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ABSTRACT

Complex networks are the subject of fundamental interest from the scientific community at large. Several metrics have been
introduced to characterize the structure of these networks, such as the degree distribution, degree correlation, path length,
clustering coefficient, centrality measures, etc. Another important feature is the presence of network symmetries. In particular,
the effect of these symmetries has been studied in the context of network synchronization, where they have been used to predict
the emergence and stability of cluster synchronous states. Here, we provide theoretical, numerical, and experimental evidence
that network symmetries play a role in a substantially broader class of dynamical models on networks, including epidemics,
game theory, communication, and coupled excitable systems; namely, we see that in all these models, nodes that are related by a
symmetry relation show the same time-averaged dynamical properties. This discovery leads us to propose reduction techniques
for exact, yet minimal, simulation of complex networks dynamics, which we show are effective in order to optimize the use of
computational resources, such as computation time and memory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081023

There has been substantial research into the role of the
network symmetries in affecting cluster synchronization.
This paper discusses the effects of the network symme-
tries on other types of network dynamics, including evo-
lutionary games, traffic models, and neuronal dynamical
models.

I. OUTLINE

In recent years, a large body of research has investigated
the dynamics of complex networks, including percolation,1

epidemics,2,3 synchronization,4–13 evolutionary games,14,15 neu-
ronal models,16,17 and traffic dynamics.18–26 These studies are
relevant to better model, understand, design, and control
networks in technological, biological, and social applica-
tions. Extensive research has shown that the structure of
these networks (e.g., their degree distribution,27,28 degree
correlation,29,30 community structure,31 etc.) plays a significant
role in their dynamical time evolution.32

Another important feature of the network topology is the
presence of network symmetries, which so far have remained

to some extent unexplored, with some exceptions.13,36–39 These
symmetries have been shown to be commonplace in many

real networks;40 hence, it becomes important to understand
how they can affect the dynamics of the network. Refer-
ences 13 and 36–39 have focused on the role played by
the network symmetries on the emergence of cluster syn-
chronization. Here, we consider several well known dynam-
ical models on networks and try to illustrate the effects of
the underlying network symmetries on the network dynam-
ics. Our study indicates that network symmetries play a
role in all the dynamical models considered and, in partic-

ular, evolutionary games,14,15 network traffic,18–26 and propa-

gation of excitation among excitable systems41–43 and thus
suggests that the effects of the symmetries on the dynam-
ics may be a rather general feature of complex networks.
However, as we will see, the particular effect of the sym-
metries varies based on the particular type of dynamics
considered.
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Here, the topology of a network is described by the adja-
cency matrix A = {Aij}, where Aij = Aji is equal to 1 if node j
and i affect each other and is equal to 0 otherwise. We define
a network symmetry as a permutation of the network nodes
that leaves the network structure unaltered. The symmetries
of the network form a (mathematical) group G. Each element
of the group can be described by a permutation matrix 5 that
re-orders the nodes in a way that leaves the network struc-
ture unchanged (that is, each 5 commutes with A, 5A = A5).
Though the set of symmetries (or automorphisms) of a net-
work can be quite large, even for small networks, it can be
computed from the knowledge of the matrix A by using widely
available discrete algebra routines. In fact, except for simple
cases for which it may be possible to identify the symme-
tries by inspection, in general for an arbitrary network, the
use of software is required. In this study, we used Sage,44

an open-source mathematical software. Once the symmetries
are identified, the nodes of the network can be partitioned into
M clusters by finding the orbits of the symmetry group, i.e.,
the disjoint sets of nodes that, when all of the symmetry oper-
ations are applied, permute among one another in the same
set.

