decomposition to PCA that was originally proposed as a blind source separation technique
to separate a multivariate signal into additive subcomponents by assuming that the subcomponents
are non-Gaussian signals and that they are statistically independent from each other. Although ICA
can perform decomposition on non-Gaussian data better than PCA, it is not intended to improve
the Gaussianity of its projected components. Instead, its control limits are usually obtained using
empirical or data-driven techniques such as kernel density estimation (Lee et al., 2004b).

To provide an alternative approach to address process dynamics, different types of nonlinearity
and non-Gaussianity, as well as the 4V challenges of big data, we proposed statistics pattern

3
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analysis (SPA) based on the idea of using various statistics, including 1%, 2" and higher-order
statistics (HOS) of process variables, to quantify process characteristics. In the SPA framework,
these statistics, instead of process variables themselves, are monitored to perform process
monitoring (He and Wang, 2011; Wang and He, 2010). In other words, SPA models the variance-
covariance structure of the process statistics, instead of the variance-covariance structure of the
process variables used in PCA and PLS based methods. By utilizing the additional information
other than the first and second moments utilized in the 2" generation methods, we expect to
achieve enhanced monitoring performance, which has been validated in many simulated and
industrial case studies. Figure 2 shows the schematic plot of how SPA can be applied for
continuous and batch process fault detection by sample-wise feature extraction (i.e., statistics
estimation).
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Figure 2: SPA based fault detection for continuous (a) and batch (b) processes.

For continuous processes, various statistics are computed using a window-based approach as
shown in Figure 2 (a), i.e., using all samples in a window to compute the statistics for a given
variable. The obtained statistics of different variables, also known as statistics patterns (SPs), are
monitored for fault detection. Although window-based approaches usually cause detection delay,
the detection delay of SPA is actually comparable to PCA-based approaches. This is due to the
following two reasons: (1) the significantly reduced normal process variation in the statistics
making the model sensitive to small changes; (2) although some statistics, such as median, are
insensitive and have delayed responses to a process change, other statistics, such as minimum,
maximum and skewness, are very sensitive and respond rapidly to it. Therefore, detection delay is
actually not an issue for window-based SPA. For batch processes, as shown in Figure 2 (b), SPs
are computed for each batch or each step if multiple steps are involved in a batch; then the obtained
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SPs are being monitored. Monitoring statistics for each batch/step not only enables improved
monitoring performance, but also eliminates the preprocessing steps caused by different batch/step
durations, such as trajectory alignment and warping, and making SPA attractive for automatic
implementation. Various simulated and real industrial case studies have demonstrated that SPA
offers a highly promising platform for SPM (Galicia, 2012; Galicia et al., 2012; He and Wang,
2018, 2011; Wang and He, 2010).

Remarks 1: Both statistics and non-statistics based features can be easily incorporated into the
SPA framework.

For statistical features, to capture key process characteristics, various process statistics other than
mean and variance/covariance of process variables can be included. For example, skewness and
kurtosis can be included to quantify the non-Gaussianity of the process data, autocorrelation and
cross-correlation can be included to capture process dynamics. In addition, non-statistical process
features can be easily included for process monitoring, such as process knowledge based landmark
features (Wold et al., 2009); profile-driven features (Rendall et al., 2017); geometry based features
(Wang et al., 2015).Therefore, the exact form or the number of statistics/features in SPA varies
with applications, and the performance of SPA can be optimized through feature selection.
Meanwhile, as we show in the following case studies, the performance of SPA for process
monitoring is quite robust with respect to feature selection, and it can provide superior monitoring
performance even without feature selection or optimization.

Remarks 2: The SPA framework can be implemented either sample-wise or variable-wise.

Because many process variables are highly correlated with each other, variable-wise feature
extraction allows us to capture the comprehensive picture of the process or system while
significantly reducing the number of variables to be included in the model. This is particularly true
for various spectroscopic data, and we demonstrate such SPA implementation using soft-sensor
development as an example.

3 SPA in Addressing Current Challenges in SPM

As mentioned before, several key characteristics that limit the success of 2" generation SPM
methods, such as process dynamics, nonlinearity, and process data non-Gaussianity, are ubiquitous
for manufacturing processes, and will become even more so for smart manufacturing. In this
section, we examine the capability of SPA in addressing these challenges, with applications in two
major areas of process monitoring: fault detection and diagnosis, and soft sensor development; and
we compare the performance of SPA with several representative methods using multiple simulated
and industrial case studies.

