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Abstract: The emergence of the industrial Internet of Things (IoT) and ever advancing computing and 
communication technologies have fueled a new industrial revolution which is happening worldwide to 
make current manufacturing systems smarter, safer, and more efficient. Although many general 
frameworks have been proposed for IoT enabled systems for industrial application, there is limited 
literature on demonstrations or testbeds of such systems. In addition, there is a lack of systematic study on 
the characteristics of IoT sensors and data analytics challenges associated with IoT sensor data. This study 
is an attempt to help fill this gap by exploring the characteristics of IoT vibration sensors and show how 
IoT sensors and big data analytics can be used to develop real time monitoring frameworks. 
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1 INTRODUCTION 

With the emergence of the industrial Internet of Things (IoT) 
and ever advancing computing power and expansion of 
wireless networking technologies, a new generation of 
networked, information-based technologies, data analytics, 
and predictive modeling are providing unprecedented 
embedded computing capabilities as well as access to 
previously unimagined potential uses of data and information 
(Steering Committee of the Advanced Manufacturing 
Partnership 2.0, 2014). 

1.1  Smart Manufacturing 

Although there are different names used to describe next 
generation manufacturing systems, such as industrial 4.0, 
smart manufacturing and intelligent manufacturing, the 
essence of these is the application of increasingly powerful and 
low-cost computation and networked information-based 
technologies in manufacturing enterprises. There is a general 
consensus that factories and plants connected to the Internet 
are more efficient, productive and smarter than their non-
connected counterparts (Davis et al., 2015, 2012). 

1.2 Industrial Internet-of-things 

IoT devices are sensors, actuators and computers with wireless 
networks, and, most importantly, systems that are small and 
easy to embed. Although the use of IoT sensors has been 
increasing exponentially in industries such as retail and 
services, their use in manufacturing has been limited. Because 
of the small size and cheap price, IoT sensors offer the 
opportunity to instrument systems in massive numbers. With 
the huge amount of data and the programmability of IoT 
devices, comes the opportunity to shape the data received, to 
address local redundancy of information, and to improve both 
the accuracy and precision of measurements locally and across 
a distributed parameter system such as a reactor. 

1.3 “Big Data” from Smart Manufacturing 

Manufacturing process operation databases are massive 
because of the use of process operation and control computers 
and information systems. With ever-accelerating advancement 
of IoT devices and other communication and sensing devices 
and technologies, it is expected that the data generated from 
smart manufacturing systems will grow exponentially (Qin, 
2014). Four V’s are often used to characterize the essence of 
big data (Zikopoulos and Eaton, 2011; Zikopoulos et al., 
2012): Volume (from terabytes (~1012) to zettabytes 
(~1021)), Variety (from structured to unstructured), Velocity 
(from batch to online streaming) and Veracity (data quality 
variations or uncertainty). Big Data is arguably a major focus 
for the next round of the transformation of advanced 
manufacturing, and the analysis of large data sets will become 
a key basis of competitiveness, productivity growth, and 
innovation (Manyika et al., 2011). 

1.4 Smart Manufacturing Testbed 

Simulation is a powerful tool but the fidelity of the simulated 
system is limited by the understanding on the system. In this 
project, with industrial IoT still in its infancy, there is not 
sufficient understanding on the property, capacity and 
performance of IoT sensors to enable accurate simulation. This 
is the major motivation for us to build a smart manufacturing 
testbed equipped with IoT vibration sensors. In this work we 
investigate the capabilities of these IoT vibration sensors for 
process monitoring by building soft sensors to predict key 
process variables. We expect that the findings from this project 
can be extended to actual manufacturing systems. The rest of 
the paper is organized as follows. Sec. 2 details the testbed 
setup. Sec. 3 investigates the characteristics of the data 
collected from the IoT vibration sensors. Sec. 4 presents data 
representation, visualization and soft sensor development and 
validation. Sec. 5 summaries the work and discuss future 
directions. 
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2 TESTBED SETUP 