II. SYMMETRIES OF THE NETWORK DYNAMICS

Figures 1(a)–1(c) show three examples of undirected net-
works: the Zachary’s Karate Club network33 of N = 34 nodes,
the Bell South network45 of N = 51 nodes, and a randomly gen-
erated Erdös-Rényi (ER) graph of N = 20 nodes, respectively.
Each node of the Karate Club network is a member of a uni-
versity karate club and a connection represents a friendship
relation between the members. The nodes of the Bell South
network are the IP/MPLSs (Multiprotocol Label Switching:
a switching mechanism used in high-performance telecom-
munications networks) backbone and connections represent
routing paths. In Figs. 1(a)–1(c), colors of the nodes indicate
the clusters they belong to, either non-trivial (i.e., clusters
with more than one node in them) or trivial clusters (clusters
with only one node in them). All the nodes in trivial clusters
are colored gray, while the non-trivial clusters are colored
differently. The Karate Club network in Fig. 1(a) has C = 4
nontrivial clusters, 23 trivial clusters, and 480 symmetries.
The Bell South network in Fig. 1(b) displays C = 9 nontrivial
clusters, 24 trivial clusters, and 29859840 symmetries. The
random network in Fig. 1(c) has C = 6 non-trivial clusters, 8
trivial clusters, and 8 symmetries. The rest of Fig. 1 has a total
of nine panels, one for each of three networks and each of
three dynamical models. The three dynamical models are evo-
lutionary game theory [(d)–(f)], network traffic [(g)–(i)], and
propagation of excitation among excitable system [(j)–(l)].

We now briefly introduce the models, which are all
stochastic in nature. The evolutionary game theory dynam-
ics models the evolution of cooperation and defection in a
population of coupled agents (nodes), playing the Prisoner’s
Dilemma game. At each time step, a node is randomly selected
and its strategy is updated. The new strategy to be adopted is

probabilistically determined based on the payoffs of the nodes
surrounding the selected node and their strategy selection.

Each of the network nodes (agents) iteratively plays a ver-
sion of the Prisoner’s Dilemma game.14 Each node i can either
be a cooperator (Si = 1) or a defector (Si = 0). The network
connectivity is defined by the adjacency matrix A, described
earlier. We define a payoff between two players, based on the
well known Prisoner’s Dilemma game. There are two types of
strategy adopted by the players: cooperation and defection. A
cooperator pays a cost c for each of the agents it is connected
to and a defector pays nothing.14 Each node receives a benefit
equal to b for each cooperator it is connected to. When playing
the game, node i receives a payoff equal to

ξi =
∑

j

(AijbSj − AjicSi). (1)

We define the fitness14 of each node to be fi = 1 − ω + ωξi,
where 0 ≤ ω ≤ 1 measures the intensity of selection: ω ' 1
means strong selection, that is, the fitness is almost equal
to the payoff and ω ' 0 means weak selection, that is, the
fitness is almost independent of the payoff and close to 1.
The literature14,46–48 focuses on the case of weak selection,
which is also what we consider here. Following Ref. 14, we
choose a “Death-birth” (DB) updating rule for the game evo-
lution. Namely, in each time step, a randomly selected node
i is replaced by a new offspring (node). The new offspring
evolves into either a cooperator or a defector depending on
the fitness of the surrounding agents. We set the probability of
that new node to be a cooperator to be σ(FCi − FDi), where FCi
and FDi are the fitnesses of cooperators and defectors in the
neighboring nodes and σ is a monotonically increasing func-
tion such that 0 ≤ σ ≤ 1. This reflects a higher propensity of
turning into a cooperator based on how well the neighbors of
a given node that are cooperators are doing with respect to
the other neighbors of that node that are defectors. The total
fitness of the neighbors of player i is equal to

Fi =
N

∑

j

Aijfj. (2)

The total fitness of the cooperators, FCi, and defectors, FDi, in
the neighboring nodes of node i is defined as

FCi =
N

∑

j

AijSjfj =
∑

j

AijSj(1 − ω) + ω
∑

j

AijSjξj,

FDi = Fi − FCi =
N

∑

j

Aij(1 − Sj)(1 − ω) + ω
∑

j

Aij(1 − Sj)ξj.

(3)

Letting xi = (FCi − FDi), we write the probability that the
new offspring will be a cooperator σ(xi). Here, we set σ(xi)

= γxi + ε, where γ > 0 and ε are two arbitrary constants. In
all our numerical simulations, the values of γ and ε were
chosen so as to ensure 0 ≤ σ ≤ 1 for all i’s. In Sec. S1 of the
supplementary material, we obtain a set of equations that
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FIG. 1. Effects of the network symmetries in three different dynamical models/networks: (a) the Zachary’s Karate Club network,33 (b) the Bellsouth network,34 and (c) a
random graph; nodes colored the same are in the same symmetry cluster except the gray colored nodes, each of which is in a cluster by itself. (d)–(f) Prisoner’s Dilemma
dynamics, (g)–(i) Network traffic model dynamics, and (j)–(l) dynamics of the Kinouchi Copelli model35 in each one of the three networks (a)–(c).
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describe the time evolution of the game and prove its equivari-
ance with respect to permutations of the network nodes that
are in the automorphism group of A.