3.1 Stirred tank heater: an illustrative example

In this section, we use a simulated example to examine SPA’s capability in handling process
dynamics, nonlinearity and non-Gaussianity, and compare it with representative methods that were
developed to address these challenges.

The simulated case study is a stirred tank heater (Bequette, 1998) as shown in Figure 3 (a), where
the objective is to raise the temperature of the inlet stream to a desired value. Detailed descriptions
and model assumptions can be found in (Bequette, 1998).

The material and energy balances yield the following two modelling equations:
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where 4 is the heat transfer area, U heat transfer coefficient, ¢, heat capacity, F volumetric
flowrate, p density, T temperature, ¢ time,  volume, subscripts i, j, and ji for inlet, jacket, jacket
inlet, respectively. To excite the system so that various characteristics such as nonlinearity,
dynamics and non-Gaussianity are amplified during normal operation, a sinusoidal disturbance is
injected into the jacket flowrate:

F = F + 0.5sin () + n(0,0.01) 3)

where steady-state Fj; = 1.5, and n(0, 0.01) represents white noise with zero mean and standard
deviation 0.01.

To examine the effectiveness of different algorithms in process monitoring, a fault was introduced
into the process where a leakage in jacket inlet stream is introduced at a given time point.

Fif = F;— 03 (4)

The normal data are divided into training and validation subsets. The behaviors of normal and
faulty operations are shown in Figure 3 (b) where the tank temperature T is plotted against the
Jacket temperature T;. The histograms of T and T; (Figure 3 (c)) show that the observations
obtained from this dynamic and nonlinear process are highly non-Gaussian, which might hinder
the effectiveness of many 2" generation methods. It is worth noting that the disturbance and fault
introduced are rather large for illustrative purposes, as shown in Figure 3(b) and (c).
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Figure 3. (a) Jacketed stirred tank heater (Bequette, 1998); (b) Process behaviors under normal (blue pluses
and circles) and faulty (red squares) operations; (c) Histograms of T and T;.
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In this illustrative example, we choose DPCA as the representative method for addressing process
dynamics, KPCA for addressing process nonlinearity, with consideration of two kernels —
Gaussian kernel and sigmoid kernel, and ICA for addressing process non-Gaussianity. In this case
study, the main purpose is to examine how effective each modeling approach is in terms of
eliminating/transforming certain challenging process characteristics, and to what extent each
method can differentiate faulty behavior from normal operation. To do so, we examine the
principal or dominant subspace captured by the model while ignoring the residual or excluded
components. To make sure key characteristics are captured by the principal subspace, we optimize
the number of PC while ensure that at least 95% of variance are captured.

Figure 4 plots the principal component (PC) scores obtained by projecting the (augmented)
samples or features onto the first two dimensions of principal subspace determined by each model.
As can be seen from Figure 4 (a), despite the scaling effect (changing ellipses into circles), DPCA
scores look very similar to the original data as shown in Figure 3 (b), with highly auto-correlated
samples, which indicates that augmenting time shifted samples do not effectively remove process
dynamics. Similarly, the KPCA results for a Gaussian kernel, Figure 4(b), looks very similar to
the original data, despite different orientations. The KPCA result with sigmoid kernel, Figure 4(c),
shows clear deviation from the process data, however, the circular behavior of both the normal and
faulty data are preserved, which confirms that kernel transformation does not effectively remove
the process nonlinearity, at least for this case study. Figure 4(d) shows the first two IC’s using the
default nonlinearity setting of FastICA algorithm (Bingham and Hyvirinen, 2000) where the
circular behavior of both normal and faulty data remains, which suggest non-Gaussian distribution
remains as well. For both KPCA and ICA results, process dynamics remains in the feature space
(for KPCA) or independent component space (for ICA), as clearly shown in the trajectory of fault
development and high correlated scores. SPA results are shown in Figure 4 (e) and (f). Figure 4(e)
shows the score plot of the statistics extracted from the data. It can be seen that the nonlinear
dynamic data under normal operation has been transformed into a multivariate Gaussian
distributed scores, which is also validated in the histogram of the first score of the statistics in
Figure 4 (f). In other words, the SPA transformation has completely transformed the dynamic,
nonlinear, and non-Gaussian original process measurements into independent Gaussian distributed
statistics. In addition, it is important to note that only SPA method can clearly separate the cluster
of faulty samples from the normal samples, as a result of effectively addressing the process
dynamics, nonlinearity, and non-Gaussianity.