2.1  Process Selection 

A manufacturing plant consists of different unit operations. 
Each unit operation consists of several different equipment. 
Health of any given unit operation is dependent on healthy 
functioning of these equipment. This makes proper 
functioning of each equipment important and also 
interdependent. One of the most versatile equipment in 
manufacturing industry are centrifugal pump and compressors 
and the associated piping system that move gas or liquid from 
one location to another. Therefore, we choose a simple pipe 
flow system of water that is driven and controlled by a 
centrifugal pump and valves as shown in Fig. 1. The motor 
revolutions per minute (rpm) and water flow rate gallon per 
minute (gpm) were measured and displayed on a computer 
screen with updates every second. The goal is to predict these 
two key process variables through IoT sensor measurements. 
Although the testbed is simple, the principles developed based 
on it can be generalized to more complex real systems. 

2.2  Sensor Selection 

One of the most commonly utilized data in industrial or 
mechanical equipment is vibration. The application of 
vibrational data for condition monitoring of machinery or 
structure has been well documented, such as the detection of 
faults or defects in gears, rotors, shafts, bearings and couplings 
(Adams, 2009; Carden and Fanning, 2004; Lyon, 2013; 
Tandon and Choudhury, 1999). However, their applications 
for inferring process information, such as rotor speed and fluid 
flow rate inside a pipe that we set to explore in this work, have 
not been reported. Therefore, in this work we choose to equip 
the testbed with IoT vibration sensors. Another consideration 
of choosing vibration sensors is that they can be installed non-
invasively, which is an important feature if we were to equip 
legacy processes with advanced sensors. The following two 
major types of vibration sensors were considered and tested in 
this work: (1) Piezo type vibration sensors. This type of 
sensors contain a material that produces voltage when moved 
or touched, which is then measured to identify vibration or 
motion of the surface where it is placed. (2) Accelerometers. 
These sensors are electromagnetic devices that measure 
acceleration force on the sensors which in turn can be used to 

sense vibration or movements. Fig. 2 shows the pictures of 
some the Piezo type and accelerometers we tested. Piezo type 
vibration sensors are in general the cheapest, require minimal 
connections and do not require complex breakout. However, 
initial tests found that these sensors were not sensitive enough 
for the testbed system, and most likely not suitable for 
industrial processes if we were to infer process information 
buried in the vibration signals. On the other hand, although IoT 
accelerometers are slightly more expensive, they are still cheap 
– usually less than 10 US dollars as the ones shown in Fig. 2. 
These accelerometers are most responsive vibration sensors, 
easy to connect either using standard I²C (Inter-Integrated 
Circuit) or SPI (Serial Peripheral Interface) protocols. 
Therefore, we chose these digital accelerometers in this study. 

2.3  Testbed setup 

The sensors themselves do not have built-in controllers that 
can directly communicate with local computers or cloud 
servers. Therefore, Raspberry Pi’s were chosen to serve as the 
“third-party” computing device or micro-controller for the 
sensors. Totally five accelerometers were equipped to the 
testbed and their schematic locations are outlined in Fig. 3. 
Due to page limit, the protocols for data transmission, 
processing and storage is omitted.  

3 DATA AND SENSOR CHARACTERIZATION 

The testbed pump can run from 1500 rpm to 2500 rpm. At 
1500 rpm, the minimum flow rate that can be measured 
reliably by the flow meter is 5 gpm. The maximum flowrate 
that can be achieved at 2500 rpm and maximum discharge 
valve opening is around 16 gpm. The accelerometers are  triple 
axis accelerometers and thus measure vibration signals in x, y 
and z directions of Cartesian coordinate system. Table 1 shows 
the experiments performed on the testbed. Totally 85 
conditions (i.e., difference combinations of motor speed and 
flow rate by adjusting motor speed and discharge valve) were 
tested. Data were collected for 10 min for each condition. Note 
that the motor speeds and flow rates listed in Table 1 are 
approximate as they do drift during the course of the 
experiments and the real-time readings from the computer 
screen are used as the actual values. The accelerometer 

 
Fig. 1 The testbed of a simple pipe flow system with a 
centrifugal pump and valves 

   
Piezo type sensors 

  
Accelerometers 

Fig. 2 Some Piezo type and accelerometer sensors tested 

 
Fig. 3 Schematic of sensor locations 



 
 

     

 

sensitivity is adjustable (±2g, ±4g, or ±8g) and ±8g is used in 
this study. The accelerometer sampling rate is also adjustable 
(800 Hz, 1600 Hz or 3200 Hz). After some tests, it was found 
that for this particular testbed, 1600 Hz is sufficient to capture 
the testbed vibration characteristics. 