We numerically iterated the game on several networks,
including the three shown in Figs. 1(a)–1(c) for a number of
time-steps, and for each node i, we monitored 〈Si〉 the frac-
tion of times a node spends in the cooperator state. For
each run, the game was iterated until a state was reached
in which the number of cooperators and defectors stabilized.
Figures 1(d)–1(f) show 〈S〉i, the fraction of times that each node
spends in the cooperator state for each of the nodes of the
networks in Figs. 1(a)–1(c), respectively.

In the network traffic model, packets are originated at
source nodes, get routed through a sequence of intermedi-
ate nodes, until they reach the destination nodes, and get
removed from the network.18–26 At every intermediate node,
packets are placed at the bottom of that node’s queue. When
they reach the top of the queue, they get routed to one
of the neighboring nodes. Here, we consider a simple rout-
ing strategy that attempts to avoid nodes with large queues,
assigning them a lower probability of being selected for rout-
ing. Figures 1(g)–1(i) show the rate of growth of the queue
length (number of packets in the queue) at each node for the
three networks shown in Figs. 1(a)–1(c), respectively.

Finally, we consider a network of coupled excitable
systems.41 Each of these systems can be in either one of
three states: quiescent, excited, and refractory. Nodes that
are excited can excite neighboring nodes that are in the qui-
escent state with a certain probability. Figures 1(j)–1(l) show
the frequency of excitation at each node for the three net-
works shown in Figs. 1(a)–1(c), respectively. A more precise and
detailed description of the evolutionary game theory model
is provided in Sec. S1 of the supplementary material, of the
network traffic model in Sec. S2 of the supplementary mate-
rial, and of the excitable systems model in Sec. S3 of the
supplementary material.

Our main result is that for all the three networks and the
three dynamical models, nodes that belong to the same clus-
ter show the same time-averaged dynamics. This is illustrated
in detail in Figs. 1(d)–1(l). While this observation holds irre-
spective of the particular network and type of dynamics, the
particular time-averaged value attained by the nodes in the
same cluster is network and model specific. Note that in
the figure, nodes are ordered by their degree (which is the
label on the abscissa-axis). For example, for the game the-
ory model, we observe that the nodes in the same cluster
approximately show the same frequency of being a cooper-
ator (or defector) but that does not necessarily correlate with
the degree. Here, we see that the symmetries in the network
topology can predict dynamics better than the nodes’ degrees.

For each of the dynamical models considered, we have
performed an analysis to (i) predict the emergence of clus-
ters when the dynamics is averaged in time and (ii) predict the
time-averaged values attained by the nodes in each cluster.
The results of this analysis are reported for the evolutionary
game, the communication model, and the excitable systems
model in Secs. S1–S3 of the supplementary material.

III. QUOTIENT GRAPH REDUCTION

As mentioned in Sec. I, symmetries are common features
of biological networks, technological networks, social net-
works, etc. MacArthur et al.49 have analyzed datasets of large
complex networks and have found that these present large
numbers of symmetries (see Sec. S4 in the supplementary
material). Intensive research in social sciences, biology, engi-
neering, and physics uses numerical simulations of large com-
plex networks to understand and predict their dynamical
behavior (e.g., in a given network, the critical value of the
infection rate above which an epidemics occurs), in order to
better characterize and control real-world phenomena.

Our results in Secs. II and S1–S3 of the supplementary
material point out that nodes that are related by a symmetry
operation display the same time-averaged dynamical behav-
ior. This immediately raises the question whether a reduction
of the dynamics is possible in which duplicate nodes can be
omitted, leading to minimal models of complex networks,
and so to a better exploitation of computational resources in
numerical simulations, such as computation time and mem-
ory. Related questions have been asked in the literature of
complex networks, where nodes have been grouped according
to some of their features, most notably the degree,27 and these
approaches have been successful at predicting and explaining
several network properties, in particular in the case of scale
free networks.28While these approaches are typically based on
mean-field models and thus approximate, here our grouping
of nodes is based on the exact concept of a symmetry.

Our ultimate goal is to generate minimal network models
that reproduce certain features of the dynamics by using the
least possible number of nodes. In the case of synchronization
dynamics, we know that a quotient network reduction is pos-
sible, in which the exact cluster-synchronous time-evolution
is generated by a minimal number of nodes (i.e., one node for
each cluster).37However, how to obtainminimal networkmod-
els for other types of dynamics remains an open question. To
address this issue, here we will briefly review the concept of a
quotient network.