0.005 |
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Figure 4. Principal or dominant subspace captured by various methods, (a) DPCA; (b) KPCA — Gaussian
kernel; (c) KPCA — sigmoid kernel; (d) ICA; (e) SPA; and histogram of PC1 from SPA (f) for normal data

This illustrative example clearly demonstrates the effectiveness of SPA in addressing these
common process characteristics/challenges, which have contributed to its superior performances
in fault detection and diagnosis for both batch and continuous processes. In the next section, we
use TEP to further demonstrate this point.

3.2 Tennessee Eastman Process — a realistic benchmark simulated process for fault
detection and diagnosis

In process monitoring, once a fault is detected, fault diagnosis usually follows to identify the root
cause of the fault, so that appropriate actions can be taken to address the situation. Due to its
importance to process operations, fault diagnosis has drawn significant interests (Qin, 2012).
However, because of the physical/chemical principles that govern the process (such as mass and
energy balance) and the feed-back control loops, a fault often propagates to variables other than
the root cause variable, the so-called “smearing effect”, and makes fault diagnosis highly
challenging. The process dynamics, nonlinear and non-Gaussianity could further deteriorate the
fault diagnosis performance of different algorithms, as illustrated in this section.

In this case study, we use the benchmark Tennessee Eastman Process (TEP) simulation to
demonstrate the fault detection and diagnosis performance of SPA. The TEP simulator has been
widely used by the process systems engineering community as a realistic example to compare
various monitoring and control approaches (Kano et al., 2002; Ku et al., 1995; Russell et al., 2000).
The process consists of five major unit operations: a reactor, a product condenser, a vapor-liquid
separator, a recycle compressor, and a product stripper. Four reactants A,C,D and E plus the inert
B are fed to the reactor to generate products G and H, as well as byproduct F through two
exothermic reactions. More details of the process description and simulation set up can be found
in (Downs and Vogel, 1993).

For comparison, two linear methods, PCA and DPCA, and two nonlinear methods, KPCA and
ICA, are applied to detect and diagnose the faults. Among these algorithms, PCA, DPCA, ICA
and SPA use contribution plots to identify the root cause variable of the fault, i.e., the variables
with large contributions are likely the root cause of the fault, while KPCA using a reconstruction
method for fault diagnosis, i.e., the variables with significantly reduced reconstruction index are
most likely the root cause. All methods have been optimized and the optimal detection and
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diagnosis performance are presented here. It is worth noting that the KPCA method was found to
be quite sensitive to the model parameters; in addition, a good set of detection settings may not
provide a good diagnosis and vice versa. Also, it is important to note that for the SPA based fault
diagnosis, two subsets of the contribution plots are provided to show the contributions from
variable mean and standard deviation. The contributions from other statistics such as auto- and
cross-correlations are small, therefore were not shown.

Totally 20 faults were included in the TEP simulator (Ricker, 1996). For SPA, the detection results
for all faults was presented in Wang and He (2010), and the diagnosis results for all faults was
provided in the Appendix. As shown in the Appendix, for detected faults, the contribution plots
from SPA usually provides a clean diagnosis, with limited or no “smearing” effect. In terms of
comparison, generally speaking for the faults that can be easily detected, all five methods were
effective in pinpointing the major fault-contributing process variables. However, for faults that are
difficult to detect, the fault diagnosis performances of different methods are quite different, where
only SPA-based fault diagnosis is able to correctly diagnose the faults. Here we use fault 5 and 12
to illustrate this.
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Figure 5. Detection and diagnosis of fault 5. PCA: (a) fault detection (top T2, bottom SPE) and (b)
diagnosis using contribution plots; DPCA: (c) fault detection (top T2, bottom SPE) and (d)
diagnosis using contribution plots; KPCA: (e) fault detection (top T2, bottom SPE) and (f)
diagnosis using reconstruction index {;; ICA: (g) fault detection (top I7, middle I3, bottom SPE)
and (h) diagnosis using contribution plots; SPA: (i) fault detection (top D,,, similar to T2, bottom
D,., similar to SPE) and (j) diagnosis using contribution plots.
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Fault 5 was caused by a step change to the inlet temperature of the condenser cooling water. Fault
detection and diagnosis results from different methods are shown in Figure 6, which indicates that
only SPA was able to detect the fault consistently through D,; while other methods failed to detect
the fault. In terms of fault diagnosis, since the condenser cooling water temperature is not
measured, it is expected that variable 31, the condenser cooling water flow rate, would be adjusted
by the feedback controller, and should be identified as the root cause of the fault. Because PCA,
DPCA, KPCA and ICA were not able to detect the fault, with fault detection rate lower than 5%,
it is expected that these methods are able to correctly diagnose the fault either. As shown in Figure
6, the contribution plots from PCA, DPCA and ICA all show a wide range of process variables
contributing to the fault, confirming our expectation. In the case of KPCA, Figure 6 (f) shows that
variable 31 has a significant drop in the reconstruction index, and would be identified as the root
cause variable, although KPCA did not identify this fault (with fault detection rate of 3% and 0.4%
by T? and SPE indices respectively). On the other hand, SPA was able to clearly isolate the root
cause to be the variable 31, moreover, it correctly identified that it was the shift in mean, not
variance, that caused the faulty behavior.