Table 1 Experiments performed on the testbed 

Conditions Motor speed (rpm) Flow rate (gpm) 
3 1500 5, 7, 9 
3 1600 5, 7, 9 
4 1700 5, 7, 9, 11 
4 1750 5, 7, 9, 11 
4 1800 5, 7, 9, 11 
4 1850 5, 7, 9, 11 
4 1900 6, 8, 10, 12 
4 1950 6, 8, 10, 12 
5 2000 5, 7, 9, 11, 13 
5 2050 5, 7, 9, 11, 13 
5 2100 6, 8, 10, 12, 14 
5 2150 6, 8, 10, 12, 14 
5 2200 6, 8, 10, 12, 14 
5 2250 6, 8, 10, 12, 14 
5 2300 7, 9, 11, 13, 15 
5 2350 7, 9, 11, 13, 15 
5 2400 7, 9, 11, 13, 15 
5 2450 7, 9, 11, 13, 15 
5 2500 8, 10, 12, 14, 16 

3.1 Unequal Sampling Interval 

Although the sensor sampling rate on each accelerometer is set 
to be 1600 Hz, the sampling rate is ultimately determined by 
the code running on the Raspberry Pi that queries the sensor 
data. Therefore, the sampling rate varies from cycle to cycle 
due to CPU time variations. This raw data can be 
downsampled to get uniform sampling rate or interval but the 
downsampling effect on the signal would need to be studied. 
Therefore, the raw data collected with variable sample rate are 
used in this work and more details are provided in Sec. 4.1. 

3.2 High Noise Levels 

Because of the high sensitivity of the accelerometer used in 
this work, the signals obtained are very noisy as shown in Fig. 
4. There are denoising methods such as various filtering 
techniques. However, the effect of denoising on signal 
distortion and information loss can vary depending on the 
method and associated parameters. Therefore, in this work we 
opt to use the raw signal. 

3.3 Missing Values in Measurements 

From time to time, missing measurements have been observed 
as shown in Fig. 5, where the segments with missing values 
are highlighted by the ellipses. This might be due to occasional 
connection failures or communication delays between the 
micro-controller and the sensor. There are techniques to 
impute the missing values such as interpolation and signal 
binning. But there are potential issues associated with data 
imputation, especially for our case where missing values are 
usually cluttered into chunks. Therefore, we opt to use the raw 
signal. 

 To 

summarize, the raw signals are unequally sampled with 
significant noise and some missing values. There are 
techniques available that can be used to pre-process the data to 
get equal sampling intervals with reduced noise and imputed 
missing values. However, we opt to not use any data pre-
processing or cleaning techniques with the consideration of 
preserving whatever signatures or features in the raw signal 
from being distorted by those data pre-processing techniques. 
As a result, we need to develop methods that are robust to these 
data imperfections, which is presented in the next section. 

4 SOFT SENSOR DEVELOPMENT AND VALIDATION 

4.1 Vibration Signal Representation 

Many analysis techniques have been developed for vibration 
signal analysis, which can be classified into simple magnitude 
analysis, time domain analysis and frequency domain analysis 
(Norton and Karczub, 2003). Although most of these 
techniques are developed for condition monitoring such as 
fault detection, the approaches of representing vibration 
signals in different domains are the same. Because of the high 
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Fig. 4 High frequency noisy measurements  

 
Fig. 5 Chunks of missing values in the raw signal  



 
 

     

 

frequency sampling, it was decided to use frequency domain 
representation of the signals. In general, for equally spaced 
signals, frequency domain representation can be obtained 
through mathematical Fourier transform such as fast Fourier 
transform (FFT). However, the vibration signals obtained from 
the testbed are more complicated than the traditional ones, 
with data imperfections (including unequal sampling) 
discussed in the previous section. Therefore, we decided to use 
Lomb’s algorithm to obtain power spectral density (PSD), 
which does not require signal to be equally spaced. 

