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Abstract: The emergence of the industrial Internet of Things (IoT) and ever advancing computing and
communication technologies have fueled a new industrial revolution which is happening worldwide to
make current manufacturing systems smarter, safer, and more efficient. Although many general
frameworks have been proposed for IoT enabled systems for industrial application, there is limited
literature on demonstrations or testbeds of such systems. In addition, there is a lack of systematic study on
the characteristics of IoT sensors and data analytics challenges associated with IoT sensor data. This study
is an attempt to help fill this gap by exploring the characteristics of IoT vibration sensors and show how
IoT sensors and big data analytics can be used to develop real time monitoring frameworks.
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1 INTRODUCTION

With the emergence of the industrial Internet of Things (IoT)
and ever advancing computing power and expansion of
wireless networking technologies, a new generation of
networked, information-based technologies, data analytics,
and predictive modeling are providing unprecedented
embedded computing capabilities as well as access to
previously unimagined potential uses of data and information
(Steering Committee of the Advanced Manufacturing
Partnership 2.0, 2014).

1.1 Smart Manufacturing

Although there are different names used to describe next
generation manufacturing systems, such as industrial 4.0,
smart manufacturing and intelligent manufacturing, the
essence of these is the application of increasingly powerful and
low-cost computation and networked information-based
technologies in manufacturing enterprises. There is a general
consensus that factories and plants connected to the Internet
are more efficient, productive and smarter than their non-
connected counterparts (Davis et al., 2015, 2012).

1.2 Industrial Internet-of-things

IoT devices are sensors, actuators and computers with wireless
networks, and, most importantly, systems that are small and
easy to embed. Although the use of IoT sensors has been
increasing exponentially in industries such as retail and
services, their use in manufacturing has been limited. Because
of the small size and cheap price, IoT sensors offer the
opportunity to instrument systems in massive numbers. With
the huge amount of data and the programmability of IoT
devices, comes the opportunity to shape the data received, to
address local redundancy of information, and to improve both
the accuracy and precision of measurements locally and across
a distributed parameter system such as a reactor.

1.3 “Big Data” from Smart Manufacturing

Manufacturing process operation databases are massive
because of the use of process operation and control computers
and information systems. With ever-accelerating advancement
of IoT devices and other communication and sensing devices
and technologies, it is expected that the data generated from
smart manufacturing systems will grow exponentially (Qin,
2014). Four V’s are often used to characterize the essence of
big data (Zikopoulos and Eaton, 2011; Zikopoulos et al.,
2012): Volume (from terabytes (~1012) to zettabytes
(~1021)), Variety (from structured to unstructured), Velocity
(from batch to online streaming) and Veracity (data quality
variations or uncertainty). Big Data is arguably a major focus
for the next round of the transformation of advanced
manufacturing, and the analysis of large data sets will become
a key basis of competitiveness, productivity growth, and
innovation (Manyika et al., 2011).

1.4 Smart Manufacturing Testbed

Simulation is a powerful tool but the fidelity of the simulated
system is limited by the understanding on the system. In this
project, with industrial IoT still in its infancy, there is not
sufficient understanding on the property, capacity and
performance of IoT sensors to enable accurate simulation. This
is the major motivation for us to build a smart manufacturing
testbed equipped with IoT vibration sensors. In this work we
investigate the capabilities of these IoT vibration sensors for
process monitoring by building soft sensors to predict key
process variables. We expect that the findings from this project
can be extended to actual manufacturing systems. The rest of
the paper is organized as follows. Sec. 2 details the testbed
setup. Sec. 3 investigates the characteristics of the data
collected from the IoT vibration sensors. Sec. 4 presents data
representation, visualization and soft sensor development and
validation. Sec. 5 summaries the work and discuss future
directions.
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2 TESTBED SETUP
2.1 Process Selection

A manufacturing plant consists of different unit operations.
Each unit operation consists of several different equipment.
Health of any given unit operation is dependent on healthy
functioning of these equipment. This makes proper
functioning of each equipment important and also
interdependent. One of the most versatile equipment in
manufacturing industry are centrifugal pump and compressors
and the associated piping system that move gas or liquid from
one location to another. Therefore, we choose a simple pipe
flow system of water that is driven and controlled by a
centrifugal pump and valves as shown in Fig. 1. The motor
revolutions per minute (rpm) and water flow rate gallon per
minute (gpm) were measured and displayed on a computer
screen with updates every second. The goal is to predict these
two key process variables through IoT sensor measurements.
Although the testbed is simple, the principles developed based
on it can be generalized to more complex real systems.