Under the action of the symmetry group, the set of the
network nodes is partitioned into C disjoint structural equiva-
lence classes called the group orbits, O1,O2, . . . ,OC, such that
⋃C

`=1 |O`
G
| = N and Oi

G
∩ O

j
G

= 0,where i, j = 1, 2, . . . ,C, j 6= i.

Then, we can define a C × C matrix Â corresponding to
the quotient network such that for each pair of sets (Ov,Ou),

Âuv =
∑

j∈Ov

Aij, (4)

for any i ∈ Ou (i.e., independent of i ∈ Ou) and for u, v
= 1, 2, . . . ,C.

In Fig. 2(a), we show a randomly generated network of 10
nodes and in Fig. 2(b) its quotient graph reduction. We see that
all the nodes in the same cluster (these are colored the same
in the figure on the left) map to only one node of the quotient
network (on the right) and the color identifies the reduced
node. Note that the quotient network may be directed even
if the original full network is undirected. It is also possible that
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FIG. 2. (a) A 10 node network and (b) its 5 node quotient reduction. Inset of (a) shows one Arduino board with radio transmitter, which we used in our experiments. Plots
(c) and (d) are experimental time traces showing the running average for the fraction of times each node spends in the cooperator state for the full network in (a) and the
quotient network in (b), respectively. Colors in (c) and (d) are consistent with (a) and (b).

nodes of the quotient network form self connections, which
represent connections between nodes belonging to the same
cluster in the original graph.

In general, the mathematical equations we have derived
in Secs. II and S1–S3 of the supplementary material for all the
three models can be projected onto the corresponding quo-
tient network equations (see Sec. S4 in the supplementary
material for an example). However, obtaining an equiva-
lent model that can be simulated on the quotient network
and can reproduce the original full network dynamics may
require a particular adaptation of the model, which is model
specific.

We show that the quotient graph can be conveniently
exploited in simulations involving large networks to reduce
computation time and memory. These simulations may be
used to model various types of dynamics, including epidemics,
congestion, emergence of cooperation, as discussed in Sec. II,
just to mention a few examples. In order to demonstrate this
point, we consider the evolutionary game theory model pre-
sented in Sec. II, and for a number of networks, we study
how well the corresponding quotient graphs can approxi-
mate the evolutionary dynamics of the original full network. In
what follows, we describe evolution of the Prisoner’s Dilemma

dynamics, as described in Sec. II, on the quotient network.

We indicate with Ŝj = {0, 1} the strategy of node j of the quo-
tient network, where 0 represents defection and 1 represents
cooperation. At each iteration of the game, the payoff received
by quotient node i from its neighboring nodes is equal to

ξ̂i =
∑

j Âij

(

bŜj − cŜi

)

. Note that this expression for the payoff

differs from that for the full network in Eq. (1) as the map-
ping of nodes from the full network to the quotient network
preserves the indegree of the nodes, but not the outdegree.

Moreover, the fitness of quotient node i is equal to f̂i = 1 − ω

+ ωξ̂i. Similarly, we write the expressions

F̂i =
∑

j

Âij f̂j,

F̂Ci =
∑

j

ÂijŜj(1 − ω) + ω
∑

j

ÂijŜjξ̂j,

F̂Di =
∑

j

Âij(1 − Ŝj)(1 − ω) + ω
∑

j

Âij(1 − Ŝj)ξ̂j,

(5)

where F̂i, F̂Ci, and F̂Di are the total fitness, the fitness of the
neighboring cooperators, and the fitness of the neighboring

Chaos 29, 011101 (2018); doi: 10.1063/1.5081023 29, 011101-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Comparison between simulation results of the evolutionary game on the
Bellsouth network in Fig. 1(b) and its quotient version. The diamond marks corre-
spond to simulation on the full network and the square marks correspond to the
simulation on the quotient network. Points that are colored the same correspond
to nodes in the same cluster (coloring is consistent with Figs. 1(a) and 1(b), except
for the gray colored nodes, each of which is in a cluster by itself).

defectors of a quotient node i, respectively. We set the same
cost c and benefit b as for the full network. At each time step,
a node of the quotient network is selected with probability
proportional to the cardinality of its orbit set and replaced by
a new offspring. This new node becomes a cooperator with

a probability σ
(

F̂Ci − F̂Di
)