Fault 12 was caused by introducing random variation in condenser cooling water inlet temperature.
For fault 12, all methods were able to detect the fault, although PCA, DPCA, KPCA and ICA’s
performance were not as consistent as SPA, as shown in Figure 6. Again, since cooling water
temperature was not measured, and the fault was a random variation in the cooling water
temperature, the fault will not trigger a shift in cooling water flow rate. Instead, the random
variation in condenser cooling water inlet temperature (not measured) would likely affect the
downstream separator right after the condenser, which is closest to the actual fault location. In
other words, the introduced fault would lead to random variation in the separator temperature
(measured, variable 11), which should be identified as the root cause. Figure 6 compares the fault
diagnosis performance of all 5 methods. From Figure 6, it is clear that although all methods were
able to detect the fault, only SPA was able to correctly diagnose the fault; moreover, SPA further
indicate that it was the change in the variance of variable 11, not the change in mean, that
contributes to fault 12.

This realistic, simulated case study demonstrates that for large scale, complex dynamic processes,
SPA can effectively address various challenges associated with process dynamics, nonlinearity
and non-Gaussianity, therefore delivery improved fault detection and diagnosis results compared
to some existing SPM methods.
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Figure 6. Detection and diagnosis of fault 12. PCA: (a) fault detection (top T2, bottom SPE) and
(b) diagnosis using contribution plots; DPCA: (c) fault detection (top T2, bottom SPE) and (d)
diagnosis using contribution plots; KPCA: (e) fault detection (top T2, bottom SPE) and (f)
diagnosis using reconstruction index {;; ICA: (g) fault detection (top I3, middle IZ, bottom SPE)
and (h) diagnosis using contribution plots; SPA: (i) fault detection (top Dy, similar to T2, bottom
D,., similar to SPE) and (j) diagnosis using contribution plots.

3.3 Spectroscopic data analysis: Soft sensor development

Besides fault detection and diagnosis, soft sensor is another important research area in process
monitoring. By correlating the easily measured secondary variables with the primary variables,
one application of soft sensor is to provide information on those important but hard-to-measure
variables, such as product quality variables. Another application of soft sensor is to provide
prediction on infrequently measured process variables (such as concentration of different
components) so that prompt control actions can be taken. In the last few decades, spectroscopic
techniques such as near-infrared (NIR) and UV/Vis spectroscopies have gained wide applications.
Beyond their traditional applications in analytical chemistry, spectroscopic techniques are applied
in many different fields, including biotechnological, pharmaceutical, petrochemical, and
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agricultural and food industries (Gendrin et al., 2008; Karoui and De Baerdemaeker, 2007; Meher
et al., 2006).

Because the spectroscopic readings at different wavelengths are highly correlated, it has been
shown that variable selection could significantly improve a soft sensor’s prediction performance
and reduce the model complexity (Wang et al., 2015). Although many successful applications have
been reported, such variable selection methods do have their limitations, such as (high) sensitivity
to the choice of training data, and deteriorated performance when testing on new samples. One
possible reason for these limitations is the removal of useful wavelengths or segments of
wavelengths during the calibration process, which resulted in “tilted” model to overfit or capture
the noise or unknown disturbances contained in the calibration data. As a result, the model
prediction performance may deteriorate significantly when the model is extrapolated or applied to
new samples. In fact, this limitation is not unique to spectroscopic chemometric models, it is true
to all data-driven soft sensor models, which is in essence a balance between model accuracy and
robustness.