Fig. 1 The testbed of a simple pipe flow system with a
centrifugal pump and valves

2.2 Sensor Selection

One of the most commonly utilized data in industrial or
mechanical equipment is vibration. The application of
vibrational data for condition monitoring of machinery or
structure has been well documented, such as the detection of
faults or defects in gears, rotors, shafts, bearings and couplings
(Adams, 2009; Carden and Fanning, 2004; Lyon, 2013;
Tandon and Choudhury, 1999). However, their applications
for inferring process information, such as rotor speed and fluid
flow rate inside a pipe that we set to explore in this work, have
not been reported. Therefore, in this work we choose to equip
the testbed with IoT vibration sensors. Another consideration
of choosing vibration sensors is that they can be installed non-
invasively, which is an important feature if we were to equip
legacy processes with advanced sensors. The following two
major types of vibration sensors were considered and tested in
this work: (1) Piezo type vibration sensors. This type of
sensors contain a material that produces voltage when moved
or touched, which is then measured to identify vibration or
motion of the surface where it is placed. (2) Accelerometers.
These sensors are electromagnetic devices that measure
acceleration force on the sensors which in turn can be used to

sense vibration or movements. Fig. 2 shows the pictures of
some the Piezo type and accelerometers we tested. Piezo type
vibration sensors are in general the cheapest, require minimal
connections and do not require complex breakout. However,
initial tests found that these sensors were not sensitive enough
for the testbed system, and most likely not suitable for
industrial processes if we were to infer process information
buried in the vibration signals. On the other hand, although IoT
accelerometers are slightly more expensive, they are still cheap
— usually less than 10 US dollars as the ones shown in Fig. 2.
These accelerometers are most responsive vibration sensors,
easy to connect either using standard I*C (Inter-Integrated
Circuit) or SPI (Serial Peripheral Interface) protocols.
Therefore, we chose these digital accelerometers in this study.

Piezo type sensors Accelerometers

Fig. 2 Some Piezo type and accelerometer sensors tested
2.3 Testbed setup

The sensors themselves do not have built-in controllers that
can directly communicate with local computers or cloud
servers. Therefore, Raspberry Pi’s were chosen to serve as the
“third-party” computing device or micro-controller for the
sensors. Totally five accelerometers were equipped to the
testbed and their schematic locations are outlined in Fig. 3.
Due to page limit, the protocols for data transmission,
processing and storage is omitted.

3 DATA AND SENSOR CHARACTERIZATION

The testbed pump can run from 1500 rpm to 2500 rpm. At
1500 rpm, the minimum flow rate that can be measured
reliably by the flow meter is 5 gpm. The maximum flowrate
that can be achieved at 2500 rpm and maximum discharge
valve opening is around 16 gpm. The accelerometers are triple
axis accelerometers and thus measure vibration signals in X, y
and z directions of Cartesian coordinate system. Table 1 shows
the experiments performed on the testbed. Totally 85
conditions (i.e., difference combinations of motor speed and
flow rate by adjusting motor speed and discharge valve) were
tested. Data were collected for 10 min for each condition. Note
that the motor speeds and flow rates listed in Table 1 are
approximate as they do drift during the course of the
experiments and the real-time readings from the computer
screen are used as the actual values. The accelerometer
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Fig. 3 Schematic of sensor locations



sensitivity is adjustable (£2g, +4g, or £8g) and +8g is used in
this study. The accelerometer sampling rate is also adjustable
(800 Hz, 1600 Hz or 3200 Hz). After some tests, it was found
that for this particular testbed, 1600 Hz is sufficient to capture
the testbed vibration characteristics.