, where σ is the function defined in

Sec. II.
We expect that the time averages 〈ξf〉 ≈ 〈ξ̂q〉, 〈FCf〉 ≈ 〈F̂Cq〉,

and 〈FDf〉 ≈ 〈F̂Dq〉, where node f of the full network maps to
node q of the quotient network (for nodes of the full network
that are in the same cluster, we know that the time aver-
ages are the same from the analysis in Sec. II). Moreover, the
time-averaged strategy for a node of the quotient network

〈Ŝq〉 is the same as the time-averaged strategy for the corre-
sponding node of the full network, 〈Sf〉. Figure 3 compares the
simulation results for the Bellsouth network (squares) and its
quotient reduction (diamonds). As can be seen, we find very
good agreement between the full and quotient network time-
averaged dynamics. This indicates that, if we are interested
in the time-averaged behavior, we can equivalently perform
a simulation on either the full network or on the reduced
quotient network.

In order to test the robustness of our results in a real
setting, we have built an experimental network of coupled
agents iteratively playing the Prisoner’s Dilemma. This net-
work is composed of 10 wirelessly coupled transceiver mod-
ules (details in Sec. S7 in the supplementary material) as shown
in Fig. 2(a) using nRF24L01 2.4GHz RF transceivers on Arduino

boards. The transceiver modules act as the nodes of the net-
work. All the transceiver modules have unique addresses, i.e.,
communication is one to one. To construct this network, com-
munication links of each module are restricted as per the
topology of the network, i.e., only the connected modules
can communicate and share information with each other. For
example, radio module 7 in Fig. 2(a) can only communicate
with modules 4, 6, 8, and 10. This experimental realization is
subject to practical limitations that are hard to reproduce in
simulation. In particular, in our experimental setting, these
limitations are mainly imposed by the reliability of the radio
communication between the individual units (details in Sec. S7
in the supplementary material). We have also built an experi-
mental version of the quotient network in Fig. 2(b). The exper-
imental time traces for the networks in Figs. 2(a) and 2(b) when
the game is played are shown in Figs. 2(c) and 2(d), respectively.
We see that (i) nodes of the full network that are in the same
cluster attain the same frequency of cooperation as the game
is iterated and (ii) for large time, the quotient network well
predicts the full network experimental dynamics.

Since the quotient graphs have in general fewer nodes
than the full graphs, they can be advantageous in terms of
both memory and time needed in simulation. The size of the
adjacency matrix reduces from N × N to C × C, and the num-
ber of nonzero elements of the matrix decreases from NKav to
roughly

√
NCKav, where Kav is the average node degree of the

full network. We define the reduction coefficient ρg = C/N. A
smaller value of the ratio ρg indicates higher reduction of the
number of nodes in the quotient graph with respect to the
original graph. Note that a critical aspect of simulation of large
real networks is the limitation of software memory alloca-
tion. We computed the CPU time required by a single iteration
of the prisoner’s dilemma dynamics for several networks and
their quotients. Figure 4(a) and Table S2 in the supplementary
material show the CPU time ratio ρt = tq/tf , where tf and tq are
the CPU time for an iteration of the full and quotient network,
respectively.

For both the full network and the quotient network, we
also computed the simulation convergence time, which we
measured as follows. We randomly picked an initial condition
for each node of the quotient network and assigned the same
initial condition to all the nodes in the corresponding clus-
ter of the full network. At each time step, we computed the
running average for the fraction of times a node spent in the
cooperation state. For each node, we measured its individual
convergence time, i.e., the time after which the running aver-
age remained steadily in a [−δ,+δ] interval of the final state.
The convergence time of the network was taken to be the
largest of the convergence times of the nodes. Figure 4(b) and
Table S2 in the supplementary material show the convergence
time ratio ρc = τq/τf , where τf and τq are the convergence times
for the full and the quotient network, respectively.

We note that simulating the dynamics on the quo-
tient graph, rather than on the original network, can reduce
the computational effort, while producing approximately the
same time-averaged dynamics. In Fig. 4(c) and Table S2 in
the supplementary material, we show the accuracy parameter
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FIG. 4. (a) CPU time ratio. (b) Convergence time ratio. (c) Error between the full and quotient network time-averaged dynamics.