To address this limitation, we proposed a feature-based soft sensor approach utilizing SPA. As
shown in Figure 7, instead of selecting certain wavelengths or wavelength segments, the SPA-
based soft sensor considers the whole spectrum which is divided into segments, and extracts
different features over each spectrum segment to build the soft sensor. It is important to note that
SPA-based fault detection and diagnosis extracts features sample-wise, i.e., features are computed
using consecutive measurements of a same variable; while the SPA-based soft sensor extracts
features variable-wise, i.e., features are computed using a segment of adjacent wavelengths of the
same sample, which significantly reduces the number of input variables. Therefore, the SPA model
contains the complete information from the full spectrum without any selection or removal, but
significantly reduces the dimension of input variables by using the summarizing features instead
of individual wavelengths. We expect such an approach would offer improved robustness without
sacrificing model accuracy.

X: Statistics/Features Y: Sample property
of spectrum segments

N S

PLS

A 4

SPA Soft Sensor model

Figure 7. Schematic of SPA-based soft sensor

In this section, we use two case studies to demonstrate the versatile applicability and the
performance of the SPA-based soft sensors. The data sets used in the case studies are the following,
with the corresponding sample spectra given in Figure 8.
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1. Gasoline dataset: This dataset consists of 60 samples of NIR absorbance spectra and
corresponding octane numbers. Wavelength range is 900nm to 1700nm at 2nm interval. More
details of the dataset can be found in (Kalivas, 1997).

2. Coculture dataset: This dataset consists of 47 samples of UV/Vis absorbance spectra of E.coli
and S. cerevisiae coculture with known individual cell mass concentration. In this dataset,
spectra were clearly separated into 6 groups. Wavelength range is 300nm to 900nm at 1nm
interval. Detailed description of the dataset and the experimental design can be found in (Stone
etal., 2017).

L L L L L
rrrrrr 0 300 100 500 600 700 800

(a) (b)

Figure 8. NIR spectra of gasoline (a) and UV/Vis spectra of coculture datasets (different colors
refer to different samples)

The performance of the SPA-based soft sensor is compared with a full PLS soft sensor utilizing
all variables, and two representative variable selection methods: a shrinkage method (least absolute
shrinkage and selection operator, or Lasso) (Tibshirani, 1996) and an interval based variable
selection method (synergy interval PLS, or SiPLS) (Nergaard et al., 2000). For consistent and fair
comparison across different datasets, the datasets were divided into training, validation and test
sub-sets in consistent proportions. Details of the data division for both datasets are given in Table
1. Literature (Xu and Liang, 2001) and our experiences suggest that such division of training and
validation (i.e., ~55% vs. ~45%) results in models that are generally without overfitting issues.

Table 1 Division of data into training, validation and test subsets

Dataset Training (%) Validation (%) Test (%) Total (%)
Gasoline 27 (45.0%) 21 (35.0%) 12 (20.0%) 60 (100%)
Coculture 21 (44.7%) 16 (34.0%) 10 (21.3%) 47 (100%)

To systematically test SPA-based soft sensor and compare its performance with full PLS, Lasso
and SiPLS based soft sensors, we follow a Monte Carlo validation and testing (MCVT) procedure,
which is an adapted Monte Carlo cross-validation (MCCV) (Xu and Liang, 2001). In addition, the
following MCVT-based indices are proposed to assess the performance of different soft sensor
approaches.

e Normalized root mean squared error (NRMSE) as percentage of the measurement range:

Ry, v-9)?
NRMSE =X ————x100% (1)

Ymax=Ymin)
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e Average NRMSE (NRMSE):

R M .
NRMSE = Ziz1 NRMSE; 2)
e Standard deviation of NRMSE (oxrmsEe)
M (NRMSE;—~NRMSE)
ONRMSE = \/ : Vo1 3)

e Normalized mean prediction error (NMPE) as percentage of the measurement mean:

NMPE = Z,f%” x 100% &)

i=1Yi
where n is the total number of validation (ny,) or prediction (np) samples in each MC run,
and M is the total number of MC runs during validation (My,) or prediction (Mp).

After optimization, the average model sizes in terms of number of variables/features in the final
soft sensor models over 25 MC predictions are listed in Table 2. It can be seen that all models with
variable selection are substantially smaller than the full model and SPA has the smallest model
size in the coculture case study (where sample spectra do not contain a peak) and the second
smallest model size in the gasoline case study (where sample spectra contain several peaks).