Table 1 Experiments performed on the testbed

Conditions [Motor speed (rpm) [Flow rate (gpm)
3 1500 5,7,9
3 1600 5,7,9
4 1700 5,7,9,11
4 1750 5,7,9,11
4 1800 5,7,9,11
4 1850 5,7,9,11
4 1900 6,8,10,12
4 1950 6,8,10,12
5 2000 5,7,9,11,13
5 2050 5,7,9,11,13
5 2100 6,8,10,12, 14
5 2150 6,8,10,12, 14
5 2200 6,8,10,12, 14
5 2250 6,8,10,12, 14
5 2300 7,9,11,13, 15
5 2350 7,9,11,13, 15
5 2400 7,9,11,13,15
5 2450 7,9,11,13,15
5 2500 8,10,12,14,16

3.1 Unequal Sampling Interval

Although the sensor sampling rate on each accelerometer is set
to be 1600 Hz, the sampling rate is ultimately determined by
the code running on the Raspberry Pi that queries the sensor
data. Therefore, the sampling rate varies from cycle to cycle
due to CPU time variations. This raw data can be
downsampled to get uniform sampling rate or interval but the
downsampling effect on the signal would need to be studied.
Therefore, the raw data collected with variable sample rate are
used in this work and more details are provided in Sec. 4.1.

3.2 High Noise Levels

Because of the high sensitivity of the accelerometer used in
this work, the signals obtained are very noisy as shown in Fig.
4. There are denoising methods such as various filtering
techniques. However, the effect of denoising on signal
distortion and information loss can vary depending on the
method and associated parameters. Therefore, in this work we
opt to use the raw signal.

3.3 Missing Values in Measurements

From time to time, missing measurements have been observed
as shown in Fig. 5, where the segments with missing values
are highlighted by the ellipses. This might be due to occasional
connection failures or communication delays between the
micro-controller and the sensor. There are techniques to
impute the missing values such as interpolation and signal
binning. But there are potential issues associated with data
imputation, especially for our case where missing values are
usually cluttered into chunks. Therefore, we opt to use the raw
signal.
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Fig. 5 Chunks of missing values in the raw signal

summarize, the raw signals are unequally sampled with
significant noise and some missing values. There are
techniques available that can be used to pre-process the data to
get equal sampling intervals with reduced noise and imputed
missing values. However, we opt to not use any data pre-
processing or cleaning techniques with the consideration of
preserving whatever signatures or features in the raw signal
from being distorted by those data pre-processing techniques.
As aresult, we need to develop methods that are robust to these
data imperfections, which is presented in the next section.

4 SOFT SENSOR DEVELOPMENT AND VALIDATION
4.1 Vibration Signal Representation

Many analysis techniques have been developed for vibration
signal analysis, which can be classified into simple magnitude
analysis, time domain analysis and frequency domain analysis
(Norton and Karczub, 2003). Although most of these
techniques are developed for condition monitoring such as
fault detection, the approaches of representing vibration
signals in different domains are the same. Because of the high



frequency sampling, it was decided to use frequency domain
representation of the signals. In general, for equally spaced
signals, frequency domain representation can be obtained
through mathematical Fourier transform such as fast Fourier
transform (FFT). However, the vibration signals obtained from
the testbed are more complicated than the traditional ones,
with data imperfections (including unequal sampling)
discussed in the previous section. Therefore, we decided to use
Lomb’s algorithm to obtain power spectral density (PSD),
which does not require signal to be equally spaced.

4.2 Lomb’s Algorithm

The output of the Lomb’s algorithm is PSD of the signal under
consideration. It does not require samples to be equally spaced,
and when they are equally spaced, the mathematics of the
algorithm reduces to Fourier transform (Lomb, 1976; Scargle,
1982). Lomb’s algorithm is a subset of least-squares spectral
analysis and has been widely used in astronomy community.
Lomb’s algorithm assumes a signal as a function of cosine and
sine:

P(a,b,f,t) = acos(2nft) + bsin(2nft) 1)
where a and b are amplitudes, f frequency and t time of
sampling.

P is then fitted to the signal using a least square approach.
The sine and cosine terms are made orthogonal by shifting
the signal in time and identifying delay shift 7 (offset). The
following two equations identify T and power spectrum S =
I, P2 [39], [40]:
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where o is the variance of the signal, N the number of
observations, w = 2xf, and X signal values after mean
centering.