1, defined as the normalized average difference of the time-
averaged frequency of cooperation between the full and the
quotient network,

1 = 1

N

N
∑

i

|〈S〉i − ˆ〈S〉i|
Si

, (6)

where 〈S〉i and ˆ〈S〉i are the time-averaged frequency of coop-
eration of node i and its corresponding node in the quotient
network, respectively.

Figure 4 shows that as the reduction coefficient is low-
ered, the CPU time ratio ρt and the convergence time ratio ρc

decrease in a linear fashion, but the normalized error param-
eter 1 is roughly independent of ρg. It is important to look
at the y-axes of the plots in Figs. 4(a)–4(c). For example, for
a strong reduction coefficient ρg ' 0.2, corresponding to the
Media Owners Group network, the CPU time is lowered by
roughly 95%, but the normalized error 1 only increases by
approximately 2%.

IV. CONCLUSIONS

By applying a symmetry analysis to a network, we have
uncovered clusters of nodes that are structurally and func-
tionally equivalent. This becomes apparent when monitoring
the time-averaged state of the nodes in a variety of network
models (previous work had only focused on the particular
case of synchronization dynamics) and is confirmed in an
experimental realization of an evolutionary game played on a
network, in the presence of noise and communication losses.
Thus, it appears that the emergence of symmetry clusters in
the time-averaged dynamics of networks is a general feature.
For the case of the evolutionary game, we obtain a reduc-
tion technique for exact, yet minimal, simulation of complex
network dynamics, which produces similar dynamical results,
while computation requires less time and memory. However,
a generalization of this quotient network reduction to other
types of dynamics is nontrivial. The reason is that each dynam-
ical model involves a different set of rules, which may be diffi-
cult to convert into equivalent rules for the quotient network.

We hope our work will stimulate further research into reduc-
tion techniques that can be applied to a variety of dynamical
models.

While this paper does not discuss stability of the time-
averaged cluster states, similar to the case of the synchroniza-
tion dynamics, it is foreseeable that under certain conditions,
these cluster states may lose stability. It is also possible that
cluster statesmay emerge that correspond to an equitable par-
tition of the network nodes50 or to a subgroup of the network
symmetry group,39 similar to a weak chimera.51 For a fixed set
of parameters, it may also be possible to observe bistability or
multistability of different cluster states.50

SUPPLEMENTARY MATERIAL

Supplementary material for this paper includes 7 sec-
tions. The evolutionary game theory model, network traffic
model, and biological excitable system model are described in
Secs. S1, S2, and S3, respectively, of the supplementary mate-
rial. The equations describing the quotient network dynamics
are presented in Sec. S4 of the supplementary material. Tables
for the symmetries of real networks and the computational
aspects of the quotient network simulations are included in
Secs. S5 and S6 of the supplementary material, respectively.
The experimental realization is described in Sec. S7 of the
supplementary material.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research
through ONR Award No. N00014-16-1-2637, the National Sci-
ence Foundation through NSF Grant Nos. CMMI-1727948 and
CRISP-1541148, and the Defense Threat Reduction Agency’s
Basic Research Program under Grant No. HDTRA1-13-1-0020.
The authors acknowledge insightful discussions with Fabio
Della Rossa and help in running the experiment from Robert
Morris, Jonathan Ungaro, John Padilla, and Shakeeb Ahmad, all
from the University of New Mexico.

Chaos 29, 011101 (2018); doi: 10.1063/1.5081023 29, 011101-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-001994