4.2 Lomb’s Algorithm 

The output of the Lomb’s algorithm is PSD of the signal under 
consideration. It does not require samples to be equally spaced, 
and when they are equally spaced, the mathematics of the 
algorithm reduces to Fourier transform (Lomb, 1976; Scargle, 
1982). Lomb’s algorithm is a subset of least-squares spectral 
analysis and has been widely used in astronomy community. 
Lomb’s algorithm assumes a signal as a function of cosine and 
sine: 
𝑃(𝑎, 𝑏, 𝑓, 𝑡) = 𝑎 cos(2𝜋𝑓𝑡) + 𝑏sin⁡(2𝜋𝑓𝑡)   (1) 
where 𝑎 and 𝑏 are amplitudes, 𝑓 frequency and 𝑡 time of 
sampling. 

𝑃 is then fitted to the signal using a least square approach. 
The sine and cosine terms are made orthogonal by shifting 
the signal in time and identifying delay shift τ (offset). The 
following two equations identify 𝜏 and power spectrum 𝑆 =
∑ 𝑃2𝑁
𝑖=1  [39], [40]: 

𝜏 =
1

2𝜔
(𝑎𝑟𝑐𝑡𝑎𝑛⁡(

∑ sin(2𝜔𝑡𝑖)
𝑁
𝑖=1

∑ cos(2𝜔𝑡𝑖)
𝑁
𝑖=1

)⁡ 

 
𝑆(𝜔) =

1

2𝜎2
(
[∑ 𝑋𝑖cos(𝜔(𝑡𝑖 − 𝜏))𝑁

𝑖=1 ]2

∑ 𝑐𝑜𝑠2(𝜔𝑁
𝑖=1 (𝑡𝑖 − 𝜏))

+
[∑ 𝑋𝑖sin(𝜔(𝑡𝑖 − 𝜏))𝑁

𝑖=1 ]2

∑ 𝑠𝑖𝑛2(𝜔𝑁
𝑖=1 (𝑡𝑖 − 𝜏))

) 

 
where 𝜎 is the variance of the signal, 𝑁 the number of 
observations, 𝜔 = 2𝜋𝑓, and 𝑋 signal values after mean 
centering. 

4.3 Construction of  Independent and Dependent Variable 
Matrices 

In this work, the sampling rate of vibration signals is much 
higher than that of motor speed (in rpm) and water flow rate 
(in gpm), which were measured and displayed on a computer 
screen with update every second. But there was no mechanism 
to record these measurements to the local computer. Therefore, 
videos were taken during the experiments and image 
processing techniques were used to extract rpm and gpm every 
0.33 second. This sampling frequency is sufficient as the 
screen displayed values were updated every second. Because 
of the sampling rate difference, it was decided to obtain 
corresponding PSD for each rpm and gpm measurement. In 
total 801 data points were used for getting PSD: 400 data 
points each before and after the time when rpm/gpm value is 
captured. Thus for each measurement of rpm and gpm, we 
have corresponding segment of data points from which PSD 
can be obtained using Lomb’s algorithm. In order to reduce 
spectral leakage and obtain smoother spectrum, mean-centered 

signal is passed through a window function (Cerna and 
Harvey, 2000; Harris, 1978; Lyon, 2009; Nuttall, 1981). In this 
study Hann window function was used. PSD for frequencies 
from 1 to 800 Hz with resolution of 0.2 Hz is obtained. Thus 
the columns of the independent variable matrix 𝑋 consists of 
the amplitude of PSD at each frequency. The columns of the 
dependent variable matrix 𝑌 consists of rpm and gpm. The 
rows of 𝑋 and 𝑌 correspond to the samples computed or 
measured every 0.33 second. 