4.3 Construction of Independent and Dependent Variable
Matrices

In this work, the sampling rate of vibration signals is much
higher than that of motor speed (in rpm) and water flow rate
(in gpm), which were measured and displayed on a computer
screen with update every second. But there was no mechanism
to record these measurements to the local computer. Therefore,
videos were taken during the experiments and image
processing techniques were used to extract rpm and gpm every
0.33 second. This sampling frequency is sufficient as the
screen displayed values were updated every second. Because
of the sampling rate difference, it was decided to obtain
corresponding PSD for each rpm and gpm measurement. In
total 801 data points were used for getting PSD: 400 data
points each before and after the time when rpm/gpm value is
captured. Thus for each measurement of rpm and gpm, we
have corresponding segment of data points from which PSD
can be obtained using Lomb’s algorithm. In order to reduce
spectral leakage and obtain smoother spectrum, mean-centered

signal is passed through a window function (Cerna and
Harvey, 2000; Harris, 1978; Lyon, 2009; Nuttall, 1981). In this
study Hann window function was used. PSD for frequencies
from 1 to 800 Hz with resolution of 0.2 Hz is obtained. Thus
the columns of the independent variable matrix X consists of
the amplitude of PSD at each frequency. The columns of the
dependent variable matrix Y consists of rpm and gpm. The
rows of X and Y correspond to the samples computed or
measured every 0.33 second.

4.4 Data Visualization and Initial Analysis through PCA

First, principal component analysis (PCA) is used to
qualitatively examine if the vibration signals contain sufficient
information that can be used to predict rpm and/or gpm and
such information is not overshadowed by the data
imperfections inherent to the IoT sensors used for the testbed,
i.e., unequal sampling, significant noise, and missing chunks
of values as observed in Figs. 4-6. For this initial analysis, it
was decided to carry out PCA for fixed rpm conditions, i.e.,
samples/spectrums included in matrix X have fixed rpm value
but can have different gpm. Fig. 6 (a) and (b) show the score
plots comparison for different flow conditions for 2400 rpm
and the first 500 points from each condition were used to
construct X. PCA was carried out on mean centered X. The
variance was not scaled as all the variables have the same unit.
Fig. 6 (a) clearly shows that the first PC scores are very
different for different flow rates, Fig. 6 (b) also indicates the
presence of difference between signals captured for different
flow rates, although not as obvious as the first PC.
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Fig. 6 PCA score plots for the first PC (a) and second PC (b).
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Fig. 6 (a) can be interpreted using the basic idea of wave
formation in a mechanical system. Whenever the load is
applied on a freely vibrating object, the amplitude of vibration
may increase or decrease depending on the relation with load
and natural vibrating frequency. As flowrate increases, load on
pump assembly increases and so does load on several pump
components, therefore when pump was running at 2400 rpm
with load increasing (i.e., flow rate increasing), overall
vibration amplitude of several rotating and vibrating parts of
the pump changes. PCA captures the changes in frequencies
and suggests that overall amplitude change is decreasing as
flowrate increases as indicated in Fig. 6 (a), but not in all
components/frequencies as indicated in Fig. 6 (b). Fig. 6 also
suggests that there is information contained in the vibration
signals that are associated with flow rate that is not
overshadowed by the data imperfections discussed previously.

4.5 Inferring rpm from Vibration Signal

For this initial analysis, signals collected from sensor #4 (see



Fig. 3) placed on the coupling is used to infer rpm as coupling
is the connection between impeller and motor and therefore
will be directly affected by rpm change. Inspections of spectra
at different rpm's indicate that there is a linear relationship
between rpm and the frequency of the highest PSD peak. Also
it appears that the amplitude of the peak does not matter and it
is affected by the load on the pump (i.e., flow rate). Therefore,
a vector of zeros with length 1000 is generated corresponding
to frequencies with increment of 0.2 Hz. Then the frequency
of the highest PSD peak is identified and the zero in the vector
at that frequency is replaced with one. To robustify the method
considering the data veracity, four zeros corresponding to two
adjacent frequencies on each side of the identified frequency
are replaced with one’s as well. The above procedure is
performed for all samples to generate a matrix consisting of
zero’s and one’s. For this initial analysis, a partial least squares
(PLS) model was built using rpm cases of 1500, 1800, 2000,
2300 and 2400 with different flow rates for each rpm as shown
in Table 1, which combine to 22 conditions (i.e., different
combination of rpm and gpm). The calibration set consists of
200 samples from each condition. Thus the calibration matrix
Xrrain 18 @ 4400x1000 logical matrix. The PLS model was
tested for the 22 conditions using 200 new samples from each
condition. Thus the test matrix X, has the same dimension
as Xrrqin. The Y matrices for training and testing were consists
of the rpm for each of the corresponding samples. The number
of PC was chosen as two. Fig. 7 demonstrates excellent
agreement between the measured and predicted rpm’s on the
test samples, indicating good performance of the PLS model.
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4.6 Inferring Flow Rate from Vibration Signal