Chaos ARTICLE scitation.org/journal/cha

REFERENCES
1C. Moore and M. E. J. Newman, “Epidemics and percolation in small-world
networks,” Phys. Rev. E 61(5), 5678 (2000).
2A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network topol-
ogy on the spread of epidemics,” in Proceedings IEEE INFOCOM 2005 24th
Annual Joint Conference of the IEEE Computer and Communications Societies
(IEEE, 2005), Vol. 2, pp. 1455–1466.
3D. J. D. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell, “A simple model for
complex dynamical transitions in epidemics,” Science 287(5453), 667–670
(2000).
4A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal
Concept in Nonlinear Sciences (Cambridge University Press, 2003).
5L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. Lett. 64(8), 821 (1990).
6M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of
chaotic oscillators,” Phys. Rev. Lett. 76, 1804 (1996).
7I. Belykh, M. Hasler, M. Lauret, and H. Nijmeijer, “Synchronization and
graph topology,” Int. J. Bifurcation Chaos 15(11), 3423–3433 (2005).
8I. Belykh, E. de Lange, and M. Hasler, “Synchronization of bursting neu-
rons: What matters in the network topology,” Phys. Rev. Lett. 94(18), 188101
(2005).
9I. Belykh and M. Hasler, “Mesoscale and clusters of synchrony in networks
of bursting neurons,” Chaos 21(1), 016106 (2011).
10V. N. Belykh, I. V. Belykh, and E. Mosekilde, “Cluster synchronization
modes in an ensemble of coupled chaotic oscillators,” Phys. Rev. E 63(3),
036216 (2001).
11A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and K. Showalter, “Dynam-
ical quorum sensing and synchronization in large populations of chemical
oscillators,” Science 323(5914), 614–617 (2009).
12M. R. Tinsley, S. Nkomo, and K. Showalter, “Chimera and phase-cluster
states in populations of coupled chemical oscillators,” Nat. Phys. 8(9),
662–665 (2012).
13L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy,
“Cluster synchronization and isolated desynchronization in complex net-
works with symmetries,” Nat. Commun. 5, 304–305 (2014).
14H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, “A simple rule
for the evolution of cooperation on graphs and social networks,” Nature
441(7092), 502–505 (2006).
15J. W. Weibull, Evolutionary Game Theory (MIT Press, 1997).
16T. B. Luke, E. Barreto, and P. So, “Complete classification of the
macroscopic behavior of a heterogeneous network of theta neurons,”
Neural Comput. 25(12), 3207–3234 (2013).
17M. Uzuntarla, E. Barreto, and J. J. Torres, “Inverse stochastic resonance in
networks of spiking neurons,” PLoS Comput. Biol. 13(7), e1005646 (2017).
18K.-I. Goh, B. Kahng, and D. Kim, “Universal behavior of load distribution in
scale-free networks,” Phys. Rev. Lett. 87, 278701 (2001).
19K.-I. Goh, B. Kahng, and D. Kim, “Packet transport and load distribution in
scale-free network models,” Physica A 318, 72–79 (2003).
20R. V. Sole and S. Valverde, “Information transfer and phase transition in a
model of data traffic,” Physica A 289(3–4), 595–605 (2001).
21T. Ohira and R. Sawatari, “Phase transition in a computer network traffic
model,” Phys. Rev. E 58(1), 193 (1998).
22Y. Moreno, R. Pastor-Satorras, A. Vasquez, and A. Vespignani, “Critical
load and congestion instabilities in scale-free networks,” Europhys. Lett. 1,
292–298 (2003).
23R. Guimerà, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, and A.
Arenas, “Optimal network topologies for local search with congestion,”
Phys. Rev. Lett. 89(24), 248701 (2002).
24D. Arrowsmith, M. di Bernardo, and F. Sorrentino, “Communication mod-
els with distributed transmission rates and buffer sizes,” in 2006 IEEE
International Symposium on Circuits and Systems (ISCAS) (IEEE, 2006), 4 pp.
25D. Arrowsmith, M. Di Bernardo, and F. Sorrentino, “Effects of variations
of load distribution on network performance,” in 2005 IEEE International
Symposium on Circuits and Systems (ISCAS) (IEEE, 2005), pp. 3773–3776