4.4 Data Visualization and Initial Analysis through PCA 

First, principal component analysis (PCA) is used to 
qualitatively examine if the vibration signals contain sufficient 
information that can be used to predict rpm and/or gpm and 
such information is not overshadowed by the data 
imperfections inherent to the IoT sensors used for the testbed, 
i.e., unequal sampling, significant noise, and missing chunks 
of values as observed in Figs. 4-6. For this initial analysis, it 
was decided to carry out PCA for fixed rpm conditions, i.e., 
samples/spectrums included in matrix 𝑋 have fixed rpm value 
but can have different gpm. Fig. 6 (a) and (b) show the score 
plots comparison for different flow conditions for 2400 rpm 
and the first 500 points from each condition were used to 
construct 𝑋. PCA was carried out on mean centered 𝑋. The 
variance was not scaled as all the variables have the same unit. 
Fig. 6 (a) clearly shows that the first PC scores are very 
different for different flow rates, Fig. 6 (b) also indicates the 
presence of difference between signals captured for different 
flow rates, although not as obvious as the first PC. 

 
 (a)  (b) 
Fig. 6 PCA score plots for the first PC (a) and second PC (b). 

Fig. 6 (a) can be interpreted using the basic idea of wave 
formation in a mechanical system. Whenever the load is 
applied on a freely vibrating object, the amplitude of vibration 
may increase or decrease depending on the relation with load 
and natural vibrating frequency. As flowrate increases, load on 
pump assembly increases and so does load on several pump 
components, therefore when pump was running at 2400 rpm 
with load increasing (i.e., flow rate increasing), overall 
vibration amplitude of several rotating and vibrating parts of 
the pump changes. PCA captures the changes in frequencies 
and suggests that overall amplitude change is decreasing as 
flowrate increases as indicated in Fig. 6 (a), but not in all 
components/frequencies as indicated in Fig. 6 (b). Fig. 6 also 
suggests that there is information contained in the vibration 
signals that are associated with flow rate that is not 
overshadowed by the data imperfections discussed previously. 

4.5 Inferring rpm from Vibration Signal 

For this initial analysis, signals collected from sensor #4 (see 



 
 

     

 

Fig. 3) placed on the coupling is used to infer rpm as coupling 
is the connection between impeller and motor and therefore 
will be directly affected by rpm change. Inspections of spectra 
at different rpm's indicate that there is a linear relationship 
between rpm and the frequency of the highest PSD peak. Also 
it appears that the amplitude of the peak does not matter and it 
is affected by the load on the pump (i.e., flow rate). Therefore, 
a vector of zeros with length 1000 is generated corresponding 
to frequencies with increment of 0.2 Hz. Then the frequency 
of the highest PSD peak is identified and the zero in the vector 
at that frequency is replaced with one. To robustify the method 
considering the data veracity, four zeros corresponding to two 
adjacent frequencies on each side of the identified frequency 
are replaced with one’s as well. The above procedure is 
performed for all samples to generate a matrix consisting of 
zero’s and one’s. For this initial analysis, a partial least squares 
(PLS) model was built using rpm cases of 1500, 1800, 2000, 
2300 and 2400 with different flow rates for each rpm as shown 
in Table 1, which combine to 22 conditions (i.e., different 
combination of rpm and gpm). The calibration set consists of 
200 samples from each condition. Thus the calibration matrix 
𝑋𝑇𝑟𝑎𝑖𝑛 is a 44001000 logical matrix. The PLS model was 
tested for the 22 conditions using 200 new samples from each 
condition. Thus the test matrix 𝑋𝑇𝑒𝑠𝑡 has the same dimension 
as 𝑋𝑇𝑟𝑎𝑖𝑛. The 𝑌 matrices for training and testing were consists 
of the rpm for each of the corresponding samples. The number 
of PC was chosen as two. Fig. 7 demonstrates excellent 
agreement between the measured and predicted rpm’s on the 
test samples, indicating good performance of the PLS model.  