As shown in the previous section, the rpm inference is quite
simple and reliable as the frequency of the highest PSD peak
is not affected by the flow rate change when vibration signals
collected from the coupling were used. The inference of flow
rate from vibration signals is much harder as the flow rate is
affected by both rpm and the discharge valve opening. As
discussed in the previous section, the flow rate affects the
amplitude of PSD peaks. Therefore, the amplitudes of PSD
peaks over the frequency of 1-800 Hz were used to build a PLS
model. We first investigate the possibility of predicting flow

rate under different rpm conditions using all flow rate
conditions for 1500, 1800, 2000, 2300 and 2400 rpm, which
include both low and high rpm’s, and totally 22 conditions.
Again, the signals collected from sensor #4 placed on the
coupling is used to infer flow rate. The vibration signal from
both x and z directions are used. The first 500 samples (i.e.,
PSD spectrum obtained from a vibration signal) from each of
the 22 conditions were stacked row wise (i.e., totally 11000
samples) for calibrating the PLS model. Another 250 samples
from each of the 22 conditions (i.e., totally 5500 samples) were
used for testing. Thus the final X, and Xr.g have the
dimension of 11000x7992 and 5500x7992, respectively.
Vrrain and Yresr have the dimension of 11000x1 and 5500x1,
respectively. The comparison of the predicted and measured
flow rates of the test data for all 22 conditions is shown in Fig.
8, which indicates that the PLS model was able to predict the
flow rates in the vicinity of the true values but the predictions
are not very accurate. The root mean squared error (RMSE) of
the prediction is 0.60.
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To improve model prediction accuracy, we investigate the case
where rpm is known or has been predicted independently as
shown in the previous section. Under such a case, separate
models can be built for the same or similar rpm condition. In
this work, separate models for different rpm’s were calibrated
and tested. For each model the first 500 samples from each
condition were used to construct Xrrqim and Yrpqm for
calibration and another 250 samples from the same condition
were used to construct Xp.q; and yr.s for testing. Due to
limited space, only one low rpm of 1800 and one high rpm of
2400 cases are presented here. Same as the mixed rpm
modeling, vibration signals from x and z directions of sensor
#4 were used. Fig. 9 (a) and (b) compare the predicted flow
rates to the measured ones for 1800 rpm and 2400 rpm,
respectively. Fig. 9 shows that the prediction performance of
models built based on separate rpm’s perform better than a
single model built including all rpm’s. The RMSE’s for 1800
rpm and 2400 rpm are 0.35 and 0.43, respectively.

5 CONCLUSIONS AND DISCUSSIONS

In this work, we introduced the design of an [oT testbed using
multi-stage centrifugal pumping system equipped with non-
invasive [oT vibration sensors. We studied the characteristics
of the data collected from these IoT sensors, focusing on data
veracity (i.e., unequal sampling intervals, significant noise and



missing values) and its challenges for data analytics. We
demonstrated that some robust methods such as Lomb’s
algorithm can properly handle these data veracity
characteristics. We also discussed data volume and velocity
resulted from high frequency sampling and showed that proper
data representation (e.g., in frequency domain) can help
overcome this challenge. Finally, we developed data-driven
predictive models using the frequency domain representation
of the vibration signals to infer key process variables for
process monitoring, namely the flow rate inside the pipe and
rpm of the pump motor. The model predictions were validated
with experimental measurements. Altogether, this study serves
as a demonstration of how IoT sensors and big data analytics
can be integrated and utilized for real-time process monitoring.
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Fig. 9 Predicted vs. measured flowrates based on individual
rpm models

It is worth noting that this work presents some initial results of
this project, which is far from comprehensive and there are
many areas that are worth further investigation, such as
exploring other modeling approaches such as neural networks,
utilizing data collected from all sensors instead of just one as
in this work, improving soft sensor performance through
variable selection, etc.
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