Table 2 Average number of variables/features of different soft sensors over 25 MC runs

Dataset Full PLS SiPLS LASSO SPA
Gasoline 401 84 14 30
Co-cult (E. coli) 601 129 102 34
Co-cult (S. cerevisiae) 601 138 109 28

Figures 8-10 compare the performance indices of the full PLS model, Lasso, SiPLS and SPA for
both gasoline and coculture data sets. These results show that in general SPA shows superior
performance than the other methods. More importantly, we want to note that SPA performs
especially better at extreme or boundary regions, as illustrated in Figure 12, which compares the
model prediction from 4 different soft sensors and actual measurements. The red ellipse highlights
the samples that SPA predictions are significantly better than other approaches.

6 I Full model 15 Il Full model 0.02 Il Full model
I Lasso model I Lasso model [ Lasso model
[ JSiPLS model [SiPLS model — 0.01 |[EEISiPLS model
g n [ JSPA model g 1 [ JSPA model \/g [ JSPA model
= 5
= & = mmE
& =
; 2l g 0.5 =4
-0.01
0 Jl ﬂ ﬂ -0.02
Validation Prediction Validation Prediction Validation Prediction
(a) (b) (c)

Figure 9. Comparison of soft sensors using gasoline data: (a) NRMSE; (b) oyrusg; (¢) NMPE
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1 Figure 10. Comparison of soft sensors using coculture data (E. coli): (a) NRMSE; (b) oxrusE; (¢)
NMPE
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3 Figure 11. Comparison of soft sensors using coculture data (S. cerevisiae): (a) NRMSE; (b) onrusE;
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5  Figure 12. Comparison of predicted vs. measured octane numbers from different soft sensors using
6 the gasoline data. The red ellipse highlights the region where SPA-based soft sensor performs
7  significantly better than the full PLS, Lasso and SiPLS based soft sensors.

17



=

O 0O NOUL B WN

RR R R R R R R R
O NOULD WNERERO

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

40

41
42

4 Addressing the 4V Challenges of Big Data

Smart manufacturing (SM) and big data generated from SM have drawn increased attention in the
SPM community in the past few years (Qin, 2014; Severson et al., 2016). As detailed in (He and
Wang, 2018), SPA offers some advantages in addressing the 4V challenges of big data, i.e.,
Volume, Velocity, Variety and Veracity (Zikopoulos et al., 2012). In reducing the number of
observations, which is one aspect of Volume, for batch processes sample-wise feature extraction
of SPA-based method can reduce an entire batch (or batch step) into batch (or batch step) features;
for continuous processes, window-based SPA approach is efficient in significantly reducing
number of observations. In reducing the number of variables, which is the other aspect of Volume,
variable-wise feature extraction in SPA-based models has been used to extract features from
optical emission spectroscopy (OES) (Suthar et al., 2018), NIR and UV-Vis spectra, which
effectively reduces number of variables to significantly smaller number of features. For data
variety, SPA can help as statistics extracted from different data sources can be conveniently
integrated together. For Veracity, SPA is advantageous as data uncertainty will have much less
impact on extracted features (e.g., statistics) than variable themselves. Finally, because SPA can
significantly reduce problem size in both time/sample-wise and variable-wise, and it often
eliminates data pre-processing, SPA has the potential to be used for monitoring real-time streaming
data (i.e., Velocity).

5 Discussions and Conclusions

In this work, we use multiple case studies to examine the capabilities of SPA-based methods in
addressing the existing challenges of statistical process monitoring, including process dynamics,
nonlinearity, and non-Gaussianity. Using an illustrative example, we demonstrate that SPA can
transform dynamic, nonlinear process data that exhibit strong non-Gaussianity into multivariate
Gaussian distributed features that capture key process characteristics. The extracted features can
then be conveniently modelled by multivariate statistical methods such as PCA and PLS for
various applications, such as fault detection and diagnosis, and soft sensor or virtual metrology.
The superior performance of the SPA-based method in fault detection and diagnosis is further
demonstrated using the benchmark TEP case study. Because SPA-based fault diagnosis method
links the root cause of a fault to different variable statistics via contribution plots, it provides extra
information in addition to identifying the major fault-contributing variable(s), such as whether the
fault is due to a change in the variable mean or variance. For soft sensor applications, the
performance of SPA-based soft sensor is tested using a lab UV/Vis dataset and an industrial NIR
dataset, which confirmed its superior and robust performance, especially at extreme or boundary
regions.

It is worth noting that SPA is not without its limitations, such as the amount of data required to
estimate various statistics, trade-off between robustness and sensitivity, which will be studied more
systematically in the future. In addition, how to identify the key features to be extracted, as well
as under what conditions that SPA would outperform or underperform other methods need further
investigation.
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