4.6 Inferring Flow Rate from Vibration Signal 

As shown in the previous section, the rpm inference is quite 
simple and reliable as the frequency of the highest PSD peak 
is not affected by the flow rate change when vibration signals 
collected from the coupling were used. The inference of flow 
rate from vibration signals is much harder as the flow rate is 
affected by both rpm and the discharge valve opening. As 
discussed in the previous section, the flow rate affects the 
amplitude of PSD peaks. Therefore, the amplitudes of PSD 
peaks over the frequency of 1-800 Hz were used to build a PLS 
model. We first investigate the possibility of predicting flow 

rate under different rpm conditions using all flow rate 
conditions for 1500, 1800, 2000, 2300 and 2400 rpm, which 
include both low and high rpm’s, and totally 22 conditions. 
Again, the signals collected from sensor #4 placed on the 
coupling is used to infer flow rate. The vibration signal from 
both x and z directions are used. The first 500 samples (i.e., 
PSD spectrum obtained from a vibration signal) from each of 
the 22 conditions were stacked row wise (i.e., totally 11000 
samples) for calibrating the PLS model. Another 250 samples 
from each of the 22 conditions (i.e., totally 5500 samples) were 
used for testing. Thus the final 𝑋𝑇𝑟𝑎𝑖𝑛 and 𝑋𝑇𝑒𝑠𝑡 have the 
dimension of 110007992 and 55007992, respectively. 
𝑦𝑇𝑟𝑎𝑖𝑛 and 𝑦𝑇𝑒𝑠𝑡 have the dimension of 110001 and 55001, 
respectively. The comparison of the predicted and measured 
flow rates of the test data for all 22 conditions is shown in Fig. 
8, which indicates that the PLS model was able to predict the 
flow rates in the vicinity of the true values but the predictions 
are not very accurate. The root mean squared error (RMSE) of 
the prediction is 0.60. 

 
Fig. 8 Predictions vs. measurements for multiple flowrates at 
multiple rpm’s. 

To improve model prediction accuracy, we investigate the case 
where rpm is known or has been predicted independently as 
shown in the previous section. Under such a case, separate 
models can be built for the same or similar rpm condition. In 
this work, separate models for different rpm’s were calibrated 
and tested. For each model the first 500 samples from each 
condition were used to construct 𝑋𝑇𝑟𝑎𝑖𝑛 and 𝑦𝑇𝑟𝑎𝑖𝑛  for 
calibration and another 250 samples from the same condition 
were used to construct 𝑋𝑇𝑒𝑠𝑡 and 𝑦𝑇𝑒𝑠𝑡  for testing. Due to 
limited space, only one low rpm of 1800 and one high rpm of 
2400 cases are presented here. Same as the mixed rpm 
modeling, vibration signals from x and z directions of sensor 
#4 were used. Fig. 9 (a) and (b) compare the predicted flow 
rates to the measured ones for 1800 rpm and 2400 rpm, 
respectively. Fig. 9 shows that the prediction performance of 
models built based on separate rpm’s perform better than a 
single model built including all rpm’s. The RMSE’s for 1800 
rpm and 2400 rpm are 0.35 and 0.43, respectively. 

5 CONCLUSIONS AND DISCUSSIONS 

In this work, we introduced the design of an IoT testbed using 
multi-stage centrifugal pumping system equipped with non-
invasive IoT vibration sensors. We studied the characteristics 
of the data collected from these IoT sensors, focusing on data 
veracity (i.e., unequal sampling intervals, significant noise and 

 
Fig. 7 Predicted vs. measured rpm’s. 



 
 

     

 

missing values) and its challenges for data analytics. We 
demonstrated that some robust methods such as Lomb’s 
algorithm can properly handle these data veracity 
characteristics. We also discussed data volume and velocity 
resulted from high frequency sampling and showed that proper 
data representation (e.g., in frequency domain) can help 
overcome this challenge. Finally, we developed data-driven 
predictive models using the frequency domain representation 
of the vibration signals to infer key process variables for 
process monitoring, namely the flow rate inside the pipe and 
rpm of the pump motor. The model predictions were validated 
with experimental measurements. Altogether, this study serves 
as a demonstration of how IoT sensors and big data analytics 
can be integrated and utilized for real-time process monitoring. 

 
(a) 

 
(b) 

Fig. 9 Predicted vs. measured flowrates based on individual 
rpm models 

It is worth noting that this work presents some initial results of 
this project, which is far from comprehensive and there are 
many areas that are worth further investigation, such as 
exploring other modeling approaches such as neural networks, 
utilizing data collected from all sensors instead of just one as 
in this work, improving soft sensor performance through 
variable selection, etc. 
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