26M. di Bernardo and F. Sorrentino, “Network structural properties, com-
munication models and traffic dynamics,” in Conference Proceedings of the
International Symposium on Nonlinear Theory and its Applications, NOLTA,
Bologna, Italy, 11–14 September 2006, p. 659.
27R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Phys. Rev. Lett. 86(14), 3200 (2001).
28A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science 286(5439), 509–512 (1999).
29M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E 67(2), 026126
(2003).
30M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett. 89(20),
208701 (2002).
31M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).
32S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex
networks: Structure and dynamics,” Phys. Rep. 424(4), 175–308 (2006).
33W.W. Zachary, “An information flowmodel for conflict and fission in small
groups,” J. Anthropol. Res. 33, 452–473 (1977).
34See http://www.topology-zoo.org/dataset.html for “The Internet Topol-
ogy Zoo.”
35O. Kinouchi and M. Copelli, “Optimal dynamical range of excitable net-
works at criticality,” Nat. Phys. 2(5), 348–351 (2006).
36V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora, “Remote
synchronization reveals network symmetries and functional modules,”
Phys. Rev. Lett. 110(17), 174102 (2013).
37M. Golubitsky and I. Stewart, The Symmetry Perspective: From Equilibrium
to Chaos in Phase Space and Physical Space (Springer Science & Business
Media, 2003), Vol. 200.
38M. Golubitsky, I. Stewart et al., Singularities and Groups in Bifurcation
Theory (Springer Science & Business Media, 2012), Vol. 2.
39F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy,
“Complete characterization of stability of cluster synchronization in com-
plex dynamical networks,” Sci. Adv. 2, e1501737 (2015).
40B. D. MacArthur and R. J. Sánchez-García, “Spectral characteristics of
network redundancy,” Phys. Rev. E 80(2), 026117 (2009).
41O. Kinouchi and M. Copelli, “Optimal dynamical range of excitable net-
works at criticality,” Nat. Phys. 2, 348–352 (2006).
42D. B. Larremore, W. L. Shew, and J. G. Restrepo, “Predicting criticality and
dynamic range in complex networks: effects of topology,” Phys. Rev. Lett.
106, 058101 (2011).
43D. B. Larremore, W. L. Shew, E. Ott, and J. G. Restrepo, “Effects of net-
work topology, transmission delays, and refractoriness on the response
of coupled excitable systems to a stochastic stimulus,” Chaos 21(2), 025117
(2011).
44SageMath—A free open-source mathematics software, see http://www.
sagemath.org/index.html.
45S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011).
46Z.-X. Wu and Y.-H. Wang, “Cooperation enhanced by the difference
between interaction and learning neighborhoods for evolutionary spatial
prisoner’s dilemma games,” Phys. Rev. E 75(4), 041114 (2007).
47J. Wang, B. Wu, X. Chen, and L. Wang, “Evolutionary dynamics of public
goods games with diverse contributions in finite populations,” Phys. Rev. E
81(5), 056103 (2010).
48S. Tan, J. Lu, G. Chen, and D. J. Hill, “When structure meets function in
evolutionary dynamics on complex networks,” IEEE Circuits Syst. Mag. 14(4),
36–50 (2014).
49B. D. MacArthur, R. J. Sánchez-García, and J. W. Anderson, “Symmetry in
complex networks,” Discrete Appl. Math. 156(18), 3525–3531 (2008).
50A. B. Siddique, L. Pecora, J. D. Hart, and F. Sorrentino, “Symmetry-
and input-cluster synchronization in networks,” Phys. Rev. E 97(4), 042217
(2018).
51P. Ashwin and O. Burylko, “Weak chimeras in minimal networks of coupled
phase oscillators,” Chaos 25(1), 013106 (2015).

Chaos 29, 011101 (2018); doi: 10.1063/1.5081023 29, 011101-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1126/science.287.5453.667
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1142/S0218127405014143
https://doi.org/10.1103/PhysRevLett.94.188101
https://doi.org/10.1063/1.3563581
https://doi.org/10.1103/PhysRevE.63.036216
https://doi.org/10.1126/science.1166253
https://doi.org/10.1038/nphys2371
https://doi.org/10.1038/ncomms5079
https://doi.org/10.1038/nature04605
https://doi/org/10.1162/NECO_a_00525
https://doi.org/10.1371/journal.pcbi.1005646
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1016/S0378-4371(02)01407-3
https://doi.org/10.1103/PhysRevE.58.193
https://doi.org/10.1209/epl/i2003-00140-7
https://doi.org/10.1103/PhysRevLett.89.248701
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1086/jar.33.4.3629752
http://www.topology-zoo.org/dataset.html
https://doi.org/10.1038/nphys289
https://doi.org/10.1103/PhysRevLett.110.174102
https://doi.org/10.1126/sciadv.1501737
https://doi.org/10.1103/PhysRevE.80.026117
https://doi.org/10.1038/nphys289
https://doi.org/10.1103/PhysRevLett.106.058101
https://doi.org/10.1063/1.3600760
http://www.sagemath.org/index.html
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1103/PhysRevE.75.041114
https://doi.org/10.1103/PhysRevE.81.056103
https://doi.org/10.1109/MCAS.2014.2360790
https://doi.org/10.1016/j.dam.2008.04.008
https://doi.org/10.1103/PhysRevE.97.042217
https://doi.org/10.1063/1.4905197

	I. OUTLINE
	II. SYMMETRIES OF THE NETWORK DYNAMICS
	III. QUOTIENT GRAPH REDUCTION
	IV. CONCLUSIONS
	ACKNOWLEDGMENTS

